diffusers 0.19.3__py3-none-any.whl → 0.20.1__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (114) hide show
  1. diffusers/__init__.py +3 -1
  2. diffusers/commands/fp16_safetensors.py +2 -7
  3. diffusers/configuration_utils.py +23 -1
  4. diffusers/dependency_versions_table.py +1 -1
  5. diffusers/loaders.py +62 -64
  6. diffusers/models/__init__.py +1 -0
  7. diffusers/models/activations.py +2 -0
  8. diffusers/models/attention.py +45 -1
  9. diffusers/models/autoencoder_tiny.py +193 -0
  10. diffusers/models/controlnet.py +1 -1
  11. diffusers/models/embeddings.py +56 -0
  12. diffusers/models/lora.py +0 -6
  13. diffusers/models/modeling_flax_utils.py +28 -2
  14. diffusers/models/modeling_utils.py +33 -16
  15. diffusers/models/transformer_2d.py +26 -9
  16. diffusers/models/unet_1d.py +2 -2
  17. diffusers/models/unet_2d_blocks.py +106 -56
  18. diffusers/models/unet_2d_condition.py +20 -5
  19. diffusers/models/vae.py +106 -1
  20. diffusers/pipelines/__init__.py +1 -0
  21. diffusers/pipelines/alt_diffusion/pipeline_alt_diffusion.py +10 -3
  22. diffusers/pipelines/alt_diffusion/pipeline_alt_diffusion_img2img.py +10 -3
  23. diffusers/pipelines/audioldm/pipeline_audioldm.py +1 -1
  24. diffusers/pipelines/auto_pipeline.py +33 -43
  25. diffusers/pipelines/controlnet/multicontrolnet.py +4 -2
  26. diffusers/pipelines/controlnet/pipeline_controlnet.py +20 -4
  27. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +15 -7
  28. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +14 -4
  29. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +157 -10
  30. diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -10
  31. diffusers/pipelines/deepfloyd_if/pipeline_if.py +1 -1
  32. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +1 -1
  33. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +1 -1
  34. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +1 -1
  35. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +1 -1
  36. diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +1 -1
  37. diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +43 -2
  38. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +44 -2
  39. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +1 -1
  40. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +1 -1
  41. diffusers/pipelines/pipeline_flax_utils.py +41 -4
  42. diffusers/pipelines/pipeline_utils.py +60 -16
  43. diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +2 -2
  44. diffusers/pipelines/stable_diffusion/__init__.py +1 -0
  45. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +81 -37
  46. diffusers/pipelines/stable_diffusion/pipeline_cycle_diffusion.py +10 -3
  47. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +10 -3
  48. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_attend_and_excite.py +10 -3
  49. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +10 -3
  50. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_diffedit.py +12 -5
  51. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_gligen.py +832 -0
  52. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +10 -3
  53. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +10 -3
  54. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint_legacy.py +10 -3
  55. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_k_diffusion.py +9 -2
  56. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_ldm3d.py +17 -8
  57. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_model_editing.py +10 -3
  58. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_panorama.py +10 -3
  59. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_paradigms.py +10 -3
  60. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_pix2pix_zero.py +10 -3
  61. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_sag.py +10 -3
  62. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +10 -3
  63. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +10 -3
  64. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +10 -3
  65. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +3 -5
  66. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +75 -3
  67. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +76 -6
  68. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +1 -2
  69. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +10 -3
  70. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +10 -3
  71. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +11 -4
  72. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +1 -1
  73. diffusers/pipelines/versatile_diffusion/modeling_text_unet.py +131 -28
  74. diffusers/schedulers/scheduling_consistency_models.py +70 -57
  75. diffusers/schedulers/scheduling_ddim.py +76 -71
  76. diffusers/schedulers/scheduling_ddim_inverse.py +76 -44
  77. diffusers/schedulers/scheduling_ddim_parallel.py +11 -8
  78. diffusers/schedulers/scheduling_ddpm.py +68 -67
  79. diffusers/schedulers/scheduling_ddpm_parallel.py +18 -15
  80. diffusers/schedulers/scheduling_deis_multistep.py +93 -85
  81. diffusers/schedulers/scheduling_dpmsolver_multistep.py +118 -120
  82. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +116 -109
  83. diffusers/schedulers/scheduling_dpmsolver_sde.py +57 -43
  84. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +122 -121
  85. diffusers/schedulers/scheduling_euler_ancestral_discrete.py +54 -44
  86. diffusers/schedulers/scheduling_euler_discrete.py +63 -56
  87. diffusers/schedulers/scheduling_heun_discrete.py +57 -45
  88. diffusers/schedulers/scheduling_ipndm.py +27 -22
  89. diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +54 -41
  90. diffusers/schedulers/scheduling_k_dpm_2_discrete.py +52 -41
  91. diffusers/schedulers/scheduling_karras_ve.py +55 -45
  92. diffusers/schedulers/scheduling_lms_discrete.py +58 -52
  93. diffusers/schedulers/scheduling_pndm.py +77 -62
  94. diffusers/schedulers/scheduling_repaint.py +56 -38
  95. diffusers/schedulers/scheduling_sde_ve.py +62 -50
  96. diffusers/schedulers/scheduling_sde_vp.py +32 -11
  97. diffusers/schedulers/scheduling_unclip.py +3 -3
  98. diffusers/schedulers/scheduling_unipc_multistep.py +131 -91
  99. diffusers/schedulers/scheduling_utils.py +41 -35
  100. diffusers/schedulers/scheduling_utils_flax.py +8 -2
  101. diffusers/schedulers/scheduling_vq_diffusion.py +39 -68
  102. diffusers/utils/__init__.py +2 -2
  103. diffusers/utils/dummy_pt_objects.py +15 -0
  104. diffusers/utils/dummy_torch_and_transformers_objects.py +15 -0
  105. diffusers/utils/hub_utils.py +105 -2
  106. diffusers/utils/import_utils.py +0 -4
  107. diffusers/utils/pil_utils.py +19 -0
  108. {diffusers-0.19.3.dist-info → diffusers-0.20.1.dist-info}/METADATA +5 -7
  109. {diffusers-0.19.3.dist-info → diffusers-0.20.1.dist-info}/RECORD +113 -112
  110. {diffusers-0.19.3.dist-info → diffusers-0.20.1.dist-info}/WHEEL +1 -1
  111. {diffusers-0.19.3.dist-info → diffusers-0.20.1.dist-info}/entry_points.txt +0 -1
  112. diffusers/models/cross_attention.py +0 -94
  113. {diffusers-0.19.3.dist-info → diffusers-0.20.1.dist-info}/LICENSE +0 -0
  114. {diffusers-0.19.3.dist-info → diffusers-0.20.1.dist-info}/top_level.txt +0 -0
@@ -340,7 +340,14 @@ class StableDiffusionImg2ImgPipeline(
340
340
  )
341
341
  prompt_embeds = prompt_embeds[0]
342
342
 
343
- prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
343
+ if self.text_encoder is not None:
344
+ prompt_embeds_dtype = self.text_encoder.dtype
345
+ elif self.unet is not None:
346
+ prompt_embeds_dtype = self.unet.dtype
347
+ else:
348
+ prompt_embeds_dtype = prompt_embeds.dtype
349
+
350
+ prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
344
351
 
345
352
  bs_embed, seq_len, _ = prompt_embeds.shape
346
353
  # duplicate text embeddings for each generation per prompt, using mps friendly method
@@ -396,7 +403,7 @@ class StableDiffusionImg2ImgPipeline(
396
403
  # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
397
404
  seq_len = negative_prompt_embeds.shape[1]
398
405
 
399
- negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
406
+ negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
400
407
 
401
408
  negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
402
409
  negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
@@ -640,7 +647,7 @@ class StableDiffusionImg2ImgPipeline(
640
647
  every step.
641
648
  cross_attention_kwargs (`dict`, *optional*):
642
649
  A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
643
- [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py).
650
+ [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
644
651
 
645
652
  Examples:
646
653
 
@@ -398,7 +398,14 @@ class StableDiffusionInpaintPipeline(
398
398
  )
399
399
  prompt_embeds = prompt_embeds[0]
400
400
 
401
- prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
401
+ if self.text_encoder is not None:
402
+ prompt_embeds_dtype = self.text_encoder.dtype
403
+ elif self.unet is not None:
404
+ prompt_embeds_dtype = self.unet.dtype
405
+ else:
406
+ prompt_embeds_dtype = prompt_embeds.dtype
407
+
408
+ prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
402
409
 
403
410
  bs_embed, seq_len, _ = prompt_embeds.shape
404
411
  # duplicate text embeddings for each generation per prompt, using mps friendly method
@@ -454,7 +461,7 @@ class StableDiffusionInpaintPipeline(
454
461
  # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
455
462
  seq_len = negative_prompt_embeds.shape[1]
456
463
 
457
- negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
464
+ negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
458
465
 
459
466
  negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
460
467
  negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
@@ -756,7 +763,7 @@ class StableDiffusionInpaintPipeline(
756
763
  every step.
757
764
  cross_attention_kwargs (`dict`, *optional*):
758
765
  A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
759
- [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py).
766
+ [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
760
767
 
761
768
  Examples:
762
769
 
@@ -336,7 +336,14 @@ class StableDiffusionInpaintPipelineLegacy(
336
336
  )
337
337
  prompt_embeds = prompt_embeds[0]
338
338
 
339
- prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
339
+ if self.text_encoder is not None:
340
+ prompt_embeds_dtype = self.text_encoder.dtype
341
+ elif self.unet is not None:
342
+ prompt_embeds_dtype = self.unet.dtype
343
+ else:
344
+ prompt_embeds_dtype = prompt_embeds.dtype
345
+
346
+ prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
340
347
 
341
348
  bs_embed, seq_len, _ = prompt_embeds.shape
342
349
  # duplicate text embeddings for each generation per prompt, using mps friendly method
@@ -392,7 +399,7 @@ class StableDiffusionInpaintPipelineLegacy(
392
399
  # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
393
400
  seq_len = negative_prompt_embeds.shape[1]
394
401
 
395
- negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
402
+ negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
396
403
 
397
404
  negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
398
405
  negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
@@ -606,7 +613,7 @@ class StableDiffusionInpaintPipelineLegacy(
606
613
  cross_attention_kwargs (`dict`, *optional*):
607
614
  A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
608
615
  `self.processor` in
609
- [diffusers.cross_attention](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py).
616
+ [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
610
617
 
611
618
  Returns:
612
619
  [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
@@ -243,7 +243,14 @@ class StableDiffusionKDiffusionPipeline(DiffusionPipeline, TextualInversionLoade
243
243
  )
244
244
  prompt_embeds = prompt_embeds[0]
245
245
 
246
- prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
246
+ if self.text_encoder is not None:
247
+ prompt_embeds_dtype = self.text_encoder.dtype
248
+ elif self.unet is not None:
249
+ prompt_embeds_dtype = self.unet.dtype
250
+ else:
251
+ prompt_embeds_dtype = prompt_embeds.dtype
252
+
253
+ prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
247
254
 
248
255
  bs_embed, seq_len, _ = prompt_embeds.shape
249
256
  # duplicate text embeddings for each generation per prompt, using mps friendly method
@@ -299,7 +306,7 @@ class StableDiffusionKDiffusionPipeline(DiffusionPipeline, TextualInversionLoade
299
306
  # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
300
307
  seq_len = negative_prompt_embeds.shape[1]
301
308
 
302
- negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
309
+ negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
303
310
 
304
311
  negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
305
312
  negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
@@ -41,11 +41,10 @@ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
41
41
 
42
42
  EXAMPLE_DOC_STRING = """
43
43
  Examples:
44
- ```py
45
- >>> import torch
46
- >>> from diffusers import StableDiffusionPipeline
44
+ ```python
45
+ >>> from diffusers import StableDiffusionLDM3DPipeline
47
46
 
48
- >>> pipe = StableDiffusionLDM3DPipeline.from_pretrained("Intel/ldm3d")
47
+ >>> pipe = StableDiffusionLDM3DPipeline.from_pretrained("Intel/ldm3d-4c")
49
48
  >>> pipe = pipe.to("cuda")
50
49
 
51
50
  >>> prompt = "a photo of an astronaut riding a horse on mars"
@@ -63,7 +62,10 @@ class LDM3DPipelineOutput(BaseOutput):
63
62
  Output class for Stable Diffusion pipelines.
64
63
 
65
64
  Args:
66
- images (`List[PIL.Image.Image]` or `np.ndarray`)
65
+ rgb (`List[PIL.Image.Image]` or `np.ndarray`)
66
+ List of denoised PIL images of length `batch_size` or NumPy array of shape `(batch_size, height, width,
67
+ num_channels)`.
68
+ depth (`List[PIL.Image.Image]` or `np.ndarray`)
67
69
  List of denoised PIL images of length `batch_size` or NumPy array of shape `(batch_size, height, width,
68
70
  num_channels)`.
69
71
  nsfw_content_detected (`List[bool]`)
@@ -303,7 +305,14 @@ class StableDiffusionLDM3DPipeline(
303
305
  )
304
306
  prompt_embeds = prompt_embeds[0]
305
307
 
306
- prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
308
+ if self.text_encoder is not None:
309
+ prompt_embeds_dtype = self.text_encoder.dtype
310
+ elif self.unet is not None:
311
+ prompt_embeds_dtype = self.unet.dtype
312
+ else:
313
+ prompt_embeds_dtype = prompt_embeds.dtype
314
+
315
+ prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
307
316
 
308
317
  bs_embed, seq_len, _ = prompt_embeds.shape
309
318
  # duplicate text embeddings for each generation per prompt, using mps friendly method
@@ -359,7 +368,7 @@ class StableDiffusionLDM3DPipeline(
359
368
  # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
360
369
  seq_len = negative_prompt_embeds.shape[1]
361
370
 
362
- negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
371
+ negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
363
372
 
364
373
  negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
365
374
  negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
@@ -541,7 +550,7 @@ class StableDiffusionLDM3DPipeline(
541
550
  every step.
542
551
  cross_attention_kwargs (`dict`, *optional*):
543
552
  A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
544
- [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py).
553
+ [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
545
554
 
546
555
  Examples:
547
556
 
@@ -247,7 +247,14 @@ class StableDiffusionModelEditingPipeline(DiffusionPipeline, TextualInversionLoa
247
247
  )
248
248
  prompt_embeds = prompt_embeds[0]
249
249
 
250
- prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
250
+ if self.text_encoder is not None:
251
+ prompt_embeds_dtype = self.text_encoder.dtype
252
+ elif self.unet is not None:
253
+ prompt_embeds_dtype = self.unet.dtype
254
+ else:
255
+ prompt_embeds_dtype = prompt_embeds.dtype
256
+
257
+ prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
251
258
 
252
259
  bs_embed, seq_len, _ = prompt_embeds.shape
253
260
  # duplicate text embeddings for each generation per prompt, using mps friendly method
@@ -303,7 +310,7 @@ class StableDiffusionModelEditingPipeline(DiffusionPipeline, TextualInversionLoa
303
310
  # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
304
311
  seq_len = negative_prompt_embeds.shape[1]
305
312
 
306
- negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
313
+ negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
307
314
 
308
315
  negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
309
316
  negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
@@ -617,7 +624,7 @@ class StableDiffusionModelEditingPipeline(DiffusionPipeline, TextualInversionLoa
617
624
  every step.
618
625
  cross_attention_kwargs (`dict`, *optional*):
619
626
  A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
620
- [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py).
627
+ [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
621
628
 
622
629
  Examples:
623
630
 
@@ -224,7 +224,14 @@ class StableDiffusionPanoramaPipeline(DiffusionPipeline, TextualInversionLoaderM
224
224
  )
225
225
  prompt_embeds = prompt_embeds[0]
226
226
 
227
- prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
227
+ if self.text_encoder is not None:
228
+ prompt_embeds_dtype = self.text_encoder.dtype
229
+ elif self.unet is not None:
230
+ prompt_embeds_dtype = self.unet.dtype
231
+ else:
232
+ prompt_embeds_dtype = prompt_embeds.dtype
233
+
234
+ prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
228
235
 
229
236
  bs_embed, seq_len, _ = prompt_embeds.shape
230
237
  # duplicate text embeddings for each generation per prompt, using mps friendly method
@@ -280,7 +287,7 @@ class StableDiffusionPanoramaPipeline(DiffusionPipeline, TextualInversionLoaderM
280
287
  # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
281
288
  seq_len = negative_prompt_embeds.shape[1]
282
289
 
283
- negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
290
+ negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
284
291
 
285
292
  negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
286
293
  negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
@@ -517,7 +524,7 @@ class StableDiffusionPanoramaPipeline(DiffusionPipeline, TextualInversionLoaderM
517
524
  cross_attention_kwargs (`dict`, *optional*):
518
525
  A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
519
526
  `self.processor` in
520
- [diffusers.cross_attention](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py).
527
+ [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
521
528
  circular_padding (`bool`, *optional*, defaults to `False`):
522
529
  If set to `True`, circular padding is applied to ensure there are no stitching artifacts. Circular
523
530
  padding allows the model to seamlessly generate a transition from the rightmost part of the image to
@@ -289,7 +289,14 @@ class StableDiffusionParadigmsPipeline(
289
289
  )
290
290
  prompt_embeds = prompt_embeds[0]
291
291
 
292
- prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
292
+ if self.text_encoder is not None:
293
+ prompt_embeds_dtype = self.text_encoder.dtype
294
+ elif self.unet is not None:
295
+ prompt_embeds_dtype = self.unet.dtype
296
+ else:
297
+ prompt_embeds_dtype = prompt_embeds.dtype
298
+
299
+ prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
293
300
 
294
301
  bs_embed, seq_len, _ = prompt_embeds.shape
295
302
  # duplicate text embeddings for each generation per prompt, using mps friendly method
@@ -345,7 +352,7 @@ class StableDiffusionParadigmsPipeline(
345
352
  # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
346
353
  seq_len = negative_prompt_embeds.shape[1]
347
354
 
348
- negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
355
+ negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
349
356
 
350
357
  negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
351
358
  negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
@@ -546,7 +553,7 @@ class StableDiffusionParadigmsPipeline(
546
553
  every step.
547
554
  cross_attention_kwargs (`dict`, *optional*):
548
555
  A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
549
- [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py).
556
+ [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
550
557
  debug (`bool`, *optional*, defaults to `False`):
551
558
  Whether or not to run in debug mode. In debug mode, `torch.cumsum` is evaluated using the CPU.
552
559
 
@@ -479,7 +479,14 @@ class StableDiffusionPix2PixZeroPipeline(DiffusionPipeline):
479
479
  )
480
480
  prompt_embeds = prompt_embeds[0]
481
481
 
482
- prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
482
+ if self.text_encoder is not None:
483
+ prompt_embeds_dtype = self.text_encoder.dtype
484
+ elif self.unet is not None:
485
+ prompt_embeds_dtype = self.unet.dtype
486
+ else:
487
+ prompt_embeds_dtype = prompt_embeds.dtype
488
+
489
+ prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
483
490
 
484
491
  bs_embed, seq_len, _ = prompt_embeds.shape
485
492
  # duplicate text embeddings for each generation per prompt, using mps friendly method
@@ -535,7 +542,7 @@ class StableDiffusionPix2PixZeroPipeline(DiffusionPipeline):
535
542
  # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
536
543
  seq_len = negative_prompt_embeds.shape[1]
537
544
 
538
- negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
545
+ negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
539
546
 
540
547
  negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
541
548
  negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
@@ -1088,7 +1095,7 @@ class StableDiffusionPix2PixZeroPipeline(DiffusionPipeline):
1088
1095
  The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
1089
1096
  instead.
1090
1097
  image (`torch.FloatTensor` `np.ndarray`, `PIL.Image.Image`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
1091
- `Image`, or tensor representing an image batch which will be used for conditioning. Can also accpet
1098
+ `Image`, or tensor representing an image batch which will be used for conditioning. Can also accept
1092
1099
  image latents as `image`, if passing latents directly, it will not be encoded again.
1093
1100
  num_inference_steps (`int`, *optional*, defaults to 50):
1094
1101
  The number of denoising steps. More denoising steps usually lead to a higher quality image at the
@@ -247,7 +247,14 @@ class StableDiffusionSAGPipeline(DiffusionPipeline, TextualInversionLoaderMixin)
247
247
  )
248
248
  prompt_embeds = prompt_embeds[0]
249
249
 
250
- prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
250
+ if self.text_encoder is not None:
251
+ prompt_embeds_dtype = self.text_encoder.dtype
252
+ elif self.unet is not None:
253
+ prompt_embeds_dtype = self.unet.dtype
254
+ else:
255
+ prompt_embeds_dtype = prompt_embeds.dtype
256
+
257
+ prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
251
258
 
252
259
  bs_embed, seq_len, _ = prompt_embeds.shape
253
260
  # duplicate text embeddings for each generation per prompt, using mps friendly method
@@ -303,7 +310,7 @@ class StableDiffusionSAGPipeline(DiffusionPipeline, TextualInversionLoaderMixin)
303
310
  # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
304
311
  seq_len = negative_prompt_embeds.shape[1]
305
312
 
306
- negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
313
+ negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
307
314
 
308
315
  negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
309
316
  negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
@@ -503,7 +510,7 @@ class StableDiffusionSAGPipeline(DiffusionPipeline, TextualInversionLoaderMixin)
503
510
  every step.
504
511
  cross_attention_kwargs (`dict`, *optional*):
505
512
  A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
506
- [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py).
513
+ [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
507
514
 
508
515
  Examples:
509
516
 
@@ -268,7 +268,14 @@ class StableDiffusionUpscalePipeline(DiffusionPipeline, TextualInversionLoaderMi
268
268
  )
269
269
  prompt_embeds = prompt_embeds[0]
270
270
 
271
- prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
271
+ if self.text_encoder is not None:
272
+ prompt_embeds_dtype = self.text_encoder.dtype
273
+ elif self.unet is not None:
274
+ prompt_embeds_dtype = self.unet.dtype
275
+ else:
276
+ prompt_embeds_dtype = prompt_embeds.dtype
277
+
278
+ prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
272
279
 
273
280
  bs_embed, seq_len, _ = prompt_embeds.shape
274
281
  # duplicate text embeddings for each generation per prompt, using mps friendly method
@@ -324,7 +331,7 @@ class StableDiffusionUpscalePipeline(DiffusionPipeline, TextualInversionLoaderMi
324
331
  # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
325
332
  seq_len = negative_prompt_embeds.shape[1]
326
333
 
327
- negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
334
+ negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
328
335
 
329
336
  negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
330
337
  negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
@@ -561,7 +568,7 @@ class StableDiffusionUpscalePipeline(DiffusionPipeline, TextualInversionLoaderMi
561
568
  every step.
562
569
  cross_attention_kwargs (`dict`, *optional*):
563
570
  A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
564
- [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py).
571
+ [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
565
572
 
566
573
  Examples:
567
574
  ```py
@@ -371,7 +371,14 @@ class StableUnCLIPPipeline(DiffusionPipeline, TextualInversionLoaderMixin, LoraL
371
371
  )
372
372
  prompt_embeds = prompt_embeds[0]
373
373
 
374
- prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
374
+ if self.text_encoder is not None:
375
+ prompt_embeds_dtype = self.text_encoder.dtype
376
+ elif self.unet is not None:
377
+ prompt_embeds_dtype = self.unet.dtype
378
+ else:
379
+ prompt_embeds_dtype = prompt_embeds.dtype
380
+
381
+ prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
375
382
 
376
383
  bs_embed, seq_len, _ = prompt_embeds.shape
377
384
  # duplicate text embeddings for each generation per prompt, using mps friendly method
@@ -427,7 +434,7 @@ class StableUnCLIPPipeline(DiffusionPipeline, TextualInversionLoaderMixin, LoraL
427
434
  # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
428
435
  seq_len = negative_prompt_embeds.shape[1]
429
436
 
430
- negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
437
+ negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
431
438
 
432
439
  negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
433
440
  negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
@@ -684,7 +691,7 @@ class StableUnCLIPPipeline(DiffusionPipeline, TextualInversionLoaderMixin, LoraL
684
691
  every step.
685
692
  cross_attention_kwargs (`dict`, *optional*):
686
693
  A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
687
- [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py).
694
+ [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
688
695
  noise_level (`int`, *optional*, defaults to `0`):
689
696
  The amount of noise to add to the image embeddings. A higher `noise_level` increases the variance in
690
697
  the final un-noised images. See [`StableUnCLIPPipeline.noise_image_embeddings`] for more details.
@@ -272,7 +272,14 @@ class StableUnCLIPImg2ImgPipeline(DiffusionPipeline, TextualInversionLoaderMixin
272
272
  )
273
273
  prompt_embeds = prompt_embeds[0]
274
274
 
275
- prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
275
+ if self.text_encoder is not None:
276
+ prompt_embeds_dtype = self.text_encoder.dtype
277
+ elif self.unet is not None:
278
+ prompt_embeds_dtype = self.unet.dtype
279
+ else:
280
+ prompt_embeds_dtype = prompt_embeds.dtype
281
+
282
+ prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
276
283
 
277
284
  bs_embed, seq_len, _ = prompt_embeds.shape
278
285
  # duplicate text embeddings for each generation per prompt, using mps friendly method
@@ -328,7 +335,7 @@ class StableUnCLIPImg2ImgPipeline(DiffusionPipeline, TextualInversionLoaderMixin
328
335
  # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
329
336
  seq_len = negative_prompt_embeds.shape[1]
330
337
 
331
- negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
338
+ negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
332
339
 
333
340
  negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
334
341
  negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
@@ -654,7 +661,7 @@ class StableUnCLIPImg2ImgPipeline(DiffusionPipeline, TextualInversionLoaderMixin
654
661
  every step.
655
662
  cross_attention_kwargs (`dict`, *optional*):
656
663
  A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
657
- [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py).
664
+ [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
658
665
  noise_level (`int`, *optional*, defaults to `0`):
659
666
  The amount of noise to add to the image embeddings. A higher `noise_level` increases the variance in
660
667
  the final un-noised images. See [`StableUnCLIPPipeline.noise_image_embeddings`] for more details.
@@ -87,7 +87,6 @@ class StableDiffusionXLPipeline(DiffusionPipeline, FromSingleFileMixin, LoraLoad
87
87
  library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
88
88
 
89
89
  In addition the pipeline inherits the following loading methods:
90
- - *Textual-Inversion*: [`loaders.TextualInversionLoaderMixin.load_textual_inversion`]
91
90
  - *LoRA*: [`StableDiffusionXLPipeline.load_lora_weights`]
92
91
  - *Ckpt*: [`loaders.FromSingleFileMixin.from_single_file`]
93
92
 
@@ -310,7 +309,6 @@ class StableDiffusionXLPipeline(DiffusionPipeline, FromSingleFileMixin, LoraLoad
310
309
 
311
310
  text_input_ids = text_inputs.input_ids
312
311
  untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
313
- untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
314
312
 
315
313
  if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
316
314
  text_input_ids, untruncated_ids
@@ -609,7 +607,7 @@ class StableDiffusionXLPipeline(DiffusionPipeline, FromSingleFileMixin, LoraLoad
609
607
  scheduler. The denoising_end parameter should ideally be utilized when this pipeline forms a part of a
610
608
  "Mixture of Denoisers" multi-pipeline setup, as elaborated in [**Refining the Image
611
609
  Output**](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl#refining-the-image-output)
612
- guidance_scale (`float`, *optional*, defaults to 7.5):
610
+ guidance_scale (`float`, *optional*, defaults to 5.0):
613
611
  Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
614
612
  `guidance_scale` is defined as `w` of equation 2. of [Imagen
615
613
  Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
@@ -663,7 +661,7 @@ class StableDiffusionXLPipeline(DiffusionPipeline, FromSingleFileMixin, LoraLoad
663
661
  cross_attention_kwargs (`dict`, *optional*):
664
662
  A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
665
663
  `self.processor` in
666
- [diffusers.cross_attention](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py).
664
+ [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
667
665
  guidance_rescale (`float`, *optional*, defaults to 0.7):
668
666
  Guidance rescale factor proposed by [Common Diffusion Noise Schedules and Sample Steps are
669
667
  Flawed](https://arxiv.org/pdf/2305.08891.pdf) `guidance_scale` is defined as `φ` in equation 16. of
@@ -906,7 +904,7 @@ class StableDiffusionXLPipeline(DiffusionPipeline, FromSingleFileMixin, LoraLoad
906
904
  is_main_process: bool = True,
907
905
  weight_name: str = None,
908
906
  save_function: Callable = None,
909
- safe_serialization: bool = False,
907
+ safe_serialization: bool = True,
910
908
  ):
911
909
  state_dict = {}
912
910
 
@@ -13,6 +13,7 @@
13
13
  # limitations under the License.
14
14
 
15
15
  import inspect
16
+ import os
16
17
  from typing import Any, Callable, Dict, List, Optional, Tuple, Union
17
18
 
18
19
  import numpy as np
@@ -91,7 +92,6 @@ class StableDiffusionXLImg2ImgPipeline(DiffusionPipeline, FromSingleFileMixin, L
91
92
  library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
92
93
 
93
94
  In addition the pipeline inherits the following loading methods:
94
- - *Textual-Inversion*: [`loaders.TextualInversionLoaderMixin.load_textual_inversion`]
95
95
  - *LoRA*: [`loaders.LoraLoaderMixin.load_lora_weights`]
96
96
  - *Ckpt*: [`loaders.FromSingleFileMixin.from_single_file`]
97
97
 
@@ -317,7 +317,6 @@ class StableDiffusionXLImg2ImgPipeline(DiffusionPipeline, FromSingleFileMixin, L
317
317
 
318
318
  text_input_ids = text_inputs.input_ids
319
319
  untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
320
- untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
321
320
 
322
321
  if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
323
322
  text_input_ids, untruncated_ids
@@ -783,7 +782,7 @@ class StableDiffusionXLImg2ImgPipeline(DiffusionPipeline, FromSingleFileMixin, L
783
782
  cross_attention_kwargs (`dict`, *optional*):
784
783
  A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
785
784
  `self.processor` in
786
- [diffusers.cross_attention](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py).
785
+ [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
787
786
  guidance_rescale (`float`, *optional*, defaults to 0.7):
788
787
  Guidance rescale factor proposed by [Common Diffusion Noise Schedules and Sample Steps are
789
788
  Flawed](https://arxiv.org/pdf/2305.08891.pdf) `guidance_scale` is defined as `φ` in equation 16. of
@@ -1014,3 +1013,76 @@ class StableDiffusionXLImg2ImgPipeline(DiffusionPipeline, FromSingleFileMixin, L
1014
1013
  return (image,)
1015
1014
 
1016
1015
  return StableDiffusionXLPipelineOutput(images=image)
1016
+
1017
+ # Overrride to properly handle the loading and unloading of the additional text encoder.
1018
+ # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.load_lora_weights
1019
+ def load_lora_weights(self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], **kwargs):
1020
+ # We could have accessed the unet config from `lora_state_dict()` too. We pass
1021
+ # it here explicitly to be able to tell that it's coming from an SDXL
1022
+ # pipeline.
1023
+ state_dict, network_alphas = self.lora_state_dict(
1024
+ pretrained_model_name_or_path_or_dict,
1025
+ unet_config=self.unet.config,
1026
+ **kwargs,
1027
+ )
1028
+ self.load_lora_into_unet(state_dict, network_alphas=network_alphas, unet=self.unet)
1029
+
1030
+ text_encoder_state_dict = {k: v for k, v in state_dict.items() if "text_encoder." in k}
1031
+ if len(text_encoder_state_dict) > 0:
1032
+ self.load_lora_into_text_encoder(
1033
+ text_encoder_state_dict,
1034
+ network_alphas=network_alphas,
1035
+ text_encoder=self.text_encoder,
1036
+ prefix="text_encoder",
1037
+ lora_scale=self.lora_scale,
1038
+ )
1039
+
1040
+ text_encoder_2_state_dict = {k: v for k, v in state_dict.items() if "text_encoder_2." in k}
1041
+ if len(text_encoder_2_state_dict) > 0:
1042
+ self.load_lora_into_text_encoder(
1043
+ text_encoder_2_state_dict,
1044
+ network_alphas=network_alphas,
1045
+ text_encoder=self.text_encoder_2,
1046
+ prefix="text_encoder_2",
1047
+ lora_scale=self.lora_scale,
1048
+ )
1049
+
1050
+ @classmethod
1051
+ # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.save_lora_weights
1052
+ def save_lora_weights(
1053
+ self,
1054
+ save_directory: Union[str, os.PathLike],
1055
+ unet_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
1056
+ text_encoder_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
1057
+ text_encoder_2_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
1058
+ is_main_process: bool = True,
1059
+ weight_name: str = None,
1060
+ save_function: Callable = None,
1061
+ safe_serialization: bool = True,
1062
+ ):
1063
+ state_dict = {}
1064
+
1065
+ def pack_weights(layers, prefix):
1066
+ layers_weights = layers.state_dict() if isinstance(layers, torch.nn.Module) else layers
1067
+ layers_state_dict = {f"{prefix}.{module_name}": param for module_name, param in layers_weights.items()}
1068
+ return layers_state_dict
1069
+
1070
+ state_dict.update(pack_weights(unet_lora_layers, "unet"))
1071
+
1072
+ if text_encoder_lora_layers and text_encoder_2_lora_layers:
1073
+ state_dict.update(pack_weights(text_encoder_lora_layers, "text_encoder"))
1074
+ state_dict.update(pack_weights(text_encoder_2_lora_layers, "text_encoder_2"))
1075
+
1076
+ self.write_lora_layers(
1077
+ state_dict=state_dict,
1078
+ save_directory=save_directory,
1079
+ is_main_process=is_main_process,
1080
+ weight_name=weight_name,
1081
+ save_function=save_function,
1082
+ safe_serialization=safe_serialization,
1083
+ )
1084
+
1085
+ # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline._remove_text_encoder_monkey_patch
1086
+ def _remove_text_encoder_monkey_patch(self):
1087
+ self._remove_text_encoder_monkey_patch_classmethod(self.text_encoder)
1088
+ self._remove_text_encoder_monkey_patch_classmethod(self.text_encoder_2)