diffsynth-engine 0.6.1.dev41__py3-none-any.whl → 0.6.1.dev42__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- diffsynth_engine/configs/pipeline.py +5 -0
- diffsynth_engine/models/z_image/__init__.py +4 -0
- diffsynth_engine/models/z_image/siglip.py +72 -0
- diffsynth_engine/models/z_image/z_image_dit_omni_base.py +1132 -0
- diffsynth_engine/pipelines/__init__.py +2 -0
- diffsynth_engine/pipelines/z_image_omni_base.py +503 -0
- {diffsynth_engine-0.6.1.dev41.dist-info → diffsynth_engine-0.6.1.dev42.dist-info}/METADATA +1 -1
- {diffsynth_engine-0.6.1.dev41.dist-info → diffsynth_engine-0.6.1.dev42.dist-info}/RECORD +11 -8
- {diffsynth_engine-0.6.1.dev41.dist-info → diffsynth_engine-0.6.1.dev42.dist-info}/WHEEL +0 -0
- {diffsynth_engine-0.6.1.dev41.dist-info → diffsynth_engine-0.6.1.dev42.dist-info}/licenses/LICENSE +0 -0
- {diffsynth_engine-0.6.1.dev41.dist-info → diffsynth_engine-0.6.1.dev42.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,1132 @@
|
|
|
1
|
+
import math
|
|
2
|
+
from typing import List, Optional, Tuple
|
|
3
|
+
|
|
4
|
+
import torch
|
|
5
|
+
import torch.nn as nn
|
|
6
|
+
import torch.nn.functional as F
|
|
7
|
+
from torch.nn.utils.rnn import pad_sequence
|
|
8
|
+
|
|
9
|
+
from diffsynth_engine.models.base import PreTrainedModel
|
|
10
|
+
from diffsynth_engine.models.basic.transformer_helper import RMSNorm
|
|
11
|
+
from diffsynth_engine.models.basic import attention as attention_ops
|
|
12
|
+
from diffsynth_engine.utils.gguf import gguf_inference
|
|
13
|
+
from diffsynth_engine.utils.fp8_linear import fp8_inference
|
|
14
|
+
from diffsynth_engine.utils.parallel import (
|
|
15
|
+
cfg_parallel,
|
|
16
|
+
cfg_parallel_unshard,
|
|
17
|
+
sequence_parallel,
|
|
18
|
+
sequence_parallel_unshard,
|
|
19
|
+
)
|
|
20
|
+
|
|
21
|
+
|
|
22
|
+
ADALN_EMBED_DIM = 256
|
|
23
|
+
SEQ_MULTI_OF = 32
|
|
24
|
+
X_PAD_DIM = 64
|
|
25
|
+
|
|
26
|
+
|
|
27
|
+
class TimestepEmbedder(nn.Module):
|
|
28
|
+
def __init__(self, out_size, mid_size=None, frequency_embedding_size=256):
|
|
29
|
+
super().__init__()
|
|
30
|
+
if mid_size is None:
|
|
31
|
+
mid_size = out_size
|
|
32
|
+
self.mlp = nn.Sequential(
|
|
33
|
+
nn.Linear(
|
|
34
|
+
frequency_embedding_size,
|
|
35
|
+
mid_size,
|
|
36
|
+
bias=True,
|
|
37
|
+
),
|
|
38
|
+
nn.SiLU(),
|
|
39
|
+
nn.Linear(
|
|
40
|
+
mid_size,
|
|
41
|
+
out_size,
|
|
42
|
+
bias=True,
|
|
43
|
+
),
|
|
44
|
+
)
|
|
45
|
+
|
|
46
|
+
self.frequency_embedding_size = frequency_embedding_size
|
|
47
|
+
|
|
48
|
+
@staticmethod
|
|
49
|
+
def timestep_embedding(t, dim, max_period=10000):
|
|
50
|
+
with torch.amp.autocast("cuda", enabled=False):
|
|
51
|
+
half = dim // 2
|
|
52
|
+
freqs = torch.exp(
|
|
53
|
+
-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32, device=t.device) / half
|
|
54
|
+
)
|
|
55
|
+
args = t[:, None].float() * freqs[None]
|
|
56
|
+
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
|
|
57
|
+
if dim % 2:
|
|
58
|
+
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
|
|
59
|
+
return embedding
|
|
60
|
+
|
|
61
|
+
def forward(self, t):
|
|
62
|
+
t_freq = self.timestep_embedding(t, self.frequency_embedding_size)
|
|
63
|
+
t_emb = self.mlp(t_freq.to(torch.bfloat16))
|
|
64
|
+
return t_emb
|
|
65
|
+
|
|
66
|
+
|
|
67
|
+
class FeedForward(nn.Module):
|
|
68
|
+
def __init__(self, dim: int, hidden_dim: int):
|
|
69
|
+
super().__init__()
|
|
70
|
+
self.w1 = nn.Linear(dim, hidden_dim, bias=False)
|
|
71
|
+
self.w2 = nn.Linear(hidden_dim, dim, bias=False)
|
|
72
|
+
self.w3 = nn.Linear(dim, hidden_dim, bias=False)
|
|
73
|
+
|
|
74
|
+
def _forward_silu_gating(self, x1, x3):
|
|
75
|
+
return F.silu(x1) * x3
|
|
76
|
+
|
|
77
|
+
def forward(self, x):
|
|
78
|
+
return self.w2(self._forward_silu_gating(self.w1(x), self.w3(x)))
|
|
79
|
+
|
|
80
|
+
|
|
81
|
+
class Attention(torch.nn.Module):
|
|
82
|
+
|
|
83
|
+
def __init__(self, q_dim, num_heads, head_dim, kv_dim=None, bias_q=False, bias_kv=False, bias_out=False):
|
|
84
|
+
super().__init__()
|
|
85
|
+
dim_inner = head_dim * num_heads
|
|
86
|
+
kv_dim = kv_dim if kv_dim is not None else q_dim
|
|
87
|
+
self.num_heads = num_heads
|
|
88
|
+
self.head_dim = head_dim
|
|
89
|
+
|
|
90
|
+
self.to_q = torch.nn.Linear(q_dim, dim_inner, bias=bias_q)
|
|
91
|
+
self.to_k = torch.nn.Linear(kv_dim, dim_inner, bias=bias_kv)
|
|
92
|
+
self.to_v = torch.nn.Linear(kv_dim, dim_inner, bias=bias_kv)
|
|
93
|
+
self.to_out = torch.nn.ModuleList([torch.nn.Linear(dim_inner, q_dim, bias=bias_out)])
|
|
94
|
+
|
|
95
|
+
self.norm_q = RMSNorm(head_dim, eps=1e-5)
|
|
96
|
+
self.norm_k = RMSNorm(head_dim, eps=1e-5)
|
|
97
|
+
|
|
98
|
+
def forward(self, hidden_states, freqs_cis, attention_mask):
|
|
99
|
+
query = self.to_q(hidden_states)
|
|
100
|
+
key = self.to_k(hidden_states)
|
|
101
|
+
value = self.to_v(hidden_states)
|
|
102
|
+
|
|
103
|
+
query = query.unflatten(-1, (self.num_heads, -1))
|
|
104
|
+
key = key.unflatten(-1, (self.num_heads, -1))
|
|
105
|
+
value = value.unflatten(-1, (self.num_heads, -1))
|
|
106
|
+
|
|
107
|
+
# Apply Norms
|
|
108
|
+
if self.norm_q is not None:
|
|
109
|
+
query = self.norm_q(query)
|
|
110
|
+
if self.norm_k is not None:
|
|
111
|
+
key = self.norm_k(key)
|
|
112
|
+
|
|
113
|
+
# Apply RoPE
|
|
114
|
+
def apply_rotary_emb(x_in: torch.Tensor, freqs_cis: torch.Tensor) -> torch.Tensor:
|
|
115
|
+
with torch.amp.autocast("cuda", enabled=False):
|
|
116
|
+
x = torch.view_as_complex(x_in.float().reshape(*x_in.shape[:-1], -1, 2))
|
|
117
|
+
freqs_cis = freqs_cis.unsqueeze(2)
|
|
118
|
+
x_out = torch.view_as_real(x * freqs_cis).flatten(3)
|
|
119
|
+
return x_out.type_as(x_in) # todo
|
|
120
|
+
|
|
121
|
+
if freqs_cis is not None:
|
|
122
|
+
query = apply_rotary_emb(query, freqs_cis)
|
|
123
|
+
key = apply_rotary_emb(key, freqs_cis)
|
|
124
|
+
|
|
125
|
+
# Cast to correct dtype
|
|
126
|
+
dtype = query.dtype
|
|
127
|
+
query, key = query.to(dtype), key.to(dtype)
|
|
128
|
+
|
|
129
|
+
# Compute joint attention
|
|
130
|
+
if attention_mask.shape[0] > 1:
|
|
131
|
+
attention_mask = attention_mask[:1]
|
|
132
|
+
hidden_states = attention_ops.attention(query, key, value, attn_mask=attention_mask)
|
|
133
|
+
|
|
134
|
+
# Reshape back
|
|
135
|
+
hidden_states = hidden_states.flatten(2, 3)
|
|
136
|
+
hidden_states = hidden_states.to(dtype)
|
|
137
|
+
|
|
138
|
+
output = self.to_out[0](hidden_states)
|
|
139
|
+
if len(self.to_out) > 1: # dropout
|
|
140
|
+
output = self.to_out[1](output)
|
|
141
|
+
|
|
142
|
+
return output
|
|
143
|
+
|
|
144
|
+
|
|
145
|
+
def select_per_token(
|
|
146
|
+
value_noisy: torch.Tensor,
|
|
147
|
+
value_clean: torch.Tensor,
|
|
148
|
+
noise_mask: torch.Tensor,
|
|
149
|
+
seq_len: int,
|
|
150
|
+
) -> torch.Tensor:
|
|
151
|
+
noise_mask_expanded = noise_mask.unsqueeze(-1) # (batch, seq_len, 1)
|
|
152
|
+
return torch.where(
|
|
153
|
+
noise_mask_expanded == 1,
|
|
154
|
+
value_noisy.unsqueeze(1).expand(-1, seq_len, -1),
|
|
155
|
+
value_clean.unsqueeze(1).expand(-1, seq_len, -1),
|
|
156
|
+
)
|
|
157
|
+
|
|
158
|
+
|
|
159
|
+
class ZImageTransformerBlock(nn.Module):
|
|
160
|
+
def __init__(
|
|
161
|
+
self,
|
|
162
|
+
layer_id: int,
|
|
163
|
+
dim: int,
|
|
164
|
+
n_heads: int,
|
|
165
|
+
n_kv_heads: int,
|
|
166
|
+
norm_eps: float,
|
|
167
|
+
qk_norm: bool,
|
|
168
|
+
modulation=True,
|
|
169
|
+
):
|
|
170
|
+
super().__init__()
|
|
171
|
+
self.dim = dim
|
|
172
|
+
self.head_dim = dim // n_heads
|
|
173
|
+
|
|
174
|
+
# Refactored to use diffusers Attention with custom processor
|
|
175
|
+
# Original Z-Image params: dim, n_heads, n_kv_heads, qk_norm
|
|
176
|
+
self.attention = Attention(
|
|
177
|
+
q_dim=dim,
|
|
178
|
+
num_heads=n_heads,
|
|
179
|
+
head_dim=dim // n_heads,
|
|
180
|
+
)
|
|
181
|
+
|
|
182
|
+
self.feed_forward = FeedForward(dim=dim, hidden_dim=int(dim / 3 * 8))
|
|
183
|
+
self.layer_id = layer_id
|
|
184
|
+
|
|
185
|
+
self.attention_norm1 = RMSNorm(dim, eps=norm_eps)
|
|
186
|
+
self.ffn_norm1 = RMSNorm(dim, eps=norm_eps)
|
|
187
|
+
|
|
188
|
+
self.attention_norm2 = RMSNorm(dim, eps=norm_eps)
|
|
189
|
+
self.ffn_norm2 = RMSNorm(dim, eps=norm_eps)
|
|
190
|
+
|
|
191
|
+
self.modulation = modulation
|
|
192
|
+
if modulation:
|
|
193
|
+
self.adaLN_modulation = nn.Sequential(
|
|
194
|
+
nn.Linear(min(dim, ADALN_EMBED_DIM), 4 * dim, bias=True),
|
|
195
|
+
)
|
|
196
|
+
|
|
197
|
+
def forward(
|
|
198
|
+
self,
|
|
199
|
+
x: torch.Tensor,
|
|
200
|
+
attn_mask: torch.Tensor,
|
|
201
|
+
freqs_cis: torch.Tensor,
|
|
202
|
+
adaln_input: Optional[torch.Tensor] = None,
|
|
203
|
+
noise_mask: Optional[torch.Tensor] = None,
|
|
204
|
+
adaln_noisy: Optional[torch.Tensor] = None,
|
|
205
|
+
adaln_clean: Optional[torch.Tensor] = None,
|
|
206
|
+
):
|
|
207
|
+
if self.modulation:
|
|
208
|
+
seq_len = x.shape[1]
|
|
209
|
+
|
|
210
|
+
if noise_mask is not None:
|
|
211
|
+
# Per-token modulation: different modulation for noisy/clean tokens
|
|
212
|
+
mod_noisy = self.adaLN_modulation(adaln_noisy)
|
|
213
|
+
mod_clean = self.adaLN_modulation(adaln_clean)
|
|
214
|
+
|
|
215
|
+
scale_msa_noisy, gate_msa_noisy, scale_mlp_noisy, gate_mlp_noisy = mod_noisy.chunk(4, dim=1)
|
|
216
|
+
scale_msa_clean, gate_msa_clean, scale_mlp_clean, gate_mlp_clean = mod_clean.chunk(4, dim=1)
|
|
217
|
+
|
|
218
|
+
gate_msa_noisy, gate_mlp_noisy = gate_msa_noisy.tanh(), gate_mlp_noisy.tanh()
|
|
219
|
+
gate_msa_clean, gate_mlp_clean = gate_msa_clean.tanh(), gate_mlp_clean.tanh()
|
|
220
|
+
|
|
221
|
+
scale_msa_noisy, scale_mlp_noisy = 1.0 + scale_msa_noisy, 1.0 + scale_mlp_noisy
|
|
222
|
+
scale_msa_clean, scale_mlp_clean = 1.0 + scale_msa_clean, 1.0 + scale_mlp_clean
|
|
223
|
+
|
|
224
|
+
scale_msa = select_per_token(scale_msa_noisy, scale_msa_clean, noise_mask, seq_len)
|
|
225
|
+
scale_mlp = select_per_token(scale_mlp_noisy, scale_mlp_clean, noise_mask, seq_len)
|
|
226
|
+
gate_msa = select_per_token(gate_msa_noisy, gate_msa_clean, noise_mask, seq_len)
|
|
227
|
+
gate_mlp = select_per_token(gate_mlp_noisy, gate_mlp_clean, noise_mask, seq_len)
|
|
228
|
+
else:
|
|
229
|
+
# Global modulation: same modulation for all tokens (avoid double select)
|
|
230
|
+
mod = self.adaLN_modulation(adaln_input)
|
|
231
|
+
scale_msa, gate_msa, scale_mlp, gate_mlp = mod.unsqueeze(1).chunk(4, dim=2)
|
|
232
|
+
gate_msa, gate_mlp = gate_msa.tanh(), gate_mlp.tanh()
|
|
233
|
+
scale_msa, scale_mlp = 1.0 + scale_msa, 1.0 + scale_mlp
|
|
234
|
+
|
|
235
|
+
# Attention block
|
|
236
|
+
attn_out = self.attention(
|
|
237
|
+
self.attention_norm1(x) * scale_msa, attention_mask=attn_mask, freqs_cis=freqs_cis
|
|
238
|
+
)
|
|
239
|
+
x = x + gate_msa * self.attention_norm2(attn_out)
|
|
240
|
+
|
|
241
|
+
# FFN block
|
|
242
|
+
x = x + gate_mlp * self.ffn_norm2(self.feed_forward(self.ffn_norm1(x) * scale_mlp))
|
|
243
|
+
else:
|
|
244
|
+
# Attention block
|
|
245
|
+
attn_out = self.attention(self.attention_norm1(x), attention_mask=attn_mask, freqs_cis=freqs_cis)
|
|
246
|
+
x = x + self.attention_norm2(attn_out)
|
|
247
|
+
|
|
248
|
+
# FFN block
|
|
249
|
+
x = x + self.ffn_norm2(self.feed_forward(self.ffn_norm1(x)))
|
|
250
|
+
|
|
251
|
+
return x
|
|
252
|
+
|
|
253
|
+
|
|
254
|
+
class FinalLayer(nn.Module):
|
|
255
|
+
def __init__(self, hidden_size, out_channels):
|
|
256
|
+
super().__init__()
|
|
257
|
+
self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
|
258
|
+
self.linear = nn.Linear(hidden_size, out_channels, bias=True)
|
|
259
|
+
|
|
260
|
+
self.adaLN_modulation = nn.Sequential(
|
|
261
|
+
nn.SiLU(),
|
|
262
|
+
nn.Linear(min(hidden_size, ADALN_EMBED_DIM), hidden_size, bias=True),
|
|
263
|
+
)
|
|
264
|
+
|
|
265
|
+
def forward(self, x, c=None, noise_mask=None, c_noisy=None, c_clean=None):
|
|
266
|
+
seq_len = x.shape[1]
|
|
267
|
+
|
|
268
|
+
if noise_mask is not None:
|
|
269
|
+
# Per-token modulation
|
|
270
|
+
scale_noisy = 1.0 + self.adaLN_modulation(c_noisy)
|
|
271
|
+
scale_clean = 1.0 + self.adaLN_modulation(c_clean)
|
|
272
|
+
scale = select_per_token(scale_noisy, scale_clean, noise_mask, seq_len)
|
|
273
|
+
else:
|
|
274
|
+
# Original global modulation
|
|
275
|
+
assert c is not None, "Either c or (c_noisy, c_clean) must be provided"
|
|
276
|
+
scale = 1.0 + self.adaLN_modulation(c)
|
|
277
|
+
scale = scale.unsqueeze(1)
|
|
278
|
+
|
|
279
|
+
x = self.norm_final(x) * scale
|
|
280
|
+
x = self.linear(x)
|
|
281
|
+
return x
|
|
282
|
+
|
|
283
|
+
|
|
284
|
+
class RopeEmbedder:
|
|
285
|
+
def __init__(
|
|
286
|
+
self,
|
|
287
|
+
theta: float = 256.0,
|
|
288
|
+
axes_dims: List[int] = (16, 56, 56),
|
|
289
|
+
axes_lens: List[int] = (64, 128, 128),
|
|
290
|
+
):
|
|
291
|
+
self.theta = theta
|
|
292
|
+
self.axes_dims = axes_dims
|
|
293
|
+
self.axes_lens = axes_lens
|
|
294
|
+
assert len(axes_dims) == len(axes_lens), "axes_dims and axes_lens must have the same length"
|
|
295
|
+
self.freqs_cis = None
|
|
296
|
+
|
|
297
|
+
@staticmethod
|
|
298
|
+
def precompute_freqs_cis(dim: List[int], end: List[int], theta: float = 256.0):
|
|
299
|
+
with torch.device("cpu"):
|
|
300
|
+
freqs_cis = []
|
|
301
|
+
for i, (d, e) in enumerate(zip(dim, end)):
|
|
302
|
+
freqs = 1.0 / (theta ** (torch.arange(0, d, 2, dtype=torch.float64, device="cpu") / d))
|
|
303
|
+
timestep = torch.arange(e, device=freqs.device, dtype=torch.float64)
|
|
304
|
+
freqs = torch.outer(timestep, freqs).float()
|
|
305
|
+
freqs_cis_i = torch.polar(torch.ones_like(freqs), freqs).to(torch.complex64) # complex64
|
|
306
|
+
freqs_cis.append(freqs_cis_i)
|
|
307
|
+
|
|
308
|
+
return freqs_cis
|
|
309
|
+
|
|
310
|
+
def __call__(self, ids: torch.Tensor):
|
|
311
|
+
assert ids.ndim == 2
|
|
312
|
+
assert ids.shape[-1] == len(self.axes_dims)
|
|
313
|
+
device = ids.device
|
|
314
|
+
|
|
315
|
+
if self.freqs_cis is None:
|
|
316
|
+
self.freqs_cis = self.precompute_freqs_cis(self.axes_dims, self.axes_lens, theta=self.theta)
|
|
317
|
+
self.freqs_cis = [freqs_cis.to(device) for freqs_cis in self.freqs_cis]
|
|
318
|
+
|
|
319
|
+
result = []
|
|
320
|
+
for i in range(len(self.axes_dims)):
|
|
321
|
+
index = ids[:, i]
|
|
322
|
+
result.append(self.freqs_cis[i][index])
|
|
323
|
+
return torch.cat(result, dim=-1)
|
|
324
|
+
|
|
325
|
+
|
|
326
|
+
class ZImageOmniBaseDiT(PreTrainedModel):
|
|
327
|
+
_supports_gradient_checkpointing = True
|
|
328
|
+
_no_split_modules = ["ZImageTransformerBlock"]
|
|
329
|
+
|
|
330
|
+
def __init__(
|
|
331
|
+
self,
|
|
332
|
+
all_patch_size=(2,),
|
|
333
|
+
all_f_patch_size=(1,),
|
|
334
|
+
in_channels=16,
|
|
335
|
+
dim=3840,
|
|
336
|
+
n_layers=30,
|
|
337
|
+
n_refiner_layers=2,
|
|
338
|
+
n_heads=30,
|
|
339
|
+
n_kv_heads=30,
|
|
340
|
+
norm_eps=1e-5,
|
|
341
|
+
qk_norm=True,
|
|
342
|
+
cap_feat_dim=2560,
|
|
343
|
+
rope_theta=256.0,
|
|
344
|
+
t_scale=1000.0,
|
|
345
|
+
axes_dims=[32, 48, 48],
|
|
346
|
+
axes_lens=[1024, 512, 512],
|
|
347
|
+
siglip_feat_dim=1152,
|
|
348
|
+
**kwargs,
|
|
349
|
+
) -> None:
|
|
350
|
+
super().__init__()
|
|
351
|
+
self.in_channels = in_channels
|
|
352
|
+
self.out_channels = in_channels
|
|
353
|
+
self.all_patch_size = all_patch_size
|
|
354
|
+
self.all_f_patch_size = all_f_patch_size
|
|
355
|
+
self.dim = dim
|
|
356
|
+
self.n_heads = n_heads
|
|
357
|
+
|
|
358
|
+
self.rope_theta = rope_theta
|
|
359
|
+
self.t_scale = t_scale
|
|
360
|
+
self.gradient_checkpointing = False
|
|
361
|
+
|
|
362
|
+
assert len(all_patch_size) == len(all_f_patch_size)
|
|
363
|
+
|
|
364
|
+
all_x_embedder = {}
|
|
365
|
+
all_final_layer = {}
|
|
366
|
+
for patch_idx, (patch_size, f_patch_size) in enumerate(zip(all_patch_size, all_f_patch_size)):
|
|
367
|
+
x_embedder = nn.Linear(f_patch_size * patch_size * patch_size * in_channels, dim, bias=True)
|
|
368
|
+
all_x_embedder[f"{patch_size}-{f_patch_size}"] = x_embedder
|
|
369
|
+
|
|
370
|
+
final_layer = FinalLayer(dim, patch_size * patch_size * f_patch_size * self.out_channels)
|
|
371
|
+
all_final_layer[f"{patch_size}-{f_patch_size}"] = final_layer
|
|
372
|
+
|
|
373
|
+
self.all_x_embedder = nn.ModuleDict(all_x_embedder)
|
|
374
|
+
self.all_final_layer = nn.ModuleDict(all_final_layer)
|
|
375
|
+
self.noise_refiner = nn.ModuleList(
|
|
376
|
+
[
|
|
377
|
+
ZImageTransformerBlock(
|
|
378
|
+
1000 + layer_id,
|
|
379
|
+
dim,
|
|
380
|
+
n_heads,
|
|
381
|
+
n_kv_heads,
|
|
382
|
+
norm_eps,
|
|
383
|
+
qk_norm,
|
|
384
|
+
modulation=True,
|
|
385
|
+
)
|
|
386
|
+
for layer_id in range(n_refiner_layers)
|
|
387
|
+
]
|
|
388
|
+
)
|
|
389
|
+
self.context_refiner = nn.ModuleList(
|
|
390
|
+
[
|
|
391
|
+
ZImageTransformerBlock(
|
|
392
|
+
layer_id,
|
|
393
|
+
dim,
|
|
394
|
+
n_heads,
|
|
395
|
+
n_kv_heads,
|
|
396
|
+
norm_eps,
|
|
397
|
+
qk_norm,
|
|
398
|
+
modulation=False,
|
|
399
|
+
)
|
|
400
|
+
for layer_id in range(n_refiner_layers)
|
|
401
|
+
]
|
|
402
|
+
)
|
|
403
|
+
self.t_embedder = TimestepEmbedder(min(dim, ADALN_EMBED_DIM), mid_size=1024)
|
|
404
|
+
self.cap_embedder = nn.Sequential(
|
|
405
|
+
RMSNorm(cap_feat_dim, eps=norm_eps),
|
|
406
|
+
nn.Linear(cap_feat_dim, dim, bias=True),
|
|
407
|
+
)
|
|
408
|
+
|
|
409
|
+
# Optional SigLIP components (for Omni variant)
|
|
410
|
+
self.siglip_feat_dim = siglip_feat_dim
|
|
411
|
+
if siglip_feat_dim is not None:
|
|
412
|
+
self.siglip_embedder = nn.Sequential(
|
|
413
|
+
RMSNorm(siglip_feat_dim, eps=norm_eps), nn.Linear(siglip_feat_dim, dim, bias=True)
|
|
414
|
+
)
|
|
415
|
+
self.siglip_refiner = nn.ModuleList(
|
|
416
|
+
[
|
|
417
|
+
ZImageTransformerBlock(
|
|
418
|
+
2000 + layer_id,
|
|
419
|
+
dim,
|
|
420
|
+
n_heads,
|
|
421
|
+
n_kv_heads,
|
|
422
|
+
norm_eps,
|
|
423
|
+
qk_norm,
|
|
424
|
+
modulation=False,
|
|
425
|
+
)
|
|
426
|
+
for layer_id in range(n_refiner_layers)
|
|
427
|
+
]
|
|
428
|
+
)
|
|
429
|
+
self.siglip_pad_token = nn.Parameter(torch.empty((1, dim)))
|
|
430
|
+
else:
|
|
431
|
+
self.siglip_embedder = None
|
|
432
|
+
self.siglip_refiner = None
|
|
433
|
+
self.siglip_pad_token = None
|
|
434
|
+
|
|
435
|
+
self.x_pad_token = nn.Parameter(torch.empty((1, dim)))
|
|
436
|
+
self.cap_pad_token = nn.Parameter(torch.empty((1, dim)))
|
|
437
|
+
|
|
438
|
+
self.layers = nn.ModuleList(
|
|
439
|
+
[
|
|
440
|
+
ZImageTransformerBlock(layer_id, dim, n_heads, n_kv_heads, norm_eps, qk_norm)
|
|
441
|
+
for layer_id in range(n_layers)
|
|
442
|
+
]
|
|
443
|
+
)
|
|
444
|
+
head_dim = dim // n_heads
|
|
445
|
+
assert head_dim == sum(axes_dims)
|
|
446
|
+
self.axes_dims = axes_dims
|
|
447
|
+
self.axes_lens = axes_lens
|
|
448
|
+
|
|
449
|
+
self.rope_embedder = RopeEmbedder(theta=rope_theta, axes_dims=axes_dims, axes_lens=axes_lens)
|
|
450
|
+
|
|
451
|
+
def unpatchify(
|
|
452
|
+
self,
|
|
453
|
+
x: List[torch.Tensor],
|
|
454
|
+
size: List[Tuple],
|
|
455
|
+
patch_size = 2,
|
|
456
|
+
f_patch_size = 1,
|
|
457
|
+
x_pos_offsets: Optional[List[Tuple[int, int]]] = None,
|
|
458
|
+
) -> List[torch.Tensor]:
|
|
459
|
+
pH = pW = patch_size
|
|
460
|
+
pF = f_patch_size
|
|
461
|
+
bsz = len(x)
|
|
462
|
+
assert len(size) == bsz
|
|
463
|
+
|
|
464
|
+
if x_pos_offsets is not None:
|
|
465
|
+
# Omni: extract target image from unified sequence (cond_images + target)
|
|
466
|
+
result = []
|
|
467
|
+
for i in range(bsz):
|
|
468
|
+
unified_x = x[i][x_pos_offsets[i][0] : x_pos_offsets[i][1]]
|
|
469
|
+
cu_len = 0
|
|
470
|
+
x_item = None
|
|
471
|
+
for j in range(len(size[i])):
|
|
472
|
+
if size[i][j] is None:
|
|
473
|
+
ori_len = 0
|
|
474
|
+
pad_len = SEQ_MULTI_OF
|
|
475
|
+
cu_len += pad_len + ori_len
|
|
476
|
+
else:
|
|
477
|
+
F, H, W = size[i][j]
|
|
478
|
+
ori_len = (F // pF) * (H // pH) * (W // pW)
|
|
479
|
+
pad_len = (-ori_len) % SEQ_MULTI_OF
|
|
480
|
+
x_item = (
|
|
481
|
+
unified_x[cu_len : cu_len + ori_len]
|
|
482
|
+
.view(F // pF, H // pH, W // pW, pF, pH, pW, self.out_channels)
|
|
483
|
+
.permute(6, 0, 3, 1, 4, 2, 5)
|
|
484
|
+
.reshape(self.out_channels, F, H, W)
|
|
485
|
+
)
|
|
486
|
+
cu_len += ori_len + pad_len
|
|
487
|
+
result.append(x_item) # Return only the last (target) image
|
|
488
|
+
return result
|
|
489
|
+
else:
|
|
490
|
+
# Original mode: simple unpatchify
|
|
491
|
+
for i in range(bsz):
|
|
492
|
+
F, H, W = size[i]
|
|
493
|
+
ori_len = (F // pF) * (H // pH) * (W // pW)
|
|
494
|
+
# "f h w pf ph pw c -> c (f pf) (h ph) (w pw)"
|
|
495
|
+
x[i] = (
|
|
496
|
+
x[i][:ori_len]
|
|
497
|
+
.view(F // pF, H // pH, W // pW, pF, pH, pW, self.out_channels)
|
|
498
|
+
.permute(6, 0, 3, 1, 4, 2, 5)
|
|
499
|
+
.reshape(self.out_channels, F, H, W)
|
|
500
|
+
)
|
|
501
|
+
return x
|
|
502
|
+
|
|
503
|
+
@staticmethod
|
|
504
|
+
def create_coordinate_grid(size, start=None, device=None):
|
|
505
|
+
if start is None:
|
|
506
|
+
start = (0 for _ in size)
|
|
507
|
+
|
|
508
|
+
axes = [torch.arange(x0, x0 + span, dtype=torch.int32, device=device) for x0, span in zip(start, size)]
|
|
509
|
+
grids = torch.meshgrid(axes, indexing="ij")
|
|
510
|
+
return torch.stack(grids, dim=-1)
|
|
511
|
+
|
|
512
|
+
def patchify_and_embed(
|
|
513
|
+
self,
|
|
514
|
+
all_image: List[torch.Tensor],
|
|
515
|
+
all_cap_feats: List[torch.Tensor],
|
|
516
|
+
patch_size: int = 2,
|
|
517
|
+
f_patch_size: int = 1,
|
|
518
|
+
):
|
|
519
|
+
pH = pW = patch_size
|
|
520
|
+
pF = f_patch_size
|
|
521
|
+
device = all_image[0].device
|
|
522
|
+
|
|
523
|
+
all_image_out = []
|
|
524
|
+
all_image_size = []
|
|
525
|
+
all_image_pos_ids = []
|
|
526
|
+
all_image_pad_mask = []
|
|
527
|
+
all_cap_pos_ids = []
|
|
528
|
+
all_cap_pad_mask = []
|
|
529
|
+
all_cap_feats_out = []
|
|
530
|
+
|
|
531
|
+
for i, (image, cap_feat) in enumerate(zip(all_image, all_cap_feats)):
|
|
532
|
+
### Process Caption
|
|
533
|
+
cap_ori_len = len(cap_feat)
|
|
534
|
+
cap_padding_len = (-cap_ori_len) % SEQ_MULTI_OF
|
|
535
|
+
# padded position ids
|
|
536
|
+
cap_padded_pos_ids = self.create_coordinate_grid(
|
|
537
|
+
size=(cap_ori_len + cap_padding_len, 1, 1),
|
|
538
|
+
start=(1, 0, 0),
|
|
539
|
+
device=device,
|
|
540
|
+
).flatten(0, 2)
|
|
541
|
+
all_cap_pos_ids.append(cap_padded_pos_ids)
|
|
542
|
+
# pad mask
|
|
543
|
+
all_cap_pad_mask.append(
|
|
544
|
+
torch.cat(
|
|
545
|
+
[
|
|
546
|
+
torch.zeros((cap_ori_len,), dtype=torch.bool, device=device),
|
|
547
|
+
torch.ones((cap_padding_len,), dtype=torch.bool, device=device),
|
|
548
|
+
],
|
|
549
|
+
dim=0,
|
|
550
|
+
)
|
|
551
|
+
)
|
|
552
|
+
# padded feature
|
|
553
|
+
cap_padded_feat = torch.cat(
|
|
554
|
+
[cap_feat, cap_feat[-1:].repeat(cap_padding_len, 1)],
|
|
555
|
+
dim=0,
|
|
556
|
+
)
|
|
557
|
+
all_cap_feats_out.append(cap_padded_feat)
|
|
558
|
+
|
|
559
|
+
### Process Image
|
|
560
|
+
C, F, H, W = image.size()
|
|
561
|
+
all_image_size.append((F, H, W))
|
|
562
|
+
F_tokens, H_tokens, W_tokens = F // pF, H // pH, W // pW
|
|
563
|
+
|
|
564
|
+
image = image.view(C, F_tokens, pF, H_tokens, pH, W_tokens, pW)
|
|
565
|
+
# "c f pf h ph w pw -> (f h w) (pf ph pw c)"
|
|
566
|
+
image = image.permute(1, 3, 5, 2, 4, 6, 0).reshape(F_tokens * H_tokens * W_tokens, pF * pH * pW * C)
|
|
567
|
+
|
|
568
|
+
image_ori_len = len(image)
|
|
569
|
+
image_padding_len = (-image_ori_len) % SEQ_MULTI_OF
|
|
570
|
+
|
|
571
|
+
image_ori_pos_ids = self.create_coordinate_grid(
|
|
572
|
+
size=(F_tokens, H_tokens, W_tokens),
|
|
573
|
+
start=(cap_ori_len + cap_padding_len + 1, 0, 0),
|
|
574
|
+
device=device,
|
|
575
|
+
).flatten(0, 2)
|
|
576
|
+
image_padding_pos_ids = (
|
|
577
|
+
self.create_coordinate_grid(
|
|
578
|
+
size=(1, 1, 1),
|
|
579
|
+
start=(0, 0, 0),
|
|
580
|
+
device=device,
|
|
581
|
+
)
|
|
582
|
+
.flatten(0, 2)
|
|
583
|
+
.repeat(image_padding_len, 1)
|
|
584
|
+
)
|
|
585
|
+
image_padded_pos_ids = torch.cat([image_ori_pos_ids, image_padding_pos_ids], dim=0)
|
|
586
|
+
all_image_pos_ids.append(image_padded_pos_ids)
|
|
587
|
+
# pad mask
|
|
588
|
+
all_image_pad_mask.append(
|
|
589
|
+
torch.cat(
|
|
590
|
+
[
|
|
591
|
+
torch.zeros((image_ori_len,), dtype=torch.bool, device=device),
|
|
592
|
+
torch.ones((image_padding_len,), dtype=torch.bool, device=device),
|
|
593
|
+
],
|
|
594
|
+
dim=0,
|
|
595
|
+
)
|
|
596
|
+
)
|
|
597
|
+
# padded feature
|
|
598
|
+
image_padded_feat = torch.cat([image, image[-1:].repeat(image_padding_len, 1)], dim=0)
|
|
599
|
+
all_image_out.append(image_padded_feat)
|
|
600
|
+
|
|
601
|
+
return all_image_out, all_cap_feats_out, {
|
|
602
|
+
"x_size": all_image_size,
|
|
603
|
+
"x_pos_ids": all_image_pos_ids,
|
|
604
|
+
"cap_pos_ids": all_cap_pos_ids,
|
|
605
|
+
"x_pad_mask": all_image_pad_mask,
|
|
606
|
+
"cap_pad_mask": all_cap_pad_mask
|
|
607
|
+
}
|
|
608
|
+
|
|
609
|
+
def patchify_controlnet(
|
|
610
|
+
self,
|
|
611
|
+
all_image: List[torch.Tensor],
|
|
612
|
+
patch_size: int = 2,
|
|
613
|
+
f_patch_size: int = 1,
|
|
614
|
+
cap_padding_len: int = None,
|
|
615
|
+
):
|
|
616
|
+
pH = pW = patch_size
|
|
617
|
+
pF = f_patch_size
|
|
618
|
+
device = all_image[0].device
|
|
619
|
+
|
|
620
|
+
all_image_out = []
|
|
621
|
+
all_image_size = []
|
|
622
|
+
all_image_pos_ids = []
|
|
623
|
+
all_image_pad_mask = []
|
|
624
|
+
|
|
625
|
+
for i, image in enumerate(all_image):
|
|
626
|
+
### Process Image
|
|
627
|
+
C, F, H, W = image.size()
|
|
628
|
+
all_image_size.append((F, H, W))
|
|
629
|
+
F_tokens, H_tokens, W_tokens = F // pF, H // pH, W // pW
|
|
630
|
+
|
|
631
|
+
image = image.view(C, F_tokens, pF, H_tokens, pH, W_tokens, pW)
|
|
632
|
+
# "c f pf h ph w pw -> (f h w) (pf ph pw c)"
|
|
633
|
+
image = image.permute(1, 3, 5, 2, 4, 6, 0).reshape(F_tokens * H_tokens * W_tokens, pF * pH * pW * C)
|
|
634
|
+
|
|
635
|
+
image_ori_len = len(image)
|
|
636
|
+
image_padding_len = (-image_ori_len) % SEQ_MULTI_OF
|
|
637
|
+
|
|
638
|
+
image_ori_pos_ids = self.create_coordinate_grid(
|
|
639
|
+
size=(F_tokens, H_tokens, W_tokens),
|
|
640
|
+
start=(cap_padding_len + 1, 0, 0),
|
|
641
|
+
device=device,
|
|
642
|
+
).flatten(0, 2)
|
|
643
|
+
image_padding_pos_ids = (
|
|
644
|
+
self.create_coordinate_grid(
|
|
645
|
+
size=(1, 1, 1),
|
|
646
|
+
start=(0, 0, 0),
|
|
647
|
+
device=device,
|
|
648
|
+
)
|
|
649
|
+
.flatten(0, 2)
|
|
650
|
+
.repeat(image_padding_len, 1)
|
|
651
|
+
)
|
|
652
|
+
image_padded_pos_ids = torch.cat([image_ori_pos_ids, image_padding_pos_ids], dim=0)
|
|
653
|
+
all_image_pos_ids.append(image_padded_pos_ids)
|
|
654
|
+
# pad mask
|
|
655
|
+
all_image_pad_mask.append(
|
|
656
|
+
torch.cat(
|
|
657
|
+
[
|
|
658
|
+
torch.zeros((image_ori_len,), dtype=torch.bool, device=device),
|
|
659
|
+
torch.ones((image_padding_len,), dtype=torch.bool, device=device),
|
|
660
|
+
],
|
|
661
|
+
dim=0,
|
|
662
|
+
)
|
|
663
|
+
)
|
|
664
|
+
# padded feature
|
|
665
|
+
image_padded_feat = torch.cat([image, image[-1:].repeat(image_padding_len, 1)], dim=0)
|
|
666
|
+
all_image_out.append(image_padded_feat)
|
|
667
|
+
|
|
668
|
+
return (
|
|
669
|
+
all_image_out,
|
|
670
|
+
all_image_size,
|
|
671
|
+
all_image_pos_ids,
|
|
672
|
+
all_image_pad_mask,
|
|
673
|
+
)
|
|
674
|
+
|
|
675
|
+
def _prepare_sequence(
|
|
676
|
+
self,
|
|
677
|
+
feats: List[torch.Tensor],
|
|
678
|
+
pos_ids: List[torch.Tensor],
|
|
679
|
+
inner_pad_mask: List[torch.Tensor],
|
|
680
|
+
pad_token: torch.nn.Parameter,
|
|
681
|
+
noise_mask: Optional[List[List[int]]] = None,
|
|
682
|
+
device: torch.device = None,
|
|
683
|
+
):
|
|
684
|
+
"""Prepare sequence: apply pad token, RoPE embed, pad to batch, create attention mask."""
|
|
685
|
+
item_seqlens = [len(f) for f in feats]
|
|
686
|
+
max_seqlen = max(item_seqlens)
|
|
687
|
+
bsz = len(feats)
|
|
688
|
+
|
|
689
|
+
# Pad token
|
|
690
|
+
feats_cat = torch.cat(feats, dim=0)
|
|
691
|
+
feats_cat[torch.cat(inner_pad_mask)] = pad_token.to(dtype=feats_cat.dtype, device=feats_cat.device)
|
|
692
|
+
feats = list(feats_cat.split(item_seqlens, dim=0))
|
|
693
|
+
|
|
694
|
+
# RoPE
|
|
695
|
+
freqs_cis = list(self.rope_embedder(torch.cat(pos_ids, dim=0)).split([len(p) for p in pos_ids], dim=0))
|
|
696
|
+
|
|
697
|
+
# Pad to batch
|
|
698
|
+
feats = pad_sequence(feats, batch_first=True, padding_value=0.0)
|
|
699
|
+
freqs_cis = pad_sequence(freqs_cis, batch_first=True, padding_value=0.0)[:, : feats.shape[1]]
|
|
700
|
+
|
|
701
|
+
# Attention mask
|
|
702
|
+
attn_mask = torch.zeros((bsz, max_seqlen), dtype=torch.bool, device=device)
|
|
703
|
+
for i, seq_len in enumerate(item_seqlens):
|
|
704
|
+
attn_mask[i, :seq_len] = 1
|
|
705
|
+
|
|
706
|
+
# Noise mask
|
|
707
|
+
noise_mask_tensor = None
|
|
708
|
+
if noise_mask is not None:
|
|
709
|
+
noise_mask_tensor = pad_sequence(
|
|
710
|
+
[torch.tensor(m, dtype=torch.long, device=device) for m in noise_mask],
|
|
711
|
+
batch_first=True,
|
|
712
|
+
padding_value=0,
|
|
713
|
+
)[:, : feats.shape[1]]
|
|
714
|
+
|
|
715
|
+
return feats, freqs_cis, attn_mask, item_seqlens, noise_mask_tensor
|
|
716
|
+
|
|
717
|
+
def _build_unified_sequence(
|
|
718
|
+
self,
|
|
719
|
+
x: torch.Tensor,
|
|
720
|
+
x_freqs: torch.Tensor,
|
|
721
|
+
x_seqlens: List[int],
|
|
722
|
+
x_noise_mask: Optional[List[List[int]]],
|
|
723
|
+
cap: torch.Tensor,
|
|
724
|
+
cap_freqs: torch.Tensor,
|
|
725
|
+
cap_seqlens: List[int],
|
|
726
|
+
cap_noise_mask: Optional[List[List[int]]],
|
|
727
|
+
siglip: Optional[torch.Tensor],
|
|
728
|
+
siglip_freqs: Optional[torch.Tensor],
|
|
729
|
+
siglip_seqlens: Optional[List[int]],
|
|
730
|
+
siglip_noise_mask: Optional[List[List[int]]],
|
|
731
|
+
omni_mode: bool,
|
|
732
|
+
device: torch.device,
|
|
733
|
+
):
|
|
734
|
+
"""Build unified sequence: x, cap, and optionally siglip.
|
|
735
|
+
Basic mode order: [x, cap]; Omni mode order: [cap, x, siglip]
|
|
736
|
+
"""
|
|
737
|
+
bsz = len(x_seqlens)
|
|
738
|
+
unified = []
|
|
739
|
+
unified_freqs = []
|
|
740
|
+
unified_noise_mask = []
|
|
741
|
+
|
|
742
|
+
for i in range(bsz):
|
|
743
|
+
x_len, cap_len = x_seqlens[i], cap_seqlens[i]
|
|
744
|
+
|
|
745
|
+
if omni_mode:
|
|
746
|
+
# Omni: [cap, x, siglip]
|
|
747
|
+
if siglip is not None and siglip_seqlens is not None:
|
|
748
|
+
sig_len = siglip_seqlens[i]
|
|
749
|
+
unified.append(torch.cat([cap[i][:cap_len], x[i][:x_len], siglip[i][:sig_len]]))
|
|
750
|
+
unified_freqs.append(
|
|
751
|
+
torch.cat([cap_freqs[i][:cap_len], x_freqs[i][:x_len], siglip_freqs[i][:sig_len]])
|
|
752
|
+
)
|
|
753
|
+
unified_noise_mask.append(
|
|
754
|
+
torch.tensor(
|
|
755
|
+
cap_noise_mask[i] + x_noise_mask[i] + siglip_noise_mask[i], dtype=torch.long, device=device
|
|
756
|
+
)
|
|
757
|
+
)
|
|
758
|
+
else:
|
|
759
|
+
unified.append(torch.cat([cap[i][:cap_len], x[i][:x_len]]))
|
|
760
|
+
unified_freqs.append(torch.cat([cap_freqs[i][:cap_len], x_freqs[i][:x_len]]))
|
|
761
|
+
unified_noise_mask.append(
|
|
762
|
+
torch.tensor(cap_noise_mask[i] + x_noise_mask[i], dtype=torch.long, device=device)
|
|
763
|
+
)
|
|
764
|
+
else:
|
|
765
|
+
# Basic: [x, cap]
|
|
766
|
+
unified.append(torch.cat([x[i][:x_len], cap[i][:cap_len]]))
|
|
767
|
+
unified_freqs.append(torch.cat([x_freqs[i][:x_len], cap_freqs[i][:cap_len]]))
|
|
768
|
+
|
|
769
|
+
# Compute unified seqlens
|
|
770
|
+
if omni_mode:
|
|
771
|
+
if siglip is not None and siglip_seqlens is not None:
|
|
772
|
+
unified_seqlens = [a + b + c for a, b, c in zip(cap_seqlens, x_seqlens, siglip_seqlens)]
|
|
773
|
+
else:
|
|
774
|
+
unified_seqlens = [a + b for a, b in zip(cap_seqlens, x_seqlens)]
|
|
775
|
+
else:
|
|
776
|
+
unified_seqlens = [a + b for a, b in zip(x_seqlens, cap_seqlens)]
|
|
777
|
+
|
|
778
|
+
max_seqlen = max(unified_seqlens)
|
|
779
|
+
|
|
780
|
+
# Pad to batch
|
|
781
|
+
unified = pad_sequence(unified, batch_first=True, padding_value=0.0)
|
|
782
|
+
unified_freqs = pad_sequence(unified_freqs, batch_first=True, padding_value=0.0)
|
|
783
|
+
|
|
784
|
+
# Attention mask
|
|
785
|
+
attn_mask = torch.zeros((bsz, max_seqlen), dtype=torch.bool, device=device)
|
|
786
|
+
for i, seq_len in enumerate(unified_seqlens):
|
|
787
|
+
attn_mask[i, :seq_len] = 1
|
|
788
|
+
|
|
789
|
+
# Noise mask
|
|
790
|
+
noise_mask_tensor = None
|
|
791
|
+
if omni_mode:
|
|
792
|
+
noise_mask_tensor = pad_sequence(unified_noise_mask, batch_first=True, padding_value=0)[
|
|
793
|
+
:, : unified.shape[1]
|
|
794
|
+
]
|
|
795
|
+
|
|
796
|
+
return unified, unified_freqs, attn_mask, noise_mask_tensor
|
|
797
|
+
|
|
798
|
+
def _pad_with_ids(
|
|
799
|
+
self,
|
|
800
|
+
feat: torch.Tensor,
|
|
801
|
+
pos_grid_size: Tuple,
|
|
802
|
+
pos_start: Tuple,
|
|
803
|
+
device: torch.device,
|
|
804
|
+
noise_mask_val: Optional[int] = None,
|
|
805
|
+
):
|
|
806
|
+
"""Pad feature to SEQ_MULTI_OF, create position IDs and pad mask."""
|
|
807
|
+
ori_len = len(feat)
|
|
808
|
+
pad_len = (-ori_len) % SEQ_MULTI_OF
|
|
809
|
+
total_len = ori_len + pad_len
|
|
810
|
+
|
|
811
|
+
# Pos IDs
|
|
812
|
+
ori_pos_ids = self.create_coordinate_grid(size=pos_grid_size, start=pos_start, device=device).flatten(0, 2)
|
|
813
|
+
if pad_len > 0:
|
|
814
|
+
pad_pos_ids = (
|
|
815
|
+
self.create_coordinate_grid(size=(1, 1, 1), start=(0, 0, 0), device=device)
|
|
816
|
+
.flatten(0, 2)
|
|
817
|
+
.repeat(pad_len, 1)
|
|
818
|
+
)
|
|
819
|
+
pos_ids = torch.cat([ori_pos_ids, pad_pos_ids], dim=0)
|
|
820
|
+
padded_feat = torch.cat([feat, feat[-1:].repeat(pad_len, 1)], dim=0)
|
|
821
|
+
pad_mask = torch.cat(
|
|
822
|
+
[
|
|
823
|
+
torch.zeros(ori_len, dtype=torch.bool, device=device),
|
|
824
|
+
torch.ones(pad_len, dtype=torch.bool, device=device),
|
|
825
|
+
]
|
|
826
|
+
)
|
|
827
|
+
else:
|
|
828
|
+
pos_ids = ori_pos_ids
|
|
829
|
+
padded_feat = feat
|
|
830
|
+
pad_mask = torch.zeros(ori_len, dtype=torch.bool, device=device)
|
|
831
|
+
|
|
832
|
+
noise_mask = [noise_mask_val] * total_len if noise_mask_val is not None else None # token level
|
|
833
|
+
return padded_feat, pos_ids, pad_mask, total_len, noise_mask
|
|
834
|
+
|
|
835
|
+
def _patchify_image(self, image: torch.Tensor, patch_size: int, f_patch_size: int):
|
|
836
|
+
"""Patchify a single image tensor: (C, F, H, W) -> (num_patches, patch_dim)."""
|
|
837
|
+
pH, pW, pF = patch_size, patch_size, f_patch_size
|
|
838
|
+
C, F, H, W = image.size()
|
|
839
|
+
F_tokens, H_tokens, W_tokens = F // pF, H // pH, W // pW
|
|
840
|
+
image = image.view(C, F_tokens, pF, H_tokens, pH, W_tokens, pW)
|
|
841
|
+
image = image.permute(1, 3, 5, 2, 4, 6, 0).reshape(F_tokens * H_tokens * W_tokens, pF * pH * pW * C)
|
|
842
|
+
return image, (F, H, W), (F_tokens, H_tokens, W_tokens)
|
|
843
|
+
|
|
844
|
+
def patchify_and_embed_omni(
|
|
845
|
+
self,
|
|
846
|
+
all_x: List[List[torch.Tensor]],
|
|
847
|
+
all_cap_feats: List[List[torch.Tensor]],
|
|
848
|
+
all_siglip_feats: List[List[torch.Tensor]],
|
|
849
|
+
patch_size: int = 2,
|
|
850
|
+
f_patch_size: int = 1,
|
|
851
|
+
images_noise_mask: List[List[int]] = None,
|
|
852
|
+
):
|
|
853
|
+
"""Patchify for omni mode: multiple images per batch item with noise masks."""
|
|
854
|
+
bsz = len(all_x)
|
|
855
|
+
device = all_x[0][-1].device
|
|
856
|
+
dtype = all_x[0][-1].dtype
|
|
857
|
+
|
|
858
|
+
all_x_out, all_x_size, all_x_pos_ids, all_x_pad_mask, all_x_len, all_x_noise_mask = [], [], [], [], [], []
|
|
859
|
+
all_cap_out, all_cap_pos_ids, all_cap_pad_mask, all_cap_len, all_cap_noise_mask = [], [], [], [], []
|
|
860
|
+
all_sig_out, all_sig_pos_ids, all_sig_pad_mask, all_sig_len, all_sig_noise_mask = [], [], [], [], []
|
|
861
|
+
|
|
862
|
+
for i in range(bsz):
|
|
863
|
+
num_images = len(all_x[i])
|
|
864
|
+
cap_feats_list, cap_pos_list, cap_mask_list, cap_lens, cap_noise = [], [], [], [], []
|
|
865
|
+
cap_end_pos = []
|
|
866
|
+
cap_cu_len = 1
|
|
867
|
+
|
|
868
|
+
# Process captions
|
|
869
|
+
for j, cap_item in enumerate(all_cap_feats[i]):
|
|
870
|
+
noise_val = images_noise_mask[i][j] if j < len(images_noise_mask[i]) else 1
|
|
871
|
+
cap_out, cap_pos, cap_mask, cap_len, cap_nm = self._pad_with_ids(
|
|
872
|
+
cap_item,
|
|
873
|
+
(len(cap_item) + (-len(cap_item)) % SEQ_MULTI_OF, 1, 1),
|
|
874
|
+
(cap_cu_len, 0, 0),
|
|
875
|
+
device,
|
|
876
|
+
noise_val,
|
|
877
|
+
)
|
|
878
|
+
cap_feats_list.append(cap_out)
|
|
879
|
+
cap_pos_list.append(cap_pos)
|
|
880
|
+
cap_mask_list.append(cap_mask)
|
|
881
|
+
cap_lens.append(cap_len)
|
|
882
|
+
cap_noise.extend(cap_nm)
|
|
883
|
+
cap_cu_len += len(cap_item)
|
|
884
|
+
cap_end_pos.append(cap_cu_len)
|
|
885
|
+
cap_cu_len += 2 # for image vae and siglip tokens
|
|
886
|
+
|
|
887
|
+
all_cap_out.append(torch.cat(cap_feats_list, dim=0))
|
|
888
|
+
all_cap_pos_ids.append(torch.cat(cap_pos_list, dim=0))
|
|
889
|
+
all_cap_pad_mask.append(torch.cat(cap_mask_list, dim=0))
|
|
890
|
+
all_cap_len.append(cap_lens)
|
|
891
|
+
all_cap_noise_mask.append(cap_noise)
|
|
892
|
+
|
|
893
|
+
# Process images
|
|
894
|
+
x_feats_list, x_pos_list, x_mask_list, x_lens, x_size, x_noise = [], [], [], [], [], []
|
|
895
|
+
for j, x_item in enumerate(all_x[i]):
|
|
896
|
+
noise_val = images_noise_mask[i][j]
|
|
897
|
+
if x_item is not None:
|
|
898
|
+
x_patches, size, (F_t, H_t, W_t) = self._patchify_image(x_item, patch_size, f_patch_size)
|
|
899
|
+
x_out, x_pos, x_mask, x_len, x_nm = self._pad_with_ids(
|
|
900
|
+
x_patches, (F_t, H_t, W_t), (cap_end_pos[j], 0, 0), device, noise_val
|
|
901
|
+
)
|
|
902
|
+
x_size.append(size)
|
|
903
|
+
else:
|
|
904
|
+
x_len = SEQ_MULTI_OF
|
|
905
|
+
x_out = torch.zeros((x_len, X_PAD_DIM), dtype=dtype, device=device)
|
|
906
|
+
x_pos = self.create_coordinate_grid((1, 1, 1), (0, 0, 0), device).flatten(0, 2).repeat(x_len, 1)
|
|
907
|
+
x_mask = torch.ones(x_len, dtype=torch.bool, device=device)
|
|
908
|
+
x_nm = [noise_val] * x_len
|
|
909
|
+
x_size.append(None)
|
|
910
|
+
x_feats_list.append(x_out)
|
|
911
|
+
x_pos_list.append(x_pos)
|
|
912
|
+
x_mask_list.append(x_mask)
|
|
913
|
+
x_lens.append(x_len)
|
|
914
|
+
x_noise.extend(x_nm)
|
|
915
|
+
|
|
916
|
+
all_x_out.append(torch.cat(x_feats_list, dim=0))
|
|
917
|
+
all_x_pos_ids.append(torch.cat(x_pos_list, dim=0))
|
|
918
|
+
all_x_pad_mask.append(torch.cat(x_mask_list, dim=0))
|
|
919
|
+
all_x_size.append(x_size)
|
|
920
|
+
all_x_len.append(x_lens)
|
|
921
|
+
all_x_noise_mask.append(x_noise)
|
|
922
|
+
|
|
923
|
+
# Process siglip
|
|
924
|
+
if all_siglip_feats[i] is None:
|
|
925
|
+
all_sig_len.append([0] * num_images)
|
|
926
|
+
all_sig_out.append(None)
|
|
927
|
+
else:
|
|
928
|
+
sig_feats_list, sig_pos_list, sig_mask_list, sig_lens, sig_noise = [], [], [], [], []
|
|
929
|
+
for j, sig_item in enumerate(all_siglip_feats[i]):
|
|
930
|
+
noise_val = images_noise_mask[i][j]
|
|
931
|
+
if sig_item is not None:
|
|
932
|
+
sig_H, sig_W, sig_C = sig_item.size()
|
|
933
|
+
sig_flat = sig_item.permute(2, 0, 1).reshape(sig_H * sig_W, sig_C)
|
|
934
|
+
sig_out, sig_pos, sig_mask, sig_len, sig_nm = self._pad_with_ids(
|
|
935
|
+
sig_flat, (1, sig_H, sig_W), (cap_end_pos[j] + 1, 0, 0), device, noise_val
|
|
936
|
+
)
|
|
937
|
+
# Scale position IDs to match x resolution
|
|
938
|
+
if x_size[j] is not None:
|
|
939
|
+
sig_pos = sig_pos.float()
|
|
940
|
+
sig_pos[..., 1] = sig_pos[..., 1] / max(sig_H - 1, 1) * (x_size[j][1] - 1)
|
|
941
|
+
sig_pos[..., 2] = sig_pos[..., 2] / max(sig_W - 1, 1) * (x_size[j][2] - 1)
|
|
942
|
+
sig_pos = sig_pos.to(torch.int32)
|
|
943
|
+
else:
|
|
944
|
+
sig_len = SEQ_MULTI_OF
|
|
945
|
+
sig_out = torch.zeros((sig_len, self.siglip_feat_dim), dtype=dtype, device=device)
|
|
946
|
+
sig_pos = (
|
|
947
|
+
self.create_coordinate_grid((1, 1, 1), (0, 0, 0), device).flatten(0, 2).repeat(sig_len, 1)
|
|
948
|
+
)
|
|
949
|
+
sig_mask = torch.ones(sig_len, dtype=torch.bool, device=device)
|
|
950
|
+
sig_nm = [noise_val] * sig_len
|
|
951
|
+
sig_feats_list.append(sig_out)
|
|
952
|
+
sig_pos_list.append(sig_pos)
|
|
953
|
+
sig_mask_list.append(sig_mask)
|
|
954
|
+
sig_lens.append(sig_len)
|
|
955
|
+
sig_noise.extend(sig_nm)
|
|
956
|
+
|
|
957
|
+
all_sig_out.append(torch.cat(sig_feats_list, dim=0))
|
|
958
|
+
all_sig_pos_ids.append(torch.cat(sig_pos_list, dim=0))
|
|
959
|
+
all_sig_pad_mask.append(torch.cat(sig_mask_list, dim=0))
|
|
960
|
+
all_sig_len.append(sig_lens)
|
|
961
|
+
all_sig_noise_mask.append(sig_noise)
|
|
962
|
+
|
|
963
|
+
# Compute x position offsets
|
|
964
|
+
all_x_pos_offsets = [(sum(all_cap_len[i]), sum(all_cap_len[i]) + sum(all_x_len[i])) for i in range(bsz)]
|
|
965
|
+
|
|
966
|
+
return (
|
|
967
|
+
all_x_out,
|
|
968
|
+
all_cap_out,
|
|
969
|
+
all_sig_out,
|
|
970
|
+
all_x_size,
|
|
971
|
+
all_x_pos_ids,
|
|
972
|
+
all_cap_pos_ids,
|
|
973
|
+
all_sig_pos_ids,
|
|
974
|
+
all_x_pad_mask,
|
|
975
|
+
all_cap_pad_mask,
|
|
976
|
+
all_sig_pad_mask,
|
|
977
|
+
all_x_pos_offsets,
|
|
978
|
+
all_x_noise_mask,
|
|
979
|
+
all_cap_noise_mask,
|
|
980
|
+
all_sig_noise_mask,
|
|
981
|
+
)
|
|
982
|
+
|
|
983
|
+
def forward(
|
|
984
|
+
self,
|
|
985
|
+
x: List[torch.Tensor],
|
|
986
|
+
t,
|
|
987
|
+
cap_feats: List[torch.Tensor],
|
|
988
|
+
siglip_feats = None,
|
|
989
|
+
image_noise_mask = None,
|
|
990
|
+
patch_size=2,
|
|
991
|
+
f_patch_size=1,
|
|
992
|
+
):
|
|
993
|
+
assert patch_size in self.all_patch_size and f_patch_size in self.all_f_patch_size
|
|
994
|
+
omni_mode = isinstance(x[0], list)
|
|
995
|
+
device = x[0][-1].device if omni_mode else x[0].device
|
|
996
|
+
|
|
997
|
+
use_cfg = len(x) > 1 and isinstance(x[0], list)
|
|
998
|
+
fp8_linear_enabled = getattr(self, "fp8_linear_enabled", False)
|
|
999
|
+
with (
|
|
1000
|
+
fp8_inference(fp8_linear_enabled),
|
|
1001
|
+
gguf_inference(),
|
|
1002
|
+
cfg_parallel((x, t, cap_feats, siglip_feats, image_noise_mask), use_cfg=use_cfg),
|
|
1003
|
+
):
|
|
1004
|
+
if omni_mode:
|
|
1005
|
+
# Dual embeddings: noisy (t) and clean (t=1)
|
|
1006
|
+
t_noisy = self.t_embedder(t * self.t_scale).type_as(x[0][-1])
|
|
1007
|
+
t_clean = self.t_embedder(torch.ones_like(t) * self.t_scale).type_as(x[0][-1])
|
|
1008
|
+
adaln_input = None
|
|
1009
|
+
else:
|
|
1010
|
+
# Single embedding for all tokens
|
|
1011
|
+
adaln_input = self.t_embedder(t * self.t_scale).type_as(x[0])
|
|
1012
|
+
t_noisy = t_clean = None
|
|
1013
|
+
|
|
1014
|
+
# Patchify
|
|
1015
|
+
if omni_mode:
|
|
1016
|
+
(
|
|
1017
|
+
x,
|
|
1018
|
+
cap_feats,
|
|
1019
|
+
siglip_feats,
|
|
1020
|
+
x_size,
|
|
1021
|
+
x_pos_ids,
|
|
1022
|
+
cap_pos_ids,
|
|
1023
|
+
siglip_pos_ids,
|
|
1024
|
+
x_pad_mask,
|
|
1025
|
+
cap_pad_mask,
|
|
1026
|
+
siglip_pad_mask,
|
|
1027
|
+
x_pos_offsets,
|
|
1028
|
+
x_noise_mask,
|
|
1029
|
+
cap_noise_mask,
|
|
1030
|
+
siglip_noise_mask,
|
|
1031
|
+
) = self.patchify_and_embed_omni(x, cap_feats, siglip_feats, patch_size, f_patch_size, image_noise_mask)
|
|
1032
|
+
else:
|
|
1033
|
+
(
|
|
1034
|
+
x,
|
|
1035
|
+
cap_feats,
|
|
1036
|
+
x_size,
|
|
1037
|
+
x_pos_ids,
|
|
1038
|
+
cap_pos_ids,
|
|
1039
|
+
x_pad_mask,
|
|
1040
|
+
cap_pad_mask,
|
|
1041
|
+
) = self.patchify_and_embed(x, cap_feats, patch_size, f_patch_size)
|
|
1042
|
+
x_pos_offsets = x_noise_mask = cap_noise_mask = siglip_noise_mask = None
|
|
1043
|
+
|
|
1044
|
+
# x embed & refine
|
|
1045
|
+
x_seqlens = [len(xi) for xi in x]
|
|
1046
|
+
x = self.all_x_embedder[f"{patch_size}-{f_patch_size}"](torch.cat(x, dim=0)) # embed
|
|
1047
|
+
x, x_freqs, x_mask, _, x_noise_tensor = self._prepare_sequence(
|
|
1048
|
+
list(x.split(x_seqlens, dim=0)), x_pos_ids, x_pad_mask, self.x_pad_token, x_noise_mask, device
|
|
1049
|
+
)
|
|
1050
|
+
|
|
1051
|
+
for layer in self.noise_refiner:
|
|
1052
|
+
x = layer(x=x, attn_mask=x_mask, freqs_cis=x_freqs, adaln_input=adaln_input, noise_mask=x_noise_tensor, adaln_noisy=t_noisy, adaln_clean=t_clean)
|
|
1053
|
+
|
|
1054
|
+
# Cap embed & refine
|
|
1055
|
+
cap_seqlens = [len(ci) for ci in cap_feats]
|
|
1056
|
+
cap_feats = self.cap_embedder(torch.cat(cap_feats, dim=0)) # embed
|
|
1057
|
+
cap_feats, cap_freqs, cap_mask, _, _ = self._prepare_sequence(
|
|
1058
|
+
list(cap_feats.split(cap_seqlens, dim=0)), cap_pos_ids, cap_pad_mask, self.cap_pad_token, None, device
|
|
1059
|
+
)
|
|
1060
|
+
|
|
1061
|
+
for layer in self.context_refiner:
|
|
1062
|
+
cap_feats = layer(x=cap_feats, attn_mask=cap_mask, freqs_cis=cap_freqs)
|
|
1063
|
+
|
|
1064
|
+
# Siglip embed & refine
|
|
1065
|
+
siglip_seqlens = siglip_freqs = None
|
|
1066
|
+
if omni_mode and siglip_feats[0] is not None and self.siglip_embedder is not None:
|
|
1067
|
+
siglip_seqlens = [len(si) for si in siglip_feats]
|
|
1068
|
+
siglip_feats = self.siglip_embedder(torch.cat(siglip_feats, dim=0)) # embed
|
|
1069
|
+
siglip_feats, siglip_freqs, siglip_mask, _, _ = self._prepare_sequence(
|
|
1070
|
+
list(siglip_feats.split(siglip_seqlens, dim=0)),
|
|
1071
|
+
siglip_pos_ids,
|
|
1072
|
+
siglip_pad_mask,
|
|
1073
|
+
self.siglip_pad_token,
|
|
1074
|
+
None,
|
|
1075
|
+
device,
|
|
1076
|
+
)
|
|
1077
|
+
|
|
1078
|
+
for layer in self.siglip_refiner:
|
|
1079
|
+
siglip_feats = layer(x=siglip_feats, attn_mask=siglip_mask, freqs_cis=siglip_freqs)
|
|
1080
|
+
|
|
1081
|
+
# Unified sequence
|
|
1082
|
+
unified, unified_freqs, unified_mask, unified_noise_tensor = self._build_unified_sequence(
|
|
1083
|
+
x,
|
|
1084
|
+
x_freqs,
|
|
1085
|
+
x_seqlens,
|
|
1086
|
+
x_noise_mask,
|
|
1087
|
+
cap_feats,
|
|
1088
|
+
cap_freqs,
|
|
1089
|
+
cap_seqlens,
|
|
1090
|
+
cap_noise_mask,
|
|
1091
|
+
siglip_feats,
|
|
1092
|
+
siglip_freqs,
|
|
1093
|
+
siglip_seqlens,
|
|
1094
|
+
siglip_noise_mask,
|
|
1095
|
+
omni_mode,
|
|
1096
|
+
device,
|
|
1097
|
+
)
|
|
1098
|
+
|
|
1099
|
+
# Main transformer layers
|
|
1100
|
+
with sequence_parallel((unified, unified_freqs, unified_noise_tensor), seq_dims=(1, 1, 1)):
|
|
1101
|
+
for layer_idx, layer in enumerate(self.layers):
|
|
1102
|
+
unified = layer(x=unified, attn_mask=unified_mask, freqs_cis=unified_freqs, adaln_input=adaln_input, noise_mask=unified_noise_tensor, adaln_noisy=t_noisy, adaln_clean=t_clean)
|
|
1103
|
+
(unified,) = sequence_parallel_unshard((unified,), seq_dims=(1,), seq_lens=(unified.shape[1],))
|
|
1104
|
+
|
|
1105
|
+
unified = (
|
|
1106
|
+
self.all_final_layer[f"{patch_size}-{f_patch_size}"](
|
|
1107
|
+
unified, noise_mask=unified_noise_tensor, c_noisy=t_noisy, c_clean=t_clean
|
|
1108
|
+
)
|
|
1109
|
+
if omni_mode
|
|
1110
|
+
else self.all_final_layer[f"{patch_size}-{f_patch_size}"](unified, c=adaln_input)
|
|
1111
|
+
)
|
|
1112
|
+
|
|
1113
|
+
# Unpatchify
|
|
1114
|
+
x = self.unpatchify(list(unified.unbind(dim=0)), x_size, patch_size, f_patch_size, x_pos_offsets)
|
|
1115
|
+
|
|
1116
|
+
(x,) = cfg_parallel_unshard((x,), use_cfg=use_cfg)
|
|
1117
|
+
|
|
1118
|
+
return x
|
|
1119
|
+
|
|
1120
|
+
@classmethod
|
|
1121
|
+
def from_state_dict(
|
|
1122
|
+
cls,
|
|
1123
|
+
state_dict,
|
|
1124
|
+
device: str,
|
|
1125
|
+
dtype: torch.dtype,
|
|
1126
|
+
**kwargs,
|
|
1127
|
+
):
|
|
1128
|
+
model = cls(device="meta", dtype=dtype, **kwargs)
|
|
1129
|
+
model = model.requires_grad_(False)
|
|
1130
|
+
model.load_state_dict(state_dict, assign=True)
|
|
1131
|
+
model.to(device=device, dtype=dtype, non_blocking=True)
|
|
1132
|
+
return model
|