diffsynth-engine 0.6.1.dev34__py3-none-any.whl → 0.6.1.dev35__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- diffsynth_engine/__init__.py +4 -0
- diffsynth_engine/conf/models/z_image/qwen3_config.json +30 -0
- diffsynth_engine/conf/tokenizers/z_image/tokenizer/merges.txt +151388 -0
- diffsynth_engine/conf/tokenizers/z_image/tokenizer/tokenizer.json +757480 -0
- diffsynth_engine/conf/tokenizers/z_image/tokenizer/tokenizer_config.json +239 -0
- diffsynth_engine/conf/tokenizers/z_image/tokenizer/vocab.json +1 -0
- diffsynth_engine/configs/__init__.py +4 -0
- diffsynth_engine/configs/pipeline.py +44 -1
- diffsynth_engine/models/z_image/__init__.py +11 -0
- diffsynth_engine/models/z_image/qwen3.py +124 -0
- diffsynth_engine/models/z_image/z_image_dit.py +602 -0
- diffsynth_engine/pipelines/__init__.py +2 -0
- diffsynth_engine/pipelines/z_image.py +377 -0
- diffsynth_engine/utils/constants.py +3 -0
- diffsynth_engine/utils/process_group.py +1 -1
- {diffsynth_engine-0.6.1.dev34.dist-info → diffsynth_engine-0.6.1.dev35.dist-info}/METADATA +1 -1
- {diffsynth_engine-0.6.1.dev34.dist-info → diffsynth_engine-0.6.1.dev35.dist-info}/RECORD +20 -11
- {diffsynth_engine-0.6.1.dev34.dist-info → diffsynth_engine-0.6.1.dev35.dist-info}/WHEEL +0 -0
- {diffsynth_engine-0.6.1.dev34.dist-info → diffsynth_engine-0.6.1.dev35.dist-info}/licenses/LICENSE +0 -0
- {diffsynth_engine-0.6.1.dev34.dist-info → diffsynth_engine-0.6.1.dev35.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,602 @@
|
|
|
1
|
+
import torch
|
|
2
|
+
import torch.nn as nn
|
|
3
|
+
import torch.nn.functional as F
|
|
4
|
+
from typing import Dict, List, Tuple, Union, Optional
|
|
5
|
+
from torch.nn.utils.rnn import pad_sequence
|
|
6
|
+
import math
|
|
7
|
+
|
|
8
|
+
from diffsynth_engine.models.base import StateDictConverter, PreTrainedModel
|
|
9
|
+
from diffsynth_engine.models.basic import attention as attention_ops
|
|
10
|
+
from diffsynth_engine.models.basic.transformer_helper import RMSNorm
|
|
11
|
+
from diffsynth_engine.utils.gguf import gguf_inference
|
|
12
|
+
from diffsynth_engine.utils.fp8_linear import fp8_inference
|
|
13
|
+
from diffsynth_engine.utils.parallel import (
|
|
14
|
+
cfg_parallel,
|
|
15
|
+
cfg_parallel_unshard,
|
|
16
|
+
sequence_parallel,
|
|
17
|
+
sequence_parallel_unshard,
|
|
18
|
+
)
|
|
19
|
+
|
|
20
|
+
|
|
21
|
+
class ZImageStateDictConverter(StateDictConverter):
|
|
22
|
+
def __init__(self):
|
|
23
|
+
pass
|
|
24
|
+
|
|
25
|
+
def _from_diffusers(self, state_dict: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]:
|
|
26
|
+
state_dict_ = {}
|
|
27
|
+
for name, param in state_dict.items():
|
|
28
|
+
name_ = name
|
|
29
|
+
if "attention.to_out.0" in name:
|
|
30
|
+
name_ = name.replace("attention.to_out.0", "attention.to_out")
|
|
31
|
+
if "adaLN_modulation.0" in name:
|
|
32
|
+
name_ = name.replace("adaLN_modulation.0", "adaLN_modulation")
|
|
33
|
+
state_dict_[name_] = param
|
|
34
|
+
return state_dict_
|
|
35
|
+
|
|
36
|
+
def convert(self, state_dict: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]:
|
|
37
|
+
state_dict = self._from_diffusers(state_dict)
|
|
38
|
+
return state_dict
|
|
39
|
+
|
|
40
|
+
|
|
41
|
+
class ZImageTimestepEmbedder(nn.Module):
|
|
42
|
+
def __init__(self, out_size, mid_size=None, frequency_embedding_size=256, device="cuda:0", dtype=torch.bfloat16):
|
|
43
|
+
super().__init__()
|
|
44
|
+
if mid_size is None:
|
|
45
|
+
mid_size = out_size
|
|
46
|
+
self.frequency_embedding_size = frequency_embedding_size
|
|
47
|
+
self.mlp = nn.Sequential(
|
|
48
|
+
nn.Linear(frequency_embedding_size, mid_size, bias=True, device=device, dtype=dtype),
|
|
49
|
+
nn.SiLU(),
|
|
50
|
+
nn.Linear(mid_size, out_size, bias=True, device=device, dtype=dtype),
|
|
51
|
+
)
|
|
52
|
+
|
|
53
|
+
@staticmethod
|
|
54
|
+
def timestep_embedding(t, dim, max_period=10000):
|
|
55
|
+
with torch.amp.autocast("cuda", enabled=False):
|
|
56
|
+
half = dim // 2
|
|
57
|
+
freqs = torch.exp(
|
|
58
|
+
-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32, device=t.device) / half
|
|
59
|
+
)
|
|
60
|
+
args = t[:, None].float() * freqs[None]
|
|
61
|
+
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
|
|
62
|
+
if dim % 2:
|
|
63
|
+
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
|
|
64
|
+
return embedding
|
|
65
|
+
|
|
66
|
+
def forward(self, t):
|
|
67
|
+
t_freq = self.timestep_embedding(t, self.frequency_embedding_size)
|
|
68
|
+
weight_dtype = self.mlp[0].weight.dtype
|
|
69
|
+
t_freq = t_freq.to(dtype=weight_dtype)
|
|
70
|
+
t_emb = self.mlp(t_freq)
|
|
71
|
+
return t_emb
|
|
72
|
+
|
|
73
|
+
|
|
74
|
+
class ZImageFeedForward(nn.Module):
|
|
75
|
+
def __init__(self, dim: int, hidden_dim: int, device="cuda:0", dtype=torch.bfloat16):
|
|
76
|
+
super().__init__()
|
|
77
|
+
self.w1 = nn.Linear(dim, hidden_dim, bias=False, device=device, dtype=dtype)
|
|
78
|
+
self.w2 = nn.Linear(hidden_dim, dim, bias=False, device=device, dtype=dtype)
|
|
79
|
+
self.w3 = nn.Linear(dim, hidden_dim, bias=False, device=device, dtype=dtype)
|
|
80
|
+
|
|
81
|
+
def forward(self, x):
|
|
82
|
+
return self.w2(F.silu(self.w1(x)) * self.w3(x))
|
|
83
|
+
|
|
84
|
+
|
|
85
|
+
class ZImageFinalLayer(nn.Module):
|
|
86
|
+
def __init__(self, hidden_size, out_channels, adaln_embed_dim=256, device="cuda:0", dtype=torch.bfloat16):
|
|
87
|
+
super().__init__()
|
|
88
|
+
self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, device=device, dtype=dtype)
|
|
89
|
+
self.linear = nn.Linear(hidden_size, out_channels, bias=True, device=device, dtype=dtype)
|
|
90
|
+
|
|
91
|
+
self.adaLN_modulation = nn.Sequential(
|
|
92
|
+
nn.SiLU(),
|
|
93
|
+
nn.Linear(min(hidden_size, adaln_embed_dim), hidden_size, bias=True, device=device, dtype=dtype),
|
|
94
|
+
)
|
|
95
|
+
|
|
96
|
+
def forward(self, x, c):
|
|
97
|
+
scale = 1.0 + self.adaLN_modulation(c)
|
|
98
|
+
x = self.norm_final(x) * scale.unsqueeze(1)
|
|
99
|
+
x = self.linear(x)
|
|
100
|
+
return x
|
|
101
|
+
|
|
102
|
+
|
|
103
|
+
class ZImageRopeEmbedder:
|
|
104
|
+
def __init__(
|
|
105
|
+
self,
|
|
106
|
+
theta: float = 256.0,
|
|
107
|
+
axes_dims: List[int] = (16, 56, 56),
|
|
108
|
+
axes_lens: List[int] = (64, 128, 128),
|
|
109
|
+
device: str = "cuda:0",
|
|
110
|
+
):
|
|
111
|
+
self.theta = theta
|
|
112
|
+
self.axes_dims = axes_dims
|
|
113
|
+
self.axes_lens = axes_lens
|
|
114
|
+
assert len(axes_dims) == len(axes_lens)
|
|
115
|
+
self.freqs_cis = None
|
|
116
|
+
self.device = device
|
|
117
|
+
|
|
118
|
+
def precompute_freqs_cis(self, dim: List[int], end: List[int], theta: float = 256.0):
|
|
119
|
+
freqs_cis = []
|
|
120
|
+
for i, (d, e) in enumerate(zip(dim, end)):
|
|
121
|
+
freqs = 1.0 / (theta ** (torch.arange(0, d, 2, dtype=torch.float64, device="cpu") / d))
|
|
122
|
+
timestep = torch.arange(e, device=freqs.device, dtype=torch.float64)
|
|
123
|
+
freqs = torch.outer(timestep, freqs).float()
|
|
124
|
+
freqs_cis_i = torch.polar(torch.ones_like(freqs), freqs).to(torch.complex64)
|
|
125
|
+
freqs_cis.append(freqs_cis_i)
|
|
126
|
+
return freqs_cis
|
|
127
|
+
|
|
128
|
+
def __call__(self, ids: torch.Tensor):
|
|
129
|
+
assert ids.ndim == 2
|
|
130
|
+
assert ids.shape[-1] == len(self.axes_dims)
|
|
131
|
+
|
|
132
|
+
if self.freqs_cis is None:
|
|
133
|
+
self.freqs_cis = self.precompute_freqs_cis(self.axes_dims, self.axes_lens, theta=self.theta)
|
|
134
|
+
self.freqs_cis = [freqs_cis.to(ids.device) for freqs_cis in self.freqs_cis]
|
|
135
|
+
elif self.freqs_cis[0].device != ids.device:
|
|
136
|
+
self.freqs_cis = [freqs_cis.to(ids.device) for freqs_cis in self.freqs_cis]
|
|
137
|
+
|
|
138
|
+
result = []
|
|
139
|
+
for i in range(len(self.axes_dims)):
|
|
140
|
+
index = ids[:, i]
|
|
141
|
+
result.append(self.freqs_cis[i][index])
|
|
142
|
+
return torch.cat(result, dim=-1)
|
|
143
|
+
|
|
144
|
+
|
|
145
|
+
def apply_rotary_emb_zimage(x_in: torch.Tensor, freqs_cis: torch.Tensor) -> torch.Tensor:
|
|
146
|
+
with torch.amp.autocast("cuda", enabled=False):
|
|
147
|
+
x = torch.view_as_complex(x_in.float().reshape(*x_in.shape[:-1], -1, 2))
|
|
148
|
+
freqs_cis = freqs_cis.unsqueeze(2)
|
|
149
|
+
x_out = torch.view_as_real(x * freqs_cis).flatten(3)
|
|
150
|
+
return x_out.type_as(x_in)
|
|
151
|
+
|
|
152
|
+
|
|
153
|
+
class ZImageAttention(nn.Module):
|
|
154
|
+
def __init__(
|
|
155
|
+
self,
|
|
156
|
+
dim: int,
|
|
157
|
+
num_heads: int,
|
|
158
|
+
head_dim: int,
|
|
159
|
+
qk_norm: bool = True,
|
|
160
|
+
eps: float = 1e-5,
|
|
161
|
+
device: str = "cuda:0",
|
|
162
|
+
dtype: torch.dtype = torch.bfloat16,
|
|
163
|
+
):
|
|
164
|
+
super().__init__()
|
|
165
|
+
self.heads = num_heads
|
|
166
|
+
self.head_dim = head_dim
|
|
167
|
+
|
|
168
|
+
self.to_q = nn.Linear(dim, dim, bias=False, device=device, dtype=dtype)
|
|
169
|
+
self.to_k = nn.Linear(dim, dim, bias=False, device=device, dtype=dtype)
|
|
170
|
+
self.to_v = nn.Linear(dim, dim, bias=False, device=device, dtype=dtype)
|
|
171
|
+
|
|
172
|
+
self.norm_q = RMSNorm(head_dim, eps=eps, device=device, dtype=dtype) if qk_norm else None
|
|
173
|
+
self.norm_k = RMSNorm(head_dim, eps=eps, device=device, dtype=dtype) if qk_norm else None
|
|
174
|
+
|
|
175
|
+
self.to_out = nn.Linear(dim, dim, bias=False, device=device, dtype=dtype)
|
|
176
|
+
|
|
177
|
+
def forward(
|
|
178
|
+
self,
|
|
179
|
+
x: torch.Tensor,
|
|
180
|
+
freqs_cis: Optional[torch.Tensor] = None,
|
|
181
|
+
attn_mask: Optional[torch.Tensor] = None,
|
|
182
|
+
**kwargs,
|
|
183
|
+
) -> torch.Tensor:
|
|
184
|
+
q = self.to_q(x)
|
|
185
|
+
k = self.to_k(x)
|
|
186
|
+
v = self.to_v(x)
|
|
187
|
+
|
|
188
|
+
q = q.view(*q.shape[:2], self.heads, self.head_dim)
|
|
189
|
+
k = k.view(*k.shape[:2], self.heads, self.head_dim)
|
|
190
|
+
v = v.view(*v.shape[:2], self.heads, self.head_dim)
|
|
191
|
+
|
|
192
|
+
if self.norm_q is not None:
|
|
193
|
+
q = self.norm_q(q)
|
|
194
|
+
if self.norm_k is not None:
|
|
195
|
+
k = self.norm_k(k)
|
|
196
|
+
|
|
197
|
+
if freqs_cis is not None:
|
|
198
|
+
q = apply_rotary_emb_zimage(q, freqs_cis)
|
|
199
|
+
k = apply_rotary_emb_zimage(k, freqs_cis)
|
|
200
|
+
|
|
201
|
+
out = attention_ops.attention(q, k, v, attn_mask=attn_mask, **kwargs)
|
|
202
|
+
|
|
203
|
+
out = out.flatten(2)
|
|
204
|
+
out = self.to_out(out)
|
|
205
|
+
return out
|
|
206
|
+
|
|
207
|
+
|
|
208
|
+
class ZImageTransformerBlock(nn.Module):
|
|
209
|
+
def __init__(
|
|
210
|
+
self,
|
|
211
|
+
dim: int,
|
|
212
|
+
n_heads: int,
|
|
213
|
+
n_kv_heads: int,
|
|
214
|
+
norm_eps: float,
|
|
215
|
+
qk_norm: bool,
|
|
216
|
+
modulation: bool = True,
|
|
217
|
+
adaln_embed_dim: int = 256,
|
|
218
|
+
device: str = "cuda:0",
|
|
219
|
+
dtype: torch.dtype = torch.bfloat16,
|
|
220
|
+
):
|
|
221
|
+
super().__init__()
|
|
222
|
+
self.dim = dim
|
|
223
|
+
self.modulation = modulation
|
|
224
|
+
|
|
225
|
+
self.attention = ZImageAttention(
|
|
226
|
+
dim=dim,
|
|
227
|
+
num_heads=n_heads,
|
|
228
|
+
head_dim=dim // n_heads,
|
|
229
|
+
qk_norm=qk_norm,
|
|
230
|
+
eps=1e-5,
|
|
231
|
+
device=device,
|
|
232
|
+
dtype=dtype,
|
|
233
|
+
)
|
|
234
|
+
|
|
235
|
+
self.feed_forward = ZImageFeedForward(dim=dim, hidden_dim=int(dim / 3 * 8), device=device, dtype=dtype)
|
|
236
|
+
|
|
237
|
+
self.attention_norm1 = RMSNorm(dim, eps=norm_eps, device=device, dtype=dtype)
|
|
238
|
+
self.ffn_norm1 = RMSNorm(dim, eps=norm_eps, device=device, dtype=dtype)
|
|
239
|
+
self.attention_norm2 = RMSNorm(dim, eps=norm_eps, device=device, dtype=dtype)
|
|
240
|
+
self.ffn_norm2 = RMSNorm(dim, eps=norm_eps, device=device, dtype=dtype)
|
|
241
|
+
|
|
242
|
+
if modulation:
|
|
243
|
+
self.adaLN_modulation = nn.Linear(min(dim, adaln_embed_dim), 4 * dim, bias=True, device=device, dtype=dtype)
|
|
244
|
+
|
|
245
|
+
def forward(
|
|
246
|
+
self,
|
|
247
|
+
x: torch.Tensor,
|
|
248
|
+
attn_mask: torch.Tensor,
|
|
249
|
+
freqs_cis: torch.Tensor,
|
|
250
|
+
adaln_input: Optional[torch.Tensor] = None,
|
|
251
|
+
):
|
|
252
|
+
if self.modulation:
|
|
253
|
+
assert adaln_input is not None
|
|
254
|
+
mod_output = self.adaLN_modulation(adaln_input)
|
|
255
|
+
mod_output = mod_output.unsqueeze(1)
|
|
256
|
+
scale_msa, gate_msa, scale_mlp, gate_mlp = mod_output.chunk(4, dim=2)
|
|
257
|
+
|
|
258
|
+
gate_msa = gate_msa.tanh()
|
|
259
|
+
gate_mlp = gate_mlp.tanh()
|
|
260
|
+
scale_msa = 1.0 + scale_msa
|
|
261
|
+
scale_mlp = 1.0 + scale_mlp
|
|
262
|
+
|
|
263
|
+
attn_out = self.attention(self.attention_norm1(x) * scale_msa, freqs_cis=freqs_cis, attn_mask=attn_mask)
|
|
264
|
+
x = x + gate_msa * self.attention_norm2(attn_out)
|
|
265
|
+
|
|
266
|
+
ffn_out = self.feed_forward(self.ffn_norm1(x) * scale_mlp)
|
|
267
|
+
x = x + gate_mlp * self.ffn_norm2(ffn_out)
|
|
268
|
+
else:
|
|
269
|
+
attn_out = self.attention(self.attention_norm1(x), freqs_cis=freqs_cis, attn_mask=attn_mask)
|
|
270
|
+
x = x + self.attention_norm2(attn_out)
|
|
271
|
+
|
|
272
|
+
ffn_out = self.feed_forward(self.ffn_norm1(x))
|
|
273
|
+
x = x + self.ffn_norm2(ffn_out)
|
|
274
|
+
|
|
275
|
+
return x
|
|
276
|
+
|
|
277
|
+
|
|
278
|
+
class ZImageDiT(PreTrainedModel):
|
|
279
|
+
converter = ZImageStateDictConverter()
|
|
280
|
+
_supports_parallelization = True
|
|
281
|
+
|
|
282
|
+
def __init__(
|
|
283
|
+
self,
|
|
284
|
+
all_patch_size=(2,),
|
|
285
|
+
all_f_patch_size=(1,),
|
|
286
|
+
in_channels=16,
|
|
287
|
+
dim=3840,
|
|
288
|
+
n_layers=30,
|
|
289
|
+
n_refiner_layers=2,
|
|
290
|
+
n_heads=30,
|
|
291
|
+
n_kv_heads=30,
|
|
292
|
+
norm_eps=1e-5,
|
|
293
|
+
qk_norm=True,
|
|
294
|
+
cap_feat_dim=2560,
|
|
295
|
+
rope_theta=256.0,
|
|
296
|
+
t_scale=1000.0,
|
|
297
|
+
axes_dims=[32, 48, 48],
|
|
298
|
+
axes_lens=[1024, 512, 512],
|
|
299
|
+
device: str = "cuda:0",
|
|
300
|
+
dtype: torch.dtype = torch.bfloat16,
|
|
301
|
+
):
|
|
302
|
+
super().__init__()
|
|
303
|
+
self.in_channels = in_channels
|
|
304
|
+
self.out_channels = in_channels
|
|
305
|
+
self.all_patch_size = all_patch_size
|
|
306
|
+
self.all_f_patch_size = all_f_patch_size
|
|
307
|
+
self.dim = dim
|
|
308
|
+
self.n_heads = n_heads
|
|
309
|
+
self.rope_theta = rope_theta
|
|
310
|
+
self.t_scale = t_scale
|
|
311
|
+
self.dtype = dtype
|
|
312
|
+
self.device = device
|
|
313
|
+
self.ADALN_EMBED_DIM = 256
|
|
314
|
+
self.SEQ_MULTI_OF = 32
|
|
315
|
+
|
|
316
|
+
all_x_embedder = {}
|
|
317
|
+
all_final_layer = {}
|
|
318
|
+
for patch_size, f_patch_size in zip(all_patch_size, all_f_patch_size):
|
|
319
|
+
key = f"{patch_size}-{f_patch_size}"
|
|
320
|
+
all_x_embedder[key] = nn.Linear(
|
|
321
|
+
f_patch_size * patch_size * patch_size * in_channels, dim, bias=True, device=device, dtype=dtype
|
|
322
|
+
)
|
|
323
|
+
all_final_layer[key] = ZImageFinalLayer(
|
|
324
|
+
dim, patch_size * patch_size * f_patch_size * in_channels, device=device, dtype=dtype
|
|
325
|
+
)
|
|
326
|
+
|
|
327
|
+
self.all_x_embedder = nn.ModuleDict(all_x_embedder)
|
|
328
|
+
self.all_final_layer = nn.ModuleDict(all_final_layer)
|
|
329
|
+
|
|
330
|
+
self.noise_refiner = nn.ModuleList(
|
|
331
|
+
[
|
|
332
|
+
ZImageTransformerBlock(
|
|
333
|
+
dim, n_heads, n_kv_heads, norm_eps, qk_norm, modulation=True, device=device, dtype=dtype
|
|
334
|
+
)
|
|
335
|
+
for _ in range(n_refiner_layers)
|
|
336
|
+
]
|
|
337
|
+
)
|
|
338
|
+
self.context_refiner = nn.ModuleList(
|
|
339
|
+
[
|
|
340
|
+
ZImageTransformerBlock(
|
|
341
|
+
dim, n_heads, n_kv_heads, norm_eps, qk_norm, modulation=False, device=device, dtype=dtype
|
|
342
|
+
)
|
|
343
|
+
for _ in range(n_refiner_layers)
|
|
344
|
+
]
|
|
345
|
+
)
|
|
346
|
+
|
|
347
|
+
self.t_embedder = ZImageTimestepEmbedder(
|
|
348
|
+
min(dim, self.ADALN_EMBED_DIM), mid_size=1024, device=device, dtype=dtype
|
|
349
|
+
)
|
|
350
|
+
|
|
351
|
+
self.cap_embedder = nn.Sequential(
|
|
352
|
+
RMSNorm(cap_feat_dim, eps=norm_eps, device=device, dtype=dtype),
|
|
353
|
+
nn.Linear(cap_feat_dim, dim, bias=True, device=device, dtype=dtype),
|
|
354
|
+
)
|
|
355
|
+
|
|
356
|
+
self.x_pad_token = nn.Parameter(torch.empty((1, dim), device=device, dtype=dtype))
|
|
357
|
+
self.cap_pad_token = nn.Parameter(torch.empty((1, dim), device=device, dtype=dtype))
|
|
358
|
+
|
|
359
|
+
self.layers = nn.ModuleList(
|
|
360
|
+
[
|
|
361
|
+
ZImageTransformerBlock(dim, n_heads, n_kv_heads, norm_eps, qk_norm, device=device, dtype=dtype)
|
|
362
|
+
for _ in range(n_layers)
|
|
363
|
+
]
|
|
364
|
+
)
|
|
365
|
+
|
|
366
|
+
self.rope_embedder = ZImageRopeEmbedder(
|
|
367
|
+
theta=rope_theta, axes_dims=axes_dims, axes_lens=axes_lens, device=device
|
|
368
|
+
)
|
|
369
|
+
|
|
370
|
+
@staticmethod
|
|
371
|
+
def create_coordinate_grid(size, start=None, device=None):
|
|
372
|
+
if start is None:
|
|
373
|
+
start = (0 for _ in size)
|
|
374
|
+
axes = [torch.arange(x0, x0 + span, dtype=torch.int32, device=device) for x0, span in zip(start, size)]
|
|
375
|
+
grids = torch.meshgrid(axes, indexing="ij")
|
|
376
|
+
return torch.stack(grids, dim=-1)
|
|
377
|
+
|
|
378
|
+
def patchify_and_embed(self, all_image, all_cap_feats, patch_size, f_patch_size):
|
|
379
|
+
pH = pW = patch_size
|
|
380
|
+
pF = f_patch_size
|
|
381
|
+
device = all_image[0].device
|
|
382
|
+
|
|
383
|
+
all_image_out, all_image_size, all_image_pos_ids, all_image_pad_mask = [], [], [], []
|
|
384
|
+
all_cap_feats_out, all_cap_pos_ids, all_cap_pad_mask = [], [], []
|
|
385
|
+
|
|
386
|
+
for i, (image, cap_feat) in enumerate(zip(all_image, all_cap_feats)):
|
|
387
|
+
cap_ori_len = len(cap_feat)
|
|
388
|
+
cap_padding_len = (-cap_ori_len) % self.SEQ_MULTI_OF
|
|
389
|
+
cap_padded_pos_ids = self.create_coordinate_grid(
|
|
390
|
+
size=(cap_ori_len + cap_padding_len, 1, 1), start=(1, 0, 0), device=device
|
|
391
|
+
).flatten(0, 2)
|
|
392
|
+
all_cap_pos_ids.append(cap_padded_pos_ids)
|
|
393
|
+
|
|
394
|
+
cap_pad_mask = torch.cat(
|
|
395
|
+
[
|
|
396
|
+
torch.zeros((cap_ori_len,), dtype=torch.bool, device=device),
|
|
397
|
+
torch.ones((cap_padding_len,), dtype=torch.bool, device=device),
|
|
398
|
+
],
|
|
399
|
+
dim=0,
|
|
400
|
+
)
|
|
401
|
+
all_cap_pad_mask.append(cap_pad_mask)
|
|
402
|
+
|
|
403
|
+
cap_padded_feat = torch.cat([cap_feat, cap_feat[-1:].repeat(cap_padding_len, 1)], dim=0)
|
|
404
|
+
all_cap_feats_out.append(cap_padded_feat)
|
|
405
|
+
|
|
406
|
+
C, F, H, W = image.size()
|
|
407
|
+
all_image_size.append((F, H, W))
|
|
408
|
+
F_tokens, H_tokens, W_tokens = F // pF, H // pH, W // pW
|
|
409
|
+
|
|
410
|
+
image = image.view(C, F_tokens, pF, H_tokens, pH, W_tokens, pW)
|
|
411
|
+
image = image.permute(1, 3, 5, 2, 4, 6, 0).reshape(F_tokens * H_tokens * W_tokens, pF * pH * pW * C)
|
|
412
|
+
|
|
413
|
+
image_ori_len = len(image)
|
|
414
|
+
image_padding_len = (-image_ori_len) % self.SEQ_MULTI_OF
|
|
415
|
+
|
|
416
|
+
image_ori_pos_ids = self.create_coordinate_grid(
|
|
417
|
+
size=(F_tokens, H_tokens, W_tokens), start=(cap_ori_len + cap_padding_len + 1, 0, 0), device=device
|
|
418
|
+
).flatten(0, 2)
|
|
419
|
+
|
|
420
|
+
if image_padding_len > 0:
|
|
421
|
+
pad_grid = self.create_coordinate_grid(size=(1, 1, 1), start=(0, 0, 0), device=device).flatten(0, 2)
|
|
422
|
+
image_padded_pos_ids = torch.cat([image_ori_pos_ids, pad_grid.repeat(image_padding_len, 1)], dim=0)
|
|
423
|
+
image_padded_feat = torch.cat([image, image[-1:].repeat(image_padding_len, 1)], dim=0)
|
|
424
|
+
image_pad_mask = torch.cat(
|
|
425
|
+
[
|
|
426
|
+
torch.zeros((image_ori_len,), dtype=torch.bool, device=device),
|
|
427
|
+
torch.ones((image_padding_len,), dtype=torch.bool, device=device),
|
|
428
|
+
],
|
|
429
|
+
dim=0,
|
|
430
|
+
)
|
|
431
|
+
else:
|
|
432
|
+
image_padded_pos_ids = image_ori_pos_ids
|
|
433
|
+
image_padded_feat = image
|
|
434
|
+
image_pad_mask = torch.zeros((image_ori_len,), dtype=torch.bool, device=device)
|
|
435
|
+
|
|
436
|
+
all_image_pos_ids.append(image_padded_pos_ids)
|
|
437
|
+
all_image_pad_mask.append(image_pad_mask)
|
|
438
|
+
all_image_out.append(image_padded_feat)
|
|
439
|
+
|
|
440
|
+
return (
|
|
441
|
+
all_image_out,
|
|
442
|
+
all_cap_feats_out,
|
|
443
|
+
all_image_size,
|
|
444
|
+
all_image_pos_ids,
|
|
445
|
+
all_cap_pos_ids,
|
|
446
|
+
all_image_pad_mask,
|
|
447
|
+
all_cap_pad_mask,
|
|
448
|
+
)
|
|
449
|
+
|
|
450
|
+
def unpatchify(self, x: List[torch.Tensor], size: List[Tuple], patch_size, f_patch_size) -> List[torch.Tensor]:
|
|
451
|
+
pH, pW, pF = patch_size, patch_size, f_patch_size
|
|
452
|
+
bsz = len(x)
|
|
453
|
+
for i in range(bsz):
|
|
454
|
+
F, H, W = size[i]
|
|
455
|
+
ori_len = (F // pF) * (H // pH) * (W // pW)
|
|
456
|
+
x[i] = (
|
|
457
|
+
x[i][:ori_len]
|
|
458
|
+
.view(F // pF, H // pH, W // pW, pF, pH, pW, self.out_channels)
|
|
459
|
+
.permute(6, 0, 3, 1, 4, 2, 5)
|
|
460
|
+
.reshape(self.out_channels, F, H, W)
|
|
461
|
+
)
|
|
462
|
+
return x
|
|
463
|
+
|
|
464
|
+
def forward(
|
|
465
|
+
self,
|
|
466
|
+
image: Union[torch.Tensor, List[torch.Tensor]],
|
|
467
|
+
timestep: torch.Tensor,
|
|
468
|
+
cap_feats: Union[torch.Tensor, List[torch.Tensor]],
|
|
469
|
+
patch_size: int = 2,
|
|
470
|
+
f_patch_size: int = 1,
|
|
471
|
+
):
|
|
472
|
+
if isinstance(image, torch.Tensor):
|
|
473
|
+
image = list(image.unbind(0))
|
|
474
|
+
if isinstance(cap_feats, torch.Tensor):
|
|
475
|
+
cap_feats = list(cap_feats.unbind(0))
|
|
476
|
+
|
|
477
|
+
use_cfg = len(image) > 1
|
|
478
|
+
fp8_linear_enabled = getattr(self, "fp8_linear_enabled", False)
|
|
479
|
+
with (
|
|
480
|
+
fp8_inference(fp8_linear_enabled),
|
|
481
|
+
gguf_inference(),
|
|
482
|
+
cfg_parallel((image, timestep, cap_feats), use_cfg=use_cfg),
|
|
483
|
+
):
|
|
484
|
+
bsz = len(image)
|
|
485
|
+
device = image[0].device
|
|
486
|
+
|
|
487
|
+
t = timestep * self.t_scale
|
|
488
|
+
t = self.t_embedder(t)
|
|
489
|
+
|
|
490
|
+
(x, cap_feats_processed, x_size, x_pos_ids, cap_pos_ids, x_inner_pad_mask, cap_inner_pad_mask) = (
|
|
491
|
+
self.patchify_and_embed(image, cap_feats, patch_size, f_patch_size)
|
|
492
|
+
)
|
|
493
|
+
|
|
494
|
+
x_item_seqlens = [len(_) for _ in x]
|
|
495
|
+
x_max_item_seqlen = max(x_item_seqlens)
|
|
496
|
+
x = torch.cat(x, dim=0)
|
|
497
|
+
x = self.all_x_embedder[f"{patch_size}-{f_patch_size}"](x)
|
|
498
|
+
|
|
499
|
+
adaln_input = t.type_as(x)
|
|
500
|
+
|
|
501
|
+
x[torch.cat(x_inner_pad_mask)] = self.x_pad_token
|
|
502
|
+
|
|
503
|
+
x = list(x.split(x_item_seqlens, dim=0))
|
|
504
|
+
x_freqs_cis = list(
|
|
505
|
+
self.rope_embedder(torch.cat(x_pos_ids, dim=0)).split([len(_) for _ in x_pos_ids], dim=0)
|
|
506
|
+
)
|
|
507
|
+
|
|
508
|
+
x = pad_sequence(x, batch_first=True, padding_value=0.0)
|
|
509
|
+
x_freqs_cis = pad_sequence(x_freqs_cis, batch_first=True, padding_value=0.0)
|
|
510
|
+
x_freqs_cis = x_freqs_cis[:, : x.shape[1]]
|
|
511
|
+
|
|
512
|
+
x_attn_mask = torch.zeros((bsz, x_max_item_seqlen), dtype=torch.bool, device=device)
|
|
513
|
+
for i, seq_len in enumerate(x_item_seqlens):
|
|
514
|
+
x_attn_mask[i, :seq_len] = 1
|
|
515
|
+
|
|
516
|
+
x_attn_mask_4d = x_attn_mask.unsqueeze(1).unsqueeze(1)
|
|
517
|
+
|
|
518
|
+
for layer in self.noise_refiner:
|
|
519
|
+
x = layer(x, x_attn_mask_4d, x_freqs_cis, adaln_input)
|
|
520
|
+
|
|
521
|
+
cap_item_seqlens = [len(_) for _ in cap_feats_processed]
|
|
522
|
+
cap_max_item_seqlen = max(cap_item_seqlens)
|
|
523
|
+
cap_feats_tensor = torch.cat(cap_feats_processed, dim=0)
|
|
524
|
+
cap_feats_tensor = self.cap_embedder(cap_feats_tensor)
|
|
525
|
+
mask_tmp = torch.cat(cap_inner_pad_mask)
|
|
526
|
+
target_len = mask_tmp.sum()
|
|
527
|
+
if target_len > 0:
|
|
528
|
+
cap_feats_tensor[mask_tmp] = self.cap_pad_token.to(dtype=cap_feats_tensor.dtype).expand(target_len, -1)
|
|
529
|
+
|
|
530
|
+
cap_feats_list = list(cap_feats_tensor.split(cap_item_seqlens, dim=0))
|
|
531
|
+
cap_freqs_cis = list(
|
|
532
|
+
self.rope_embedder(torch.cat(cap_pos_ids, dim=0)).split([len(_) for _ in cap_pos_ids], dim=0)
|
|
533
|
+
)
|
|
534
|
+
|
|
535
|
+
cap_feats_padded = pad_sequence(cap_feats_list, batch_first=True, padding_value=0.0)
|
|
536
|
+
cap_freqs_cis = pad_sequence(cap_freqs_cis, batch_first=True, padding_value=0.0)
|
|
537
|
+
cap_freqs_cis = cap_freqs_cis[:, : cap_feats_padded.shape[1]]
|
|
538
|
+
|
|
539
|
+
cap_attn_mask = torch.zeros((bsz, cap_max_item_seqlen), dtype=torch.bool, device=device)
|
|
540
|
+
for i, seq_len in enumerate(cap_item_seqlens):
|
|
541
|
+
cap_attn_mask[i, :seq_len] = 1
|
|
542
|
+
cap_attn_mask_4d = cap_attn_mask.unsqueeze(1).unsqueeze(1)
|
|
543
|
+
|
|
544
|
+
for layer in self.context_refiner:
|
|
545
|
+
cap_feats_padded = layer(cap_feats_padded, cap_attn_mask_4d, cap_freqs_cis, adaln_input=None)
|
|
546
|
+
|
|
547
|
+
unified = []
|
|
548
|
+
unified_freqs_cis = []
|
|
549
|
+
for i in range(bsz):
|
|
550
|
+
x_len = x_item_seqlens[i]
|
|
551
|
+
cap_len = cap_item_seqlens[i]
|
|
552
|
+
unified.append(torch.cat([x[i][:x_len], cap_feats_padded[i][:cap_len]]))
|
|
553
|
+
unified_freqs_cis.append(torch.cat([x_freqs_cis[i][:x_len], cap_freqs_cis[i][:cap_len]]))
|
|
554
|
+
|
|
555
|
+
unified_item_seqlens = [len(_) for _ in unified]
|
|
556
|
+
unified_max_item_seqlen = max(unified_item_seqlens)
|
|
557
|
+
|
|
558
|
+
unified = pad_sequence(unified, batch_first=True, padding_value=0.0)
|
|
559
|
+
unified_freqs_cis = pad_sequence(unified_freqs_cis, batch_first=True, padding_value=0.0)
|
|
560
|
+
|
|
561
|
+
unified_attn_mask = torch.zeros((bsz, unified_max_item_seqlen), dtype=torch.bool, device=device)
|
|
562
|
+
for i, seq_len in enumerate(unified_item_seqlens):
|
|
563
|
+
unified_attn_mask[i, :seq_len] = 1
|
|
564
|
+
unified_attn_mask_4d = unified_attn_mask.unsqueeze(1).unsqueeze(1)
|
|
565
|
+
|
|
566
|
+
with sequence_parallel((unified, unified_freqs_cis), seq_dims=(1, 1)):
|
|
567
|
+
for layer in self.layers:
|
|
568
|
+
unified = layer(unified, unified_attn_mask_4d, unified_freqs_cis, adaln_input)
|
|
569
|
+
(unified,) = sequence_parallel_unshard((unified,), seq_dims=(1,), seq_lens=(unified.shape[1],))
|
|
570
|
+
unified = self.all_final_layer[f"{patch_size}-{f_patch_size}"](unified, adaln_input)
|
|
571
|
+
unified_list = list(unified.unbind(dim=0))
|
|
572
|
+
|
|
573
|
+
output = self.unpatchify(unified_list, x_size, patch_size, f_patch_size)
|
|
574
|
+
|
|
575
|
+
(output,) = cfg_parallel_unshard((output,), use_cfg=use_cfg)
|
|
576
|
+
|
|
577
|
+
return output
|
|
578
|
+
|
|
579
|
+
@classmethod
|
|
580
|
+
def from_state_dict(
|
|
581
|
+
cls,
|
|
582
|
+
state_dict: Dict[str, torch.Tensor],
|
|
583
|
+
device: str,
|
|
584
|
+
dtype: torch.dtype,
|
|
585
|
+
**kwargs,
|
|
586
|
+
):
|
|
587
|
+
model = cls(device="meta", dtype=dtype, **kwargs)
|
|
588
|
+
model = model.requires_grad_(False)
|
|
589
|
+
model.load_state_dict(state_dict, assign=True)
|
|
590
|
+
model.to(device=device, dtype=dtype, non_blocking=True)
|
|
591
|
+
return model
|
|
592
|
+
|
|
593
|
+
def compile_repeated_blocks(self, *args, **kwargs):
|
|
594
|
+
for block in self.noise_refiner:
|
|
595
|
+
block.compile(*args, **kwargs)
|
|
596
|
+
for block in self.context_refiner:
|
|
597
|
+
block.compile(*args, **kwargs)
|
|
598
|
+
for block in self.layers:
|
|
599
|
+
block.compile(*args, **kwargs)
|
|
600
|
+
|
|
601
|
+
def get_fsdp_module_cls(self):
|
|
602
|
+
return {ZImageTransformerBlock}
|
|
@@ -6,6 +6,7 @@ from .wan_video import WanVideoPipeline
|
|
|
6
6
|
from .wan_s2v import WanSpeech2VideoPipeline
|
|
7
7
|
from .qwen_image import QwenImagePipeline
|
|
8
8
|
from .hunyuan3d_shape import Hunyuan3DShapePipeline
|
|
9
|
+
from .z_image import ZImagePipeline
|
|
9
10
|
|
|
10
11
|
__all__ = [
|
|
11
12
|
"BasePipeline",
|
|
@@ -17,4 +18,5 @@ __all__ = [
|
|
|
17
18
|
"WanSpeech2VideoPipeline",
|
|
18
19
|
"QwenImagePipeline",
|
|
19
20
|
"Hunyuan3DShapePipeline",
|
|
21
|
+
"ZImagePipeline",
|
|
20
22
|
]
|