diffsynth-engine 0.6.1.dev31__py3-none-any.whl → 0.6.1.dev33__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- diffsynth_engine/configs/pipeline.py +10 -5
- diffsynth_engine/models/basic/attention.py +3 -2
- diffsynth_engine/models/qwen_image/qwen_image_dit.py +46 -7
- diffsynth_engine/models/qwen_image/qwen_image_dit_nunchaku.py +1 -1
- diffsynth_engine/pipelines/qwen_image.py +4 -4
- {diffsynth_engine-0.6.1.dev31.dist-info → diffsynth_engine-0.6.1.dev33.dist-info}/METADATA +1 -1
- {diffsynth_engine-0.6.1.dev31.dist-info → diffsynth_engine-0.6.1.dev33.dist-info}/RECORD +10 -10
- {diffsynth_engine-0.6.1.dev31.dist-info → diffsynth_engine-0.6.1.dev33.dist-info}/WHEEL +0 -0
- {diffsynth_engine-0.6.1.dev31.dist-info → diffsynth_engine-0.6.1.dev33.dist-info}/licenses/LICENSE +0 -0
- {diffsynth_engine-0.6.1.dev31.dist-info → diffsynth_engine-0.6.1.dev33.dist-info}/top_level.txt +0 -0
|
@@ -251,11 +251,14 @@ class QwenImagePipelineConfig(AttentionConfig, OptimizationConfig, ParallelConfi
|
|
|
251
251
|
# override OptimizationConfig
|
|
252
252
|
fbcache_relative_l1_threshold = 0.009
|
|
253
253
|
|
|
254
|
-
# svd
|
|
255
|
-
use_nunchaku: Optional[bool] = field(default=None, init=False)
|
|
256
|
-
use_nunchaku_awq: Optional[bool] = field(default=None, init=False)
|
|
257
|
-
use_nunchaku_attn: Optional[bool] = field(default=None, init=False)
|
|
258
|
-
|
|
254
|
+
# svd
|
|
255
|
+
use_nunchaku: Optional[bool] = field(default=None, init=False)
|
|
256
|
+
use_nunchaku_awq: Optional[bool] = field(default=None, init=False)
|
|
257
|
+
use_nunchaku_attn: Optional[bool] = field(default=None, init=False)
|
|
258
|
+
|
|
259
|
+
# for 2511
|
|
260
|
+
use_zero_cond_t: bool = False
|
|
261
|
+
|
|
259
262
|
@classmethod
|
|
260
263
|
def basic_config(
|
|
261
264
|
cls,
|
|
@@ -266,6 +269,7 @@ class QwenImagePipelineConfig(AttentionConfig, OptimizationConfig, ParallelConfi
|
|
|
266
269
|
parallelism: int = 1,
|
|
267
270
|
offload_mode: Optional[str] = None,
|
|
268
271
|
offload_to_disk: bool = False,
|
|
272
|
+
use_zero_cond_t: bool = False,
|
|
269
273
|
) -> "QwenImagePipelineConfig":
|
|
270
274
|
return cls(
|
|
271
275
|
model_path=model_path,
|
|
@@ -277,6 +281,7 @@ class QwenImagePipelineConfig(AttentionConfig, OptimizationConfig, ParallelConfi
|
|
|
277
281
|
use_fsdp=True if parallelism > 1 else False,
|
|
278
282
|
offload_mode=offload_mode,
|
|
279
283
|
offload_to_disk=offload_to_disk,
|
|
284
|
+
use_zero_cond_t=use_zero_cond_t,
|
|
280
285
|
)
|
|
281
286
|
|
|
282
287
|
def __post_init__(self):
|
|
@@ -94,6 +94,7 @@ if SPARGE_ATTN_AVAILABLE:
|
|
|
94
94
|
)
|
|
95
95
|
return out.transpose(1, 2)
|
|
96
96
|
|
|
97
|
+
|
|
97
98
|
if AITER_AVAILABLE:
|
|
98
99
|
from aiter import flash_attn_func as aiter_flash_attn
|
|
99
100
|
from aiter import flash_attn_fp8_pertensor_func as aiter_flash_attn_fp8
|
|
@@ -203,7 +204,7 @@ def attention(
|
|
|
203
204
|
)
|
|
204
205
|
if attn_mask is not None:
|
|
205
206
|
raise RuntimeError("aiter_flash_attn does not support attention mask")
|
|
206
|
-
if attn_impl == "aiter"
|
|
207
|
+
if attn_impl == "aiter":
|
|
207
208
|
return aiter_flash_attn(q, k, v, softmax_scale=scale)
|
|
208
209
|
else:
|
|
209
210
|
origin_dtype = q.dtype
|
|
@@ -211,7 +212,7 @@ def attention(
|
|
|
211
212
|
k = k.to(dtype=DTYPE_FP8)
|
|
212
213
|
v = v.to(dtype=DTYPE_FP8)
|
|
213
214
|
out = aiter_flash_attn_fp8(q, k, v, softmax_scale=scale)
|
|
214
|
-
return out.to(dtype=origin_dtype)
|
|
215
|
+
return out.to(dtype=origin_dtype)
|
|
215
216
|
if attn_impl == "fa2":
|
|
216
217
|
return flash_attn2(q, k, v, softmax_scale=scale)
|
|
217
218
|
if attn_impl == "xformers":
|
|
@@ -2,6 +2,7 @@ import torch
|
|
|
2
2
|
import torch.nn as nn
|
|
3
3
|
from typing import Any, Dict, List, Tuple, Union, Optional
|
|
4
4
|
from einops import rearrange
|
|
5
|
+
from math import prod
|
|
5
6
|
|
|
6
7
|
from diffsynth_engine.models.base import StateDictConverter, PreTrainedModel
|
|
7
8
|
from diffsynth_engine.models.basic import attention as attention_ops
|
|
@@ -243,6 +244,7 @@ class QwenImageTransformerBlock(nn.Module):
|
|
|
243
244
|
num_attention_heads: int,
|
|
244
245
|
attention_head_dim: int,
|
|
245
246
|
eps: float = 1e-6,
|
|
247
|
+
zero_cond_t: bool = False,
|
|
246
248
|
device: str = "cuda:0",
|
|
247
249
|
dtype: torch.dtype = torch.bfloat16,
|
|
248
250
|
):
|
|
@@ -275,10 +277,30 @@ class QwenImageTransformerBlock(nn.Module):
|
|
|
275
277
|
self.txt_norm1 = nn.LayerNorm(dim, elementwise_affine=False, eps=eps, device=device, dtype=dtype)
|
|
276
278
|
self.txt_norm2 = nn.LayerNorm(dim, elementwise_affine=False, eps=eps, device=device, dtype=dtype)
|
|
277
279
|
self.txt_mlp = QwenFeedForward(dim=dim, dim_out=dim, device=device, dtype=dtype)
|
|
280
|
+
self.zero_cond_t = zero_cond_t
|
|
278
281
|
|
|
279
|
-
def _modulate(self, x, mod_params):
|
|
282
|
+
def _modulate(self, x, mod_params, index=None):
|
|
280
283
|
shift, scale, gate = mod_params.chunk(3, dim=-1)
|
|
281
|
-
|
|
284
|
+
if index is not None:
|
|
285
|
+
actual_batch = shift.size(0) // 2
|
|
286
|
+
shift_0, shift_1 = shift[:actual_batch], shift[actual_batch:]
|
|
287
|
+
scale_0, scale_1 = scale[:actual_batch], scale[actual_batch:]
|
|
288
|
+
gate_0, gate_1 = gate[:actual_batch], gate[actual_batch:]
|
|
289
|
+
index_expanded = index.unsqueeze(-1)
|
|
290
|
+
shift_0_exp = shift_0.unsqueeze(1)
|
|
291
|
+
shift_1_exp = shift_1.unsqueeze(1)
|
|
292
|
+
scale_0_exp = scale_0.unsqueeze(1)
|
|
293
|
+
scale_1_exp = scale_1.unsqueeze(1)
|
|
294
|
+
gate_0_exp = gate_0.unsqueeze(1)
|
|
295
|
+
gate_1_exp = gate_1.unsqueeze(1)
|
|
296
|
+
shift_result = torch.where(index_expanded == 0, shift_0_exp, shift_1_exp)
|
|
297
|
+
scale_result = torch.where(index_expanded == 0, scale_0_exp, scale_1_exp)
|
|
298
|
+
gate_result = torch.where(index_expanded == 0, gate_0_exp, gate_1_exp)
|
|
299
|
+
else:
|
|
300
|
+
shift_result = shift.unsqueeze(1)
|
|
301
|
+
scale_result = scale.unsqueeze(1)
|
|
302
|
+
gate_result = gate.unsqueeze(1)
|
|
303
|
+
return x * (1 + scale_result) + shift_result, gate_result
|
|
282
304
|
|
|
283
305
|
def forward(
|
|
284
306
|
self,
|
|
@@ -288,12 +310,15 @@ class QwenImageTransformerBlock(nn.Module):
|
|
|
288
310
|
rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
|
289
311
|
attn_mask: Optional[torch.Tensor] = None,
|
|
290
312
|
attn_kwargs: Optional[Dict[str, Any]] = None,
|
|
313
|
+
modulate_index: Optional[List[int]] = None,
|
|
291
314
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
292
315
|
img_mod_attn, img_mod_mlp = self.img_mod(temb).chunk(2, dim=-1) # [B, 3*dim] each
|
|
316
|
+
if self.zero_cond_t:
|
|
317
|
+
temb = torch.chunk(temb, 2, dim=0)[0]
|
|
293
318
|
txt_mod_attn, txt_mod_mlp = self.txt_mod(temb).chunk(2, dim=-1) # [B, 3*dim] each
|
|
294
319
|
|
|
295
320
|
img_normed = self.img_norm1(image)
|
|
296
|
-
img_modulated, img_gate = self._modulate(img_normed, img_mod_attn)
|
|
321
|
+
img_modulated, img_gate = self._modulate(img_normed, img_mod_attn, modulate_index)
|
|
297
322
|
|
|
298
323
|
txt_normed = self.txt_norm1(text)
|
|
299
324
|
txt_modulated, txt_gate = self._modulate(txt_normed, txt_mod_attn)
|
|
@@ -305,12 +330,11 @@ class QwenImageTransformerBlock(nn.Module):
|
|
|
305
330
|
attn_mask=attn_mask,
|
|
306
331
|
attn_kwargs=attn_kwargs,
|
|
307
332
|
)
|
|
308
|
-
|
|
309
333
|
image = image + img_gate * img_attn_out
|
|
310
334
|
text = text + txt_gate * txt_attn_out
|
|
311
335
|
|
|
312
336
|
img_normed_2 = self.img_norm2(image)
|
|
313
|
-
img_modulated_2, img_gate_2 = self._modulate(img_normed_2, img_mod_mlp)
|
|
337
|
+
img_modulated_2, img_gate_2 = self._modulate(img_normed_2, img_mod_mlp, modulate_index)
|
|
314
338
|
|
|
315
339
|
txt_normed_2 = self.txt_norm2(text)
|
|
316
340
|
txt_modulated_2, txt_gate_2 = self._modulate(txt_normed_2, txt_mod_mlp)
|
|
@@ -331,6 +355,7 @@ class QwenImageDiT(PreTrainedModel):
|
|
|
331
355
|
def __init__(
|
|
332
356
|
self,
|
|
333
357
|
num_layers: int = 60,
|
|
358
|
+
zero_cond_t: bool = False,
|
|
334
359
|
device: str = "cuda:0",
|
|
335
360
|
dtype: torch.dtype = torch.bfloat16,
|
|
336
361
|
):
|
|
@@ -351,6 +376,7 @@ class QwenImageDiT(PreTrainedModel):
|
|
|
351
376
|
dim=3072,
|
|
352
377
|
num_attention_heads=24,
|
|
353
378
|
attention_head_dim=128,
|
|
379
|
+
zero_cond_t=zero_cond_t,
|
|
354
380
|
device=device,
|
|
355
381
|
dtype=dtype,
|
|
356
382
|
)
|
|
@@ -359,6 +385,7 @@ class QwenImageDiT(PreTrainedModel):
|
|
|
359
385
|
)
|
|
360
386
|
self.norm_out = AdaLayerNorm(3072, device=device, dtype=dtype)
|
|
361
387
|
self.proj_out = nn.Linear(3072, 64, device=device, dtype=dtype)
|
|
388
|
+
self.zero_cond_t = zero_cond_t
|
|
362
389
|
|
|
363
390
|
def patchify(self, hidden_states):
|
|
364
391
|
hidden_states = rearrange(hidden_states, "B C (H P) (W Q) -> B (H W) (C P Q)", P=2, Q=2)
|
|
@@ -461,6 +488,9 @@ class QwenImageDiT(PreTrainedModel):
|
|
|
461
488
|
use_cfg=use_cfg,
|
|
462
489
|
),
|
|
463
490
|
):
|
|
491
|
+
if self.zero_cond_t:
|
|
492
|
+
timestep = torch.cat([timestep, timestep * 0], dim=0)
|
|
493
|
+
modulate_index = None
|
|
464
494
|
conditioning = self.time_text_embed(timestep, image.dtype)
|
|
465
495
|
video_fhw = [(1, h // 2, w // 2)] # frame, height, width
|
|
466
496
|
text_seq_len = text_seq_lens.max().item()
|
|
@@ -478,7 +508,12 @@ class QwenImageDiT(PreTrainedModel):
|
|
|
478
508
|
img = self.patchify(img)
|
|
479
509
|
image = torch.cat([image, img], dim=1)
|
|
480
510
|
video_fhw += [(1, edit_h // 2, edit_w // 2)]
|
|
481
|
-
|
|
511
|
+
if self.zero_cond_t:
|
|
512
|
+
modulate_index = torch.tensor(
|
|
513
|
+
[[0] * prod(sample[0]) + [1] * sum([prod(s) for s in sample[1:]]) for sample in [video_fhw]],
|
|
514
|
+
device=timestep.device,
|
|
515
|
+
dtype=torch.int,
|
|
516
|
+
)
|
|
482
517
|
rotary_emb = self.pos_embed(video_fhw, text_seq_len, image.device)
|
|
483
518
|
|
|
484
519
|
image = self.img_in(image)
|
|
@@ -510,7 +545,10 @@ class QwenImageDiT(PreTrainedModel):
|
|
|
510
545
|
rotary_emb=rotary_emb,
|
|
511
546
|
attn_mask=attn_mask,
|
|
512
547
|
attn_kwargs=attn_kwargs,
|
|
548
|
+
modulate_index=modulate_index,
|
|
513
549
|
)
|
|
550
|
+
if self.zero_cond_t:
|
|
551
|
+
conditioning = conditioning.chunk(2, dim=0)[0]
|
|
514
552
|
image = self.norm_out(image, conditioning)
|
|
515
553
|
image = self.proj_out(image)
|
|
516
554
|
(image,) = sequence_parallel_unshard((image,), seq_dims=(1,), seq_lens=(image_seq_len,))
|
|
@@ -527,8 +565,9 @@ class QwenImageDiT(PreTrainedModel):
|
|
|
527
565
|
device: str,
|
|
528
566
|
dtype: torch.dtype,
|
|
529
567
|
num_layers: int = 60,
|
|
568
|
+
use_zero_cond_t: bool = False,
|
|
530
569
|
):
|
|
531
|
-
model = cls(device="meta", dtype=dtype, num_layers=num_layers)
|
|
570
|
+
model = cls(device="meta", dtype=dtype, num_layers=num_layers, zero_cond_t=use_zero_cond_t)
|
|
532
571
|
model = model.requires_grad_(False)
|
|
533
572
|
model.load_state_dict(state_dict, assign=True)
|
|
534
573
|
model.to(device=device, dtype=dtype, non_blocking=True)
|
|
@@ -240,7 +240,7 @@ class QwenImageDiTNunchaku(QwenImageDiT):
|
|
|
240
240
|
use_nunchaku_attn: bool = True,
|
|
241
241
|
nunchaku_rank: int = 32,
|
|
242
242
|
):
|
|
243
|
-
super().__init__()
|
|
243
|
+
super().__init__(num_layers, device=device, dtype=dtype)
|
|
244
244
|
|
|
245
245
|
self.pos_embed = QwenEmbedRope(theta=10000, axes_dim=[16, 56, 56], scale_rope=True, device=device)
|
|
246
246
|
|
|
@@ -2,7 +2,6 @@ import json
|
|
|
2
2
|
import torch
|
|
3
3
|
import torch.distributed as dist
|
|
4
4
|
import math
|
|
5
|
-
import sys
|
|
6
5
|
from typing import Callable, List, Dict, Tuple, Optional, Union
|
|
7
6
|
from tqdm import tqdm
|
|
8
7
|
from einops import rearrange
|
|
@@ -45,7 +44,6 @@ from diffsynth_engine.utils.flag import NUNCHAKU_AVAILABLE
|
|
|
45
44
|
logger = logging.get_logger(__name__)
|
|
46
45
|
|
|
47
46
|
|
|
48
|
-
|
|
49
47
|
class QwenImageLoRAConverter(LoRAStateDictConverter):
|
|
50
48
|
def _from_diffsynth(self, lora_state_dict: Dict[str, torch.Tensor]) -> Dict[str, Dict[str, torch.Tensor]]:
|
|
51
49
|
dit_dict = {}
|
|
@@ -205,7 +203,7 @@ class QwenImagePipeline(BasePipeline):
|
|
|
205
203
|
else:
|
|
206
204
|
config.use_nunchaku_attn = False
|
|
207
205
|
logger.info("Disable nunchaku attention quantization.")
|
|
208
|
-
|
|
206
|
+
|
|
209
207
|
else:
|
|
210
208
|
config.use_nunchaku = False
|
|
211
209
|
|
|
@@ -318,6 +316,7 @@ class QwenImagePipeline(BasePipeline):
|
|
|
318
316
|
elif config.use_nunchaku:
|
|
319
317
|
if not NUNCHAKU_AVAILABLE:
|
|
320
318
|
from diffsynth_engine.utils.flag import NUNCHAKU_IMPORT_ERROR
|
|
319
|
+
|
|
321
320
|
raise ImportError(NUNCHAKU_IMPORT_ERROR)
|
|
322
321
|
|
|
323
322
|
from diffsynth_engine.models.qwen_image import QwenImageDiTNunchaku
|
|
@@ -337,6 +336,7 @@ class QwenImagePipeline(BasePipeline):
|
|
|
337
336
|
state_dicts.model,
|
|
338
337
|
device=("cpu" if config.use_fsdp else init_device),
|
|
339
338
|
dtype=config.model_dtype,
|
|
339
|
+
use_zero_cond_t=config.use_zero_cond_t,
|
|
340
340
|
)
|
|
341
341
|
if config.use_fp8_linear and not config.use_nunchaku:
|
|
342
342
|
enable_fp8_linear(dit)
|
|
@@ -704,7 +704,7 @@ class QwenImagePipeline(BasePipeline):
|
|
|
704
704
|
|
|
705
705
|
context_latents = None
|
|
706
706
|
for param in controlnet_params:
|
|
707
|
-
self.load_lora(param.model, param.scale, fused=
|
|
707
|
+
self.load_lora(param.model, param.scale, fused=True, save_original_weight=False)
|
|
708
708
|
if param.control_type == QwenImageControlType.in_context:
|
|
709
709
|
width, height = param.image.size
|
|
710
710
|
self.validate_image_size(height, width, minimum=64, multiple_of=16)
|
|
@@ -81,12 +81,12 @@ diffsynth_engine/conf/tokenizers/wan/umt5-xxl/tokenizer.json,sha256=bhl7TT29cdoU
|
|
|
81
81
|
diffsynth_engine/conf/tokenizers/wan/umt5-xxl/tokenizer_config.json,sha256=7Zo6iw-qcacKMoR-BDX-A25uES1N9O23u0ipIeNE3AU,61728
|
|
82
82
|
diffsynth_engine/configs/__init__.py,sha256=vSjJToEdq3JX7t81_z4nwNwIdD4bYnFjxnMZH7PXMKo,1309
|
|
83
83
|
diffsynth_engine/configs/controlnet.py,sha256=f3vclyP3lcAjxDGD9C1vevhqqQ7W2LL_c6Wye0uxk3Q,1180
|
|
84
|
-
diffsynth_engine/configs/pipeline.py,sha256=
|
|
84
|
+
diffsynth_engine/configs/pipeline.py,sha256=SLaxFd9mKuJgromrkXpJrsNGAGzMl51Twomc4Qo83Wc,13759
|
|
85
85
|
diffsynth_engine/kernels/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
86
86
|
diffsynth_engine/models/__init__.py,sha256=8Ze7cSE8InetgXWTNb0neVA2Q44K7WlE-h7O-02m2sY,119
|
|
87
87
|
diffsynth_engine/models/base.py,sha256=svao__9WH8VNcyXz5o5dzywYXDcGV0YV9IfkLzDKews,2558
|
|
88
88
|
diffsynth_engine/models/basic/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
89
|
-
diffsynth_engine/models/basic/attention.py,sha256=
|
|
89
|
+
diffsynth_engine/models/basic/attention.py,sha256=62Ar8_ydnn28F1qH9ueXtvISgNszQK3q8k14gCIXGEs,15681
|
|
90
90
|
diffsynth_engine/models/basic/lora.py,sha256=Y6cBgrBsuDAP9FZz_fgK8vBi_EMg23saFIUSAsPIG-M,10670
|
|
91
91
|
diffsynth_engine/models/basic/lora_nunchaku.py,sha256=7qhzGCzUIfDrwtWG0nspwdyZ7YUkaM4vMqzxZby2Zds,7510
|
|
92
92
|
diffsynth_engine/models/basic/relative_position_emb.py,sha256=rCXOweZMcayVnNUVvBcYXMdhHS257B_PC8PZSWxvhNQ,2540
|
|
@@ -111,9 +111,9 @@ diffsynth_engine/models/hunyuan3d/surface_extractor.py,sha256=b15mb1N4PYwAvDk1Gu
|
|
|
111
111
|
diffsynth_engine/models/hunyuan3d/volume_decoder.py,sha256=sgflj1a8sIerqGSalBAVQOlyiIihkLOLXYysNbulCoQ,2355
|
|
112
112
|
diffsynth_engine/models/qwen_image/__init__.py,sha256=_6f0LWaoLdDvD2CsjK2OzEIQryt9efge8DFS4_GUnHQ,582
|
|
113
113
|
diffsynth_engine/models/qwen_image/qwen2_5_vl.py,sha256=Eu-r-c42t_q74Qpwz21ToCGHpvSi7VND4B1EI0e-ePA,57748
|
|
114
|
-
diffsynth_engine/models/qwen_image/qwen_image_dit.py,sha256=
|
|
114
|
+
diffsynth_engine/models/qwen_image/qwen_image_dit.py,sha256=JEyK_yOa0A5xaqlmxI3nfD7NdCaHuvLDA10aWVbnac4,24635
|
|
115
115
|
diffsynth_engine/models/qwen_image/qwen_image_dit_fbcache.py,sha256=LIv9X_BohKk5rcEzyl3ATLwd8MSoFX43wjkArQ68nq8,4828
|
|
116
|
-
diffsynth_engine/models/qwen_image/qwen_image_dit_nunchaku.py,sha256=
|
|
116
|
+
diffsynth_engine/models/qwen_image/qwen_image_dit_nunchaku.py,sha256=1y1BkPRrX4_RioKjM09D9f9PK9neug1nSGJka0D9bvM,13516
|
|
117
117
|
diffsynth_engine/models/qwen_image/qwen_image_vae.py,sha256=eO7f4YqiYXfw7NncBNFTu-xEvdJ5uKY-SnfP15QY0tE,38443
|
|
118
118
|
diffsynth_engine/models/sd/__init__.py,sha256=hjoKRnwoXOLD0wude-w7I6wK5ak7ACMbnbkPuBB2oU0,380
|
|
119
119
|
diffsynth_engine/models/sd/sd_controlnet.py,sha256=kMGfIdriXhC7reT6iO2Z0rPICXEkXpytjeBQcR_sjT8,50577
|
|
@@ -146,7 +146,7 @@ diffsynth_engine/pipelines/__init__.py,sha256=jh-4LSJ0vqlXiT8BgFgRIQxuAr2atEPyHr
|
|
|
146
146
|
diffsynth_engine/pipelines/base.py,sha256=ShRiX5MY6bUkRKfuGrA1aalAqeHyeZxhzT87Mwc30b4,17231
|
|
147
147
|
diffsynth_engine/pipelines/flux_image.py,sha256=L0ggxpthLD8a5-zdPHu9z668uWBei9YzPb4PFVypDNU,50707
|
|
148
148
|
diffsynth_engine/pipelines/hunyuan3d_shape.py,sha256=TNV0Wr09Dj2bzzlpua9WioCClOj3YiLfE6utI9aWL8A,8164
|
|
149
|
-
diffsynth_engine/pipelines/qwen_image.py,sha256=
|
|
149
|
+
diffsynth_engine/pipelines/qwen_image.py,sha256=lrqwF3fikgQouifb-8KwWCxQhNVZard_7buoJqxHD7s,35759
|
|
150
150
|
diffsynth_engine/pipelines/sd_image.py,sha256=nr-Nhsnomq8CsUqhTM3i2l2zG01YjwXdfRXgr_bC3F0,17891
|
|
151
151
|
diffsynth_engine/pipelines/sdxl_image.py,sha256=v7ZACGPb6EcBunL6e5E9jynSQjE7GQx8etEV-ZLP91g,21704
|
|
152
152
|
diffsynth_engine/pipelines/utils.py,sha256=HZbJHErNJS1DhlwJKvZ9dY7Kh8Zdlsw3zE2e88TYGRY,2277
|
|
@@ -190,8 +190,8 @@ diffsynth_engine/utils/video.py,sha256=8FCaeqIdUsWMgWI_6SO9SPynsToGcLCQAVYFTc4CD
|
|
|
190
190
|
diffsynth_engine/utils/memory/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
191
191
|
diffsynth_engine/utils/memory/linear_regression.py,sha256=oW_EQEw13oPoyUrxiL8A7Ksa5AuJ2ynI2qhCbfAuZbg,3930
|
|
192
192
|
diffsynth_engine/utils/memory/memory_predcit_model.py,sha256=EXprSl_zlVjgfMWNXP-iw83Ot3hyMcgYaRPv-dvyL84,3943
|
|
193
|
-
diffsynth_engine-0.6.1.
|
|
194
|
-
diffsynth_engine-0.6.1.
|
|
195
|
-
diffsynth_engine-0.6.1.
|
|
196
|
-
diffsynth_engine-0.6.1.
|
|
197
|
-
diffsynth_engine-0.6.1.
|
|
193
|
+
diffsynth_engine-0.6.1.dev33.dist-info/licenses/LICENSE,sha256=x7aBqQuVI0IYnftgoTPI_A0I_rjdjPPQkjnU6N2nikM,11346
|
|
194
|
+
diffsynth_engine-0.6.1.dev33.dist-info/METADATA,sha256=pgyNkuwU3lMQA66waiIU3BVtw-7zN3s8pEvinWC_LpI,1164
|
|
195
|
+
diffsynth_engine-0.6.1.dev33.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
|
196
|
+
diffsynth_engine-0.6.1.dev33.dist-info/top_level.txt,sha256=6zgbiIzEHLbhgDKRyX0uBJOV3F6VnGGBRIQvSiYYn6w,17
|
|
197
|
+
diffsynth_engine-0.6.1.dev33.dist-info/RECORD,,
|
|
File without changes
|
{diffsynth_engine-0.6.1.dev31.dist-info → diffsynth_engine-0.6.1.dev33.dist-info}/licenses/LICENSE
RENAMED
|
File without changes
|
{diffsynth_engine-0.6.1.dev31.dist-info → diffsynth_engine-0.6.1.dev33.dist-info}/top_level.txt
RENAMED
|
File without changes
|