diff-diff 2.0.4__cp312-cp312-macosx_11_0_arm64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- diff_diff/__init__.py +226 -0
- diff_diff/_backend.py +64 -0
- diff_diff/_rust_backend.cpython-312-darwin.so +0 -0
- diff_diff/bacon.py +979 -0
- diff_diff/datasets.py +708 -0
- diff_diff/diagnostics.py +927 -0
- diff_diff/estimators.py +1000 -0
- diff_diff/honest_did.py +1493 -0
- diff_diff/linalg.py +980 -0
- diff_diff/power.py +1350 -0
- diff_diff/prep.py +1338 -0
- diff_diff/pretrends.py +1067 -0
- diff_diff/results.py +703 -0
- diff_diff/staggered.py +2297 -0
- diff_diff/sun_abraham.py +1176 -0
- diff_diff/synthetic_did.py +738 -0
- diff_diff/triple_diff.py +1291 -0
- diff_diff/twfe.py +344 -0
- diff_diff/utils.py +1481 -0
- diff_diff/visualization.py +1627 -0
- diff_diff-2.0.4.dist-info/METADATA +2257 -0
- diff_diff-2.0.4.dist-info/RECORD +23 -0
- diff_diff-2.0.4.dist-info/WHEEL +4 -0
diff_diff/triple_diff.py
ADDED
|
@@ -0,0 +1,1291 @@
|
|
|
1
|
+
"""
|
|
2
|
+
Triple Difference (DDD) estimators.
|
|
3
|
+
|
|
4
|
+
Implements the methodology from Ortiz-Villavicencio & Sant'Anna (2025)
|
|
5
|
+
"Better Understanding Triple Differences Estimators" for causal inference
|
|
6
|
+
when treatment requires satisfying two criteria:
|
|
7
|
+
1. Belonging to a treated group (e.g., a state with a policy)
|
|
8
|
+
2. Being in an eligible partition (e.g., women, low-income, etc.)
|
|
9
|
+
|
|
10
|
+
This module provides regression adjustment, inverse probability weighting,
|
|
11
|
+
and doubly robust estimators that correctly handle covariate adjustment,
|
|
12
|
+
unlike naive implementations.
|
|
13
|
+
|
|
14
|
+
Current Implementation (v1.3):
|
|
15
|
+
- 2-period DDD (pre/post binary time indicator)
|
|
16
|
+
- Regression adjustment, IPW, and doubly robust estimation
|
|
17
|
+
- Analytical standard errors with robust/cluster options
|
|
18
|
+
- Proper covariate handling
|
|
19
|
+
|
|
20
|
+
Planned for v1.4 (see ROADMAP.md):
|
|
21
|
+
- Staggered adoption support (multiple treatment timing)
|
|
22
|
+
- Event study aggregation for dynamic treatment effects
|
|
23
|
+
- Multiplier bootstrap inference
|
|
24
|
+
- Integration with plot_event_study() visualization
|
|
25
|
+
|
|
26
|
+
Reference:
|
|
27
|
+
Ortiz-Villavicencio, M., & Sant'Anna, P. H. C. (2025).
|
|
28
|
+
Better Understanding Triple Differences Estimators.
|
|
29
|
+
arXiv:2505.09942.
|
|
30
|
+
"""
|
|
31
|
+
|
|
32
|
+
import warnings
|
|
33
|
+
from dataclasses import dataclass, field
|
|
34
|
+
from typing import Any, Dict, List, Optional, Tuple
|
|
35
|
+
|
|
36
|
+
import numpy as np
|
|
37
|
+
import pandas as pd
|
|
38
|
+
from scipy import optimize
|
|
39
|
+
|
|
40
|
+
from diff_diff.linalg import LinearRegression, compute_robust_vcov, solve_ols
|
|
41
|
+
from diff_diff.results import _get_significance_stars
|
|
42
|
+
from diff_diff.utils import (
|
|
43
|
+
compute_confidence_interval,
|
|
44
|
+
compute_p_value,
|
|
45
|
+
)
|
|
46
|
+
|
|
47
|
+
# =============================================================================
|
|
48
|
+
# Results Classes
|
|
49
|
+
# =============================================================================
|
|
50
|
+
|
|
51
|
+
|
|
52
|
+
@dataclass
|
|
53
|
+
class TripleDifferenceResults:
|
|
54
|
+
"""
|
|
55
|
+
Results from Triple Difference (DDD) estimation.
|
|
56
|
+
|
|
57
|
+
Provides access to the estimated average treatment effect on the treated
|
|
58
|
+
(ATT), standard errors, confidence intervals, and diagnostic information.
|
|
59
|
+
|
|
60
|
+
Attributes
|
|
61
|
+
----------
|
|
62
|
+
att : float
|
|
63
|
+
Average Treatment effect on the Treated (ATT).
|
|
64
|
+
This is the effect on units in the treated group (G=1) and eligible
|
|
65
|
+
partition (P=1) after treatment (T=1).
|
|
66
|
+
se : float
|
|
67
|
+
Standard error of the ATT estimate.
|
|
68
|
+
t_stat : float
|
|
69
|
+
T-statistic for the ATT estimate.
|
|
70
|
+
p_value : float
|
|
71
|
+
P-value for the null hypothesis that ATT = 0.
|
|
72
|
+
conf_int : tuple[float, float]
|
|
73
|
+
Confidence interval for the ATT.
|
|
74
|
+
n_obs : int
|
|
75
|
+
Total number of observations used in estimation.
|
|
76
|
+
n_treated_eligible : int
|
|
77
|
+
Number of observations in treated group and eligible partition.
|
|
78
|
+
n_treated_ineligible : int
|
|
79
|
+
Number of observations in treated group and ineligible partition.
|
|
80
|
+
n_control_eligible : int
|
|
81
|
+
Number of observations in control group and eligible partition.
|
|
82
|
+
n_control_ineligible : int
|
|
83
|
+
Number of observations in control group and ineligible partition.
|
|
84
|
+
estimation_method : str
|
|
85
|
+
Estimation method used: "dr" (doubly robust), "reg" (regression
|
|
86
|
+
adjustment), or "ipw" (inverse probability weighting).
|
|
87
|
+
alpha : float
|
|
88
|
+
Significance level used for confidence intervals.
|
|
89
|
+
"""
|
|
90
|
+
|
|
91
|
+
att: float
|
|
92
|
+
se: float
|
|
93
|
+
t_stat: float
|
|
94
|
+
p_value: float
|
|
95
|
+
conf_int: Tuple[float, float]
|
|
96
|
+
n_obs: int
|
|
97
|
+
n_treated_eligible: int
|
|
98
|
+
n_treated_ineligible: int
|
|
99
|
+
n_control_eligible: int
|
|
100
|
+
n_control_ineligible: int
|
|
101
|
+
estimation_method: str
|
|
102
|
+
alpha: float = 0.05
|
|
103
|
+
# Group means for diagnostics
|
|
104
|
+
group_means: Optional[Dict[str, float]] = field(default=None)
|
|
105
|
+
# Propensity score diagnostics (for IPW/DR)
|
|
106
|
+
pscore_stats: Optional[Dict[str, float]] = field(default=None)
|
|
107
|
+
# Regression diagnostics
|
|
108
|
+
r_squared: Optional[float] = field(default=None)
|
|
109
|
+
# Covariate balance statistics
|
|
110
|
+
covariate_balance: Optional[pd.DataFrame] = field(default=None, repr=False)
|
|
111
|
+
# Inference details
|
|
112
|
+
inference_method: str = field(default="analytical")
|
|
113
|
+
n_bootstrap: Optional[int] = field(default=None)
|
|
114
|
+
n_clusters: Optional[int] = field(default=None)
|
|
115
|
+
|
|
116
|
+
def __repr__(self) -> str:
|
|
117
|
+
"""Concise string representation."""
|
|
118
|
+
return (
|
|
119
|
+
f"TripleDifferenceResults(ATT={self.att:.4f}{self.significance_stars}, "
|
|
120
|
+
f"SE={self.se:.4f}, p={self.p_value:.4f}, method={self.estimation_method})"
|
|
121
|
+
)
|
|
122
|
+
|
|
123
|
+
def summary(self, alpha: Optional[float] = None) -> str:
|
|
124
|
+
"""
|
|
125
|
+
Generate a formatted summary of the estimation results.
|
|
126
|
+
|
|
127
|
+
Parameters
|
|
128
|
+
----------
|
|
129
|
+
alpha : float, optional
|
|
130
|
+
Significance level for confidence intervals. Defaults to the
|
|
131
|
+
alpha used during estimation.
|
|
132
|
+
|
|
133
|
+
Returns
|
|
134
|
+
-------
|
|
135
|
+
str
|
|
136
|
+
Formatted summary table.
|
|
137
|
+
"""
|
|
138
|
+
alpha = alpha or self.alpha
|
|
139
|
+
conf_level = int((1 - alpha) * 100)
|
|
140
|
+
|
|
141
|
+
lines = [
|
|
142
|
+
"=" * 75,
|
|
143
|
+
"Triple Difference (DDD) Estimation Results".center(75),
|
|
144
|
+
"=" * 75,
|
|
145
|
+
"",
|
|
146
|
+
f"{'Estimation method:':<30} {self.estimation_method:>15}",
|
|
147
|
+
f"{'Total observations:':<30} {self.n_obs:>15}",
|
|
148
|
+
"",
|
|
149
|
+
"Sample Composition by Cell:",
|
|
150
|
+
f" {'Treated group, Eligible:':<28} {self.n_treated_eligible:>15}",
|
|
151
|
+
f" {'Treated group, Ineligible:':<28} {self.n_treated_ineligible:>15}",
|
|
152
|
+
f" {'Control group, Eligible:':<28} {self.n_control_eligible:>15}",
|
|
153
|
+
f" {'Control group, Ineligible:':<28} {self.n_control_ineligible:>15}",
|
|
154
|
+
]
|
|
155
|
+
|
|
156
|
+
if self.r_squared is not None:
|
|
157
|
+
lines.append(f"{'R-squared:':<30} {self.r_squared:>15.4f}")
|
|
158
|
+
|
|
159
|
+
if self.inference_method != "analytical":
|
|
160
|
+
lines.append(f"{'Inference method:':<30} {self.inference_method:>15}")
|
|
161
|
+
if self.n_bootstrap is not None:
|
|
162
|
+
lines.append(f"{'Bootstrap replications:':<30} {self.n_bootstrap:>15}")
|
|
163
|
+
if self.n_clusters is not None:
|
|
164
|
+
lines.append(f"{'Number of clusters:':<30} {self.n_clusters:>15}")
|
|
165
|
+
|
|
166
|
+
lines.extend([
|
|
167
|
+
"",
|
|
168
|
+
"-" * 75,
|
|
169
|
+
f"{'Parameter':<15} {'Estimate':>12} {'Std. Err.':>12} {'t-stat':>10} {'P>|t|':>10} {'':>5}",
|
|
170
|
+
"-" * 75,
|
|
171
|
+
f"{'ATT':<15} {self.att:>12.4f} {self.se:>12.4f} {self.t_stat:>10.3f} {self.p_value:>10.4f} {self.significance_stars:>5}",
|
|
172
|
+
"-" * 75,
|
|
173
|
+
"",
|
|
174
|
+
f"{conf_level}% Confidence Interval: [{self.conf_int[0]:.4f}, {self.conf_int[1]:.4f}]",
|
|
175
|
+
])
|
|
176
|
+
|
|
177
|
+
# Show group means if available
|
|
178
|
+
if self.group_means:
|
|
179
|
+
lines.extend([
|
|
180
|
+
"",
|
|
181
|
+
"-" * 75,
|
|
182
|
+
"Cell Means (Y):",
|
|
183
|
+
"-" * 75,
|
|
184
|
+
])
|
|
185
|
+
for cell, mean in self.group_means.items():
|
|
186
|
+
lines.append(f" {cell:<35} {mean:>12.4f}")
|
|
187
|
+
|
|
188
|
+
# Show propensity score diagnostics if available
|
|
189
|
+
if self.pscore_stats:
|
|
190
|
+
lines.extend([
|
|
191
|
+
"",
|
|
192
|
+
"-" * 75,
|
|
193
|
+
"Propensity Score Diagnostics:",
|
|
194
|
+
"-" * 75,
|
|
195
|
+
])
|
|
196
|
+
for stat, value in self.pscore_stats.items():
|
|
197
|
+
lines.append(f" {stat:<35} {value:>12.4f}")
|
|
198
|
+
|
|
199
|
+
lines.extend([
|
|
200
|
+
"",
|
|
201
|
+
"Signif. codes: '***' 0.001, '**' 0.01, '*' 0.05, '.' 0.1",
|
|
202
|
+
"=" * 75,
|
|
203
|
+
])
|
|
204
|
+
|
|
205
|
+
return "\n".join(lines)
|
|
206
|
+
|
|
207
|
+
def print_summary(self, alpha: Optional[float] = None) -> None:
|
|
208
|
+
"""Print the summary to stdout."""
|
|
209
|
+
print(self.summary(alpha))
|
|
210
|
+
|
|
211
|
+
def to_dict(self) -> Dict[str, Any]:
|
|
212
|
+
"""
|
|
213
|
+
Convert results to a dictionary.
|
|
214
|
+
|
|
215
|
+
Returns
|
|
216
|
+
-------
|
|
217
|
+
Dict[str, Any]
|
|
218
|
+
Dictionary containing all estimation results.
|
|
219
|
+
"""
|
|
220
|
+
result = {
|
|
221
|
+
"att": self.att,
|
|
222
|
+
"se": self.se,
|
|
223
|
+
"t_stat": self.t_stat,
|
|
224
|
+
"p_value": self.p_value,
|
|
225
|
+
"conf_int_lower": self.conf_int[0],
|
|
226
|
+
"conf_int_upper": self.conf_int[1],
|
|
227
|
+
"n_obs": self.n_obs,
|
|
228
|
+
"n_treated_eligible": self.n_treated_eligible,
|
|
229
|
+
"n_treated_ineligible": self.n_treated_ineligible,
|
|
230
|
+
"n_control_eligible": self.n_control_eligible,
|
|
231
|
+
"n_control_ineligible": self.n_control_ineligible,
|
|
232
|
+
"estimation_method": self.estimation_method,
|
|
233
|
+
"inference_method": self.inference_method,
|
|
234
|
+
}
|
|
235
|
+
if self.r_squared is not None:
|
|
236
|
+
result["r_squared"] = self.r_squared
|
|
237
|
+
if self.n_bootstrap is not None:
|
|
238
|
+
result["n_bootstrap"] = self.n_bootstrap
|
|
239
|
+
if self.n_clusters is not None:
|
|
240
|
+
result["n_clusters"] = self.n_clusters
|
|
241
|
+
return result
|
|
242
|
+
|
|
243
|
+
def to_dataframe(self) -> pd.DataFrame:
|
|
244
|
+
"""
|
|
245
|
+
Convert results to a pandas DataFrame.
|
|
246
|
+
|
|
247
|
+
Returns
|
|
248
|
+
-------
|
|
249
|
+
pd.DataFrame
|
|
250
|
+
DataFrame with estimation results.
|
|
251
|
+
"""
|
|
252
|
+
return pd.DataFrame([self.to_dict()])
|
|
253
|
+
|
|
254
|
+
@property
|
|
255
|
+
def is_significant(self) -> bool:
|
|
256
|
+
"""Check if the ATT is statistically significant at the alpha level."""
|
|
257
|
+
return bool(self.p_value < self.alpha)
|
|
258
|
+
|
|
259
|
+
@property
|
|
260
|
+
def significance_stars(self) -> str:
|
|
261
|
+
"""Return significance stars based on p-value."""
|
|
262
|
+
return _get_significance_stars(self.p_value)
|
|
263
|
+
|
|
264
|
+
|
|
265
|
+
# =============================================================================
|
|
266
|
+
# Helper Functions
|
|
267
|
+
# =============================================================================
|
|
268
|
+
|
|
269
|
+
|
|
270
|
+
def _logistic_regression(
|
|
271
|
+
X: np.ndarray,
|
|
272
|
+
y: np.ndarray,
|
|
273
|
+
max_iter: int = 100,
|
|
274
|
+
tol: float = 1e-6,
|
|
275
|
+
) -> Tuple[np.ndarray, np.ndarray]:
|
|
276
|
+
"""
|
|
277
|
+
Fit logistic regression using scipy optimize.
|
|
278
|
+
|
|
279
|
+
Parameters
|
|
280
|
+
----------
|
|
281
|
+
X : np.ndarray
|
|
282
|
+
Feature matrix (n_samples, n_features). Intercept added automatically.
|
|
283
|
+
y : np.ndarray
|
|
284
|
+
Binary outcome (0/1).
|
|
285
|
+
max_iter : int
|
|
286
|
+
Maximum iterations.
|
|
287
|
+
tol : float
|
|
288
|
+
Convergence tolerance.
|
|
289
|
+
|
|
290
|
+
Returns
|
|
291
|
+
-------
|
|
292
|
+
beta : np.ndarray
|
|
293
|
+
Fitted coefficients (including intercept).
|
|
294
|
+
probs : np.ndarray
|
|
295
|
+
Predicted probabilities.
|
|
296
|
+
"""
|
|
297
|
+
n, p = X.shape
|
|
298
|
+
X_with_intercept = np.column_stack([np.ones(n), X])
|
|
299
|
+
|
|
300
|
+
def neg_log_likelihood(beta: np.ndarray) -> float:
|
|
301
|
+
z = X_with_intercept @ beta
|
|
302
|
+
z = np.clip(z, -500, 500)
|
|
303
|
+
log_lik = np.sum(y * z - np.log(1 + np.exp(z)))
|
|
304
|
+
return -log_lik
|
|
305
|
+
|
|
306
|
+
def gradient(beta: np.ndarray) -> np.ndarray:
|
|
307
|
+
z = X_with_intercept @ beta
|
|
308
|
+
z = np.clip(z, -500, 500)
|
|
309
|
+
probs = 1 / (1 + np.exp(-z))
|
|
310
|
+
return -X_with_intercept.T @ (y - probs)
|
|
311
|
+
|
|
312
|
+
beta_init = np.zeros(p + 1)
|
|
313
|
+
|
|
314
|
+
result = optimize.minimize(
|
|
315
|
+
neg_log_likelihood,
|
|
316
|
+
beta_init,
|
|
317
|
+
method='BFGS',
|
|
318
|
+
jac=gradient,
|
|
319
|
+
options={'maxiter': max_iter, 'gtol': tol}
|
|
320
|
+
)
|
|
321
|
+
|
|
322
|
+
beta = result.x
|
|
323
|
+
z = X_with_intercept @ beta
|
|
324
|
+
z = np.clip(z, -500, 500)
|
|
325
|
+
probs = 1 / (1 + np.exp(-z))
|
|
326
|
+
|
|
327
|
+
return beta, probs
|
|
328
|
+
|
|
329
|
+
|
|
330
|
+
def _linear_regression(
|
|
331
|
+
X: np.ndarray,
|
|
332
|
+
y: np.ndarray,
|
|
333
|
+
) -> Tuple[np.ndarray, np.ndarray, float]:
|
|
334
|
+
"""
|
|
335
|
+
Fit OLS regression.
|
|
336
|
+
|
|
337
|
+
Parameters
|
|
338
|
+
----------
|
|
339
|
+
X : np.ndarray
|
|
340
|
+
Feature matrix (n_samples, n_features). Intercept added automatically.
|
|
341
|
+
y : np.ndarray
|
|
342
|
+
Outcome variable.
|
|
343
|
+
|
|
344
|
+
Returns
|
|
345
|
+
-------
|
|
346
|
+
beta : np.ndarray
|
|
347
|
+
Fitted coefficients (including intercept).
|
|
348
|
+
fitted : np.ndarray
|
|
349
|
+
Fitted values.
|
|
350
|
+
r_squared : float
|
|
351
|
+
R-squared of the regression.
|
|
352
|
+
"""
|
|
353
|
+
n = X.shape[0]
|
|
354
|
+
X_with_intercept = np.column_stack([np.ones(n), X])
|
|
355
|
+
|
|
356
|
+
# Use unified OLS backend
|
|
357
|
+
beta, residuals, fitted, _ = solve_ols(
|
|
358
|
+
X_with_intercept, y, return_fitted=True, return_vcov=False
|
|
359
|
+
)
|
|
360
|
+
|
|
361
|
+
# Compute R-squared
|
|
362
|
+
ss_res = np.sum(residuals**2)
|
|
363
|
+
ss_tot = np.sum((y - np.mean(y)) ** 2)
|
|
364
|
+
r_squared = 1 - (ss_res / ss_tot) if ss_tot > 0 else 0.0
|
|
365
|
+
|
|
366
|
+
return beta, fitted, r_squared
|
|
367
|
+
|
|
368
|
+
|
|
369
|
+
# =============================================================================
|
|
370
|
+
# Main Estimator Class
|
|
371
|
+
# =============================================================================
|
|
372
|
+
|
|
373
|
+
|
|
374
|
+
class TripleDifference:
|
|
375
|
+
"""
|
|
376
|
+
Triple Difference (DDD) estimator.
|
|
377
|
+
|
|
378
|
+
Estimates the Average Treatment effect on the Treated (ATT) when treatment
|
|
379
|
+
requires satisfying two criteria: belonging to a treated group AND being
|
|
380
|
+
in an eligible partition of the population.
|
|
381
|
+
|
|
382
|
+
This implementation follows Ortiz-Villavicencio & Sant'Anna (2025), which
|
|
383
|
+
shows that naive DDD implementations (difference of two DiDs, three-way
|
|
384
|
+
fixed effects) are invalid when covariates are needed for identification.
|
|
385
|
+
|
|
386
|
+
Parameters
|
|
387
|
+
----------
|
|
388
|
+
estimation_method : str, default="dr"
|
|
389
|
+
Estimation method to use:
|
|
390
|
+
- "dr": Doubly robust (recommended). Consistent if either the outcome
|
|
391
|
+
model or propensity score model is correctly specified.
|
|
392
|
+
- "reg": Regression adjustment (outcome regression).
|
|
393
|
+
- "ipw": Inverse probability weighting.
|
|
394
|
+
robust : bool, default=True
|
|
395
|
+
Whether to use heteroskedasticity-robust standard errors (HC1).
|
|
396
|
+
cluster : str, optional
|
|
397
|
+
Column name for cluster-robust standard errors.
|
|
398
|
+
alpha : float, default=0.05
|
|
399
|
+
Significance level for confidence intervals.
|
|
400
|
+
pscore_trim : float, default=0.01
|
|
401
|
+
Trimming threshold for propensity scores. Scores below this value
|
|
402
|
+
or above (1 - pscore_trim) are clipped to avoid extreme weights.
|
|
403
|
+
|
|
404
|
+
Attributes
|
|
405
|
+
----------
|
|
406
|
+
results_ : TripleDifferenceResults
|
|
407
|
+
Estimation results after calling fit().
|
|
408
|
+
is_fitted_ : bool
|
|
409
|
+
Whether the model has been fitted.
|
|
410
|
+
|
|
411
|
+
Examples
|
|
412
|
+
--------
|
|
413
|
+
Basic usage with a DataFrame:
|
|
414
|
+
|
|
415
|
+
>>> import pandas as pd
|
|
416
|
+
>>> from diff_diff import TripleDifference
|
|
417
|
+
>>>
|
|
418
|
+
>>> # Data where treatment affects women (partition=1) in states
|
|
419
|
+
>>> # that enacted a policy (group=1)
|
|
420
|
+
>>> data = pd.DataFrame({
|
|
421
|
+
... 'outcome': [...],
|
|
422
|
+
... 'group': [1, 1, 0, 0, ...], # 1=policy state, 0=control state
|
|
423
|
+
... 'partition': [1, 0, 1, 0, ...], # 1=women, 0=men
|
|
424
|
+
... 'post': [0, 0, 1, 1, ...], # 1=post-treatment period
|
|
425
|
+
... })
|
|
426
|
+
>>>
|
|
427
|
+
>>> # Fit using doubly robust estimation
|
|
428
|
+
>>> ddd = TripleDifference(estimation_method="dr")
|
|
429
|
+
>>> results = ddd.fit(
|
|
430
|
+
... data,
|
|
431
|
+
... outcome='outcome',
|
|
432
|
+
... group='group',
|
|
433
|
+
... partition='partition',
|
|
434
|
+
... time='post'
|
|
435
|
+
... )
|
|
436
|
+
>>> print(results.att) # ATT estimate
|
|
437
|
+
|
|
438
|
+
With covariates (properly handled unlike naive DDD):
|
|
439
|
+
|
|
440
|
+
>>> results = ddd.fit(
|
|
441
|
+
... data,
|
|
442
|
+
... outcome='outcome',
|
|
443
|
+
... group='group',
|
|
444
|
+
... partition='partition',
|
|
445
|
+
... time='post',
|
|
446
|
+
... covariates=['age', 'income']
|
|
447
|
+
... )
|
|
448
|
+
|
|
449
|
+
Notes
|
|
450
|
+
-----
|
|
451
|
+
The DDD estimator is appropriate when:
|
|
452
|
+
|
|
453
|
+
1. Treatment affects only units satisfying BOTH criteria:
|
|
454
|
+
- Belonging to a treated group (G=1), e.g., states with a policy
|
|
455
|
+
- Being in an eligible partition (P=1), e.g., women, low-income
|
|
456
|
+
|
|
457
|
+
2. The DDD parallel trends assumption holds: the differential trend
|
|
458
|
+
between eligible and ineligible partitions would have been the same
|
|
459
|
+
across treated and control groups, absent treatment.
|
|
460
|
+
|
|
461
|
+
This is weaker than requiring separate parallel trends for two DiDs,
|
|
462
|
+
as biases can cancel out in the differencing.
|
|
463
|
+
|
|
464
|
+
References
|
|
465
|
+
----------
|
|
466
|
+
.. [1] Ortiz-Villavicencio, M., & Sant'Anna, P. H. C. (2025).
|
|
467
|
+
Better Understanding Triple Differences Estimators.
|
|
468
|
+
arXiv:2505.09942.
|
|
469
|
+
|
|
470
|
+
.. [2] Gruber, J. (1994). The incidence of mandated maternity benefits.
|
|
471
|
+
American Economic Review, 84(3), 622-641.
|
|
472
|
+
"""
|
|
473
|
+
|
|
474
|
+
def __init__(
|
|
475
|
+
self,
|
|
476
|
+
estimation_method: str = "dr",
|
|
477
|
+
robust: bool = True,
|
|
478
|
+
cluster: Optional[str] = None,
|
|
479
|
+
alpha: float = 0.05,
|
|
480
|
+
pscore_trim: float = 0.01,
|
|
481
|
+
):
|
|
482
|
+
if estimation_method not in ("dr", "reg", "ipw"):
|
|
483
|
+
raise ValueError(
|
|
484
|
+
f"estimation_method must be 'dr', 'reg', or 'ipw', "
|
|
485
|
+
f"got '{estimation_method}'"
|
|
486
|
+
)
|
|
487
|
+
self.estimation_method = estimation_method
|
|
488
|
+
self.robust = robust
|
|
489
|
+
self.cluster = cluster
|
|
490
|
+
self.alpha = alpha
|
|
491
|
+
self.pscore_trim = pscore_trim
|
|
492
|
+
|
|
493
|
+
self.is_fitted_ = False
|
|
494
|
+
self.results_: Optional[TripleDifferenceResults] = None
|
|
495
|
+
|
|
496
|
+
def fit(
|
|
497
|
+
self,
|
|
498
|
+
data: pd.DataFrame,
|
|
499
|
+
outcome: str,
|
|
500
|
+
group: str,
|
|
501
|
+
partition: str,
|
|
502
|
+
time: str,
|
|
503
|
+
covariates: Optional[List[str]] = None,
|
|
504
|
+
) -> TripleDifferenceResults:
|
|
505
|
+
"""
|
|
506
|
+
Fit the Triple Difference model.
|
|
507
|
+
|
|
508
|
+
Parameters
|
|
509
|
+
----------
|
|
510
|
+
data : pd.DataFrame
|
|
511
|
+
DataFrame containing all variables.
|
|
512
|
+
outcome : str
|
|
513
|
+
Name of the outcome variable column.
|
|
514
|
+
group : str
|
|
515
|
+
Name of the group indicator column (0/1).
|
|
516
|
+
1 = treated group (e.g., states that enacted policy).
|
|
517
|
+
0 = control group.
|
|
518
|
+
partition : str
|
|
519
|
+
Name of the partition/eligibility indicator column (0/1).
|
|
520
|
+
1 = eligible partition (e.g., women, targeted demographic).
|
|
521
|
+
0 = ineligible partition.
|
|
522
|
+
time : str
|
|
523
|
+
Name of the time period indicator column (0/1).
|
|
524
|
+
1 = post-treatment period.
|
|
525
|
+
0 = pre-treatment period.
|
|
526
|
+
covariates : list of str, optional
|
|
527
|
+
List of covariate column names to adjust for.
|
|
528
|
+
These are properly incorporated using the selected estimation
|
|
529
|
+
method (unlike naive DDD implementations).
|
|
530
|
+
|
|
531
|
+
Returns
|
|
532
|
+
-------
|
|
533
|
+
TripleDifferenceResults
|
|
534
|
+
Object containing estimation results.
|
|
535
|
+
|
|
536
|
+
Raises
|
|
537
|
+
------
|
|
538
|
+
ValueError
|
|
539
|
+
If required columns are missing or data validation fails.
|
|
540
|
+
"""
|
|
541
|
+
# Validate inputs
|
|
542
|
+
self._validate_data(data, outcome, group, partition, time, covariates)
|
|
543
|
+
|
|
544
|
+
# Extract data
|
|
545
|
+
y = data[outcome].values.astype(float)
|
|
546
|
+
G = data[group].values.astype(float)
|
|
547
|
+
P = data[partition].values.astype(float)
|
|
548
|
+
T = data[time].values.astype(float)
|
|
549
|
+
|
|
550
|
+
# Get covariates if specified
|
|
551
|
+
X = None
|
|
552
|
+
if covariates:
|
|
553
|
+
X = data[covariates].values.astype(float)
|
|
554
|
+
if np.any(np.isnan(X)):
|
|
555
|
+
raise ValueError("Covariates contain missing values")
|
|
556
|
+
|
|
557
|
+
# Count observations in each cell
|
|
558
|
+
n_obs = len(y)
|
|
559
|
+
n_treated_eligible = int(np.sum((G == 1) & (P == 1)))
|
|
560
|
+
n_treated_ineligible = int(np.sum((G == 1) & (P == 0)))
|
|
561
|
+
n_control_eligible = int(np.sum((G == 0) & (P == 1)))
|
|
562
|
+
n_control_ineligible = int(np.sum((G == 0) & (P == 0)))
|
|
563
|
+
|
|
564
|
+
# Compute cell means for diagnostics
|
|
565
|
+
group_means = self._compute_cell_means(y, G, P, T)
|
|
566
|
+
|
|
567
|
+
# Estimate ATT based on method
|
|
568
|
+
if self.estimation_method == "reg":
|
|
569
|
+
att, se, r_squared, pscore_stats = self._regression_adjustment(
|
|
570
|
+
y, G, P, T, X
|
|
571
|
+
)
|
|
572
|
+
elif self.estimation_method == "ipw":
|
|
573
|
+
att, se, r_squared, pscore_stats = self._ipw_estimation(
|
|
574
|
+
y, G, P, T, X
|
|
575
|
+
)
|
|
576
|
+
else: # doubly robust
|
|
577
|
+
att, se, r_squared, pscore_stats = self._doubly_robust(
|
|
578
|
+
y, G, P, T, X
|
|
579
|
+
)
|
|
580
|
+
|
|
581
|
+
# Compute inference
|
|
582
|
+
t_stat = att / se if se > 0 else 0.0
|
|
583
|
+
df = n_obs - 8 # Approximate df (8 cell means)
|
|
584
|
+
if covariates:
|
|
585
|
+
df -= len(covariates)
|
|
586
|
+
df = max(df, 1)
|
|
587
|
+
|
|
588
|
+
p_value = compute_p_value(t_stat, df=df)
|
|
589
|
+
conf_int = compute_confidence_interval(att, se, self.alpha, df=df)
|
|
590
|
+
|
|
591
|
+
# Get number of clusters if clustering
|
|
592
|
+
n_clusters = None
|
|
593
|
+
if self.cluster is not None:
|
|
594
|
+
n_clusters = data[self.cluster].nunique()
|
|
595
|
+
|
|
596
|
+
# Create results object
|
|
597
|
+
self.results_ = TripleDifferenceResults(
|
|
598
|
+
att=att,
|
|
599
|
+
se=se,
|
|
600
|
+
t_stat=t_stat,
|
|
601
|
+
p_value=p_value,
|
|
602
|
+
conf_int=conf_int,
|
|
603
|
+
n_obs=n_obs,
|
|
604
|
+
n_treated_eligible=n_treated_eligible,
|
|
605
|
+
n_treated_ineligible=n_treated_ineligible,
|
|
606
|
+
n_control_eligible=n_control_eligible,
|
|
607
|
+
n_control_ineligible=n_control_ineligible,
|
|
608
|
+
estimation_method=self.estimation_method,
|
|
609
|
+
alpha=self.alpha,
|
|
610
|
+
group_means=group_means,
|
|
611
|
+
pscore_stats=pscore_stats,
|
|
612
|
+
r_squared=r_squared,
|
|
613
|
+
inference_method="analytical",
|
|
614
|
+
n_clusters=n_clusters,
|
|
615
|
+
)
|
|
616
|
+
|
|
617
|
+
self.is_fitted_ = True
|
|
618
|
+
return self.results_
|
|
619
|
+
|
|
620
|
+
def _validate_data(
|
|
621
|
+
self,
|
|
622
|
+
data: pd.DataFrame,
|
|
623
|
+
outcome: str,
|
|
624
|
+
group: str,
|
|
625
|
+
partition: str,
|
|
626
|
+
time: str,
|
|
627
|
+
covariates: Optional[List[str]] = None,
|
|
628
|
+
) -> None:
|
|
629
|
+
"""Validate input data."""
|
|
630
|
+
if not isinstance(data, pd.DataFrame):
|
|
631
|
+
raise TypeError("data must be a pandas DataFrame")
|
|
632
|
+
|
|
633
|
+
# Check required columns exist
|
|
634
|
+
required_cols = [outcome, group, partition, time]
|
|
635
|
+
if covariates:
|
|
636
|
+
required_cols.extend(covariates)
|
|
637
|
+
|
|
638
|
+
missing_cols = [col for col in required_cols if col not in data.columns]
|
|
639
|
+
if missing_cols:
|
|
640
|
+
raise ValueError(f"Missing columns in data: {missing_cols}")
|
|
641
|
+
|
|
642
|
+
# Check for missing values in required columns
|
|
643
|
+
for col in [outcome, group, partition, time]:
|
|
644
|
+
if data[col].isna().any():
|
|
645
|
+
raise ValueError(f"Column '{col}' contains missing values")
|
|
646
|
+
|
|
647
|
+
# Validate binary variables
|
|
648
|
+
for col, name in [(group, "group"), (partition, "partition"), (time, "time")]:
|
|
649
|
+
unique_vals = set(data[col].unique())
|
|
650
|
+
if not unique_vals.issubset({0, 1, 0.0, 1.0}):
|
|
651
|
+
raise ValueError(
|
|
652
|
+
f"'{name}' column must be binary (0/1), "
|
|
653
|
+
f"got values: {sorted(unique_vals)}"
|
|
654
|
+
)
|
|
655
|
+
if len(unique_vals) < 2:
|
|
656
|
+
raise ValueError(
|
|
657
|
+
f"'{name}' column must have both 0 and 1 values"
|
|
658
|
+
)
|
|
659
|
+
|
|
660
|
+
# Check we have observations in all cells
|
|
661
|
+
G = data[group].values
|
|
662
|
+
P = data[partition].values
|
|
663
|
+
T = data[time].values
|
|
664
|
+
|
|
665
|
+
cells = [
|
|
666
|
+
((G == 1) & (P == 1) & (T == 0), "treated, eligible, pre"),
|
|
667
|
+
((G == 1) & (P == 1) & (T == 1), "treated, eligible, post"),
|
|
668
|
+
((G == 1) & (P == 0) & (T == 0), "treated, ineligible, pre"),
|
|
669
|
+
((G == 1) & (P == 0) & (T == 1), "treated, ineligible, post"),
|
|
670
|
+
((G == 0) & (P == 1) & (T == 0), "control, eligible, pre"),
|
|
671
|
+
((G == 0) & (P == 1) & (T == 1), "control, eligible, post"),
|
|
672
|
+
((G == 0) & (P == 0) & (T == 0), "control, ineligible, pre"),
|
|
673
|
+
((G == 0) & (P == 0) & (T == 1), "control, ineligible, post"),
|
|
674
|
+
]
|
|
675
|
+
|
|
676
|
+
for mask, cell_name in cells:
|
|
677
|
+
if np.sum(mask) == 0:
|
|
678
|
+
raise ValueError(
|
|
679
|
+
f"No observations in cell: {cell_name}. "
|
|
680
|
+
"DDD requires observations in all 8 cells."
|
|
681
|
+
)
|
|
682
|
+
|
|
683
|
+
def _compute_cell_means(
|
|
684
|
+
self,
|
|
685
|
+
y: np.ndarray,
|
|
686
|
+
G: np.ndarray,
|
|
687
|
+
P: np.ndarray,
|
|
688
|
+
T: np.ndarray,
|
|
689
|
+
) -> Dict[str, float]:
|
|
690
|
+
"""Compute mean outcomes for each of the 8 DDD cells."""
|
|
691
|
+
means = {}
|
|
692
|
+
for g_val, g_name in [(1, "Treated"), (0, "Control")]:
|
|
693
|
+
for p_val, p_name in [(1, "Eligible"), (0, "Ineligible")]:
|
|
694
|
+
for t_val, t_name in [(0, "Pre"), (1, "Post")]:
|
|
695
|
+
mask = (G == g_val) & (P == p_val) & (T == t_val)
|
|
696
|
+
cell_name = f"{g_name}, {p_name}, {t_name}"
|
|
697
|
+
means[cell_name] = float(np.mean(y[mask]))
|
|
698
|
+
return means
|
|
699
|
+
|
|
700
|
+
def _regression_adjustment(
|
|
701
|
+
self,
|
|
702
|
+
y: np.ndarray,
|
|
703
|
+
G: np.ndarray,
|
|
704
|
+
P: np.ndarray,
|
|
705
|
+
T: np.ndarray,
|
|
706
|
+
X: Optional[np.ndarray],
|
|
707
|
+
) -> Tuple[float, float, Optional[float], Optional[Dict[str, float]]]:
|
|
708
|
+
"""
|
|
709
|
+
Estimate ATT using regression adjustment.
|
|
710
|
+
|
|
711
|
+
Fits an outcome regression with full interactions and covariates,
|
|
712
|
+
then computes the DDD estimand.
|
|
713
|
+
|
|
714
|
+
With covariates, this properly conditions on X rather than naively
|
|
715
|
+
differencing two DiD estimates.
|
|
716
|
+
"""
|
|
717
|
+
n = len(y)
|
|
718
|
+
|
|
719
|
+
# Build design matrix for DDD regression
|
|
720
|
+
# Full specification: Y = α + β_G*G + β_P*P + β_T*T
|
|
721
|
+
# + β_GP*G*P + β_GT*G*T + β_PT*P*T
|
|
722
|
+
# + β_GPT*G*P*T + γ'X + ε
|
|
723
|
+
# The DDD estimate is β_GPT
|
|
724
|
+
|
|
725
|
+
# Create interactions
|
|
726
|
+
GP = G * P
|
|
727
|
+
GT = G * T
|
|
728
|
+
PT = P * T
|
|
729
|
+
GPT = G * P * T
|
|
730
|
+
|
|
731
|
+
# Build design matrix
|
|
732
|
+
design_cols = [np.ones(n), G, P, T, GP, GT, PT, GPT]
|
|
733
|
+
col_names = ["const", "G", "P", "T", "G*P", "G*T", "P*T", "G*P*T"]
|
|
734
|
+
|
|
735
|
+
if X is not None:
|
|
736
|
+
for i in range(X.shape[1]):
|
|
737
|
+
design_cols.append(X[:, i])
|
|
738
|
+
col_names.append(f"X{i}")
|
|
739
|
+
|
|
740
|
+
design_matrix = np.column_stack(design_cols)
|
|
741
|
+
|
|
742
|
+
# Fit OLS using LinearRegression helper
|
|
743
|
+
reg = LinearRegression(
|
|
744
|
+
include_intercept=False, # Intercept already in design_matrix
|
|
745
|
+
robust=self.robust,
|
|
746
|
+
alpha=self.alpha,
|
|
747
|
+
).fit(design_matrix, y)
|
|
748
|
+
|
|
749
|
+
# ATT is the coefficient on G*P*T (index 7)
|
|
750
|
+
inference = reg.get_inference(7)
|
|
751
|
+
att = inference.coefficient
|
|
752
|
+
se = inference.se
|
|
753
|
+
r_squared = reg.r_squared()
|
|
754
|
+
|
|
755
|
+
return att, se, r_squared, None
|
|
756
|
+
|
|
757
|
+
def _ipw_estimation(
|
|
758
|
+
self,
|
|
759
|
+
y: np.ndarray,
|
|
760
|
+
G: np.ndarray,
|
|
761
|
+
P: np.ndarray,
|
|
762
|
+
T: np.ndarray,
|
|
763
|
+
X: Optional[np.ndarray],
|
|
764
|
+
) -> Tuple[float, float, Optional[float], Optional[Dict[str, float]]]:
|
|
765
|
+
"""
|
|
766
|
+
Estimate ATT using inverse probability weighting.
|
|
767
|
+
|
|
768
|
+
Estimates propensity scores for cell membership and uses IPW
|
|
769
|
+
to reweight observations for the DDD estimand.
|
|
770
|
+
"""
|
|
771
|
+
n = len(y)
|
|
772
|
+
|
|
773
|
+
# For DDD-IPW, we need to estimate probabilities for each cell
|
|
774
|
+
# and use them to construct weighted estimators
|
|
775
|
+
|
|
776
|
+
# Create cell indicators
|
|
777
|
+
# Cell 1: G=1, P=1 (treated, eligible) - "effectively treated"
|
|
778
|
+
# Cell 2: G=1, P=0 (treated, ineligible)
|
|
779
|
+
# Cell 3: G=0, P=1 (control, eligible)
|
|
780
|
+
# Cell 4: G=0, P=0 (control, ineligible)
|
|
781
|
+
|
|
782
|
+
cell_1 = (G == 1) & (P == 1)
|
|
783
|
+
cell_2 = (G == 1) & (P == 0)
|
|
784
|
+
cell_3 = (G == 0) & (P == 1)
|
|
785
|
+
cell_4 = (G == 0) & (P == 0)
|
|
786
|
+
|
|
787
|
+
if X is not None and X.shape[1] > 0:
|
|
788
|
+
# Estimate multinomial propensity scores
|
|
789
|
+
# For simplicity, we estimate binary propensity scores for each cell
|
|
790
|
+
# P(G=1|X) and P(P=1|X,G)
|
|
791
|
+
|
|
792
|
+
# Propensity for being in treated group
|
|
793
|
+
try:
|
|
794
|
+
_, p_G = _logistic_regression(X, G)
|
|
795
|
+
except Exception:
|
|
796
|
+
warnings.warn(
|
|
797
|
+
"Propensity score estimation for G failed. "
|
|
798
|
+
"Using unconditional probabilities.",
|
|
799
|
+
UserWarning,
|
|
800
|
+
stacklevel=3,
|
|
801
|
+
)
|
|
802
|
+
p_G = np.full(n, np.mean(G))
|
|
803
|
+
|
|
804
|
+
# Propensity for being in eligible partition (conditional on X)
|
|
805
|
+
try:
|
|
806
|
+
_, p_P = _logistic_regression(X, P)
|
|
807
|
+
except Exception:
|
|
808
|
+
warnings.warn(
|
|
809
|
+
"Propensity score estimation for P failed. "
|
|
810
|
+
"Using unconditional probabilities.",
|
|
811
|
+
UserWarning,
|
|
812
|
+
stacklevel=3,
|
|
813
|
+
)
|
|
814
|
+
p_P = np.full(n, np.mean(P))
|
|
815
|
+
|
|
816
|
+
# Clip propensity scores
|
|
817
|
+
p_G = np.clip(p_G, self.pscore_trim, 1 - self.pscore_trim)
|
|
818
|
+
p_P = np.clip(p_P, self.pscore_trim, 1 - self.pscore_trim)
|
|
819
|
+
|
|
820
|
+
# Cell probabilities (assuming independence conditional on X)
|
|
821
|
+
p_cell_1 = p_G * p_P # P(G=1, P=1|X)
|
|
822
|
+
p_cell_2 = p_G * (1 - p_P) # P(G=1, P=0|X)
|
|
823
|
+
p_cell_3 = (1 - p_G) * p_P # P(G=0, P=1|X)
|
|
824
|
+
p_cell_4 = (1 - p_G) * (1 - p_P) # P(G=0, P=0|X)
|
|
825
|
+
|
|
826
|
+
pscore_stats = {
|
|
827
|
+
"P(G=1) mean": float(np.mean(p_G)),
|
|
828
|
+
"P(G=1) std": float(np.std(p_G)),
|
|
829
|
+
"P(P=1) mean": float(np.mean(p_P)),
|
|
830
|
+
"P(P=1) std": float(np.std(p_P)),
|
|
831
|
+
}
|
|
832
|
+
else:
|
|
833
|
+
# Unconditional probabilities
|
|
834
|
+
p_cell_1 = np.full(n, np.mean(cell_1))
|
|
835
|
+
p_cell_2 = np.full(n, np.mean(cell_2))
|
|
836
|
+
p_cell_3 = np.full(n, np.mean(cell_3))
|
|
837
|
+
p_cell_4 = np.full(n, np.mean(cell_4))
|
|
838
|
+
pscore_stats = None
|
|
839
|
+
|
|
840
|
+
# Clip cell probabilities
|
|
841
|
+
p_cell_1 = np.clip(p_cell_1, self.pscore_trim, 1 - self.pscore_trim)
|
|
842
|
+
p_cell_2 = np.clip(p_cell_2, self.pscore_trim, 1 - self.pscore_trim)
|
|
843
|
+
p_cell_3 = np.clip(p_cell_3, self.pscore_trim, 1 - self.pscore_trim)
|
|
844
|
+
p_cell_4 = np.clip(p_cell_4, self.pscore_trim, 1 - self.pscore_trim)
|
|
845
|
+
|
|
846
|
+
# IPW estimator for DDD
|
|
847
|
+
# The DDD-IPW estimator reweights each cell to have the same
|
|
848
|
+
# covariate distribution as the effectively treated (G=1, P=1)
|
|
849
|
+
|
|
850
|
+
# Pre-period means
|
|
851
|
+
pre_mask = T == 0
|
|
852
|
+
post_mask = T == 1
|
|
853
|
+
|
|
854
|
+
def weighted_mean(y_vals, weights):
|
|
855
|
+
"""Compute weighted mean, handling edge cases."""
|
|
856
|
+
w_sum = np.sum(weights)
|
|
857
|
+
if w_sum <= 0:
|
|
858
|
+
return 0.0
|
|
859
|
+
return np.sum(y_vals * weights) / w_sum
|
|
860
|
+
|
|
861
|
+
# Cell 1 (G=1, P=1): weight = 1 (reference)
|
|
862
|
+
w1_pre = cell_1 & pre_mask
|
|
863
|
+
w1_post = cell_1 & post_mask
|
|
864
|
+
y_11_pre = np.mean(y[w1_pre]) if np.sum(w1_pre) > 0 else 0
|
|
865
|
+
y_11_post = np.mean(y[w1_post]) if np.sum(w1_post) > 0 else 0
|
|
866
|
+
|
|
867
|
+
# Cell 2 (G=1, P=0): reweight to match X-distribution of cell 1
|
|
868
|
+
w2_pre = (cell_2 & pre_mask).astype(float) * (p_cell_1 / p_cell_2)
|
|
869
|
+
w2_post = (cell_2 & post_mask).astype(float) * (p_cell_1 / p_cell_2)
|
|
870
|
+
y_10_pre = weighted_mean(y, w2_pre)
|
|
871
|
+
y_10_post = weighted_mean(y, w2_post)
|
|
872
|
+
|
|
873
|
+
# Cell 3 (G=0, P=1): reweight to match X-distribution of cell 1
|
|
874
|
+
w3_pre = (cell_3 & pre_mask).astype(float) * (p_cell_1 / p_cell_3)
|
|
875
|
+
w3_post = (cell_3 & post_mask).astype(float) * (p_cell_1 / p_cell_3)
|
|
876
|
+
y_01_pre = weighted_mean(y, w3_pre)
|
|
877
|
+
y_01_post = weighted_mean(y, w3_post)
|
|
878
|
+
|
|
879
|
+
# Cell 4 (G=0, P=0): reweight to match X-distribution of cell 1
|
|
880
|
+
w4_pre = (cell_4 & pre_mask).astype(float) * (p_cell_1 / p_cell_4)
|
|
881
|
+
w4_post = (cell_4 & post_mask).astype(float) * (p_cell_1 / p_cell_4)
|
|
882
|
+
y_00_pre = weighted_mean(y, w4_pre)
|
|
883
|
+
y_00_post = weighted_mean(y, w4_post)
|
|
884
|
+
|
|
885
|
+
# DDD estimate
|
|
886
|
+
att = (
|
|
887
|
+
(y_11_post - y_11_pre)
|
|
888
|
+
- (y_10_post - y_10_pre)
|
|
889
|
+
- (y_01_post - y_01_pre)
|
|
890
|
+
+ (y_00_post - y_00_pre)
|
|
891
|
+
)
|
|
892
|
+
|
|
893
|
+
# Standard error (approximate, using delta method)
|
|
894
|
+
# For simplicity, use influence function approach
|
|
895
|
+
se = self._compute_ipw_se(
|
|
896
|
+
y, G, P, T, cell_1, cell_2, cell_3, cell_4,
|
|
897
|
+
p_cell_1, p_cell_2, p_cell_3, p_cell_4, att
|
|
898
|
+
)
|
|
899
|
+
|
|
900
|
+
return att, se, None, pscore_stats
|
|
901
|
+
|
|
902
|
+
def _doubly_robust(
|
|
903
|
+
self,
|
|
904
|
+
y: np.ndarray,
|
|
905
|
+
G: np.ndarray,
|
|
906
|
+
P: np.ndarray,
|
|
907
|
+
T: np.ndarray,
|
|
908
|
+
X: Optional[np.ndarray],
|
|
909
|
+
) -> Tuple[float, float, Optional[float], Optional[Dict[str, float]]]:
|
|
910
|
+
"""
|
|
911
|
+
Estimate ATT using doubly robust estimation.
|
|
912
|
+
|
|
913
|
+
Combines outcome regression and IPW for robustness:
|
|
914
|
+
consistent if either the outcome model or propensity score
|
|
915
|
+
model is correctly specified.
|
|
916
|
+
"""
|
|
917
|
+
n = len(y)
|
|
918
|
+
|
|
919
|
+
# Cell indicators
|
|
920
|
+
cell_1 = (G == 1) & (P == 1)
|
|
921
|
+
cell_2 = (G == 1) & (P == 0)
|
|
922
|
+
cell_3 = (G == 0) & (P == 1)
|
|
923
|
+
cell_4 = (G == 0) & (P == 0)
|
|
924
|
+
|
|
925
|
+
# Step 1: Outcome regression for each cell-time combination
|
|
926
|
+
# Predict E[Y|X,T] for each cell
|
|
927
|
+
if X is not None and X.shape[1] > 0:
|
|
928
|
+
# Fit outcome models for each cell
|
|
929
|
+
mu_fitted = np.zeros(n)
|
|
930
|
+
|
|
931
|
+
for cell_mask, cell_name in [
|
|
932
|
+
(cell_1, "cell_1"), (cell_2, "cell_2"),
|
|
933
|
+
(cell_3, "cell_3"), (cell_4, "cell_4")
|
|
934
|
+
]:
|
|
935
|
+
for t_val in [0, 1]:
|
|
936
|
+
mask = cell_mask & (T == t_val)
|
|
937
|
+
if np.sum(mask) > 1:
|
|
938
|
+
X_cell = np.column_stack([X[mask], T[mask]])
|
|
939
|
+
try:
|
|
940
|
+
_, fitted, _ = _linear_regression(X_cell, y[mask])
|
|
941
|
+
mu_fitted[mask] = fitted
|
|
942
|
+
except Exception:
|
|
943
|
+
mu_fitted[mask] = np.mean(y[mask])
|
|
944
|
+
elif np.sum(mask) == 1:
|
|
945
|
+
mu_fitted[mask] = y[mask]
|
|
946
|
+
|
|
947
|
+
# Propensity scores
|
|
948
|
+
try:
|
|
949
|
+
_, p_G = _logistic_regression(X, G)
|
|
950
|
+
except Exception:
|
|
951
|
+
p_G = np.full(n, np.mean(G))
|
|
952
|
+
|
|
953
|
+
try:
|
|
954
|
+
_, p_P = _logistic_regression(X, P)
|
|
955
|
+
except Exception:
|
|
956
|
+
p_P = np.full(n, np.mean(P))
|
|
957
|
+
|
|
958
|
+
p_G = np.clip(p_G, self.pscore_trim, 1 - self.pscore_trim)
|
|
959
|
+
p_P = np.clip(p_P, self.pscore_trim, 1 - self.pscore_trim)
|
|
960
|
+
|
|
961
|
+
p_cell_1 = p_G * p_P
|
|
962
|
+
p_cell_2 = p_G * (1 - p_P)
|
|
963
|
+
p_cell_3 = (1 - p_G) * p_P
|
|
964
|
+
p_cell_4 = (1 - p_G) * (1 - p_P)
|
|
965
|
+
|
|
966
|
+
pscore_stats = {
|
|
967
|
+
"P(G=1) mean": float(np.mean(p_G)),
|
|
968
|
+
"P(G=1) std": float(np.std(p_G)),
|
|
969
|
+
"P(P=1) mean": float(np.mean(p_P)),
|
|
970
|
+
"P(P=1) std": float(np.std(p_P)),
|
|
971
|
+
}
|
|
972
|
+
else:
|
|
973
|
+
# No covariates: use cell means as predictions
|
|
974
|
+
mu_fitted = np.zeros(n)
|
|
975
|
+
for cell_mask in [cell_1, cell_2, cell_3, cell_4]:
|
|
976
|
+
for t_val in [0, 1]:
|
|
977
|
+
mask = cell_mask & (T == t_val)
|
|
978
|
+
if np.sum(mask) > 0:
|
|
979
|
+
mu_fitted[mask] = np.mean(y[mask])
|
|
980
|
+
|
|
981
|
+
# Unconditional probabilities
|
|
982
|
+
p_cell_1 = np.full(n, np.mean(cell_1))
|
|
983
|
+
p_cell_2 = np.full(n, np.mean(cell_2))
|
|
984
|
+
p_cell_3 = np.full(n, np.mean(cell_3))
|
|
985
|
+
p_cell_4 = np.full(n, np.mean(cell_4))
|
|
986
|
+
pscore_stats = None
|
|
987
|
+
|
|
988
|
+
# Clip cell probabilities
|
|
989
|
+
p_cell_1 = np.clip(p_cell_1, self.pscore_trim, 1 - self.pscore_trim)
|
|
990
|
+
p_cell_2 = np.clip(p_cell_2, self.pscore_trim, 1 - self.pscore_trim)
|
|
991
|
+
p_cell_3 = np.clip(p_cell_3, self.pscore_trim, 1 - self.pscore_trim)
|
|
992
|
+
p_cell_4 = np.clip(p_cell_4, self.pscore_trim, 1 - self.pscore_trim)
|
|
993
|
+
|
|
994
|
+
# Step 2: Doubly robust estimator
|
|
995
|
+
# For each cell, compute the augmented IPW term:
|
|
996
|
+
# (Y - mu(X)) * weight + mu(X)
|
|
997
|
+
|
|
998
|
+
pre_mask = T == 0
|
|
999
|
+
post_mask = T == 1
|
|
1000
|
+
|
|
1001
|
+
# Influence function components for each observation
|
|
1002
|
+
n_1 = np.sum(cell_1)
|
|
1003
|
+
p_ref = n_1 / n
|
|
1004
|
+
|
|
1005
|
+
# Cell 1 (G=1, P=1) - effectively treated
|
|
1006
|
+
inf_11 = np.zeros(n)
|
|
1007
|
+
inf_11[cell_1] = (y[cell_1] - mu_fitted[cell_1]) / p_ref
|
|
1008
|
+
# Add outcome model contribution
|
|
1009
|
+
inf_11 += mu_fitted * cell_1.astype(float) / p_ref
|
|
1010
|
+
|
|
1011
|
+
# Cell 2 (G=1, P=0)
|
|
1012
|
+
w_10 = cell_2.astype(float) * (p_cell_1 / p_cell_2)
|
|
1013
|
+
inf_10 = w_10 * (y - mu_fitted) / p_ref
|
|
1014
|
+
# Add outcome model contribution for cell 2 (vectorized)
|
|
1015
|
+
inf_10[cell_2] += mu_fitted[cell_2] * (p_cell_1[cell_2] / p_cell_2[cell_2]) / p_ref
|
|
1016
|
+
|
|
1017
|
+
# Cell 3 (G=0, P=1)
|
|
1018
|
+
w_01 = cell_3.astype(float) * (p_cell_1 / p_cell_3)
|
|
1019
|
+
inf_01 = w_01 * (y - mu_fitted) / p_ref
|
|
1020
|
+
# Add outcome model contribution for cell 3 (vectorized)
|
|
1021
|
+
inf_01[cell_3] += mu_fitted[cell_3] * (p_cell_1[cell_3] / p_cell_3[cell_3]) / p_ref
|
|
1022
|
+
|
|
1023
|
+
# Cell 4 (G=0, P=0)
|
|
1024
|
+
w_00 = cell_4.astype(float) * (p_cell_1 / p_cell_4)
|
|
1025
|
+
inf_00 = w_00 * (y - mu_fitted) / p_ref
|
|
1026
|
+
# Add outcome model contribution for cell 4 (vectorized)
|
|
1027
|
+
inf_00[cell_4] += mu_fitted[cell_4] * (p_cell_1[cell_4] / p_cell_4[cell_4]) / p_ref
|
|
1028
|
+
|
|
1029
|
+
# Compute cell-time means using DR formula
|
|
1030
|
+
def dr_mean(inf_vals, t_mask):
|
|
1031
|
+
return np.mean(inf_vals[t_mask])
|
|
1032
|
+
|
|
1033
|
+
y_11_pre = dr_mean(inf_11, pre_mask)
|
|
1034
|
+
y_11_post = dr_mean(inf_11, post_mask)
|
|
1035
|
+
y_10_pre = dr_mean(inf_10, pre_mask)
|
|
1036
|
+
y_10_post = dr_mean(inf_10, post_mask)
|
|
1037
|
+
y_01_pre = dr_mean(inf_01, pre_mask)
|
|
1038
|
+
y_01_post = dr_mean(inf_01, post_mask)
|
|
1039
|
+
y_00_pre = dr_mean(inf_00, pre_mask)
|
|
1040
|
+
y_00_post = dr_mean(inf_00, post_mask)
|
|
1041
|
+
|
|
1042
|
+
# DDD estimate
|
|
1043
|
+
att = (
|
|
1044
|
+
(y_11_post - y_11_pre)
|
|
1045
|
+
- (y_10_post - y_10_pre)
|
|
1046
|
+
- (y_01_post - y_01_pre)
|
|
1047
|
+
+ (y_00_post - y_00_pre)
|
|
1048
|
+
)
|
|
1049
|
+
|
|
1050
|
+
# Standard error computation
|
|
1051
|
+
# Use the simpler variance formula for the DDD estimator
|
|
1052
|
+
# Var(DDD) ≈ sum of variances of cell means / cell_sizes
|
|
1053
|
+
|
|
1054
|
+
# Compute variances within each cell-time combination
|
|
1055
|
+
def cell_var(cell_mask, t_mask, y_vals):
|
|
1056
|
+
mask = cell_mask & t_mask
|
|
1057
|
+
if np.sum(mask) > 1:
|
|
1058
|
+
return np.var(y_vals[mask], ddof=1), np.sum(mask)
|
|
1059
|
+
return 0.0, max(1, np.sum(mask))
|
|
1060
|
+
|
|
1061
|
+
# Variance components for each of the 8 cells
|
|
1062
|
+
var_components = []
|
|
1063
|
+
for cell_mask in [cell_1, cell_2, cell_3, cell_4]:
|
|
1064
|
+
for t_mask in [pre_mask, post_mask]:
|
|
1065
|
+
v, n_cell = cell_var(cell_mask, t_mask, y)
|
|
1066
|
+
if n_cell > 0:
|
|
1067
|
+
var_components.append(v / n_cell)
|
|
1068
|
+
|
|
1069
|
+
# Total variance is sum of components (assuming independence)
|
|
1070
|
+
total_var = sum(var_components)
|
|
1071
|
+
se = np.sqrt(total_var)
|
|
1072
|
+
|
|
1073
|
+
# R-squared from outcome regression
|
|
1074
|
+
if X is not None:
|
|
1075
|
+
ss_res = np.sum((y - mu_fitted) ** 2)
|
|
1076
|
+
ss_tot = np.sum((y - np.mean(y)) ** 2)
|
|
1077
|
+
r_squared = 1 - (ss_res / ss_tot) if ss_tot > 0 else 0.0
|
|
1078
|
+
else:
|
|
1079
|
+
r_squared = None
|
|
1080
|
+
|
|
1081
|
+
return att, se, r_squared, pscore_stats
|
|
1082
|
+
|
|
1083
|
+
def _compute_se(
|
|
1084
|
+
self,
|
|
1085
|
+
X: np.ndarray,
|
|
1086
|
+
residuals: np.ndarray,
|
|
1087
|
+
coef_idx: int,
|
|
1088
|
+
) -> float:
|
|
1089
|
+
"""Compute standard error for a coefficient using robust or clustered SE."""
|
|
1090
|
+
n, k = X.shape
|
|
1091
|
+
|
|
1092
|
+
if self.robust:
|
|
1093
|
+
# HC1 robust standard errors
|
|
1094
|
+
vcov = compute_robust_vcov(X, residuals, cluster_ids=None)
|
|
1095
|
+
else:
|
|
1096
|
+
# Classical OLS standard errors
|
|
1097
|
+
mse = np.sum(residuals**2) / (n - k)
|
|
1098
|
+
try:
|
|
1099
|
+
vcov = np.linalg.solve(X.T @ X, mse * np.eye(k))
|
|
1100
|
+
except np.linalg.LinAlgError:
|
|
1101
|
+
vcov = np.linalg.pinv(X.T @ X) * mse
|
|
1102
|
+
|
|
1103
|
+
return float(np.sqrt(vcov[coef_idx, coef_idx]))
|
|
1104
|
+
|
|
1105
|
+
def _compute_ipw_se(
|
|
1106
|
+
self,
|
|
1107
|
+
y: np.ndarray,
|
|
1108
|
+
G: np.ndarray,
|
|
1109
|
+
P: np.ndarray,
|
|
1110
|
+
T: np.ndarray,
|
|
1111
|
+
cell_1: np.ndarray,
|
|
1112
|
+
cell_2: np.ndarray,
|
|
1113
|
+
cell_3: np.ndarray,
|
|
1114
|
+
cell_4: np.ndarray,
|
|
1115
|
+
p_cell_1: np.ndarray,
|
|
1116
|
+
p_cell_2: np.ndarray,
|
|
1117
|
+
p_cell_3: np.ndarray,
|
|
1118
|
+
p_cell_4: np.ndarray,
|
|
1119
|
+
att: float,
|
|
1120
|
+
) -> float:
|
|
1121
|
+
"""Compute standard error for IPW estimator using influence function."""
|
|
1122
|
+
n = len(y)
|
|
1123
|
+
post_mask = T == 1
|
|
1124
|
+
|
|
1125
|
+
# Influence function for IPW estimator (vectorized)
|
|
1126
|
+
inf_func = np.zeros(n)
|
|
1127
|
+
|
|
1128
|
+
n_ref = np.sum(cell_1)
|
|
1129
|
+
p_ref = n_ref / n
|
|
1130
|
+
|
|
1131
|
+
# Sign: +1 for post, -1 for pre
|
|
1132
|
+
sign = np.where(post_mask, 1.0, -1.0)
|
|
1133
|
+
|
|
1134
|
+
# Cell 1 (G=1, P=1): sign * (y - att) / p_ref
|
|
1135
|
+
inf_func[cell_1] = sign[cell_1] * (y[cell_1] - att) / p_ref
|
|
1136
|
+
|
|
1137
|
+
# Cell 2 (G=1, P=0): -sign * y * (p_cell_1 / p_cell_2) / p_ref
|
|
1138
|
+
w_2 = p_cell_1[cell_2] / p_cell_2[cell_2]
|
|
1139
|
+
inf_func[cell_2] = -sign[cell_2] * y[cell_2] * w_2 / p_ref
|
|
1140
|
+
|
|
1141
|
+
# Cell 3 (G=0, P=1): -sign * y * (p_cell_1 / p_cell_3) / p_ref
|
|
1142
|
+
w_3 = p_cell_1[cell_3] / p_cell_3[cell_3]
|
|
1143
|
+
inf_func[cell_3] = -sign[cell_3] * y[cell_3] * w_3 / p_ref
|
|
1144
|
+
|
|
1145
|
+
# Cell 4 (G=0, P=0): sign * y * (p_cell_1 / p_cell_4) / p_ref
|
|
1146
|
+
w_4 = p_cell_1[cell_4] / p_cell_4[cell_4]
|
|
1147
|
+
inf_func[cell_4] = sign[cell_4] * y[cell_4] * w_4 / p_ref
|
|
1148
|
+
|
|
1149
|
+
var_inf = np.var(inf_func, ddof=1)
|
|
1150
|
+
se = np.sqrt(var_inf / n)
|
|
1151
|
+
|
|
1152
|
+
return se
|
|
1153
|
+
|
|
1154
|
+
def get_params(self) -> Dict[str, Any]:
|
|
1155
|
+
"""
|
|
1156
|
+
Get estimator parameters (sklearn-compatible).
|
|
1157
|
+
|
|
1158
|
+
Returns
|
|
1159
|
+
-------
|
|
1160
|
+
Dict[str, Any]
|
|
1161
|
+
Estimator parameters.
|
|
1162
|
+
"""
|
|
1163
|
+
return {
|
|
1164
|
+
"estimation_method": self.estimation_method,
|
|
1165
|
+
"robust": self.robust,
|
|
1166
|
+
"cluster": self.cluster,
|
|
1167
|
+
"alpha": self.alpha,
|
|
1168
|
+
"pscore_trim": self.pscore_trim,
|
|
1169
|
+
}
|
|
1170
|
+
|
|
1171
|
+
def set_params(self, **params) -> "TripleDifference":
|
|
1172
|
+
"""
|
|
1173
|
+
Set estimator parameters (sklearn-compatible).
|
|
1174
|
+
|
|
1175
|
+
Parameters
|
|
1176
|
+
----------
|
|
1177
|
+
**params
|
|
1178
|
+
Estimator parameters.
|
|
1179
|
+
|
|
1180
|
+
Returns
|
|
1181
|
+
-------
|
|
1182
|
+
self
|
|
1183
|
+
"""
|
|
1184
|
+
for key, value in params.items():
|
|
1185
|
+
if hasattr(self, key):
|
|
1186
|
+
setattr(self, key, value)
|
|
1187
|
+
else:
|
|
1188
|
+
raise ValueError(f"Unknown parameter: {key}")
|
|
1189
|
+
return self
|
|
1190
|
+
|
|
1191
|
+
def summary(self) -> str:
|
|
1192
|
+
"""
|
|
1193
|
+
Get summary of estimation results.
|
|
1194
|
+
|
|
1195
|
+
Returns
|
|
1196
|
+
-------
|
|
1197
|
+
str
|
|
1198
|
+
Formatted summary.
|
|
1199
|
+
"""
|
|
1200
|
+
if not self.is_fitted_:
|
|
1201
|
+
raise RuntimeError("Model must be fitted before calling summary()")
|
|
1202
|
+
assert self.results_ is not None
|
|
1203
|
+
return self.results_.summary()
|
|
1204
|
+
|
|
1205
|
+
def print_summary(self) -> None:
|
|
1206
|
+
"""Print summary to stdout."""
|
|
1207
|
+
print(self.summary())
|
|
1208
|
+
|
|
1209
|
+
|
|
1210
|
+
# =============================================================================
|
|
1211
|
+
# Convenience function
|
|
1212
|
+
# =============================================================================
|
|
1213
|
+
|
|
1214
|
+
|
|
1215
|
+
def triple_difference(
|
|
1216
|
+
data: pd.DataFrame,
|
|
1217
|
+
outcome: str,
|
|
1218
|
+
group: str,
|
|
1219
|
+
partition: str,
|
|
1220
|
+
time: str,
|
|
1221
|
+
covariates: Optional[List[str]] = None,
|
|
1222
|
+
estimation_method: str = "dr",
|
|
1223
|
+
robust: bool = True,
|
|
1224
|
+
cluster: Optional[str] = None,
|
|
1225
|
+
alpha: float = 0.05,
|
|
1226
|
+
) -> TripleDifferenceResults:
|
|
1227
|
+
"""
|
|
1228
|
+
Estimate Triple Difference (DDD) treatment effect.
|
|
1229
|
+
|
|
1230
|
+
Convenience function that creates a TripleDifference estimator and
|
|
1231
|
+
fits it to the data in one step.
|
|
1232
|
+
|
|
1233
|
+
Parameters
|
|
1234
|
+
----------
|
|
1235
|
+
data : pd.DataFrame
|
|
1236
|
+
DataFrame containing all variables.
|
|
1237
|
+
outcome : str
|
|
1238
|
+
Name of the outcome variable column.
|
|
1239
|
+
group : str
|
|
1240
|
+
Name of the group indicator column (0/1).
|
|
1241
|
+
1 = treated group (e.g., states that enacted policy).
|
|
1242
|
+
partition : str
|
|
1243
|
+
Name of the partition/eligibility indicator column (0/1).
|
|
1244
|
+
1 = eligible partition (e.g., women, targeted demographic).
|
|
1245
|
+
time : str
|
|
1246
|
+
Name of the time period indicator column (0/1).
|
|
1247
|
+
1 = post-treatment period.
|
|
1248
|
+
covariates : list of str, optional
|
|
1249
|
+
List of covariate column names to adjust for.
|
|
1250
|
+
estimation_method : str, default="dr"
|
|
1251
|
+
Estimation method: "dr" (doubly robust), "reg" (regression),
|
|
1252
|
+
or "ipw" (inverse probability weighting).
|
|
1253
|
+
robust : bool, default=True
|
|
1254
|
+
Whether to use robust standard errors.
|
|
1255
|
+
cluster : str, optional
|
|
1256
|
+
Column name for cluster-robust standard errors.
|
|
1257
|
+
alpha : float, default=0.05
|
|
1258
|
+
Significance level for confidence intervals.
|
|
1259
|
+
|
|
1260
|
+
Returns
|
|
1261
|
+
-------
|
|
1262
|
+
TripleDifferenceResults
|
|
1263
|
+
Object containing estimation results.
|
|
1264
|
+
|
|
1265
|
+
Examples
|
|
1266
|
+
--------
|
|
1267
|
+
>>> from diff_diff import triple_difference
|
|
1268
|
+
>>> results = triple_difference(
|
|
1269
|
+
... data,
|
|
1270
|
+
... outcome='earnings',
|
|
1271
|
+
... group='policy_state',
|
|
1272
|
+
... partition='female',
|
|
1273
|
+
... time='post_policy',
|
|
1274
|
+
... covariates=['age', 'education']
|
|
1275
|
+
... )
|
|
1276
|
+
>>> print(f"ATT: {results.att:.3f} (SE: {results.se:.3f})")
|
|
1277
|
+
"""
|
|
1278
|
+
estimator = TripleDifference(
|
|
1279
|
+
estimation_method=estimation_method,
|
|
1280
|
+
robust=robust,
|
|
1281
|
+
cluster=cluster,
|
|
1282
|
+
alpha=alpha,
|
|
1283
|
+
)
|
|
1284
|
+
return estimator.fit(
|
|
1285
|
+
data=data,
|
|
1286
|
+
outcome=outcome,
|
|
1287
|
+
group=group,
|
|
1288
|
+
partition=partition,
|
|
1289
|
+
time=time,
|
|
1290
|
+
covariates=covariates,
|
|
1291
|
+
)
|