dgenerate-ultralytics-headless 8.4.7__py3-none-any.whl → 8.4.9__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (36) hide show
  1. {dgenerate_ultralytics_headless-8.4.7.dist-info → dgenerate_ultralytics_headless-8.4.9.dist-info}/METADATA +3 -3
  2. {dgenerate_ultralytics_headless-8.4.7.dist-info → dgenerate_ultralytics_headless-8.4.9.dist-info}/RECORD +36 -36
  3. {dgenerate_ultralytics_headless-8.4.7.dist-info → dgenerate_ultralytics_headless-8.4.9.dist-info}/WHEEL +1 -1
  4. tests/test_cli.py +10 -3
  5. tests/test_cuda.py +1 -1
  6. tests/test_exports.py +64 -43
  7. tests/test_python.py +16 -12
  8. ultralytics/__init__.py +1 -1
  9. ultralytics/cfg/__init__.py +1 -0
  10. ultralytics/cfg/default.yaml +1 -0
  11. ultralytics/data/augment.py +2 -2
  12. ultralytics/data/converter.py +11 -0
  13. ultralytics/engine/exporter.py +13 -16
  14. ultralytics/engine/predictor.py +5 -0
  15. ultralytics/engine/trainer.py +3 -3
  16. ultralytics/engine/tuner.py +2 -2
  17. ultralytics/engine/validator.py +5 -0
  18. ultralytics/models/sam/predict.py +2 -2
  19. ultralytics/models/yolo/classify/train.py +14 -1
  20. ultralytics/models/yolo/detect/train.py +4 -2
  21. ultralytics/models/yolo/pose/train.py +2 -1
  22. ultralytics/models/yolo/world/train_world.py +21 -1
  23. ultralytics/models/yolo/yoloe/train.py +1 -2
  24. ultralytics/nn/autobackend.py +22 -6
  25. ultralytics/nn/modules/head.py +13 -2
  26. ultralytics/nn/tasks.py +18 -0
  27. ultralytics/solutions/security_alarm.py +1 -1
  28. ultralytics/utils/benchmarks.py +3 -9
  29. ultralytics/utils/checks.py +18 -3
  30. ultralytics/utils/dist.py +9 -3
  31. ultralytics/utils/loss.py +4 -5
  32. ultralytics/utils/tal.py +15 -5
  33. ultralytics/utils/torch_utils.py +2 -1
  34. {dgenerate_ultralytics_headless-8.4.7.dist-info → dgenerate_ultralytics_headless-8.4.9.dist-info}/entry_points.txt +0 -0
  35. {dgenerate_ultralytics_headless-8.4.7.dist-info → dgenerate_ultralytics_headless-8.4.9.dist-info}/licenses/LICENSE +0 -0
  36. {dgenerate_ultralytics_headless-8.4.7.dist-info → dgenerate_ultralytics_headless-8.4.9.dist-info}/top_level.txt +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: dgenerate-ultralytics-headless
3
- Version: 8.4.7
3
+ Version: 8.4.9
4
4
  Summary: Automatically built Ultralytics package with python-opencv-headless dependency instead of python-opencv
5
5
  Author-email: Glenn Jocher <glenn.jocher@ultralytics.com>, Jing Qiu <jing.qiu@ultralytics.com>
6
6
  Maintainer-email: Ultralytics <hello@ultralytics.com>
@@ -39,8 +39,8 @@ Requires-Dist: pillow>=7.1.2
39
39
  Requires-Dist: pyyaml>=5.3.1
40
40
  Requires-Dist: requests>=2.23.0
41
41
  Requires-Dist: scipy>=1.4.1
42
- Requires-Dist: torch<2.10,>=1.8.0
43
- Requires-Dist: torch!=2.4.0,<2.10,>=1.8.0; sys_platform == "win32"
42
+ Requires-Dist: torch>=1.8.0
43
+ Requires-Dist: torch!=2.4.0,>=1.8.0; sys_platform == "win32"
44
44
  Requires-Dist: torchvision>=0.9.0
45
45
  Requires-Dist: psutil>=5.8.0
46
46
  Requires-Dist: polars>=0.20.0
@@ -1,19 +1,19 @@
1
- dgenerate_ultralytics_headless-8.4.7.dist-info/licenses/LICENSE,sha256=DZak_2itbUtvHzD3E7GNUYSRK6jdOJ-GqncQ2weavLA,34523
1
+ dgenerate_ultralytics_headless-8.4.9.dist-info/licenses/LICENSE,sha256=DZak_2itbUtvHzD3E7GNUYSRK6jdOJ-GqncQ2weavLA,34523
2
2
  tests/__init__.py,sha256=hfUXxYLJB3846OCzWV94ZKEZsi8vq9Pqrdd2mMgjjck,804
3
3
  tests/conftest.py,sha256=rlKyDuOC_3ptXrWS8Q19bNEGOupUmYXHj3nB6o1GBGY,2318
4
- tests/test_cli.py,sha256=GhIFHi-_WIJpDgoGNRi0DnjbfwP1wHbklBMnkCM-P_4,5464
5
- tests/test_cuda.py,sha256=2TBe-ZkecMOGPWLdHcbsAjH3m9c5SQJ2KeyICgS0aeo,8426
4
+ tests/test_cli.py,sha256=-OrAcZlcJ07UPagjSOlR8qXP5gNFHaTYcW3paOTURAE,5725
5
+ tests/test_cuda.py,sha256=V0dPXBinxDOlFA4NDlD2HuYM41KBhLAdt06adEDeP20,8440
6
6
  tests/test_engine.py,sha256=ufSn3X4kL_Lpn2O25jKAfw_9QwHTMRjP9shDdpgBqnY,5740
7
- tests/test_exports.py,sha256=Toy4u-4bsoyAbzNhc9kbMuKqvMKywZxNj5jlFNTzFWs,14670
7
+ tests/test_exports.py,sha256=pZZJBN2uM5QdQMjnjIC-xZkKPOBbnnX8b5d5q90otl4,15651
8
8
  tests/test_integrations.py,sha256=FjvTGjXm3bvYHK3_obgObhC5SzHCTzw4aOJV9Hh08jQ,6220
9
- tests/test_python.py,sha256=CRgmOp2TiGBn9p7m16PVXBq3G9SkzIWG_kZvC9-nTGo,30474
9
+ tests/test_python.py,sha256=BTyRn29boDKu4n0v1_5D3_7wvADs077NU9RFdTZktHo,30774
10
10
  tests/test_solutions.py,sha256=1tRlM72YciE42Nk9v83gsXOD5RSx9GSWVsKGhH7-HxE,14122
11
- ultralytics/__init__.py,sha256=uc5Wwzw5ozOEVHw3LV11N34z-n4aZ3iH6pwcvQ4TP5I,1300
11
+ ultralytics/__init__.py,sha256=QNUx0fvpKV5GANkIcj2VFs06MxGldr-UqD2L3aJngao,1300
12
12
  ultralytics/py.typed,sha256=la67KBlbjXN-_-DfGNcdOcjYumVpKG_Tkw-8n5dnGB4,8
13
13
  ultralytics/assets/bus.jpg,sha256=wCAZxJecGR63Od3ZRERe9Aja1Weayrb9Ug751DS_vGM,137419
14
14
  ultralytics/assets/zidane.jpg,sha256=Ftc4aeMmen1O0A3o6GCDO9FlfBslLpTAw0gnetx7bts,50427
15
- ultralytics/cfg/__init__.py,sha256=N7eKXgd97UHWxYOgx_s3KKLzdKvRzp5LCFUL2P8Rpeo,40212
16
- ultralytics/cfg/default.yaml,sha256=HFUxIYHNKR1RBmMfEmv72zNp2kqMzrSm18IQSKKTgnQ,9053
15
+ ultralytics/cfg/__init__.py,sha256=bpSqIVZLUmwiI-3n4915oBTBgpGTsGmuaTkSXygAXt4,40231
16
+ ultralytics/cfg/default.yaml,sha256=2eH6bsCK10V68o2Y3B2kCOnhXvQ64A_2HmrDYP71dKw,9149
17
17
  ultralytics/cfg/datasets/Argoverse.yaml,sha256=QGpdh3Hj5dFrvbsaE_8rAVj9BO4XpKTB7uhXaTTnE-o,3364
18
18
  ultralytics/cfg/datasets/DOTAv1.5.yaml,sha256=KE7VC-ZMDSei1pLPm-pdk_ZAMRU_gLwGgtIQNbwp6dA,1212
19
19
  ultralytics/cfg/datasets/DOTAv1.yaml,sha256=DUmBEfvdlCRH2t9aqhc3uk55sOXWWsY9v6RVYaELeTA,1182
@@ -120,10 +120,10 @@ ultralytics/cfg/trackers/botsort.yaml,sha256=tRxC-qT4Wz0mLn5x7ZEwrqgGKrmTDVY7gMg
120
120
  ultralytics/cfg/trackers/bytetrack.yaml,sha256=7LS1ObP5u7BUFcmeY6L2m3bRuPUktnpJspFKd_ElVWc,908
121
121
  ultralytics/data/__init__.py,sha256=ToR8zl0JhBHy42ZvV7zIwO_F3lbi5oNlGQNPK3dlddU,644
122
122
  ultralytics/data/annotator.py,sha256=iu1En-LzlR4RyR3ocftthnAog_peQHV9ForPRo_QcX8,2985
123
- ultralytics/data/augment.py,sha256=XR52_BEmwFOrdMxEVRypm_kz6ROkTBgVped05R2xZWs,128566
123
+ ultralytics/data/augment.py,sha256=z11SV8ikxHN59_ebvX_45dXH7iX1f8RG1MtANfdFK5E,128562
124
124
  ultralytics/data/base.py,sha256=pMs8yJOmAFPXdgfLCDtUemSvkPNDzxReP-fWzkNtonc,19723
125
125
  ultralytics/data/build.py,sha256=s-tkSZPf3OfQyfXPXB9XxdW_gIcU6Xy_u21ekSgTnRo,17205
126
- ultralytics/data/converter.py,sha256=iO3wlF8-Z1wyEH4ueptzOXZd6vJttLOhu7XpWYtitL8,33886
126
+ ultralytics/data/converter.py,sha256=4SwrEKzsdKK3YcoCcEhu0_UmFyaUuQEVPIWENFxlAC4,34520
127
127
  ultralytics/data/dataset.py,sha256=r_BZy4FwMZ-dYkaJiz1E3jr2pI6dn7V3hZwf2RM9_RQ,36536
128
128
  ultralytics/data/loaders.py,sha256=BQbhgjiLCGcRBPkGVG9Hr1jeNfG1nuZD3jstiWb7zS8,31889
129
129
  ultralytics/data/split.py,sha256=HpR0ltf5oN1DpZstavFbBFC1YdpGPaATXxDOcAMwOqc,5101
@@ -134,13 +134,13 @@ ultralytics/data/scripts/get_coco.sh,sha256=UuJpJeo3qQpTHVINeOpmP0NYmg8PhEFE3A8J
134
134
  ultralytics/data/scripts/get_coco128.sh,sha256=qmRQl_hOKrsdHrTrnyQuFIH01oDz3lfaz138OgGfLt8,650
135
135
  ultralytics/data/scripts/get_imagenet.sh,sha256=hr42H16bM47iT27rgS7MpEo-GeOZAYUQXgr0B2cwn48,1705
136
136
  ultralytics/engine/__init__.py,sha256=lm6MckFYCPTbqIoX7w0s_daxdjNeBeKW6DXppv1-QUM,70
137
- ultralytics/engine/exporter.py,sha256=n_DtRhD0jT9sTFb8oQ_TYdQYTQJbsQzwqdISwR-mQY4,73330
137
+ ultralytics/engine/exporter.py,sha256=FUG4OyzjSNWlMu__q81YLCM1ZtIObWynsbZgIEtN_FA,73168
138
138
  ultralytics/engine/model.py,sha256=euDHUy7J5vVBvS_d-KbGZd_0BP5bF6Y3cTQ7VXtwZ4k,53210
139
- ultralytics/engine/predictor.py,sha256=tXrHSTHJ-rDQ3lrPW9P5_ei_ewTwbY2sji6MExybJ28,22838
139
+ ultralytics/engine/predictor.py,sha256=x3xzVlfj92HgLdxPvoKFKpyzp1wSsNVCahpbO5sse80,23102
140
140
  ultralytics/engine/results.py,sha256=Lg-Ke8TU6qaxu0wQtOH26unORj4FRYxd8RL0VxV74Zw,68333
141
- ultralytics/engine/trainer.py,sha256=_pd1lvD2TWcE3v7P4OWqq-fPK5HLzeknxhSylpRuuNw,47309
142
- ultralytics/engine/tuner.py,sha256=F4fyQaC5_GT74TULRO0VhzTv2S_a54cZDc3FjFoqaHE,21840
143
- ultralytics/engine/validator.py,sha256=DiKsygbNJdRdwXoKoYOJA6bP_T7vMW3Syj_Qc_l7xTM,17761
141
+ ultralytics/engine/trainer.py,sha256=xjWm1ar-ua7nVOcRoAwjNVUH-QWPYAFRqCg6jB6PiG8,47250
142
+ ultralytics/engine/tuner.py,sha256=RDiEWqADVutVDXRHvZIes8QqLUFnffXFXkXk4clfEuQ,21881
143
+ ultralytics/engine/validator.py,sha256=BoQ8mc-OLdAKCaS6ikL0MJf2LQVkNP1oN44ZCqkOx-g,18045
144
144
  ultralytics/hub/__init__.py,sha256=Z0K_E00jzQh90b18q3IDChwVmTvyIYp6C00sCV-n2F8,6709
145
145
  ultralytics/hub/auth.py,sha256=ANzCeZA7lUzTWc_sFHbDuuyBh1jLl2sTpHkoUbIkFYE,6254
146
146
  ultralytics/hub/session.py,sha256=OzBXAL9R135gRDdfNYUqyiSrxOyaiMFCVYSZua99sF0,18364
@@ -166,7 +166,7 @@ ultralytics/models/sam/amg.py,sha256=aYvJ7jQMkTR3X9KV7SHi3qP3yNchQggWNUurTRZwxQg
166
166
  ultralytics/models/sam/build.py,sha256=rEaFXA4R1nyutSonIenRKcuNtO1FgEojnkcayo0FTP4,12867
167
167
  ultralytics/models/sam/build_sam3.py,sha256=Gg_LiqNrCDTYaDWrob05vj-ln2AhkfMa5KkKhyk5wdE,11976
168
168
  ultralytics/models/sam/model.py,sha256=cOawDSkFqJPbt3455aTZ8tjaoWshFWFHQGGqxzsL_QQ,7372
169
- ultralytics/models/sam/predict.py,sha256=Y6JEP3WGAF1gzTg8Z4eCgdtPFFbexSEA75F7zd8Cp_c,203689
169
+ ultralytics/models/sam/predict.py,sha256=k4eTU3g7ihvAn-moBpzR4ox1GUlOEHVQDzywbnheFFM,203651
170
170
  ultralytics/models/sam/modules/__init__.py,sha256=lm6MckFYCPTbqIoX7w0s_daxdjNeBeKW6DXppv1-QUM,70
171
171
  ultralytics/models/sam/modules/blocks.py,sha256=ZU2aY4h6fmosj5pZ5EOEuO1O8Cl8UYeH11eOxkqCt8M,44570
172
172
  ultralytics/models/sam/modules/decoders.py,sha256=G4li37ahUe5rTTNTKibWMsAoz6G3R18rI8OPvfunVX8,25045
@@ -194,11 +194,11 @@ ultralytics/models/yolo/__init__.py,sha256=YD407NDDiyjo0x_MR6usJaTpePKPgsfBUYehl
194
194
  ultralytics/models/yolo/model.py,sha256=HXkglzJQqW1x7MJaKavI5aasA-0lSH21Xcv_dac3SFU,18504
195
195
  ultralytics/models/yolo/classify/__init__.py,sha256=9--HVaNOfI1K7rn_rRqclL8FUAnpfeBrRqEQIaQw2xM,383
196
196
  ultralytics/models/yolo/classify/predict.py,sha256=HCStYkSqeg32SNTWfr4FDCkUMQ4wnKqceUK3T995us4,4137
197
- ultralytics/models/yolo/classify/train.py,sha256=41ZxaIJkzkRxfgq6VffFX5Xfsrm9tNv3i3bdtUPAocE,8958
197
+ ultralytics/models/yolo/classify/train.py,sha256=xPlpioQFPeH32Frhy9ZbbGV_wcpn9hPB4EB4N0Kw-DE,9614
198
198
  ultralytics/models/yolo/classify/val.py,sha256=akH2P3nff4oiZtV2toKB3Z9HIbsVcwsb1uvDwhamszw,10503
199
199
  ultralytics/models/yolo/detect/__init__.py,sha256=GIRsLYR-kT4JJx7lh4ZZAFGBZj0aebokuU0A7JbjDVA,257
200
200
  ultralytics/models/yolo/detect/predict.py,sha256=2nxlMyw_zVKq1aeJFRTgb4EGL2vOFq4pLT9tArHBfF8,5385
201
- ultralytics/models/yolo/detect/train.py,sha256=uz9PTsoLnIypxiOX2C7C7an3sarIUCQmiqmlZScE84c,10586
201
+ ultralytics/models/yolo/detect/train.py,sha256=9JwTYi6M33cGhmAmdl099Bjrjb7woqu7fJSJgoivubk,10736
202
202
  ultralytics/models/yolo/detect/val.py,sha256=54AOR6r3istE0pILJ1v4xzPdv7UcvtTEZ6E5OGj3Jgc,22818
203
203
  ultralytics/models/yolo/obb/__init__.py,sha256=tQmpG8wVHsajWkZdmD6cjGohJ4ki64iSXQT8JY_dydo,221
204
204
  ultralytics/models/yolo/obb/predict.py,sha256=I7hWDr1zuy2WuwGom9uzXqomfr7qVMWb7iRl18xdTYw,2577
@@ -206,7 +206,7 @@ ultralytics/models/yolo/obb/train.py,sha256=HEDdPiP-yBbrUQWllcD1rc3gGrbzQmT6RBMT
206
206
  ultralytics/models/yolo/obb/val.py,sha256=qYNe7ZcW3rhTLYPw15OeGfBaqaa_f1ADs4FF21h32e4,14513
207
207
  ultralytics/models/yolo/pose/__init__.py,sha256=_9OFLj19XwvJHBRxQtVW5CV7rvJ_3hDPE97miit0sPc,227
208
208
  ultralytics/models/yolo/pose/predict.py,sha256=6EW9palcAoWX-gu5ROQvO6AxBSm719934hhqF-9OGjM,3118
209
- ultralytics/models/yolo/pose/train.py,sha256=IlmsFlb0TsWZVy6PL3Trr_aXfwwGMBKAHyxnP7VPp_g,4747
209
+ ultralytics/models/yolo/pose/train.py,sha256=pXYpkPU3SmPqw_gVONUFsikhlO4aw-j6Ry17ep5SlqI,4816
210
210
  ultralytics/models/yolo/pose/val.py,sha256=0luDccEPb_lUMjzaBb5VMsh9RdXVAbxb3Br57VKWNdc,12004
211
211
  ultralytics/models/yolo/segment/__init__.py,sha256=3IThhZ1wlkY9FvmWm9cE-5-ZyE6F1FgzAtQ6jOOFzzw,275
212
212
  ultralytics/models/yolo/segment/predict.py,sha256=zLhmSTVEnaUumIX9SbjZH09kr2VrNdYWEss7FvseVuY,5428
@@ -214,21 +214,21 @@ ultralytics/models/yolo/segment/train.py,sha256=nS3qrT7Y3swCwjGZzeDQ2EunC9ilMsOi
214
214
  ultralytics/models/yolo/segment/val.py,sha256=AvPS4rhV2PFpi0yixUfJhdczXctmZQSKgTjh7qVH0To,13204
215
215
  ultralytics/models/yolo/world/__init__.py,sha256=nlh8I6t8hMGz_vZg8QSlsUW1R-2eKvn9CGUoPPQEGhA,131
216
216
  ultralytics/models/yolo/world/train.py,sha256=80kswko6Zu7peXPBhXcfrTo5HO3Rg8C_cu4vPBQlk7M,7906
217
- ultralytics/models/yolo/world/train_world.py,sha256=5Jj4gzEwDJtz37bEahL6Lf4xp-c1xiYjGKeg_w7Esns,8723
217
+ ultralytics/models/yolo/world/train_world.py,sha256=se78I38c7rC2W76Fe0cg9axsK3JixMOafM1PpPZf1cE,9437
218
218
  ultralytics/models/yolo/yoloe/__init__.py,sha256=zaZo1_ommaxNv7mD7xpdSomNF4s8mpOcCVTXspg0ncY,760
219
219
  ultralytics/models/yolo/yoloe/predict.py,sha256=zeu_whH4e2SIWXV8MmJ1NNzoM_cNsiI2kOTjlAhV4qg,7065
220
- ultralytics/models/yolo/yoloe/train.py,sha256=99iSHQs--5VU_s82Q4w-fAJmyT5-y0TykTul8bo4xFo,13303
220
+ ultralytics/models/yolo/yoloe/train.py,sha256=q7K1fiqKrpbjfrrd3F3FiVMPtQAVuVzQinIh0i1yz1g,13284
221
221
  ultralytics/models/yolo/yoloe/train_seg.py,sha256=rV2Jnbuh6vvBMaupaZK_aRXBMevO0XhN2VUR43ZwlIY,5285
222
222
  ultralytics/models/yolo/yoloe/val.py,sha256=utUFWeFKRFWZrPr1y3A8ztbTwdoWMYqzlwBN7CQ0tCA,9418
223
223
  ultralytics/nn/__init__.py,sha256=538LZPUKKvc3JCMgiQ4VLGqRN2ZAaVLFcQbeNNHFkEA,545
224
- ultralytics/nn/autobackend.py,sha256=MLS68iMNv6U0HyBK8nGjcyLOyImYIGEjP4398KqOkV0,45068
225
- ultralytics/nn/tasks.py,sha256=PmlYScI7qTRCmYRR90Mw1QnqeRzvY0ojAMrgStBr11g,72010
224
+ ultralytics/nn/autobackend.py,sha256=gqFej3DueyHWQ6Fy3HuUIVGGy8_iYkKkvklapmzLKH0,44939
225
+ ultralytics/nn/tasks.py,sha256=xclS6E6OIBDurrDscTVmVafvmd8JOIiagIT4iEGwD4M,72588
226
226
  ultralytics/nn/text_model.py,sha256=c--WzxjFEDb7p95u3YGcSsJLjj91zFNqXshij8Evrwg,15291
227
227
  ultralytics/nn/modules/__init__.py,sha256=9KyQBxpomp5uJJ1PvMGuOFs2pR3NpqZcFHJlM6Q56c0,3322
228
228
  ultralytics/nn/modules/activation.py,sha256=J6n-CJKFK0YbhwcRDqm9zEJM9pSAEycj5quQss_3x6E,2219
229
229
  ultralytics/nn/modules/block.py,sha256=9d1eelj3uRnf-HWTHYTjsBqLSpMCrwBQuX52MjeapN4,74499
230
230
  ultralytics/nn/modules/conv.py,sha256=9WUlBzHD-wLgz0riLyttzASLIqBtXPK6Jk5EdyIiGCM,21100
231
- ultralytics/nn/modules/head.py,sha256=eJvXtr_ONGqQVdtsUpJtslplgVblti5sMxP9nkoSa0Y,78057
231
+ ultralytics/nn/modules/head.py,sha256=yeXKv9P6gxC7Zkvdu7ndQ8H7WDKnnoJ9yYyV6FkpUcY,78487
232
232
  ultralytics/nn/modules/transformer.py,sha256=lAjTH-U8IkBp_1cXSOOFSus9tJf-s8WISKKcXPB84CM,31972
233
233
  ultralytics/nn/modules/utils.py,sha256=EyhENse_RESlXjLHAJWvV07_tq1MVMmfzXgPR1fiT9w,6066
234
234
  ultralytics/optim/__init__.py,sha256=Sl3Dx2eiaJd_u4VbmqcBqWWDF8FHnO5W0nBEL8_M_C4,130
@@ -246,7 +246,7 @@ ultralytics/solutions/object_cropper.py,sha256=WRbrfXAR5aD6PQBqJ-BvcVaiaqta_9YeT
246
246
  ultralytics/solutions/parking_management.py,sha256=Q0fEFKlv6dKKWuw_4jmWaeHQVXGppzuU7Vr_HqVYqHM,13770
247
247
  ultralytics/solutions/queue_management.py,sha256=NlVX6PMEaffjoZjfQrVyayaDUdtc0JF8GzTQrZFjpCg,4371
248
248
  ultralytics/solutions/region_counter.py,sha256=IAvlFwEYoNftDzfBbdo5MzLwcuidOHW9oTGyRCDzMRc,6025
249
- ultralytics/solutions/security_alarm.py,sha256=QjUIVBWcy094VTcOkk_zOq3BmKKOeIaHpVi_QMWo_3Q,6293
249
+ ultralytics/solutions/security_alarm.py,sha256=ep53mA6h5a4pzPmVgoxBmRRgv6u9RDC7lG1H7Ipjko0,6293
250
250
  ultralytics/solutions/similarity_search.py,sha256=Q2FOBUtEokegiJHlfDbPP0bKxr5F-sHN3-IvskDoe00,9644
251
251
  ultralytics/solutions/solutions.py,sha256=ktLwDhC0y4k2FbNd0sk7Y8GcEvBu9wL3rXyFGwlbnIQ,36984
252
252
  ultralytics/solutions/speed_estimation.py,sha256=WrZECxKAq6P4QpeTbhkp3-Rqjnox7tdR25fUxzozlpU,5861
@@ -266,10 +266,10 @@ ultralytics/trackers/utils/matching.py,sha256=x6uZOIx0O9oVmAcfY6tYMTJQE2cDTUlRR6
266
266
  ultralytics/utils/__init__.py,sha256=XLEK_pvptzNWhJaO8x0MWghREIyEDei0LOGnUnmU1Kg,55145
267
267
  ultralytics/utils/autobatch.py,sha256=jiE4m_--H9UkXFDm_FqzcZk_hSTCGpS72XdVEKgZwAo,5114
268
268
  ultralytics/utils/autodevice.py,sha256=rXlPuo-iX-vZ4BabmMGEGh9Uxpau4R7Zlt1KCo9Xfyc,8892
269
- ultralytics/utils/benchmarks.py,sha256=f4RykrjO1oEBxrTbH6qM_9vMxYKXO9F0ruFcM4xKF7A,32293
270
- ultralytics/utils/checks.py,sha256=NWc0J-Nk4qHSVEXFDWfJkI7IjTNHFXajKjsSodDroBk,39411
269
+ ultralytics/utils/benchmarks.py,sha256=y3aZ05qQhS2C3WI-iPeByOfmcaLLfXabsEufvXIv8lI,31819
270
+ ultralytics/utils/checks.py,sha256=_jGD-bdHafqcnrGmZOKiSwiKEL-DtyWsj21shdQxEeg,40198
271
271
  ultralytics/utils/cpu.py,sha256=OksKOlX93AsbSsFuoYvLXRXgpkOibrZSwQyW6lipt4Q,3493
272
- ultralytics/utils/dist.py,sha256=sktf2a_uh-vLg6piQyiuRJ5JcMggFYmhS8Wepnb88WM,4220
272
+ ultralytics/utils/dist.py,sha256=GpdZLU3VQomg_dbHNMbzIgat-Y409plwcZJN5nF3YrU,4447
273
273
  ultralytics/utils/downloads.py,sha256=TWXkYwR5hEpVMWL6fbjdywDmZe02WhyL_8YuLVce-uM,23069
274
274
  ultralytics/utils/errors.py,sha256=dUZcTWpbJJHqEuWHM6IbeoJJ4TzA_yHBP8E7tEEpBVs,1388
275
275
  ultralytics/utils/events.py,sha256=6vqs_iSxoXIhQ804sOjApNZmXwNW9FUFtjaHPY8ta10,4665
@@ -277,14 +277,14 @@ ultralytics/utils/files.py,sha256=u7pjz13wgkLSBfe_beeZrzar32_gaJWoIVa3nvY3mh8,81
277
277
  ultralytics/utils/git.py,sha256=UdqeIiiEzg1qkerAZrg5YtTYPuJYwrpxW9N_6Pq6s8U,5501
278
278
  ultralytics/utils/instance.py,sha256=11mhefvTI9ftMqSirXuiViAi0Fxlo6v84qvNxfRNUoE,18862
279
279
  ultralytics/utils/logger.py,sha256=T5iaNnaqbCvx_FZf1dhVkr5FVxyxb4vO17t4SJfCIhg,19132
280
- ultralytics/utils/loss.py,sha256=Uh705dxpHPFLKecjsm_nCZ8JTYv0OHKNE9_ZZyMDiUo,57006
280
+ ultralytics/utils/loss.py,sha256=7Z-CDlgsRldDart8j7ZjKot7TSj57IIwGj8C6QjTLx0,57003
281
281
  ultralytics/utils/metrics.py,sha256=puMGn1LfVIlDvx5K7US4RtK8HYW6cRl9OznfV0nUPvk,69261
282
282
  ultralytics/utils/nms.py,sha256=zv1rOzMF6WU8Kdk41VzNf1H1EMt_vZHcbDFbg3mnN2o,14248
283
283
  ultralytics/utils/ops.py,sha256=4xqb7kwrAWm8c_zxOWP5JoXozgsA1Slk2s4XFwmEZCs,26089
284
284
  ultralytics/utils/patches.py,sha256=yXkznJNo3M74gvvzWmHoZYbWFu-KnO3KK4usbmey8H0,8521
285
285
  ultralytics/utils/plotting.py,sha256=_iXs4gs8tzMSgiKxCriD4un-MJkOsC3lGSy0wn7qZGk,48433
286
- ultralytics/utils/tal.py,sha256=vfcfSy78zdtHbGzlvo5UDx-sCwHLRdGBqDO3CX7ZiR0,24182
287
- ultralytics/utils/torch_utils.py,sha256=dHvLaQopIOr9NcIWkLWPX36f5OAFR4thcqm379Zayfc,40278
286
+ ultralytics/utils/tal.py,sha256=9BSRgsYj0Llq7r5vOzkXDKUjfoTZsxiH92U09c6DtoU,24540
287
+ ultralytics/utils/torch_utils.py,sha256=H0ykzePdr55qPndFS9VVQCFH-fovbpK_uVBz4ooLvM8,40331
288
288
  ultralytics/utils/tqdm.py,sha256=f2W608Qpvgu6tFi28qylaZpcRv3IX8wTGY_8lgicaqY,16343
289
289
  ultralytics/utils/triton.py,sha256=BQu3CD3OlT76d1OtmnX5slQU37VC1kzRvEtfI2saIQA,5211
290
290
  ultralytics/utils/tuner.py,sha256=nRMmnyp0B0gVJzAXcpCxQUnwXjVp0WNiSJwxyR2xvQM,7303
@@ -304,8 +304,8 @@ ultralytics/utils/export/__init__.py,sha256=Cfh-PwVfTF_lwPp-Ss4wiX4z8Sm1XRPklsqd
304
304
  ultralytics/utils/export/engine.py,sha256=QoXPqnmQn6W5TOUAygOtCG63R9ExDG4-Df6X6W-_Mzo,10470
305
305
  ultralytics/utils/export/imx.py,sha256=VnMDO7c8ezBs91UDoLg9rR0oY8Uc7FujKpbdGxrzV18,13744
306
306
  ultralytics/utils/export/tensorflow.py,sha256=xHEcEM3_VeYctyqkJCpgkqcNie1M8xLqcFKr6uANEEQ,9951
307
- dgenerate_ultralytics_headless-8.4.7.dist-info/METADATA,sha256=-XtPXXF8jhWfqBElNXs7CDCIEsTvslaRYwzQXbwErKU,40081
308
- dgenerate_ultralytics_headless-8.4.7.dist-info/WHEEL,sha256=qELbo2s1Yzl39ZmrAibXA2jjPLUYfnVhUNTlyF1rq0Y,92
309
- dgenerate_ultralytics_headless-8.4.7.dist-info/entry_points.txt,sha256=YM_wiKyTe9yRrsEfqvYolNO5ngwfoL4-NwgKzc8_7sI,93
310
- dgenerate_ultralytics_headless-8.4.7.dist-info/top_level.txt,sha256=XP49TwiMw4QGsvTLSYiJhz1xF_k7ev5mQ8jJXaXi45Q,12
311
- dgenerate_ultralytics_headless-8.4.7.dist-info/RECORD,,
307
+ dgenerate_ultralytics_headless-8.4.9.dist-info/METADATA,sha256=kAJE1cZEObznKjZJn5IN5Ua_F_j2CMdnT60gjk_238Q,40069
308
+ dgenerate_ultralytics_headless-8.4.9.dist-info/WHEEL,sha256=wUyA8OaulRlbfwMtmQsvNngGrxQHAvkKcvRmdizlJi0,92
309
+ dgenerate_ultralytics_headless-8.4.9.dist-info/entry_points.txt,sha256=YM_wiKyTe9yRrsEfqvYolNO5ngwfoL4-NwgKzc8_7sI,93
310
+ dgenerate_ultralytics_headless-8.4.9.dist-info/top_level.txt,sha256=XP49TwiMw4QGsvTLSYiJhz1xF_k7ev5mQ8jJXaXi45Q,12
311
+ dgenerate_ultralytics_headless-8.4.9.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: setuptools (80.10.1)
2
+ Generator: setuptools (80.10.2)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5
 
tests/test_cli.py CHANGED
@@ -34,19 +34,26 @@ def test_train(task: str, model: str, data: str) -> None:
34
34
  @pytest.mark.parametrize("task,model,data", TASK_MODEL_DATA)
35
35
  def test_val(task: str, model: str, data: str) -> None:
36
36
  """Test YOLO validation process for specified task, model, and data using a shell command."""
37
- run(f"yolo val {task} model={model} data={data} imgsz=32 save_txt save_json visualize")
37
+ for end2end in {False, True}:
38
+ run(
39
+ f"yolo val {task} model={model} data={data} imgsz=32 save_txt save_json visualize end2end={end2end} max_det=100 agnostic_nms"
40
+ )
38
41
 
39
42
 
40
43
  @pytest.mark.parametrize("task,model,data", TASK_MODEL_DATA)
41
44
  def test_predict(task: str, model: str, data: str) -> None:
42
45
  """Test YOLO prediction on provided sample assets for specified task and model."""
43
- run(f"yolo {task} predict model={model} source={ASSETS} imgsz=32 save save_crop save_txt visualize")
46
+ for end2end in {False, True}:
47
+ run(
48
+ f"yolo {task} predict model={model} source={ASSETS} imgsz=32 save save_crop save_txt visualize end2end={end2end} max_det=100"
49
+ )
44
50
 
45
51
 
46
52
  @pytest.mark.parametrize("model", MODELS)
47
53
  def test_export(model: str) -> None:
48
54
  """Test exporting a YOLO model to TorchScript format."""
49
- run(f"yolo export model={model} format=torchscript imgsz=32")
55
+ for end2end in {False, True}:
56
+ run(f"yolo export model={model} format=torchscript imgsz=32 end2end={end2end} max_det=100")
50
57
 
51
58
 
52
59
  @pytest.mark.skipif(not TORCH_1_11, reason="RTDETR requires torch>=1.11")
tests/test_cuda.py CHANGED
@@ -120,7 +120,7 @@ def test_train():
120
120
  device = tuple(DEVICES) if len(DEVICES) > 1 else DEVICES[0]
121
121
  # NVIDIA Jetson only has one GPU and therefore skipping checks
122
122
  if not IS_JETSON:
123
- results = YOLO(MODEL).train(data="coco8.yaml", imgsz=64, epochs=1, device=device, batch=15)
123
+ results = YOLO(MODEL).train(data="coco8.yaml", imgsz=64, epochs=1, device=device, batch=15, compile=True)
124
124
  results = YOLO(MODEL).train(data="coco128.yaml", imgsz=64, epochs=1, device=device, batch=15, val=False)
125
125
  visible = eval(os.environ["CUDA_VISIBLE_DEVICES"])
126
126
  assert visible == device, f"Passed GPUs '{device}', but used GPUs '{visible}'"
tests/test_exports.py CHANGED
@@ -16,38 +16,42 @@ from ultralytics.utils import ARM64, IS_RASPBERRYPI, LINUX, MACOS, MACOS_VERSION
16
16
  from ultralytics.utils.torch_utils import TORCH_1_10, TORCH_1_11, TORCH_1_13, TORCH_2_0, TORCH_2_1, TORCH_2_8, TORCH_2_9
17
17
 
18
18
 
19
- def test_export_torchscript():
19
+ @pytest.mark.parametrize("end2end", [False, True])
20
+ def test_export_torchscript(end2end):
20
21
  """Test YOLO model export to TorchScript format for compatibility and correctness."""
21
- file = YOLO(MODEL).export(format="torchscript", optimize=False, imgsz=32)
22
+ file = YOLO(MODEL).export(format="torchscript", optimize=False, imgsz=32, end2end=end2end)
22
23
  YOLO(file)(SOURCE, imgsz=32) # exported model inference
23
24
 
24
25
 
25
- def test_export_onnx():
26
+ @pytest.mark.parametrize("end2end", [False, True])
27
+ def test_export_onnx(end2end):
26
28
  """Test YOLO model export to ONNX format with dynamic axes."""
27
- file = YOLO(MODEL).export(format="onnx", dynamic=True, imgsz=32)
29
+ file = YOLO(MODEL).export(format="onnx", dynamic=True, imgsz=32, end2end=end2end)
28
30
  YOLO(file)(SOURCE, imgsz=32) # exported model inference
29
31
 
30
32
 
31
33
  @pytest.mark.skipif(not TORCH_2_1, reason="OpenVINO requires torch>=2.1")
32
- def test_export_openvino():
34
+ @pytest.mark.parametrize("end2end", [False, True])
35
+ def test_export_openvino(end2end):
33
36
  """Test YOLO export to OpenVINO format for model inference compatibility."""
34
- file = YOLO(MODEL).export(format="openvino", imgsz=32)
37
+ file = YOLO(MODEL).export(format="openvino", imgsz=32, end2end=end2end)
35
38
  YOLO(file)(SOURCE, imgsz=32) # exported model inference
36
39
 
37
40
 
38
41
  @pytest.mark.slow
39
42
  @pytest.mark.skipif(not TORCH_2_1, reason="OpenVINO requires torch>=2.1")
40
43
  @pytest.mark.parametrize(
41
- "task, dynamic, int8, half, batch, nms",
44
+ "task, dynamic, int8, half, batch, nms, end2end",
42
45
  [ # generate all combinations except for exclusion cases
43
- (task, dynamic, int8, half, batch, nms)
44
- for task, dynamic, int8, half, batch, nms in product(
45
- TASKS, [True, False], [True, False], [True, False], [1, 2], [True, False]
46
+ (task, dynamic, int8, half, batch, nms, end2end)
47
+ for task, dynamic, int8, half, batch, nms, end2end in product(
48
+ TASKS, [True, False], [True, False], [True, False], [1, 2], [True, False], [True]
46
49
  )
47
- if not ((int8 and half) or (task == "classify" and nms))
50
+ if not ((int8 and half) or (task == "classify" and nms) or (end2end and nms))
48
51
  ],
49
52
  )
50
- def test_export_openvino_matrix(task, dynamic, int8, half, batch, nms):
53
+ # disable end2end=False test for now due to github runner OOM during openvino tests
54
+ def test_export_openvino_matrix(task, dynamic, int8, half, batch, nms, end2end):
51
55
  """Test YOLO model export to OpenVINO under various configuration matrix conditions."""
52
56
  file = YOLO(TASK2MODEL[task]).export(
53
57
  format="openvino",
@@ -58,6 +62,7 @@ def test_export_openvino_matrix(task, dynamic, int8, half, batch, nms):
58
62
  batch=batch,
59
63
  data=TASK2DATA[task],
60
64
  nms=nms,
65
+ end2end=end2end,
61
66
  )
62
67
  if WINDOWS:
63
68
  # Use unique filenames due to Windows file permissions bug possibly due to latent threaded use
@@ -70,19 +75,27 @@ def test_export_openvino_matrix(task, dynamic, int8, half, batch, nms):
70
75
 
71
76
  @pytest.mark.slow
72
77
  @pytest.mark.parametrize(
73
- "task, dynamic, int8, half, batch, simplify, nms",
78
+ "task, dynamic, int8, half, batch, simplify, nms, end2end",
74
79
  [ # generate all combinations except for exclusion cases
75
- (task, dynamic, int8, half, batch, simplify, nms)
76
- for task, dynamic, int8, half, batch, simplify, nms in product(
77
- TASKS, [True, False], [False], [False], [1, 2], [True, False], [True, False]
80
+ (task, dynamic, int8, half, batch, simplify, nms, end2end)
81
+ for task, dynamic, int8, half, batch, simplify, nms, end2end in product(
82
+ TASKS, [True, False], [False], [False], [1, 2], [True, False], [True, False], [True, False]
78
83
  )
79
- if not ((int8 and half) or (task == "classify" and nms) or (nms and not TORCH_1_13))
84
+ if not ((int8 and half) or (task == "classify" and nms) or (nms and not TORCH_1_13) or (end2end and nms))
80
85
  ],
81
86
  )
82
- def test_export_onnx_matrix(task, dynamic, int8, half, batch, simplify, nms):
87
+ def test_export_onnx_matrix(task, dynamic, int8, half, batch, simplify, nms, end2end):
83
88
  """Test YOLO export to ONNX format with various configurations and parameters."""
84
89
  file = YOLO(TASK2MODEL[task]).export(
85
- format="onnx", imgsz=32, dynamic=dynamic, int8=int8, half=half, batch=batch, simplify=simplify, nms=nms
90
+ format="onnx",
91
+ imgsz=32,
92
+ dynamic=dynamic,
93
+ int8=int8,
94
+ half=half,
95
+ batch=batch,
96
+ simplify=simplify,
97
+ nms=nms,
98
+ end2end=end2end,
86
99
  )
87
100
  YOLO(file)([SOURCE] * batch, imgsz=64 if dynamic else 32) # exported model inference
88
101
  Path(file).unlink() # cleanup
@@ -90,19 +103,19 @@ def test_export_onnx_matrix(task, dynamic, int8, half, batch, simplify, nms):
90
103
 
91
104
  @pytest.mark.slow
92
105
  @pytest.mark.parametrize(
93
- "task, dynamic, int8, half, batch, nms",
106
+ "task, dynamic, int8, half, batch, nms, end2end",
94
107
  [ # generate all combinations except for exclusion cases
95
- (task, dynamic, int8, half, batch, nms)
96
- for task, dynamic, int8, half, batch, nms in product(
97
- TASKS, [False, True], [False], [False, True], [1, 2], [True, False]
108
+ (task, dynamic, int8, half, batch, nms, end2end)
109
+ for task, dynamic, int8, half, batch, nms, end2end in product(
110
+ TASKS, [False, True], [False], [False, True], [1, 2], [True, False], [True, False]
98
111
  )
99
- if not (task == "classify" and nms)
112
+ if not ((task == "classify" and nms) or (end2end and nms))
100
113
  ],
101
114
  )
102
- def test_export_torchscript_matrix(task, dynamic, int8, half, batch, nms):
115
+ def test_export_torchscript_matrix(task, dynamic, int8, half, batch, nms, end2end):
103
116
  """Test YOLO model export to TorchScript format under varied configurations."""
104
117
  file = YOLO(TASK2MODEL[task]).export(
105
- format="torchscript", imgsz=32, dynamic=dynamic, int8=int8, half=half, batch=batch, nms=nms
118
+ format="torchscript", imgsz=32, dynamic=dynamic, int8=int8, half=half, batch=batch, nms=nms, end2end=end2end
106
119
  )
107
120
  YOLO(file)([SOURCE] * batch, imgsz=64 if dynamic else 32) # exported model inference
108
121
  Path(file).unlink() # cleanup
@@ -116,19 +129,20 @@ def test_export_torchscript_matrix(task, dynamic, int8, half, batch, nms):
116
129
  MACOS and MACOS_VERSION and MACOS_VERSION >= "15", reason="CoreML YOLO26 matrix test crashes on macOS 15+"
117
130
  )
118
131
  @pytest.mark.parametrize(
119
- "task, dynamic, int8, half, nms, batch",
132
+ "task, dynamic, int8, half, nms, batch, end2end",
120
133
  [ # generate all combinations except for exclusion cases
121
- (task, dynamic, int8, half, nms, batch)
122
- for task, dynamic, int8, half, nms, batch in product(
123
- TASKS, [True, False], [True, False], [True, False], [True, False], [1]
134
+ (task, dynamic, int8, half, nms, batch, end2end)
135
+ for task, dynamic, int8, half, nms, batch, end2end in product(
136
+ TASKS, [True, False], [True, False], [True, False], [True, False], [1], [True, False]
124
137
  )
125
138
  if not (int8 and half)
126
139
  and not (task != "detect" and nms)
127
140
  and not (dynamic and nms)
128
141
  and not (task == "classify" and dynamic)
142
+ and not (end2end and nms)
129
143
  ],
130
144
  )
131
- def test_export_coreml_matrix(task, dynamic, int8, half, nms, batch):
145
+ def test_export_coreml_matrix(task, dynamic, int8, half, nms, batch, end2end):
132
146
  """Test YOLO export to CoreML format with various parameter configurations."""
133
147
  file = YOLO(TASK2MODEL[task]).export(
134
148
  format="coreml",
@@ -138,6 +152,7 @@ def test_export_coreml_matrix(task, dynamic, int8, half, nms, batch):
138
152
  half=half,
139
153
  batch=batch,
140
154
  nms=nms,
155
+ end2end=end2end,
141
156
  )
142
157
  YOLO(file)([SOURCE] * batch, imgsz=32) # exported model inference
143
158
  shutil.rmtree(file) # cleanup
@@ -152,19 +167,25 @@ def test_export_coreml_matrix(task, dynamic, int8, half, nms, batch):
152
167
  reason="Test disabled as TF suffers from install conflicts on Windows, macOS and Raspberry Pi",
153
168
  )
154
169
  @pytest.mark.parametrize(
155
- "task, dynamic, int8, half, batch, nms",
170
+ "task, dynamic, int8, half, batch, nms, end2end",
156
171
  [ # generate all combinations except for exclusion cases
157
- (task, dynamic, int8, half, batch, nms)
158
- for task, dynamic, int8, half, batch, nms in product(
159
- TASKS, [False], [True, False], [True, False], [1], [True, False]
172
+ (task, dynamic, int8, half, batch, nms, end2end)
173
+ for task, dynamic, int8, half, batch, nms, end2end in product(
174
+ TASKS, [False], [True, False], [True, False], [1], [True, False], [True, False]
175
+ )
176
+ if not (
177
+ (int8 and half)
178
+ or (task == "classify" and nms)
179
+ or (ARM64 and nms)
180
+ or (nms and not TORCH_1_13)
181
+ or (end2end and nms)
160
182
  )
161
- if not ((int8 and half) or (task == "classify" and nms) or (ARM64 and nms) or (nms and not TORCH_1_13))
162
183
  ],
163
184
  )
164
- def test_export_tflite_matrix(task, dynamic, int8, half, batch, nms):
185
+ def test_export_tflite_matrix(task, dynamic, int8, half, batch, nms, end2end):
165
186
  """Test YOLO export to TFLite format considering various export configurations."""
166
187
  file = YOLO(TASK2MODEL[task]).export(
167
- format="tflite", imgsz=32, dynamic=dynamic, int8=int8, half=half, batch=batch, nms=nms
188
+ format="tflite", imgsz=32, dynamic=dynamic, int8=int8, half=half, batch=batch, nms=nms, end2end=end2end
168
189
  )
169
190
  YOLO(file)([SOURCE] * batch, imgsz=32) # exported model inference
170
191
  Path(file).unlink() # cleanup
@@ -225,16 +246,16 @@ def test_export_mnn():
225
246
  @pytest.mark.slow
226
247
  @pytest.mark.skipif(not TORCH_1_10, reason="MNN export requires torch>=1.10")
227
248
  @pytest.mark.parametrize(
228
- "task, int8, half, batch",
249
+ "task, int8, half, batch, end2end",
229
250
  [ # generate all combinations except for exclusion cases
230
- (task, int8, half, batch)
231
- for task, int8, half, batch in product(TASKS, [True, False], [True, False], [1, 2])
251
+ (task, int8, half, batch, end2end)
252
+ for task, int8, half, batch, end2end in product(TASKS, [True, False], [True, False], [1, 2], [True, False])
232
253
  if not (int8 and half)
233
254
  ],
234
255
  )
235
- def test_export_mnn_matrix(task, int8, half, batch):
256
+ def test_export_mnn_matrix(task, int8, half, batch, end2end):
236
257
  """Test YOLO export to MNN format considering various export configurations."""
237
- file = YOLO(TASK2MODEL[task]).export(format="mnn", imgsz=32, int8=int8, half=half, batch=batch)
258
+ file = YOLO(TASK2MODEL[task]).export(format="mnn", imgsz=32, int8=int8, half=half, batch=batch, end2end=end2end)
238
259
  YOLO(file)([SOURCE] * batch, imgsz=32) # exported model inference
239
260
  Path(file).unlink() # cleanup
240
261
 
tests/test_python.py CHANGED
@@ -168,13 +168,13 @@ def test_predict_all_image_formats():
168
168
  dataset_path = Path(data["path"])
169
169
 
170
170
  # Collect all images from train and val
171
- images = list((dataset_path / "images" / "train").glob("*.*"))
172
- images += list((dataset_path / "images" / "val").glob("*.*"))
171
+ expected = {"avif", "bmp", "dng", "heic", "jp2", "jpeg", "jpg", "mpo", "png", "tif", "tiff", "webp"}
172
+ images = [im for im in (dataset_path / "images" / "train").glob("*.*") if im.suffix.lower().lstrip(".") in expected]
173
+ images += [im for im in (dataset_path / "images" / "val").glob("*.*") if im.suffix.lower().lstrip(".") in expected]
173
174
  assert len(images) == 12, f"Expected 12 images, found {len(images)}"
174
175
 
175
176
  # Verify all format extensions are represented
176
177
  extensions = {img.suffix.lower().lstrip(".") for img in images}
177
- expected = {"avif", "bmp", "dng", "heic", "jp2", "jpeg", "jpg", "mpo", "png", "tif", "tiff", "webp"}
178
178
  assert extensions == expected, f"Missing formats: {expected - extensions}"
179
179
 
180
180
  # Run inference on all images
@@ -697,7 +697,7 @@ def test_yolo_world():
697
697
  checks.IS_PYTHON_3_8 and LINUX and ARM64,
698
698
  reason="YOLOE with CLIP is not supported in Python 3.8 and aarch64 Linux",
699
699
  )
700
- def test_yoloe():
700
+ def test_yoloe(tmp_path):
701
701
  """Test YOLOE models with MobileClip support."""
702
702
  # Predict
703
703
  # text-prompts
@@ -739,14 +739,18 @@ def test_yoloe():
739
739
  imgsz=32,
740
740
  )
741
741
  # Train, from scratch
742
- model = YOLOE("yoloe-11s-seg.yaml")
743
- model.train(
744
- data=dict(train=dict(yolo_data=["coco128-seg.yaml"]), val=dict(yolo_data=["coco128-seg.yaml"])),
745
- epochs=1,
746
- close_mosaic=1,
747
- trainer=YOLOESegTrainerFromScratch,
748
- imgsz=32,
749
- )
742
+ data_dict = dict(train=dict(yolo_data=["coco128-seg.yaml"]), val=dict(yolo_data=["coco128-seg.yaml"]))
743
+ data_yaml = tmp_path / "yoloe-data.yaml"
744
+ YAML.save(data=data_dict, file=data_yaml)
745
+ for data in [data_dict, data_yaml]:
746
+ model = YOLOE("yoloe-11s-seg.yaml")
747
+ model.train(
748
+ data=data,
749
+ epochs=1,
750
+ close_mosaic=1,
751
+ trainer=YOLOESegTrainerFromScratch,
752
+ imgsz=32,
753
+ )
750
754
 
751
755
  # prompt-free
752
756
  # predict
ultralytics/__init__.py CHANGED
@@ -1,6 +1,6 @@
1
1
  # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
2
 
3
- __version__ = "8.4.7"
3
+ __version__ = "8.4.9"
4
4
 
5
5
  import importlib
6
6
  import os
@@ -238,6 +238,7 @@ CFG_BOOL_KEYS = frozenset(
238
238
  "simplify",
239
239
  "nms",
240
240
  "profile",
241
+ "end2end",
241
242
  }
242
243
  )
243
244
 
@@ -56,6 +56,7 @@ max_det: 300 # (int) maximum number of detections per image
56
56
  half: False # (bool) use half precision (FP16) if supported
57
57
  dnn: False # (bool) use OpenCV DNN for ONNX inference
58
58
  plots: True # (bool) save plots and images during train/val
59
+ end2end: # (bool, optional) whether to use end2end head(YOLO26, YOLOv10) for predict/val/export
59
60
 
60
61
  # Predict settings -----------------------------------------------------------------------------------------------------
61
62
  source: # (str, optional) path/dir/URL/stream for images or videos; e.g. 'ultralytics/assets' or '0' for webcam
@@ -1745,7 +1745,7 @@ class CopyPaste(BaseMixTransform):
1745
1745
  instances.convert_bbox(format="xyxy")
1746
1746
  instances.denormalize(w, h)
1747
1747
 
1748
- im_new = np.zeros(im.shape, np.uint8)
1748
+ im_new = np.zeros(im.shape[:2], np.uint8)
1749
1749
  instances2 = labels2.pop("instances", None)
1750
1750
  if instances2 is None:
1751
1751
  instances2 = deepcopy(instances)
@@ -1758,7 +1758,7 @@ class CopyPaste(BaseMixTransform):
1758
1758
  for j in indexes[: round(self.p * n)]:
1759
1759
  cls = np.concatenate((cls, labels2.get("cls", cls)[[j]]), axis=0)
1760
1760
  instances = Instances.concatenate((instances, instances2[[j]]), axis=0)
1761
- cv2.drawContours(im_new, instances2.segments[[j]].astype(np.int32), -1, (1, 1, 1), cv2.FILLED)
1761
+ cv2.drawContours(im_new, instances2.segments[[j]].astype(np.int32), -1, 1, cv2.FILLED)
1762
1762
 
1763
1763
  result = labels2.get("img", cv2.flip(im, 1)) # augment segments
1764
1764
  if result.ndim == 2: # cv2.flip would eliminate the last dimension for grayscale images
@@ -796,6 +796,17 @@ async def convert_ndjson_to_yolo(ndjson_path: str | Path, output_path: str | Pat
796
796
  # Check if this is a classification dataset
797
797
  is_classification = dataset_record.get("task") == "classify"
798
798
  class_names = {int(k): v for k, v in dataset_record.get("class_names", {}).items()}
799
+ len(class_names)
800
+
801
+ # Validate required fields before downloading images
802
+ task = dataset_record.get("task", "detect")
803
+ if not is_classification:
804
+ if "train" not in splits:
805
+ raise ValueError(f"Dataset missing required 'train' split. Found splits: {sorted(splits)}")
806
+ if "val" not in splits and "test" not in splits:
807
+ raise ValueError(f"Dataset missing required 'val' split. Found splits: {sorted(splits)}")
808
+ if task == "pose" and "kpt_shape" not in dataset_record:
809
+ raise ValueError("Pose dataset missing required 'kpt_shape'. See https://docs.ultralytics.com/datasets/pose/")
799
810
 
800
811
  # Create base directories
801
812
  dataset_dir.mkdir(parents=True, exist_ok=True)