dgenerate-ultralytics-headless 8.4.1__py3-none-any.whl → 8.4.4__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (54) hide show
  1. {dgenerate_ultralytics_headless-8.4.1.dist-info → dgenerate_ultralytics_headless-8.4.4.dist-info}/METADATA +44 -44
  2. {dgenerate_ultralytics_headless-8.4.1.dist-info → dgenerate_ultralytics_headless-8.4.4.dist-info}/RECORD +54 -54
  3. tests/test_exports.py +0 -2
  4. ultralytics/__init__.py +1 -1
  5. ultralytics/cfg/__init__.py +20 -22
  6. ultralytics/data/annotator.py +2 -2
  7. ultralytics/data/converter.py +57 -38
  8. ultralytics/engine/exporter.py +23 -24
  9. ultralytics/engine/model.py +33 -33
  10. ultralytics/engine/predictor.py +17 -17
  11. ultralytics/engine/results.py +14 -12
  12. ultralytics/engine/trainer.py +27 -22
  13. ultralytics/engine/tuner.py +4 -4
  14. ultralytics/engine/validator.py +16 -16
  15. ultralytics/models/yolo/classify/predict.py +1 -1
  16. ultralytics/models/yolo/classify/train.py +1 -1
  17. ultralytics/models/yolo/classify/val.py +1 -1
  18. ultralytics/models/yolo/detect/predict.py +2 -2
  19. ultralytics/models/yolo/detect/train.py +1 -1
  20. ultralytics/models/yolo/detect/val.py +1 -1
  21. ultralytics/models/yolo/model.py +7 -7
  22. ultralytics/models/yolo/obb/predict.py +1 -1
  23. ultralytics/models/yolo/obb/train.py +2 -2
  24. ultralytics/models/yolo/obb/val.py +1 -1
  25. ultralytics/models/yolo/pose/predict.py +1 -1
  26. ultralytics/models/yolo/pose/train.py +4 -2
  27. ultralytics/models/yolo/pose/val.py +1 -1
  28. ultralytics/models/yolo/segment/predict.py +3 -3
  29. ultralytics/models/yolo/segment/train.py +3 -3
  30. ultralytics/models/yolo/segment/val.py +2 -4
  31. ultralytics/nn/autobackend.py +3 -3
  32. ultralytics/nn/modules/head.py +1 -1
  33. ultralytics/nn/tasks.py +12 -12
  34. ultralytics/solutions/ai_gym.py +3 -3
  35. ultralytics/solutions/config.py +1 -1
  36. ultralytics/solutions/heatmap.py +1 -1
  37. ultralytics/solutions/instance_segmentation.py +2 -2
  38. ultralytics/solutions/parking_management.py +1 -1
  39. ultralytics/solutions/solutions.py +2 -2
  40. ultralytics/trackers/track.py +1 -1
  41. ultralytics/utils/__init__.py +8 -8
  42. ultralytics/utils/benchmarks.py +25 -25
  43. ultralytics/utils/callbacks/platform.py +11 -9
  44. ultralytics/utils/callbacks/tensorboard.py +2 -0
  45. ultralytics/utils/checks.py +6 -6
  46. ultralytics/utils/downloads.py +2 -2
  47. ultralytics/utils/export/imx.py +24 -17
  48. ultralytics/utils/files.py +2 -2
  49. ultralytics/utils/loss.py +3 -3
  50. ultralytics/utils/tuner.py +2 -2
  51. {dgenerate_ultralytics_headless-8.4.1.dist-info → dgenerate_ultralytics_headless-8.4.4.dist-info}/WHEEL +0 -0
  52. {dgenerate_ultralytics_headless-8.4.1.dist-info → dgenerate_ultralytics_headless-8.4.4.dist-info}/entry_points.txt +0 -0
  53. {dgenerate_ultralytics_headless-8.4.1.dist-info → dgenerate_ultralytics_headless-8.4.4.dist-info}/licenses/LICENSE +0 -0
  54. {dgenerate_ultralytics_headless-8.4.1.dist-info → dgenerate_ultralytics_headless-8.4.4.dist-info}/top_level.txt +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: dgenerate-ultralytics-headless
3
- Version: 8.4.1
3
+ Version: 8.4.4
4
4
  Summary: Automatically built Ultralytics package with python-opencv-headless dependency instead of python-opencv
5
5
  Author-email: Glenn Jocher <glenn.jocher@ultralytics.com>, Jing Qiu <jing.qiu@ultralytics.com>
6
6
  Maintainer-email: Ultralytics <hello@ultralytics.com>
@@ -120,7 +120,7 @@ The workflow runs automatically every day at midnight UTC to check for new Ultra
120
120
 
121
121
  <div align="center">
122
122
  <p>
123
- <a href="https://www.ultralytics.com/events/yolovision?utm_source=github&utm_medium=org&utm_campaign=yv25_event" target="_blank">
123
+ <a href="https://platform.ultralytics.com/ultralytics/yolo26" target="_blank">
124
124
  <img width="100%" src="https://raw.githubusercontent.com/ultralytics/assets/main/yolov8/banner-yolov8.png" alt="Ultralytics YOLO banner"></a>
125
125
  </p>
126
126
 
@@ -147,8 +147,8 @@ Find detailed documentation in the [Ultralytics Docs](https://docs.ultralytics.c
147
147
 
148
148
  Request an Enterprise License for commercial use at [Ultralytics Licensing](https://www.ultralytics.com/license).
149
149
 
150
- <a href="https://docs.ultralytics.com/models/yolo11/" target="_blank">
151
- <img width="100%" src="https://raw.githubusercontent.com/ultralytics/assets/refs/heads/main/yolo/performance-comparison.png" alt="YOLO11 performance plots">
150
+ <a href="https://platform.ultralytics.com/ultralytics/yolo26" target="_blank">
151
+ <img width="100%" src="https://raw.githubusercontent.com/ultralytics/assets/refs/heads/main/yolo/performance-comparison.png" alt="YOLO26 performance plots">
152
152
  </a>
153
153
 
154
154
  <div align="center">
@@ -249,13 +249,13 @@ Ultralytics supports a wide range of YOLO models, from early versions like [YOLO
249
249
 
250
250
  Explore the [Detection Docs](https://docs.ultralytics.com/tasks/detect/) for usage examples. These models are trained on the [COCO dataset](https://cocodataset.org/), featuring 80 object classes.
251
251
 
252
- | Model | size<br><sup>(pixels) | mAP<sup>val<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
253
- | ------------------------------------------------------------------------------------ | --------------------- | -------------------- | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
254
- | [YOLO26n](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26n.pt) | 640 | 40.9 | 38.9 ± 0.7 | 1.7 ± 0.0 | 2.4 | 5.4 |
255
- | [YOLO26s](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26s.pt) | 640 | 48.6 | 87.2 ± 0.9 | 2.5 ± 0.0 | 9.5 | 20.7 |
256
- | [YOLO26m](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26m.pt) | 640 | 53.1 | 220.0 ± 1.4 | 4.7 ± 0.1 | 20.4 | 68.2 |
257
- | [YOLO26l](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26l.pt) | 640 | 55.0 | 286.2 ± 2.0 | 6.2 ± 0.2 | 24.8 | 86.4 |
258
- | [YOLO26x](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26x.pt) | 640 | 57.5 | 525.8 ± 4.0 | 11.8 ± 0.2 | 55.7 | 193.9 |
252
+ | Model | size<br><sup>(pixels)</sup> | mAP<sup>val<br>50-95</sup> | mAP<sup>val<br>50-95(e2e)</sup> | Speed<br><sup>CPU ONNX<br>(ms)</sup> | Speed<br><sup>T4 TensorRT10<br>(ms)</sup> | params<br><sup>(M)</sup> | FLOPs<br><sup>(B)</sup> |
253
+ | ------------------------------------------------------------------------------------ | --------------------------- | -------------------------- | ------------------------------- | ------------------------------------ | ----------------------------------------- | ------------------------ | ----------------------- |
254
+ | [YOLO26n](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26n.pt) | 640 | 40.9 | 40.1 | 38.9 ± 0.7 | 1.7 ± 0.0 | 2.4 | 5.4 |
255
+ | [YOLO26s](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26s.pt) | 640 | 48.6 | 47.8 | 87.2 ± 0.9 | 2.5 ± 0.0 | 9.5 | 20.7 |
256
+ | [YOLO26m](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26m.pt) | 640 | 53.1 | 52.5 | 220.0 ± 1.4 | 4.7 ± 0.1 | 20.4 | 68.2 |
257
+ | [YOLO26l](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26l.pt) | 640 | 55.0 | 54.4 | 286.2 ± 2.0 | 6.2 ± 0.2 | 24.8 | 86.4 |
258
+ | [YOLO26x](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26x.pt) | 640 | 57.5 | 56.9 | 525.8 ± 4.0 | 11.8 ± 0.2 | 55.7 | 193.9 |
259
259
 
260
260
  - **mAP<sup>val</sup>** values refer to single-model single-scale performance on the [COCO val2017](https://cocodataset.org/) dataset. See [YOLO Performance Metrics](https://docs.ultralytics.com/guides/yolo-performance-metrics/) for details. <br>Reproduce with `yolo val detect data=coco.yaml device=0`
261
261
  - **Speed** metrics are averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. CPU speeds measured with [ONNX](https://onnx.ai/) export. GPU speeds measured with [TensorRT](https://developer.nvidia.com/tensorrt) export. <br>Reproduce with `yolo val detect data=coco.yaml batch=1 device=0|cpu`
@@ -266,13 +266,13 @@ Explore the [Detection Docs](https://docs.ultralytics.com/tasks/detect/) for usa
266
266
 
267
267
  Refer to the [Segmentation Docs](https://docs.ultralytics.com/tasks/segment/) for usage examples. These models are trained on [COCO-Seg](https://docs.ultralytics.com/datasets/segment/coco/), including 80 classes.
268
268
 
269
- | Model | size<br><sup>(pixels) | mAP<sup>box<br>50-95 | mAP<sup>mask<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
270
- | -------------------------------------------------------------------------------------------- | --------------------- | -------------------- | --------------------- | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
271
- | [YOLO26n-seg](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26n-seg.pt) | 640 | 39.6 | 33.9 | 53.3 ± 0.5 | 2.1 ± 0.0 | 2.7 | 9.1 |
272
- | [YOLO26s-seg](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26s-seg.pt) | 640 | 47.3 | 40.0 | 118.4 ± 0.9 | 3.3 ± 0.0 | 10.4 | 34.2 |
273
- | [YOLO26m-seg](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26m-seg.pt) | 640 | 52.5 | 44.1 | 328.2 ± 2.4 | 6.7 ± 0.1 | 23.6 | 121.5 |
274
- | [YOLO26l-seg](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26l-seg.pt) | 640 | 54.4 | 45.5 | 387.0 ± 3.7 | 8.0 ± 0.1 | 28.0 | 139.8 |
275
- | [YOLO26x-seg](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26x-seg.pt) | 640 | 56.5 | 47.0 | 787.0 ± 6.8 | 16.4 ± 0.1 | 62.8 | 313.5 |
269
+ | Model | size<br><sup>(pixels)</sup> | mAP<sup>box<br>50-95(e2e)</sup> | mAP<sup>mask<br>50-95(e2e)</sup> | Speed<br><sup>CPU ONNX<br>(ms)</sup> | Speed<br><sup>T4 TensorRT10<br>(ms)</sup> | params<br><sup>(M)</sup> | FLOPs<br><sup>(B)</sup> |
270
+ | -------------------------------------------------------------------------------------------- | --------------------------- | ------------------------------- | -------------------------------- | ------------------------------------ | ----------------------------------------- | ------------------------ | ----------------------- |
271
+ | [YOLO26n-seg](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26n-seg.pt) | 640 | 39.6 | 33.9 | 53.3 ± 0.5 | 2.1 ± 0.0 | 2.7 | 9.1 |
272
+ | [YOLO26s-seg](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26s-seg.pt) | 640 | 47.3 | 40.0 | 118.4 ± 0.9 | 3.3 ± 0.0 | 10.4 | 34.2 |
273
+ | [YOLO26m-seg](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26m-seg.pt) | 640 | 52.5 | 44.1 | 328.2 ± 2.4 | 6.7 ± 0.1 | 23.6 | 121.5 |
274
+ | [YOLO26l-seg](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26l-seg.pt) | 640 | 54.4 | 45.5 | 387.0 ± 3.7 | 8.0 ± 0.1 | 28.0 | 139.8 |
275
+ | [YOLO26x-seg](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26x-seg.pt) | 640 | 56.5 | 47.0 | 787.0 ± 6.8 | 16.4 ± 0.1 | 62.8 | 313.5 |
276
276
 
277
277
  - **mAP<sup>val</sup>** values are for single-model single-scale on the [COCO val2017](https://cocodataset.org/) dataset. See [YOLO Performance Metrics](https://docs.ultralytics.com/guides/yolo-performance-metrics/) for details. <br>Reproduce with `yolo val segment data=coco.yaml device=0`
278
278
  - **Speed** metrics are averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. CPU speeds measured with [ONNX](https://onnx.ai/) export. GPU speeds measured with [TensorRT](https://developer.nvidia.com/tensorrt) export. <br>Reproduce with `yolo val segment data=coco.yaml batch=1 device=0|cpu`
@@ -283,13 +283,13 @@ Refer to the [Segmentation Docs](https://docs.ultralytics.com/tasks/segment/) fo
283
283
 
284
284
  Consult the [Classification Docs](https://docs.ultralytics.com/tasks/classify/) for usage examples. These models are trained on [ImageNet](https://docs.ultralytics.com/datasets/classify/imagenet/), covering 1000 classes.
285
285
 
286
- | Model | size<br><sup>(pixels) | acc<br><sup>top1 | acc<br><sup>top5 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) at 224 |
287
- | -------------------------------------------------------------------------------------------- | --------------------- | ---------------- | ---------------- | ------------------------------ | ----------------------------------- | ------------------ | ------------------------ |
288
- | [YOLO26n-cls](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26n-cls.pt) | 224 | 71.4 | 90.1 | 5.0 ± 0.3 | 1.1 ± 0.0 | 2.8 | 0.5 |
289
- | [YOLO26s-cls](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26s-cls.pt) | 224 | 76.0 | 92.9 | 7.9 ± 0.2 | 1.3 ± 0.0 | 6.7 | 1.6 |
290
- | [YOLO26m-cls](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26m-cls.pt) | 224 | 78.1 | 94.2 | 17.2 ± 0.4 | 2.0 ± 0.0 | 11.6 | 4.9 |
291
- | [YOLO26l-cls](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26l-cls.pt) | 224 | 79.0 | 94.6 | 23.2 ± 0.3 | 2.8 ± 0.0 | 14.1 | 6.2 |
292
- | [YOLO26x-cls](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26x-cls.pt) | 224 | 79.9 | 95.0 | 41.4 ± 0.9 | 3.8 ± 0.0 | 29.6 | 13.6 |
286
+ | Model | size<br><sup>(pixels)</sup> | acc<br><sup>top1</sup> | acc<br><sup>top5</sup> | Speed<br><sup>CPU ONNX<br>(ms)</sup> | Speed<br><sup>T4 TensorRT10<br>(ms)</sup> | params<br><sup>(M)</sup> | FLOPs<br><sup>(B) at 224</sup> |
287
+ | -------------------------------------------------------------------------------------------- | --------------------------- | ---------------------- | ---------------------- | ------------------------------------ | ----------------------------------------- | ------------------------ | ------------------------------ |
288
+ | [YOLO26n-cls](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26n-cls.pt) | 224 | 71.4 | 90.1 | 5.0 ± 0.3 | 1.1 ± 0.0 | 2.8 | 0.5 |
289
+ | [YOLO26s-cls](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26s-cls.pt) | 224 | 76.0 | 92.9 | 7.9 ± 0.2 | 1.3 ± 0.0 | 6.7 | 1.6 |
290
+ | [YOLO26m-cls](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26m-cls.pt) | 224 | 78.1 | 94.2 | 17.2 ± 0.4 | 2.0 ± 0.0 | 11.6 | 4.9 |
291
+ | [YOLO26l-cls](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26l-cls.pt) | 224 | 79.0 | 94.6 | 23.2 ± 0.3 | 2.8 ± 0.0 | 14.1 | 6.2 |
292
+ | [YOLO26x-cls](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26x-cls.pt) | 224 | 79.9 | 95.0 | 41.4 ± 0.9 | 3.8 ± 0.0 | 29.6 | 13.6 |
293
293
 
294
294
  - **acc** values represent model accuracy on the [ImageNet](https://www.image-net.org/) dataset validation set. <br>Reproduce with `yolo val classify data=path/to/ImageNet device=0`
295
295
  - **Speed** metrics are averaged over ImageNet val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. CPU speeds measured with [ONNX](https://onnx.ai/) export. GPU speeds measured with [TensorRT](https://developer.nvidia.com/tensorrt) export. <br>Reproduce with `yolo val classify data=path/to/ImageNet batch=1 device=0|cpu`
@@ -300,13 +300,13 @@ Consult the [Classification Docs](https://docs.ultralytics.com/tasks/classify/)
300
300
 
301
301
  See the [Pose Estimation Docs](https://docs.ultralytics.com/tasks/pose/) for usage examples. These models are trained on [COCO-Pose](https://docs.ultralytics.com/datasets/pose/coco/), focusing on the 'person' class.
302
302
 
303
- | Model | size<br><sup>(pixels) | mAP<sup>pose<br>50-95 | mAP<sup>pose<br>50 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
304
- | ---------------------------------------------------------------------------------------------- | --------------------- | --------------------- | ------------------ | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
305
- | [YOLO26n-pose](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26n-pose.pt) | 640 | 57.2 | 83.3 | 40.3 ± 0.5 | 1.8 ± 0.0 | 2.9 | 7.5 |
306
- | [YOLO26s-pose](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26s-pose.pt) | 640 | 63.0 | 86.6 | 85.3 ± 0.9 | 2.7 ± 0.0 | 10.4 | 23.9 |
307
- | [YOLO26m-pose](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26m-pose.pt) | 640 | 68.8 | 89.6 | 218.0 ± 1.5 | 5.0 ± 0.1 | 21.5 | 73.1 |
308
- | [YOLO26l-pose](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26l-pose.pt) | 640 | 70.4 | 90.5 | 275.4 ± 2.4 | 6.5 ± 0.1 | 25.9 | 91.3 |
309
- | [YOLO26x-pose](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26x-pose.pt) | 640 | 71.6 | 91.6 | 565.4 ± 3.0 | 12.2 ± 0.2 | 57.6 | 201.7 |
303
+ | Model | size<br><sup>(pixels)</sup> | mAP<sup>pose<br>50-95(e2e)</sup> | mAP<sup>pose<br>50(e2e)</sup> | Speed<br><sup>CPU ONNX<br>(ms)</sup> | Speed<br><sup>T4 TensorRT10<br>(ms)</sup> | params<br><sup>(M)</sup> | FLOPs<br><sup>(B)</sup> |
304
+ | ---------------------------------------------------------------------------------------------- | --------------------------- | -------------------------------- | ----------------------------- | ------------------------------------ | ----------------------------------------- | ------------------------ | ----------------------- |
305
+ | [YOLO26n-pose](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26n-pose.pt) | 640 | 57.2 | 83.3 | 40.3 ± 0.5 | 1.8 ± 0.0 | 2.9 | 7.5 |
306
+ | [YOLO26s-pose](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26s-pose.pt) | 640 | 63.0 | 86.6 | 85.3 ± 0.9 | 2.7 ± 0.0 | 10.4 | 23.9 |
307
+ | [YOLO26m-pose](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26m-pose.pt) | 640 | 68.8 | 89.6 | 218.0 ± 1.5 | 5.0 ± 0.1 | 21.5 | 73.1 |
308
+ | [YOLO26l-pose](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26l-pose.pt) | 640 | 70.4 | 90.5 | 275.4 ± 2.4 | 6.5 ± 0.1 | 25.9 | 91.3 |
309
+ | [YOLO26x-pose](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26x-pose.pt) | 640 | 71.6 | 91.6 | 565.4 ± 3.0 | 12.2 ± 0.2 | 57.6 | 201.7 |
310
310
 
311
311
  - **mAP<sup>val</sup>** values are for single-model single-scale on the [COCO Keypoints val2017](https://docs.ultralytics.com/datasets/pose/coco/) dataset. See [YOLO Performance Metrics](https://docs.ultralytics.com/guides/yolo-performance-metrics/) for details. <br>Reproduce with `yolo val pose data=coco-pose.yaml device=0`
312
312
  - **Speed** metrics are averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. CPU speeds measured with [ONNX](https://onnx.ai/) export. GPU speeds measured with [TensorRT](https://developer.nvidia.com/tensorrt) export. <br>Reproduce with `yolo val pose data=coco-pose.yaml batch=1 device=0|cpu`
@@ -317,13 +317,13 @@ See the [Pose Estimation Docs](https://docs.ultralytics.com/tasks/pose/) for usa
317
317
 
318
318
  Check the [OBB Docs](https://docs.ultralytics.com/tasks/obb/) for usage examples. These models are trained on [DOTAv1](https://docs.ultralytics.com/datasets/obb/dota-v2/#dota-v10/), including 15 classes.
319
319
 
320
- | Model | size<br><sup>(pixels) | mAP<sup>test<br>50 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
321
- | -------------------------------------------------------------------------------------------- | --------------------- | ------------------ | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
322
- | [YOLO26n-obb](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26n-obb.pt) | 1024 | 78.9 | 97.7 ± 0.9 | 2.8 ± 0.0 | 2.5 | 14.0 |
323
- | [YOLO26s-obb](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26s-obb.pt) | 1024 | 80.9 | 218.0 ± 1.4 | 4.9 ± 0.1 | 9.8 | 55.1 |
324
- | [YOLO26m-obb](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26m-obb.pt) | 1024 | 81.0 | 579.2 ± 3.8 | 10.2 ± 0.3 | 21.2 | 183.3 |
325
- | [YOLO26l-obb](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26l-obb.pt) | 1024 | 81.6 | 735.6 ± 3.1 | 13.0 ± 0.2 | 25.6 | 230.0 |
326
- | [YOLO26x-obb](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26x-obb.pt) | 1024 | 81.7 | 1485.7 ± 11.5 | 30.5 ± 0.9 | 57.6 | 516.5 |
320
+ | Model | size<br><sup>(pixels)</sup> | mAP<sup>test<br>50-95(e2e)</sup> | mAP<sup>test<br>50(e2e)</sup> | Speed<br><sup>CPU ONNX<br>(ms)</sup> | Speed<br><sup>T4 TensorRT10<br>(ms)</sup> | params<br><sup>(M)</sup> | FLOPs<br><sup>(B)</sup> |
321
+ | -------------------------------------------------------------------------------------------- | --------------------------- | -------------------------------- | ----------------------------- | ------------------------------------ | ----------------------------------------- | ------------------------ | ----------------------- |
322
+ | [YOLO26n-obb](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26n-obb.pt) | 1024 | 52.4 | 78.9 | 97.7 ± 0.9 | 2.8 ± 0.0 | 2.5 | 14.0 |
323
+ | [YOLO26s-obb](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26s-obb.pt) | 1024 | 54.8 | 80.9 | 218.0 ± 1.4 | 4.9 ± 0.1 | 9.8 | 55.1 |
324
+ | [YOLO26m-obb](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26m-obb.pt) | 1024 | 55.3 | 81.0 | 579.2 ± 3.8 | 10.2 ± 0.3 | 21.2 | 183.3 |
325
+ | [YOLO26l-obb](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26l-obb.pt) | 1024 | 56.2 | 81.6 | 735.6 ± 3.1 | 13.0 ± 0.2 | 25.6 | 230.0 |
326
+ | [YOLO26x-obb](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26x-obb.pt) | 1024 | 56.7 | 81.7 | 1485.7 ± 11.5 | 30.5 ± 0.9 | 57.6 | 516.5 |
327
327
 
328
328
  - **mAP<sup>test</sup>** values are for single-model multiscale performance on the [DOTAv1 test set](https://captain-whu.github.io/DOTA/dataset.html). <br>Reproduce by `yolo val obb data=DOTAv1.yaml device=0 split=test` and submit merged results to the [DOTA evaluation server](https://captain-whu.github.io/DOTA/evaluation.html).
329
329
  - **Speed** metrics are averaged over [DOTAv1 val images](https://docs.ultralytics.com/datasets/obb/dota-v2/#dota-v10) using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. CPU speeds measured with [ONNX](https://onnx.ai/) export. GPU speeds measured with [TensorRT](https://developer.nvidia.com/tensorrt) export. <br>Reproduce by `yolo val obb data=DOTAv1.yaml batch=1 device=0|cpu`
@@ -341,8 +341,8 @@ Our key integrations with leading AI platforms extend the functionality of Ultra
341
341
  <br>
342
342
 
343
343
  <div align="center">
344
- <a href="https://www.ultralytics.com/hub">
345
- <img src="https://github.com/ultralytics/assets/raw/main/partners/logo-ultralytics-hub.png" width="10%" alt="Ultralytics HUB logo"></a>
344
+ <a href="https://platform.ultralytics.com/ultralytics/yolo26">
345
+ <img src="https://github.com/ultralytics/assets/raw/main/partners/logo-ultralytics-hub.png" width="10%" alt="Ultralytics Platform logo"></a>
346
346
  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="15%" height="0" alt="space">
347
347
  <a href="https://docs.ultralytics.com/integrations/weights-biases/">
348
348
  <img src="https://github.com/ultralytics/assets/raw/main/partners/logo-wb.png" width="10%" alt="Weights & Biases logo"></a>
@@ -354,9 +354,9 @@ Our key integrations with leading AI platforms extend the functionality of Ultra
354
354
  <img src="https://github.com/ultralytics/assets/raw/main/partners/logo-neuralmagic.png" width="10%" alt="Neural Magic logo"></a>
355
355
  </div>
356
356
 
357
- | Ultralytics HUB 🌟 | Weights & Biases | Comet | Neural Magic |
358
- | :-----------------------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------------------------------------------------------------------: | :-------------------------------------------------------------------------------------------------------------------------------------------------------------: | :-------------------------------------------------------------------------------------------------------------------------: |
359
- | Streamline YOLO workflows: Label, train, and deploy effortlessly with [Ultralytics HUB](https://hub.ultralytics.com/). Try now! | Track experiments, hyperparameters, and results with [Weights & Biases](https://docs.ultralytics.com/integrations/weights-biases/). | Free forever, [Comet ML](https://docs.ultralytics.com/integrations/comet/) lets you save YOLO models, resume training, and interactively visualize predictions. | Run YOLO inference up to 6x faster with [Neural Magic DeepSparse](https://docs.ultralytics.com/integrations/neural-magic/). |
357
+ | Ultralytics Platform 🌟 | Weights & Biases | Comet | Neural Magic |
358
+ | :---------------------------------------------------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------------------------------------------------------------------: | :-------------------------------------------------------------------------------------------------------------------------------------------------------------: | :-------------------------------------------------------------------------------------------------------------------------: |
359
+ | Streamline YOLO workflows: Label, train, and deploy effortlessly with [Ultralytics Platform](https://platform.ultralytics.com/ultralytics/yolo26). Try now! | Track experiments, hyperparameters, and results with [Weights & Biases](https://docs.ultralytics.com/integrations/weights-biases/). | Free forever, [Comet ML](https://docs.ultralytics.com/integrations/comet/) lets you save YOLO models, resume training, and interactively visualize predictions. | Run YOLO inference up to 6x faster with [Neural Magic DeepSparse](https://docs.ultralytics.com/integrations/neural-magic/). |
360
360
 
361
361
  ## 🤝 Contribute
362
362
 
@@ -1,18 +1,18 @@
1
- dgenerate_ultralytics_headless-8.4.1.dist-info/licenses/LICENSE,sha256=DZak_2itbUtvHzD3E7GNUYSRK6jdOJ-GqncQ2weavLA,34523
1
+ dgenerate_ultralytics_headless-8.4.4.dist-info/licenses/LICENSE,sha256=DZak_2itbUtvHzD3E7GNUYSRK6jdOJ-GqncQ2weavLA,34523
2
2
  tests/__init__.py,sha256=hfUXxYLJB3846OCzWV94ZKEZsi8vq9Pqrdd2mMgjjck,804
3
3
  tests/conftest.py,sha256=rlKyDuOC_3ptXrWS8Q19bNEGOupUmYXHj3nB6o1GBGY,2318
4
4
  tests/test_cli.py,sha256=GhIFHi-_WIJpDgoGNRi0DnjbfwP1wHbklBMnkCM-P_4,5464
5
5
  tests/test_cuda.py,sha256=2TBe-ZkecMOGPWLdHcbsAjH3m9c5SQJ2KeyICgS0aeo,8426
6
6
  tests/test_engine.py,sha256=ufSn3X4kL_Lpn2O25jKAfw_9QwHTMRjP9shDdpgBqnY,5740
7
- tests/test_exports.py,sha256=j1o0DYeHM2ulXv1UPkHFcZFWGv8ichY7KHhrb4U89QI,14894
7
+ tests/test_exports.py,sha256=Toy4u-4bsoyAbzNhc9kbMuKqvMKywZxNj5jlFNTzFWs,14670
8
8
  tests/test_integrations.py,sha256=FjvTGjXm3bvYHK3_obgObhC5SzHCTzw4aOJV9Hh08jQ,6220
9
9
  tests/test_python.py,sha256=np6on3Sa0NNi5pquvilekjKxxedAJMpLOQEthGaIalQ,29284
10
10
  tests/test_solutions.py,sha256=1tRlM72YciE42Nk9v83gsXOD5RSx9GSWVsKGhH7-HxE,14122
11
- ultralytics/__init__.py,sha256=v6vc7C81LzYC2a4F7ZEElHt1Wi-uMsbkbC59Zh_dHvw,1300
11
+ ultralytics/__init__.py,sha256=sJYUdz1Qx-pwzIz34CD4B1PgspkWiGojpY2uQ6D5lE0,1300
12
12
  ultralytics/py.typed,sha256=la67KBlbjXN-_-DfGNcdOcjYumVpKG_Tkw-8n5dnGB4,8
13
13
  ultralytics/assets/bus.jpg,sha256=wCAZxJecGR63Od3ZRERe9Aja1Weayrb9Ug751DS_vGM,137419
14
14
  ultralytics/assets/zidane.jpg,sha256=Ftc4aeMmen1O0A3o6GCDO9FlfBslLpTAw0gnetx7bts,50427
15
- ultralytics/cfg/__init__.py,sha256=ihvr4XZnnbYWFwSYtFxWdNK7fN4D1Bm19XLkD_-bCXo,40401
15
+ ultralytics/cfg/__init__.py,sha256=_LkOX0ZG8AlWr_NG2KW7E8SQ7DqVeD_vSiYUd2EKXA4,40288
16
16
  ultralytics/cfg/default.yaml,sha256=E__q2msvK9XCQngf0YFLpueCer_1tRcMJM0p3ahBdbA,9015
17
17
  ultralytics/cfg/datasets/Argoverse.yaml,sha256=QGpdh3Hj5dFrvbsaE_8rAVj9BO4XpKTB7uhXaTTnE-o,3364
18
18
  ultralytics/cfg/datasets/DOTAv1.5.yaml,sha256=KE7VC-ZMDSei1pLPm-pdk_ZAMRU_gLwGgtIQNbwp6dA,1212
@@ -118,11 +118,11 @@ ultralytics/cfg/models/v9/yolov9t.yaml,sha256=Q8GpSXE7fumhuJiQg4a2SkuS_UmnXqp-eo
118
118
  ultralytics/cfg/trackers/botsort.yaml,sha256=tRxC-qT4Wz0mLn5x7ZEwrqgGKrmTDVY7gMge-mhpe7U,1431
119
119
  ultralytics/cfg/trackers/bytetrack.yaml,sha256=7LS1ObP5u7BUFcmeY6L2m3bRuPUktnpJspFKd_ElVWc,908
120
120
  ultralytics/data/__init__.py,sha256=ToR8zl0JhBHy42ZvV7zIwO_F3lbi5oNlGQNPK3dlddU,644
121
- ultralytics/data/annotator.py,sha256=kbfSPBesKEVK6ys3dilTdMh7rCKyp0xV7tGQeEDbpWI,2985
121
+ ultralytics/data/annotator.py,sha256=iu1En-LzlR4RyR3ocftthnAog_peQHV9ForPRo_QcX8,2985
122
122
  ultralytics/data/augment.py,sha256=4xtggkuysYcbK5pYwNuAaoCzshb5wwD9KN6_pP4uSFU,128003
123
123
  ultralytics/data/base.py,sha256=pMs8yJOmAFPXdgfLCDtUemSvkPNDzxReP-fWzkNtonc,19723
124
124
  ultralytics/data/build.py,sha256=s-tkSZPf3OfQyfXPXB9XxdW_gIcU6Xy_u21ekSgTnRo,17205
125
- ultralytics/data/converter.py,sha256=1m345J7YUn7gtaChO7To4BWZm72pC8D8L2O0k99q0DE,31898
125
+ ultralytics/data/converter.py,sha256=KUFVQuesnABjm7nW90kxQ6WeYavbo7AC7ZtfuxGvPE4,33107
126
126
  ultralytics/data/dataset.py,sha256=r_BZy4FwMZ-dYkaJiz1E3jr2pI6dn7V3hZwf2RM9_RQ,36536
127
127
  ultralytics/data/loaders.py,sha256=BQbhgjiLCGcRBPkGVG9Hr1jeNfG1nuZD3jstiWb7zS8,31889
128
128
  ultralytics/data/split.py,sha256=HpR0ltf5oN1DpZstavFbBFC1YdpGPaATXxDOcAMwOqc,5101
@@ -133,13 +133,13 @@ ultralytics/data/scripts/get_coco.sh,sha256=UuJpJeo3qQpTHVINeOpmP0NYmg8PhEFE3A8J
133
133
  ultralytics/data/scripts/get_coco128.sh,sha256=qmRQl_hOKrsdHrTrnyQuFIH01oDz3lfaz138OgGfLt8,650
134
134
  ultralytics/data/scripts/get_imagenet.sh,sha256=hr42H16bM47iT27rgS7MpEo-GeOZAYUQXgr0B2cwn48,1705
135
135
  ultralytics/engine/__init__.py,sha256=lm6MckFYCPTbqIoX7w0s_daxdjNeBeKW6DXppv1-QUM,70
136
- ultralytics/engine/exporter.py,sha256=SpA0Oj4w8yjYUde1okc4XfyCK376t1zZPr-bx1-p_WE,73429
137
- ultralytics/engine/model.py,sha256=bKoiy8ImddK-e87NmVbO5nlktqgebRM7D65epD4Cvjk,53211
138
- ultralytics/engine/predictor.py,sha256=neYmNDX27Vv3ggk9xqaKlH6XzB2vlFIghU5o7ZC0zFo,22838
139
- ultralytics/engine/results.py,sha256=DomI01voqR_i7v8LhDGb6jWCprWB4H6I436GSO2NMBY,68030
140
- ultralytics/engine/trainer.py,sha256=W8xFyTBZ_hFRvzMccugqLw3dBXNfRH1d8KoRO4DWFcE,46985
141
- ultralytics/engine/tuner.py,sha256=mD4bjddz7CE7ExKgEaIoSQw22Lg9V0NBXqR9Vey2gIs,21840
142
- ultralytics/engine/validator.py,sha256=2rqdVt4hB9ruMJq-L7PbaCNFwuERS7ZHdVSg91RM3wk,17761
136
+ ultralytics/engine/exporter.py,sha256=n_DtRhD0jT9sTFb8oQ_TYdQYTQJbsQzwqdISwR-mQY4,73330
137
+ ultralytics/engine/model.py,sha256=euDHUy7J5vVBvS_d-KbGZd_0BP5bF6Y3cTQ7VXtwZ4k,53210
138
+ ultralytics/engine/predictor.py,sha256=tXrHSTHJ-rDQ3lrPW9P5_ei_ewTwbY2sji6MExybJ28,22838
139
+ ultralytics/engine/results.py,sha256=uvD7WqaePkuYbcf-iFqh3DIy5_ZSyHeDiKIzY5VjePM,68181
140
+ ultralytics/engine/trainer.py,sha256=lvYPaEkaGXuGnH8j19aMIB2BML3b0LhEqt-HyZ_I6nU,47219
141
+ ultralytics/engine/tuner.py,sha256=F4fyQaC5_GT74TULRO0VhzTv2S_a54cZDc3FjFoqaHE,21840
142
+ ultralytics/engine/validator.py,sha256=DiKsygbNJdRdwXoKoYOJA6bP_T7vMW3Syj_Qc_l7xTM,17761
143
143
  ultralytics/hub/__init__.py,sha256=Z0K_E00jzQh90b18q3IDChwVmTvyIYp6C00sCV-n2F8,6709
144
144
  ultralytics/hub/auth.py,sha256=ANzCeZA7lUzTWc_sFHbDuuyBh1jLl2sTpHkoUbIkFYE,6254
145
145
  ultralytics/hub/session.py,sha256=OzBXAL9R135gRDdfNYUqyiSrxOyaiMFCVYSZua99sF0,18364
@@ -190,27 +190,27 @@ ultralytics/models/utils/__init__.py,sha256=lm6MckFYCPTbqIoX7w0s_daxdjNeBeKW6DXp
190
190
  ultralytics/models/utils/loss.py,sha256=9CcqRXDj5-I-7eZuenInvyoLcPf22Ynf3rUFA5V22bI,21131
191
191
  ultralytics/models/utils/ops.py,sha256=z-Ebjv_k14bWOoP6nszDzDBiy3yELcVtbj6M8PsRpvE,15207
192
192
  ultralytics/models/yolo/__init__.py,sha256=YD407NDDiyjo0x_MR6usJaTpePKPgsfBUYehlCw7lRs,307
193
- ultralytics/models/yolo/model.py,sha256=BbVMlUNrnjPmS9OZbETSlmUjCYxdUwYyiY3I2TtLAqw,18504
193
+ ultralytics/models/yolo/model.py,sha256=HXkglzJQqW1x7MJaKavI5aasA-0lSH21Xcv_dac3SFU,18504
194
194
  ultralytics/models/yolo/classify/__init__.py,sha256=9--HVaNOfI1K7rn_rRqclL8FUAnpfeBrRqEQIaQw2xM,383
195
- ultralytics/models/yolo/classify/predict.py,sha256=wKICjwofH7-7QLJhX2vYSNJXWu2-5kWzjoXXmUPI0pU,4137
196
- ultralytics/models/yolo/classify/train.py,sha256=oODDfPwjgKzsbpO7NCYnOp_uwkWD7HNLhvsHxAJTA4g,8958
197
- ultralytics/models/yolo/classify/val.py,sha256=gtoUJN5_-56EbiYp5Ur-shfdBNMJOqToWmup_-1wW7I,10503
195
+ ultralytics/models/yolo/classify/predict.py,sha256=HCStYkSqeg32SNTWfr4FDCkUMQ4wnKqceUK3T995us4,4137
196
+ ultralytics/models/yolo/classify/train.py,sha256=41ZxaIJkzkRxfgq6VffFX5Xfsrm9tNv3i3bdtUPAocE,8958
197
+ ultralytics/models/yolo/classify/val.py,sha256=akH2P3nff4oiZtV2toKB3Z9HIbsVcwsb1uvDwhamszw,10503
198
198
  ultralytics/models/yolo/detect/__init__.py,sha256=GIRsLYR-kT4JJx7lh4ZZAFGBZj0aebokuU0A7JbjDVA,257
199
- ultralytics/models/yolo/detect/predict.py,sha256=Sct-UwkDe54ZmVtTYl0-fKgx_0BOlPBUsr4NodFd-eU,5385
200
- ultralytics/models/yolo/detect/train.py,sha256=jWWzOvvcfb6s8HXMKi6l1sr1QCslN3GsqzQQ51OSpJk,10519
201
- ultralytics/models/yolo/detect/val.py,sha256=NXSeeXtucOMHaR64GSYjxoss5Lhqh3qtbDKJ-crf2Do,22818
199
+ ultralytics/models/yolo/detect/predict.py,sha256=2nxlMyw_zVKq1aeJFRTgb4EGL2vOFq4pLT9tArHBfF8,5385
200
+ ultralytics/models/yolo/detect/train.py,sha256=ffM3ULnR9Kbw_1yBq2I6BWa7V124lfQtU0_C_GHhwRI,10519
201
+ ultralytics/models/yolo/detect/val.py,sha256=54AOR6r3istE0pILJ1v4xzPdv7UcvtTEZ6E5OGj3Jgc,22818
202
202
  ultralytics/models/yolo/obb/__init__.py,sha256=tQmpG8wVHsajWkZdmD6cjGohJ4ki64iSXQT8JY_dydo,221
203
- ultralytics/models/yolo/obb/predict.py,sha256=K7KtQKA-7JVLxLSOZ-X38YepZkUAOH5rUwHidm7geYU,2577
204
- ultralytics/models/yolo/obb/train.py,sha256=6lFDUhAYrIJeDZz7A7ZgPkoDPY4b-0Aqb8noFpCH1Ck,3452
205
- ultralytics/models/yolo/obb/val.py,sha256=XkZhjPqF7bdYotyUTnRCj6Zre6QsB1M3ulZ0DMf-xiE,14513
203
+ ultralytics/models/yolo/obb/predict.py,sha256=I7hWDr1zuy2WuwGom9uzXqomfr7qVMWb7iRl18xdTYw,2577
204
+ ultralytics/models/yolo/obb/train.py,sha256=HEDdPiP-yBbrUQWllcD1rc3gGrbzQmT6RBMTGtmVOu0,3452
205
+ ultralytics/models/yolo/obb/val.py,sha256=qYNe7ZcW3rhTLYPw15OeGfBaqaa_f1ADs4FF21h32e4,14513
206
206
  ultralytics/models/yolo/pose/__init__.py,sha256=_9OFLj19XwvJHBRxQtVW5CV7rvJ_3hDPE97miit0sPc,227
207
- ultralytics/models/yolo/pose/predict.py,sha256=rsorTRpyL-x40R2QVDDG2isc1e2F2lGfD13oKaD5ANs,3118
208
- ultralytics/models/yolo/pose/train.py,sha256=fy0XE3sC3Ue-kzCyi9rNz3zygMqlfZuZiDFyrD8d6cs,4640
209
- ultralytics/models/yolo/pose/val.py,sha256=s5WmXcZI5cAi3LPdIVHnkFUbEoFZsw5PBnnLnZ3Ep_c,12004
207
+ ultralytics/models/yolo/pose/predict.py,sha256=6EW9palcAoWX-gu5ROQvO6AxBSm719934hhqF-9OGjM,3118
208
+ ultralytics/models/yolo/pose/train.py,sha256=IlmsFlb0TsWZVy6PL3Trr_aXfwwGMBKAHyxnP7VPp_g,4747
209
+ ultralytics/models/yolo/pose/val.py,sha256=0luDccEPb_lUMjzaBb5VMsh9RdXVAbxb3Br57VKWNdc,12004
210
210
  ultralytics/models/yolo/segment/__init__.py,sha256=3IThhZ1wlkY9FvmWm9cE-5-ZyE6F1FgzAtQ6jOOFzzw,275
211
- ultralytics/models/yolo/segment/predict.py,sha256=dWb39_G5EMl9J6AeO8_u-G2di7PdIDzy9iVwcFv7zvU,5430
212
- ultralytics/models/yolo/segment/train.py,sha256=aMsQprA1FX28a0T1cWYmbrsMPawJE6SGwX2rgS_Eb_E,3021
213
- ultralytics/models/yolo/segment/val.py,sha256=XauBfmC-B4ZZQk9qfuI-7tHq1TQ5hemnidlTs4S1WEo,13286
211
+ ultralytics/models/yolo/segment/predict.py,sha256=zLhmSTVEnaUumIX9SbjZH09kr2VrNdYWEss7FvseVuY,5428
212
+ ultralytics/models/yolo/segment/train.py,sha256=nS3qrT7Y3swCwjGZzeDQ2EunC9ilMsOiWs6LaTUCAE4,3021
213
+ ultralytics/models/yolo/segment/val.py,sha256=AvPS4rhV2PFpi0yixUfJhdczXctmZQSKgTjh7qVH0To,13204
214
214
  ultralytics/models/yolo/world/__init__.py,sha256=nlh8I6t8hMGz_vZg8QSlsUW1R-2eKvn9CGUoPPQEGhA,131
215
215
  ultralytics/models/yolo/world/train.py,sha256=80kswko6Zu7peXPBhXcfrTo5HO3Rg8C_cu4vPBQlk7M,7906
216
216
  ultralytics/models/yolo/world/train_world.py,sha256=5Jj4gzEwDJtz37bEahL6Lf4xp-c1xiYjGKeg_w7Esns,8723
@@ -220,34 +220,34 @@ ultralytics/models/yolo/yoloe/train.py,sha256=99iSHQs--5VU_s82Q4w-fAJmyT5-y0TykT
220
220
  ultralytics/models/yolo/yoloe/train_seg.py,sha256=rV2Jnbuh6vvBMaupaZK_aRXBMevO0XhN2VUR43ZwlIY,5285
221
221
  ultralytics/models/yolo/yoloe/val.py,sha256=utUFWeFKRFWZrPr1y3A8ztbTwdoWMYqzlwBN7CQ0tCA,9418
222
222
  ultralytics/nn/__init__.py,sha256=538LZPUKKvc3JCMgiQ4VLGqRN2ZAaVLFcQbeNNHFkEA,545
223
- ultralytics/nn/autobackend.py,sha256=8OzCzLPr7Ube2KAQJg8VSRlSE149Sq9cIWBpI8KzIlg,45057
224
- ultralytics/nn/tasks.py,sha256=dbW3Dn87iSjQK6kqp0oY1mVZJg_zVTwWogMspZ2EyqA,72010
223
+ ultralytics/nn/autobackend.py,sha256=MLS68iMNv6U0HyBK8nGjcyLOyImYIGEjP4398KqOkV0,45068
224
+ ultralytics/nn/tasks.py,sha256=PmlYScI7qTRCmYRR90Mw1QnqeRzvY0ojAMrgStBr11g,72010
225
225
  ultralytics/nn/text_model.py,sha256=c--WzxjFEDb7p95u3YGcSsJLjj91zFNqXshij8Evrwg,15291
226
226
  ultralytics/nn/modules/__init__.py,sha256=9KyQBxpomp5uJJ1PvMGuOFs2pR3NpqZcFHJlM6Q56c0,3322
227
227
  ultralytics/nn/modules/activation.py,sha256=J6n-CJKFK0YbhwcRDqm9zEJM9pSAEycj5quQss_3x6E,2219
228
228
  ultralytics/nn/modules/block.py,sha256=9d1eelj3uRnf-HWTHYTjsBqLSpMCrwBQuX52MjeapN4,74499
229
229
  ultralytics/nn/modules/conv.py,sha256=9WUlBzHD-wLgz0riLyttzASLIqBtXPK6Jk5EdyIiGCM,21100
230
- ultralytics/nn/modules/head.py,sha256=faOX-YkBJTdEHrwJhFBH1LYRjwoP9yxy6mQf6EIfV3c,78084
230
+ ultralytics/nn/modules/head.py,sha256=eJvXtr_ONGqQVdtsUpJtslplgVblti5sMxP9nkoSa0Y,78057
231
231
  ultralytics/nn/modules/transformer.py,sha256=lAjTH-U8IkBp_1cXSOOFSus9tJf-s8WISKKcXPB84CM,31972
232
232
  ultralytics/nn/modules/utils.py,sha256=EyhENse_RESlXjLHAJWvV07_tq1MVMmfzXgPR1fiT9w,6066
233
233
  ultralytics/optim/__init__.py,sha256=Sl3Dx2eiaJd_u4VbmqcBqWWDF8FHnO5W0nBEL8_M_C4,130
234
234
  ultralytics/optim/muon.py,sha256=Cuak4LOcVVEWIhYm4WzGmww7nhfR1N_uQOpLPX7gV-c,14243
235
235
  ultralytics/solutions/__init__.py,sha256=Jj7OcRiYjHH-e104H4xTgjjR5W6aPB4mBRndbaSPmgU,1209
236
- ultralytics/solutions/ai_gym.py,sha256=ItLE6HYMx6AEgiHEDG1HKDkippnrnycb-79S2g72AYA,5181
236
+ ultralytics/solutions/ai_gym.py,sha256=fq9sIb0RBBvyd7SZShY8TO690lKbpPNOFap4OGi5CI8,5181
237
237
  ultralytics/solutions/analytics.py,sha256=UaH-B6h8Ir9l00deRUeAIW6QQTIO_595HTp93sdwteM,12820
238
- ultralytics/solutions/config.py,sha256=RZMCsnJpoInpADGnuVHTKgH5mKHyDMF4uD4DNZqanpY,5396
238
+ ultralytics/solutions/config.py,sha256=wT_79zyoy_6diG5Iz9JZLzgCuGMaHj770lwRntVuNjQ,5396
239
239
  ultralytics/solutions/distance_calculation.py,sha256=RcpRDodEHAJUug9tobtQKt5_bySNA8NMSRiaL347Q1U,5891
240
- ultralytics/solutions/heatmap.py,sha256=DUyV5UFsOwZ8ArN4BtW8Vm3ps8_VZXc6VP0uiKyGDWY,5481
241
- ultralytics/solutions/instance_segmentation.py,sha256=eggk1uWCZ-6cp0YfxCGVUwnKS6xqJua946oxafjAXGk,3778
240
+ ultralytics/solutions/heatmap.py,sha256=0f7v-0oAGj4no_h1Ll-BGsTmszSBoQ0tNa4azJYAQQw,5481
241
+ ultralytics/solutions/instance_segmentation.py,sha256=poxfCKl4gm7pHhjwULOeIPIRy9q_wOxqwtnUXXE9NhQ,3778
242
242
  ultralytics/solutions/object_blurrer.py,sha256=EZrv3oU68kEaahAxlhk9cF5ZKFtoVaW8bDB4Css9xe0,3981
243
243
  ultralytics/solutions/object_counter.py,sha256=OpMSLlenDK-cLvCgCOoKbqMXIZrngyqP8DP6ZeEnWL8,9355
244
244
  ultralytics/solutions/object_cropper.py,sha256=WRbrfXAR5aD6PQBqJ-BvcVaiaqta_9YeTlXN2dY274s,3510
245
- ultralytics/solutions/parking_management.py,sha256=FQKeLEiwnTmRcXqsNOlOt9GTFPjkyvnE5pwwKnneJa4,13770
245
+ ultralytics/solutions/parking_management.py,sha256=Q0fEFKlv6dKKWuw_4jmWaeHQVXGppzuU7Vr_HqVYqHM,13770
246
246
  ultralytics/solutions/queue_management.py,sha256=NlVX6PMEaffjoZjfQrVyayaDUdtc0JF8GzTQrZFjpCg,4371
247
247
  ultralytics/solutions/region_counter.py,sha256=IAvlFwEYoNftDzfBbdo5MzLwcuidOHW9oTGyRCDzMRc,6025
248
248
  ultralytics/solutions/security_alarm.py,sha256=QjUIVBWcy094VTcOkk_zOq3BmKKOeIaHpVi_QMWo_3Q,6293
249
249
  ultralytics/solutions/similarity_search.py,sha256=Q2FOBUtEokegiJHlfDbPP0bKxr5F-sHN3-IvskDoe00,9644
250
- ultralytics/solutions/solutions.py,sha256=pT3uBxs27BdBud0a4URqVxld3DgcOHgRKxmcTQlXyk4,36984
250
+ ultralytics/solutions/solutions.py,sha256=ktLwDhC0y4k2FbNd0sk7Y8GcEvBu9wL3rXyFGwlbnIQ,36984
251
251
  ultralytics/solutions/speed_estimation.py,sha256=WrZECxKAq6P4QpeTbhkp3-Rqjnox7tdR25fUxzozlpU,5861
252
252
  ultralytics/solutions/streamlit_inference.py,sha256=utJOe0Weu44_ABF9rDnAjwLjKyn3gwfaYaxFfFbx-9c,13060
253
253
  ultralytics/solutions/trackzone.py,sha256=oqv-zZL99RVUMcN5ViAPmadzX6QNdAEozYrrg2pqO6k,3903
@@ -257,26 +257,26 @@ ultralytics/trackers/__init__.py,sha256=n3BOO0TR-Sz5ANDYOkKDipM9nSHOePMEwqafbk-Y
257
257
  ultralytics/trackers/basetrack.py,sha256=F-EW29F9E8GwXr5vzwLqW2rNwItu4KIx2MKce5pQXxI,4374
258
258
  ultralytics/trackers/bot_sort.py,sha256=WImn-BOzGrK9dgMFfMPzKFE5awhXEB2VOi7AbOf_Cdc,11831
259
259
  ultralytics/trackers/byte_tracker.py,sha256=Twmbe3EyqnIds211M84vtuuM1WgHXDykjTMeiAJZzC0,21117
260
- ultralytics/trackers/track.py,sha256=RHgPvx9FNVBL5pUalX2l-jcWrei1UiAXszjeL3V5d-M,4742
260
+ ultralytics/trackers/track.py,sha256=xte5lkVBbOnrZ_tVLsHUmzvtNjbdksTVeSFQtLCLt_M,4742
261
261
  ultralytics/trackers/utils/__init__.py,sha256=lm6MckFYCPTbqIoX7w0s_daxdjNeBeKW6DXppv1-QUM,70
262
262
  ultralytics/trackers/utils/gmc.py,sha256=cvvhNXOhylVQti4pJQSNPx4yPqhhhw1k2yzY0JFl7Zo,13760
263
263
  ultralytics/trackers/utils/kalman_filter.py,sha256=crgysL2bo0v1eTljOlP2YqIJDLBcHjl75MRpbxfaR_M,21514
264
264
  ultralytics/trackers/utils/matching.py,sha256=x6uZOIx0O9oVmAcfY6tYMTJQE2cDTUlRR690Y5UkHLs,7129
265
- ultralytics/utils/__init__.py,sha256=JfvODTB4mG_JOhTeCiPtq0iCEgiCh14hJf195rnOhLQ,55145
265
+ ultralytics/utils/__init__.py,sha256=XLEK_pvptzNWhJaO8x0MWghREIyEDei0LOGnUnmU1Kg,55145
266
266
  ultralytics/utils/autobatch.py,sha256=jiE4m_--H9UkXFDm_FqzcZk_hSTCGpS72XdVEKgZwAo,5114
267
267
  ultralytics/utils/autodevice.py,sha256=rXlPuo-iX-vZ4BabmMGEGh9Uxpau4R7Zlt1KCo9Xfyc,8892
268
- ultralytics/utils/benchmarks.py,sha256=KOFm2AZPehrJajbUu6NTdZoVOFjTpLhUUnfL59sC60w,32293
269
- ultralytics/utils/checks.py,sha256=DheB1ip9ba7ZW_fjPieNdx98vZpwUDbnCKmavAIzJL4,39411
268
+ ultralytics/utils/benchmarks.py,sha256=f4RykrjO1oEBxrTbH6qM_9vMxYKXO9F0ruFcM4xKF7A,32293
269
+ ultralytics/utils/checks.py,sha256=NWc0J-Nk4qHSVEXFDWfJkI7IjTNHFXajKjsSodDroBk,39411
270
270
  ultralytics/utils/cpu.py,sha256=OksKOlX93AsbSsFuoYvLXRXgpkOibrZSwQyW6lipt4Q,3493
271
271
  ultralytics/utils/dist.py,sha256=hOuY1-unhQAY-uWiZw3LWw36d1mqJuYK75NdlwB4oKE,4131
272
- ultralytics/utils/downloads.py,sha256=IXM9eTJtt5mdV_9Q-3udwWov0JiVzRI-TXHon-U9gPw,23069
272
+ ultralytics/utils/downloads.py,sha256=TWXkYwR5hEpVMWL6fbjdywDmZe02WhyL_8YuLVce-uM,23069
273
273
  ultralytics/utils/errors.py,sha256=dUZcTWpbJJHqEuWHM6IbeoJJ4TzA_yHBP8E7tEEpBVs,1388
274
274
  ultralytics/utils/events.py,sha256=6vqs_iSxoXIhQ804sOjApNZmXwNW9FUFtjaHPY8ta10,4665
275
- ultralytics/utils/files.py,sha256=BdaRwEKqzle4glSj8n_jq6bDjTCAs_H1SN06ZOQ9qFU,8190
275
+ ultralytics/utils/files.py,sha256=u7pjz13wgkLSBfe_beeZrzar32_gaJWoIVa3nvY3mh8,8190
276
276
  ultralytics/utils/git.py,sha256=UdqeIiiEzg1qkerAZrg5YtTYPuJYwrpxW9N_6Pq6s8U,5501
277
277
  ultralytics/utils/instance.py,sha256=11mhefvTI9ftMqSirXuiViAi0Fxlo6v84qvNxfRNUoE,18862
278
278
  ultralytics/utils/logger.py,sha256=T5iaNnaqbCvx_FZf1dhVkr5FVxyxb4vO17t4SJfCIhg,19132
279
- ultralytics/utils/loss.py,sha256=Y0_EiJtfUwu1gvFIrmnmtrQiJ5rUAZZX4r7DhmG2T3c,56522
279
+ ultralytics/utils/loss.py,sha256=pb4NIzG-vz9MvH4EfdPc6hKFAnEIe6E4dhUZPtTXPHc,56559
280
280
  ultralytics/utils/metrics.py,sha256=puMGn1LfVIlDvx5K7US4RtK8HYW6cRl9OznfV0nUPvk,69261
281
281
  ultralytics/utils/nms.py,sha256=zv1rOzMF6WU8Kdk41VzNf1H1EMt_vZHcbDFbg3mnN2o,14248
282
282
  ultralytics/utils/ops.py,sha256=4xqb7kwrAWm8c_zxOWP5JoXozgsA1Slk2s4XFwmEZCs,26089
@@ -286,7 +286,7 @@ ultralytics/utils/tal.py,sha256=vfcfSy78zdtHbGzlvo5UDx-sCwHLRdGBqDO3CX7ZiR0,2418
286
286
  ultralytics/utils/torch_utils.py,sha256=dHvLaQopIOr9NcIWkLWPX36f5OAFR4thcqm379Zayfc,40278
287
287
  ultralytics/utils/tqdm.py,sha256=f2W608Qpvgu6tFi28qylaZpcRv3IX8wTGY_8lgicaqY,16343
288
288
  ultralytics/utils/triton.py,sha256=BQu3CD3OlT76d1OtmnX5slQU37VC1kzRvEtfI2saIQA,5211
289
- ultralytics/utils/tuner.py,sha256=1PM7G89X95Yfmhskk8LBXU8T-Bfiln1Ajbnz2lkgvAI,7303
289
+ ultralytics/utils/tuner.py,sha256=nRMmnyp0B0gVJzAXcpCxQUnwXjVp0WNiSJwxyR2xvQM,7303
290
290
  ultralytics/utils/callbacks/__init__.py,sha256=hzL63Rce6VkZhP4Lcim9LKjadixaQG86nKqPhk7IkS0,242
291
291
  ultralytics/utils/callbacks/base.py,sha256=floD31JHqHpiVabQiE76_hzC_j7KjtL4w_czkD1bLKc,6883
292
292
  ultralytics/utils/callbacks/clearml.py,sha256=LjfNe4mswceCOpEGVLxqGXjkl_XGbef4awdcp4502RU,5831
@@ -295,16 +295,16 @@ ultralytics/utils/callbacks/dvc.py,sha256=YT0Sa5P8Huj8Fn9jM2P6MYzUY3PIVxsa5BInVi
295
295
  ultralytics/utils/callbacks/hub.py,sha256=fVLqqr3ZM6hoYFlVMEeejfq1MWDrkWCskPFOG3HGILQ,4159
296
296
  ultralytics/utils/callbacks/mlflow.py,sha256=wCXjQgdufp9LYujqMzLZOmIOur6kvrApHNeo9dA7t_g,5323
297
297
  ultralytics/utils/callbacks/neptune.py,sha256=_vt3cMwDHCR-LyT3KtRikGpj6AG11oQ-skUUUUdZ74o,4391
298
- ultralytics/utils/callbacks/platform.py,sha256=0Em258lYzL0CLRJWt6ut3_AiQNIZ4y-P-CBZqRbwhOg,16020
298
+ ultralytics/utils/callbacks/platform.py,sha256=Ufws7Kp_MHh3jrz-Sx5q1KKQ-l1hoDnLi1_thZJsHPQ,16091
299
299
  ultralytics/utils/callbacks/raytune.py,sha256=Y0dFyNZVRuFovSh7nkgUIHTQL3xIXOACElgHuYbg_5I,1278
300
- ultralytics/utils/callbacks/tensorboard.py,sha256=PTJYvD2gqRUN8xw5VoTjvKnu2adukLfvhMlDgTnTiFU,4952
300
+ ultralytics/utils/callbacks/tensorboard.py,sha256=K7b6KtC7rimfzqFu-NDZ_55Tbd7eC6TckqQdTNPuQ6U,5039
301
301
  ultralytics/utils/callbacks/wb.py,sha256=ghmL3gigOa-z_F54-TzMraKw9MAaYX-Wk4H8dLoRvX8,7705
302
302
  ultralytics/utils/export/__init__.py,sha256=Cfh-PwVfTF_lwPp-Ss4wiX4z8Sm1XRPklsqdFfmTZ30,333
303
303
  ultralytics/utils/export/engine.py,sha256=QoXPqnmQn6W5TOUAygOtCG63R9ExDG4-Df6X6W-_Mzo,10470
304
- ultralytics/utils/export/imx.py,sha256=U9CFQJGRSNa5gyrVxW9fEvnhCd6Ut9_mFZZgzhrGhuI,13783
304
+ ultralytics/utils/export/imx.py,sha256=VnMDO7c8ezBs91UDoLg9rR0oY8Uc7FujKpbdGxrzV18,13744
305
305
  ultralytics/utils/export/tensorflow.py,sha256=xHEcEM3_VeYctyqkJCpgkqcNie1M8xLqcFKr6uANEEQ,9951
306
- dgenerate_ultralytics_headless-8.4.1.dist-info/METADATA,sha256=c0kIYqkwyFg10MgqsPgPGCNYAWbeazz732RiblaVvTo,38008
307
- dgenerate_ultralytics_headless-8.4.1.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
308
- dgenerate_ultralytics_headless-8.4.1.dist-info/entry_points.txt,sha256=YM_wiKyTe9yRrsEfqvYolNO5ngwfoL4-NwgKzc8_7sI,93
309
- dgenerate_ultralytics_headless-8.4.1.dist-info/top_level.txt,sha256=XP49TwiMw4QGsvTLSYiJhz1xF_k7ev5mQ8jJXaXi45Q,12
310
- dgenerate_ultralytics_headless-8.4.1.dist-info/RECORD,,
306
+ dgenerate_ultralytics_headless-8.4.4.dist-info/METADATA,sha256=wK7cNiOfQHx28uF-HEPMHSoxLT0azRn5P4dNsYFWyq4,40118
307
+ dgenerate_ultralytics_headless-8.4.4.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
308
+ dgenerate_ultralytics_headless-8.4.4.dist-info/entry_points.txt,sha256=YM_wiKyTe9yRrsEfqvYolNO5ngwfoL4-NwgKzc8_7sI,93
309
+ dgenerate_ultralytics_headless-8.4.4.dist-info/top_level.txt,sha256=XP49TwiMw4QGsvTLSYiJhz1xF_k7ev5mQ8jJXaXi45Q,12
310
+ dgenerate_ultralytics_headless-8.4.4.dist-info/RECORD,,
tests/test_exports.py CHANGED
@@ -240,7 +240,6 @@ def test_export_mnn_matrix(task, int8, half, batch):
240
240
 
241
241
 
242
242
  @pytest.mark.slow
243
- @pytest.mark.skipif(ARM64, reason="NCNN not supported on ARM64") # https://github.com/Tencent/ncnn/issues/6509
244
243
  @pytest.mark.skipif(not TORCH_2_0, reason="NCNN inference causes segfault on PyTorch<2.0")
245
244
  def test_export_ncnn():
246
245
  """Test YOLO export to NCNN format."""
@@ -249,7 +248,6 @@ def test_export_ncnn():
249
248
 
250
249
 
251
250
  @pytest.mark.slow
252
- @pytest.mark.skipif(ARM64, reason="NCNN not supported on ARM64") # https://github.com/Tencent/ncnn/issues/6509
253
251
  @pytest.mark.skipif(not TORCH_2_0, reason="NCNN inference causes segfault on PyTorch<2.0")
254
252
  @pytest.mark.parametrize("task, half, batch", list(product(TASKS, [True, False], [1])))
255
253
  def test_export_ncnn_matrix(task, half, batch):
ultralytics/__init__.py CHANGED
@@ -1,6 +1,6 @@
1
1
  # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
2
 
3
- __version__ = "8.4.1"
3
+ __version__ = "8.4.4"
4
4
 
5
5
  import importlib
6
6
  import os
@@ -90,13 +90,13 @@ SOLUTIONS_HELP_MSG = f"""
90
90
  yolo solutions count source="path/to/video.mp4" region="[(20, 400), (1080, 400), (1080, 360), (20, 360)]"
91
91
 
92
92
  2. Call heatmap solution
93
- yolo solutions heatmap colormap=cv2.COLORMAP_PARULA model=yolo11n.pt
93
+ yolo solutions heatmap colormap=cv2.COLORMAP_PARULA model=yolo26n.pt
94
94
 
95
95
  3. Call queue management solution
96
- yolo solutions queue region="[(20, 400), (1080, 400), (1080, 360), (20, 360)]" model=yolo11n.pt
96
+ yolo solutions queue region="[(20, 400), (1080, 400), (1080, 360), (20, 360)]" model=yolo26n.pt
97
97
 
98
98
  4. Call workout monitoring solution for push-ups
99
- yolo solutions workout model=yolo11n-pose.pt kpts=[6, 8, 10]
99
+ yolo solutions workout model=yolo26n-pose.pt kpts=[6, 8, 10]
100
100
 
101
101
  5. Generate analytical graphs
102
102
  yolo solutions analytics analytics_type="pie"
@@ -118,16 +118,16 @@ CLI_HELP_MSG = f"""
118
118
  See all ARGS at https://docs.ultralytics.com/usage/cfg or with 'yolo cfg'
119
119
 
120
120
  1. Train a detection model for 10 epochs with an initial learning_rate of 0.01
121
- yolo train data=coco8.yaml model=yolo11n.pt epochs=10 lr0=0.01
121
+ yolo train data=coco8.yaml model=yolo26n.pt epochs=10 lr0=0.01
122
122
 
123
123
  2. Predict a YouTube video using a pretrained segmentation model at image size 320:
124
- yolo predict model=yolo11n-seg.pt source='https://youtu.be/LNwODJXcvt4' imgsz=320
124
+ yolo predict model=yolo26n-seg.pt source='https://youtu.be/LNwODJXcvt4' imgsz=320
125
125
 
126
126
  3. Validate a pretrained detection model at batch-size 1 and image size 640:
127
- yolo val model=yolo11n.pt data=coco8.yaml batch=1 imgsz=640
127
+ yolo val model=yolo26n.pt data=coco8.yaml batch=1 imgsz=640
128
128
 
129
- 4. Export a YOLO11n classification model to ONNX format at image size 224 by 128 (no TASK required)
130
- yolo export model=yolo11n-cls.pt format=onnx imgsz=224,128
129
+ 4. Export a YOLO26n classification model to ONNX format at image size 224 by 128 (no TASK required)
130
+ yolo export model=yolo26n-cls.pt format=onnx imgsz=224,128
131
131
 
132
132
  5. Ultralytics solutions usage
133
133
  yolo solutions count or any of {list(SOLUTION_MAP.keys())[1:-1]} source="path/to/video.mp4"
@@ -305,8 +305,6 @@ def get_cfg(
305
305
  # Merge overrides
306
306
  if overrides:
307
307
  overrides = cfg2dict(overrides)
308
- if "save_dir" not in cfg:
309
- overrides.pop("save_dir", None) # special override keys to ignore
310
308
  check_dict_alignment(cfg, overrides)
311
309
  cfg = {**cfg, **overrides} # merge cfg and overrides dicts (prefer overrides)
312
310
 
@@ -414,7 +412,7 @@ def get_save_dir(args: SimpleNamespace, name: str | None = None) -> Path:
414
412
  nested = args.project and len(Path(args.project).parts) > 1 # e.g. "user/project" or "org\repo"
415
413
  project = runs / args.project if nested else args.project or runs
416
414
  name = name or args.name or f"{args.mode}"
417
- save_dir = increment_path(Path(project) / name, exist_ok=args.exist_ok if RANK in {-1, 0} else True, mkdir=True)
415
+ save_dir = increment_path(Path(project) / name, exist_ok=args.exist_ok if RANK in {-1, 0} else True)
418
416
 
419
417
  return Path(save_dir).resolve() # resolve to display full path in console
420
418
 
@@ -494,7 +492,7 @@ def check_dict_alignment(
494
492
  base_keys, custom_keys = (frozenset(x.keys()) for x in (base, custom))
495
493
  # Allow 'augmentations' as a valid custom parameter for custom Albumentations transforms
496
494
  if allowed_custom_keys is None:
497
- allowed_custom_keys = {"augmentations"}
495
+ allowed_custom_keys = {"augmentations", "save_dir"}
498
496
  if mismatched := [k for k in custom_keys if k not in base_keys and k not in allowed_custom_keys]:
499
497
  from difflib import get_close_matches
500
498
 
@@ -606,7 +604,7 @@ def handle_yolo_settings(args: list[str]) -> None:
606
604
 
607
605
  Examples:
608
606
  >>> handle_yolo_settings(["reset"]) # Reset YOLO settings
609
- >>> handle_yolo_settings(["default_cfg_path=yolo11n.yaml"]) # Update a specific setting
607
+ >>> handle_yolo_settings(["default_cfg_path=yolo26n.yaml"]) # Update a specific setting
610
608
 
611
609
  Notes:
612
610
  - If no arguments are provided, the function will display the current settings.
@@ -651,7 +649,7 @@ def handle_yolo_solutions(args: list[str]) -> None:
651
649
  >>> handle_yolo_solutions(["analytics", "conf=0.25", "source=path/to/video.mp4"])
652
650
 
653
651
  Run inference with custom configuration, requires Streamlit version 1.29.0 or higher.
654
- >>> handle_yolo_solutions(["inference", "model=yolo11n.pt"])
652
+ >>> handle_yolo_solutions(["inference", "model=yolo26n.pt"])
655
653
 
656
654
  Notes:
657
655
  - Arguments can be provided in the format 'key=value' or as boolean flags
@@ -709,7 +707,7 @@ def handle_yolo_solutions(args: list[str]) -> None:
709
707
  str(ROOT / "solutions/streamlit_inference.py"),
710
708
  "--server.headless",
711
709
  "true",
712
- overrides.pop("model", "yolo11n.pt"),
710
+ overrides.pop("model", "yolo26n.pt"),
713
711
  ]
714
712
  )
715
713
  else:
@@ -760,9 +758,9 @@ def parse_key_value_pair(pair: str = "key=value") -> tuple:
760
758
  AssertionError: If the value is missing or empty.
761
759
 
762
760
  Examples:
763
- >>> key, value = parse_key_value_pair("model=yolo11n.pt")
761
+ >>> key, value = parse_key_value_pair("model=yolo26n.pt")
764
762
  >>> print(f"Key: {key}, Value: {value}")
765
- Key: model, Value: yolo11n.pt
763
+ Key: model, Value: yolo26n.pt
766
764
 
767
765
  >>> key, value = parse_key_value_pair("epochs=100")
768
766
  >>> print(f"Key: {key}, Value: {value}")
@@ -834,13 +832,13 @@ def entrypoint(debug: str = "") -> None:
834
832
 
835
833
  Examples:
836
834
  Train a detection model for 10 epochs with an initial learning_rate of 0.01:
837
- >>> entrypoint("train data=coco8.yaml model=yolo11n.pt epochs=10 lr0=0.01")
835
+ >>> entrypoint("train data=coco8.yaml model=yolo26n.pt epochs=10 lr0=0.01")
838
836
 
839
837
  Predict a YouTube video using a pretrained segmentation model at image size 320:
840
- >>> entrypoint("predict model=yolo11n-seg.pt source='https://youtu.be/LNwODJXcvt4' imgsz=320")
838
+ >>> entrypoint("predict model=yolo26n-seg.pt source='https://youtu.be/LNwODJXcvt4' imgsz=320")
841
839
 
842
840
  Validate a pretrained detection model at batch-size 1 and image size 640:
843
- >>> entrypoint("val model=yolo11n.pt data=coco8.yaml batch=1 imgsz=640")
841
+ >>> entrypoint("val model=yolo26n.pt data=coco8.yaml batch=1 imgsz=640")
844
842
 
845
843
  Notes:
846
844
  - If no arguments are passed, the function will display the usage help message.
@@ -935,7 +933,7 @@ def entrypoint(debug: str = "") -> None:
935
933
  # Model
936
934
  model = overrides.pop("model", DEFAULT_CFG.model)
937
935
  if model is None:
938
- model = "yolo11n.pt"
936
+ model = "yolo26n.pt"
939
937
  LOGGER.warning(f"'model' argument is missing. Using default 'model={model}'.")
940
938
  overrides["model"] = model
941
939
  stem = Path(model).stem.lower()
@@ -1024,5 +1022,5 @@ def copy_default_cfg() -> None:
1024
1022
 
1025
1023
 
1026
1024
  if __name__ == "__main__":
1027
- # Example: entrypoint(debug='yolo predict model=yolo11n.pt')
1025
+ # Example: entrypoint(debug='yolo predict model=yolo26n.pt')
1028
1026
  entrypoint(debug="")