dgenerate-ultralytics-headless 8.3.253__py3-none-any.whl → 8.4.3__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {dgenerate_ultralytics_headless-8.3.253.dist-info → dgenerate_ultralytics_headless-8.4.3.dist-info}/METADATA +41 -49
- {dgenerate_ultralytics_headless-8.3.253.dist-info → dgenerate_ultralytics_headless-8.4.3.dist-info}/RECORD +85 -74
- tests/__init__.py +2 -2
- tests/conftest.py +1 -1
- tests/test_cuda.py +8 -2
- tests/test_engine.py +8 -8
- tests/test_exports.py +11 -4
- tests/test_integrations.py +9 -9
- tests/test_python.py +14 -14
- tests/test_solutions.py +3 -3
- ultralytics/__init__.py +1 -1
- ultralytics/cfg/__init__.py +25 -27
- ultralytics/cfg/default.yaml +3 -1
- ultralytics/cfg/models/26/yolo26-cls.yaml +33 -0
- ultralytics/cfg/models/26/yolo26-obb.yaml +52 -0
- ultralytics/cfg/models/26/yolo26-p2.yaml +60 -0
- ultralytics/cfg/models/26/yolo26-p6.yaml +62 -0
- ultralytics/cfg/models/26/yolo26-pose.yaml +53 -0
- ultralytics/cfg/models/26/yolo26-seg.yaml +52 -0
- ultralytics/cfg/models/26/yolo26.yaml +52 -0
- ultralytics/cfg/models/26/yoloe-26-seg.yaml +53 -0
- ultralytics/cfg/models/26/yoloe-26.yaml +53 -0
- ultralytics/data/annotator.py +2 -2
- ultralytics/data/augment.py +7 -0
- ultralytics/data/converter.py +57 -38
- ultralytics/data/dataset.py +1 -1
- ultralytics/engine/exporter.py +31 -26
- ultralytics/engine/model.py +34 -34
- ultralytics/engine/predictor.py +17 -17
- ultralytics/engine/results.py +14 -12
- ultralytics/engine/trainer.py +59 -29
- ultralytics/engine/tuner.py +19 -11
- ultralytics/engine/validator.py +16 -16
- ultralytics/models/fastsam/predict.py +1 -1
- ultralytics/models/yolo/classify/predict.py +1 -1
- ultralytics/models/yolo/classify/train.py +1 -1
- ultralytics/models/yolo/classify/val.py +1 -1
- ultralytics/models/yolo/detect/predict.py +2 -2
- ultralytics/models/yolo/detect/train.py +4 -3
- ultralytics/models/yolo/detect/val.py +7 -1
- ultralytics/models/yolo/model.py +8 -8
- ultralytics/models/yolo/obb/predict.py +2 -2
- ultralytics/models/yolo/obb/train.py +3 -3
- ultralytics/models/yolo/obb/val.py +1 -1
- ultralytics/models/yolo/pose/predict.py +1 -1
- ultralytics/models/yolo/pose/train.py +3 -1
- ultralytics/models/yolo/pose/val.py +1 -1
- ultralytics/models/yolo/segment/predict.py +3 -3
- ultralytics/models/yolo/segment/train.py +4 -4
- ultralytics/models/yolo/segment/val.py +4 -2
- ultralytics/models/yolo/yoloe/train.py +6 -1
- ultralytics/models/yolo/yoloe/train_seg.py +6 -1
- ultralytics/nn/autobackend.py +5 -5
- ultralytics/nn/modules/__init__.py +8 -0
- ultralytics/nn/modules/block.py +128 -8
- ultralytics/nn/modules/head.py +788 -203
- ultralytics/nn/tasks.py +86 -41
- ultralytics/nn/text_model.py +5 -2
- ultralytics/optim/__init__.py +5 -0
- ultralytics/optim/muon.py +338 -0
- ultralytics/solutions/ai_gym.py +3 -3
- ultralytics/solutions/config.py +1 -1
- ultralytics/solutions/heatmap.py +1 -1
- ultralytics/solutions/instance_segmentation.py +2 -2
- ultralytics/solutions/parking_management.py +1 -1
- ultralytics/solutions/solutions.py +2 -2
- ultralytics/trackers/track.py +1 -1
- ultralytics/utils/__init__.py +8 -8
- ultralytics/utils/benchmarks.py +23 -23
- ultralytics/utils/callbacks/platform.py +11 -7
- ultralytics/utils/checks.py +6 -6
- ultralytics/utils/downloads.py +5 -3
- ultralytics/utils/export/engine.py +19 -10
- ultralytics/utils/export/imx.py +19 -13
- ultralytics/utils/export/tensorflow.py +21 -21
- ultralytics/utils/files.py +2 -2
- ultralytics/utils/loss.py +587 -203
- ultralytics/utils/metrics.py +1 -0
- ultralytics/utils/ops.py +11 -2
- ultralytics/utils/tal.py +98 -19
- ultralytics/utils/tuner.py +2 -2
- {dgenerate_ultralytics_headless-8.3.253.dist-info → dgenerate_ultralytics_headless-8.4.3.dist-info}/WHEEL +0 -0
- {dgenerate_ultralytics_headless-8.3.253.dist-info → dgenerate_ultralytics_headless-8.4.3.dist-info}/entry_points.txt +0 -0
- {dgenerate_ultralytics_headless-8.3.253.dist-info → dgenerate_ultralytics_headless-8.4.3.dist-info}/licenses/LICENSE +0 -0
- {dgenerate_ultralytics_headless-8.3.253.dist-info → dgenerate_ultralytics_headless-8.4.3.dist-info}/top_level.txt +0 -0
ultralytics/utils/metrics.py
CHANGED
ultralytics/utils/ops.py
CHANGED
|
@@ -344,7 +344,7 @@ def xyxyxyxy2xywhr(x):
|
|
|
344
344
|
|
|
345
345
|
Returns:
|
|
346
346
|
(np.ndarray | torch.Tensor): Converted data in [cx, cy, w, h, rotation] format with shape (N, 5). Rotation
|
|
347
|
-
values are in radians from
|
|
347
|
+
values are in radians from [-pi/4, 3pi/4).
|
|
348
348
|
"""
|
|
349
349
|
is_torch = isinstance(x, torch.Tensor)
|
|
350
350
|
points = x.cpu().numpy() if is_torch else x
|
|
@@ -354,7 +354,16 @@ def xyxyxyxy2xywhr(x):
|
|
|
354
354
|
# NOTE: Use cv2.minAreaRect to get accurate xywhr,
|
|
355
355
|
# especially some objects are cut off by augmentations in dataloader.
|
|
356
356
|
(cx, cy), (w, h), angle = cv2.minAreaRect(pts)
|
|
357
|
-
|
|
357
|
+
# convert angle to radian and normalize to [-pi/4, 3pi/4)
|
|
358
|
+
theta = angle / 180 * np.pi
|
|
359
|
+
if w < h:
|
|
360
|
+
w, h = h, w
|
|
361
|
+
theta += np.pi / 2
|
|
362
|
+
while theta >= 3 * np.pi / 4:
|
|
363
|
+
theta -= np.pi
|
|
364
|
+
while theta < -np.pi / 4:
|
|
365
|
+
theta += np.pi
|
|
366
|
+
rboxes.append([cx, cy, w, h, theta])
|
|
358
367
|
return torch.tensor(rboxes, device=x.device, dtype=x.dtype) if is_torch else np.asarray(rboxes)
|
|
359
368
|
|
|
360
369
|
|
ultralytics/utils/tal.py
CHANGED
|
@@ -1,11 +1,13 @@
|
|
|
1
1
|
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
|
2
2
|
|
|
3
|
+
from __future__ import annotations
|
|
4
|
+
|
|
3
5
|
import torch
|
|
4
6
|
import torch.nn as nn
|
|
5
7
|
|
|
6
8
|
from . import LOGGER
|
|
7
9
|
from .metrics import bbox_iou, probiou
|
|
8
|
-
from .ops import xywhr2xyxyxyxy
|
|
10
|
+
from .ops import xywh2xyxy, xywhr2xyxyxyxy, xyxy2xywh
|
|
9
11
|
from .torch_utils import TORCH_1_11
|
|
10
12
|
|
|
11
13
|
|
|
@@ -17,13 +19,24 @@ class TaskAlignedAssigner(nn.Module):
|
|
|
17
19
|
|
|
18
20
|
Attributes:
|
|
19
21
|
topk (int): The number of top candidates to consider.
|
|
22
|
+
topk2 (int): Secondary topk value for additional filtering.
|
|
20
23
|
num_classes (int): The number of object classes.
|
|
21
24
|
alpha (float): The alpha parameter for the classification component of the task-aligned metric.
|
|
22
25
|
beta (float): The beta parameter for the localization component of the task-aligned metric.
|
|
26
|
+
stride (list): List of stride values for different feature levels.
|
|
23
27
|
eps (float): A small value to prevent division by zero.
|
|
24
28
|
"""
|
|
25
29
|
|
|
26
|
-
def __init__(
|
|
30
|
+
def __init__(
|
|
31
|
+
self,
|
|
32
|
+
topk: int = 13,
|
|
33
|
+
num_classes: int = 80,
|
|
34
|
+
alpha: float = 1.0,
|
|
35
|
+
beta: float = 6.0,
|
|
36
|
+
stride: list = [8, 16, 32],
|
|
37
|
+
eps: float = 1e-9,
|
|
38
|
+
topk2=None,
|
|
39
|
+
):
|
|
27
40
|
"""Initialize a TaskAlignedAssigner object with customizable hyperparameters.
|
|
28
41
|
|
|
29
42
|
Args:
|
|
@@ -31,13 +44,17 @@ class TaskAlignedAssigner(nn.Module):
|
|
|
31
44
|
num_classes (int, optional): The number of object classes.
|
|
32
45
|
alpha (float, optional): The alpha parameter for the classification component of the task-aligned metric.
|
|
33
46
|
beta (float, optional): The beta parameter for the localization component of the task-aligned metric.
|
|
47
|
+
stride (list, optional): List of stride values for different feature levels.
|
|
34
48
|
eps (float, optional): A small value to prevent division by zero.
|
|
49
|
+
topk2 (int, optional): Secondary topk value for additional filtering.
|
|
35
50
|
"""
|
|
36
51
|
super().__init__()
|
|
37
52
|
self.topk = topk
|
|
53
|
+
self.topk2 = topk2 or topk
|
|
38
54
|
self.num_classes = num_classes
|
|
39
55
|
self.alpha = alpha
|
|
40
56
|
self.beta = beta
|
|
57
|
+
self.stride = stride
|
|
41
58
|
self.eps = eps
|
|
42
59
|
|
|
43
60
|
@torch.no_grad()
|
|
@@ -77,12 +94,14 @@ class TaskAlignedAssigner(nn.Module):
|
|
|
77
94
|
|
|
78
95
|
try:
|
|
79
96
|
return self._forward(pd_scores, pd_bboxes, anc_points, gt_labels, gt_bboxes, mask_gt)
|
|
80
|
-
except
|
|
81
|
-
|
|
82
|
-
|
|
83
|
-
|
|
84
|
-
|
|
85
|
-
|
|
97
|
+
except RuntimeError as e:
|
|
98
|
+
if "out of memory" in str(e).lower():
|
|
99
|
+
# Move tensors to CPU, compute, then move back to original device
|
|
100
|
+
LOGGER.warning("CUDA OutOfMemoryError in TaskAlignedAssigner, using CPU")
|
|
101
|
+
cpu_tensors = [t.cpu() for t in (pd_scores, pd_bboxes, anc_points, gt_labels, gt_bboxes, mask_gt)]
|
|
102
|
+
result = self._forward(*cpu_tensors)
|
|
103
|
+
return tuple(t.to(device) for t in result)
|
|
104
|
+
raise
|
|
86
105
|
|
|
87
106
|
def _forward(self, pd_scores, pd_bboxes, anc_points, gt_labels, gt_bboxes, mask_gt):
|
|
88
107
|
"""Compute the task-aligned assignment.
|
|
@@ -106,7 +125,9 @@ class TaskAlignedAssigner(nn.Module):
|
|
|
106
125
|
pd_scores, pd_bboxes, gt_labels, gt_bboxes, anc_points, mask_gt
|
|
107
126
|
)
|
|
108
127
|
|
|
109
|
-
target_gt_idx, fg_mask, mask_pos = self.select_highest_overlaps(
|
|
128
|
+
target_gt_idx, fg_mask, mask_pos = self.select_highest_overlaps(
|
|
129
|
+
mask_pos, overlaps, self.n_max_boxes, align_metric
|
|
130
|
+
)
|
|
110
131
|
|
|
111
132
|
# Assigned target
|
|
112
133
|
target_labels, target_bboxes, target_scores = self.get_targets(gt_labels, gt_bboxes, target_gt_idx, fg_mask)
|
|
@@ -136,7 +157,7 @@ class TaskAlignedAssigner(nn.Module):
|
|
|
136
157
|
align_metric (torch.Tensor): Alignment metric with shape (bs, max_num_obj, h*w).
|
|
137
158
|
overlaps (torch.Tensor): Overlaps between predicted vs ground truth boxes with shape (bs, max_num_obj, h*w).
|
|
138
159
|
"""
|
|
139
|
-
mask_in_gts = self.select_candidates_in_gts(anc_points, gt_bboxes)
|
|
160
|
+
mask_in_gts = self.select_candidates_in_gts(anc_points, gt_bboxes, mask_gt)
|
|
140
161
|
# Get anchor_align metric, (b, max_num_obj, h*w)
|
|
141
162
|
align_metric, overlaps = self.get_box_metrics(pd_scores, pd_bboxes, gt_labels, gt_bboxes, mask_in_gts * mask_gt)
|
|
142
163
|
# Get topk_metric mask, (b, max_num_obj, h*w)
|
|
@@ -263,13 +284,13 @@ class TaskAlignedAssigner(nn.Module):
|
|
|
263
284
|
|
|
264
285
|
return target_labels, target_bboxes, target_scores
|
|
265
286
|
|
|
266
|
-
|
|
267
|
-
def select_candidates_in_gts(xy_centers, gt_bboxes, eps=1e-9):
|
|
287
|
+
def select_candidates_in_gts(self, xy_centers, gt_bboxes, mask_gt, eps=1e-9):
|
|
268
288
|
"""Select positive anchor centers within ground truth bounding boxes.
|
|
269
289
|
|
|
270
290
|
Args:
|
|
271
291
|
xy_centers (torch.Tensor): Anchor center coordinates, shape (h*w, 2).
|
|
272
292
|
gt_bboxes (torch.Tensor): Ground truth bounding boxes, shape (b, n_boxes, 4).
|
|
293
|
+
mask_gt (torch.Tensor): Mask for valid ground truth boxes, shape (b, n_boxes, 1).
|
|
273
294
|
eps (float, optional): Small value for numerical stability.
|
|
274
295
|
|
|
275
296
|
Returns:
|
|
@@ -279,20 +300,26 @@ class TaskAlignedAssigner(nn.Module):
|
|
|
279
300
|
- b: batch size, n_boxes: number of ground truth boxes, h: height, w: width.
|
|
280
301
|
- Bounding box format: [x_min, y_min, x_max, y_max].
|
|
281
302
|
"""
|
|
303
|
+
gt_bboxes_xywh = xyxy2xywh(gt_bboxes)
|
|
304
|
+
wh_mask = gt_bboxes_xywh[..., 2:] < self.stride[0] # the smallest stride
|
|
305
|
+
stride_val = torch.tensor(self.stride[1], dtype=gt_bboxes_xywh.dtype, device=gt_bboxes_xywh.device)
|
|
306
|
+
gt_bboxes_xywh[..., 2:] = torch.where((wh_mask * mask_gt).bool(), stride_val, gt_bboxes_xywh[..., 2:])
|
|
307
|
+
gt_bboxes = xywh2xyxy(gt_bboxes_xywh)
|
|
308
|
+
|
|
282
309
|
n_anchors = xy_centers.shape[0]
|
|
283
310
|
bs, n_boxes, _ = gt_bboxes.shape
|
|
284
311
|
lt, rb = gt_bboxes.view(-1, 1, 4).chunk(2, 2) # left-top, right-bottom
|
|
285
312
|
bbox_deltas = torch.cat((xy_centers[None] - lt, rb - xy_centers[None]), dim=2).view(bs, n_boxes, n_anchors, -1)
|
|
286
313
|
return bbox_deltas.amin(3).gt_(eps)
|
|
287
314
|
|
|
288
|
-
|
|
289
|
-
def select_highest_overlaps(mask_pos, overlaps, n_max_boxes):
|
|
315
|
+
def select_highest_overlaps(self, mask_pos, overlaps, n_max_boxes, align_metric):
|
|
290
316
|
"""Select anchor boxes with highest IoU when assigned to multiple ground truths.
|
|
291
317
|
|
|
292
318
|
Args:
|
|
293
319
|
mask_pos (torch.Tensor): Positive mask, shape (b, n_max_boxes, h*w).
|
|
294
320
|
overlaps (torch.Tensor): IoU overlaps, shape (b, n_max_boxes, h*w).
|
|
295
321
|
n_max_boxes (int): Maximum number of ground truth boxes.
|
|
322
|
+
align_metric (torch.Tensor): Alignment metric for selecting best matches.
|
|
296
323
|
|
|
297
324
|
Returns:
|
|
298
325
|
target_gt_idx (torch.Tensor): Indices of assigned ground truths, shape (b, h*w).
|
|
@@ -303,12 +330,20 @@ class TaskAlignedAssigner(nn.Module):
|
|
|
303
330
|
fg_mask = mask_pos.sum(-2)
|
|
304
331
|
if fg_mask.max() > 1: # one anchor is assigned to multiple gt_bboxes
|
|
305
332
|
mask_multi_gts = (fg_mask.unsqueeze(1) > 1).expand(-1, n_max_boxes, -1) # (b, n_max_boxes, h*w)
|
|
306
|
-
max_overlaps_idx = overlaps.argmax(1) # (b, h*w)
|
|
307
333
|
|
|
334
|
+
max_overlaps_idx = overlaps.argmax(1) # (b, h*w)
|
|
308
335
|
is_max_overlaps = torch.zeros(mask_pos.shape, dtype=mask_pos.dtype, device=mask_pos.device)
|
|
309
336
|
is_max_overlaps.scatter_(1, max_overlaps_idx.unsqueeze(1), 1)
|
|
310
|
-
|
|
311
337
|
mask_pos = torch.where(mask_multi_gts, is_max_overlaps, mask_pos).float() # (b, n_max_boxes, h*w)
|
|
338
|
+
|
|
339
|
+
fg_mask = mask_pos.sum(-2)
|
|
340
|
+
|
|
341
|
+
if self.topk2 != self.topk:
|
|
342
|
+
align_metric = align_metric * mask_pos # update overlaps
|
|
343
|
+
max_overlaps_idx = torch.topk(align_metric, self.topk2, dim=-1, largest=True).indices # (b, n_max_boxes)
|
|
344
|
+
topk_idx = torch.zeros(mask_pos.shape, dtype=mask_pos.dtype, device=mask_pos.device) # update mask_pos
|
|
345
|
+
topk_idx.scatter_(-1, max_overlaps_idx, 1.0)
|
|
346
|
+
mask_pos *= topk_idx
|
|
312
347
|
fg_mask = mask_pos.sum(-2)
|
|
313
348
|
# Find each grid serve which gt(index)
|
|
314
349
|
target_gt_idx = mask_pos.argmax(-2) # (b, h*w)
|
|
@@ -323,12 +358,14 @@ class RotatedTaskAlignedAssigner(TaskAlignedAssigner):
|
|
|
323
358
|
return probiou(gt_bboxes, pd_bboxes).squeeze(-1).clamp_(0)
|
|
324
359
|
|
|
325
360
|
@staticmethod
|
|
326
|
-
def select_candidates_in_gts(xy_centers, gt_bboxes):
|
|
361
|
+
def select_candidates_in_gts(xy_centers, gt_bboxes, mask_gt):
|
|
327
362
|
"""Select the positive anchor center in gt for rotated bounding boxes.
|
|
328
363
|
|
|
329
364
|
Args:
|
|
330
365
|
xy_centers (torch.Tensor): Anchor center coordinates with shape (h*w, 2).
|
|
331
366
|
gt_bboxes (torch.Tensor): Ground truth bounding boxes with shape (b, n_boxes, 5).
|
|
367
|
+
mask_gt (torch.Tensor): Mask for valid ground truth boxes with shape (b, n_boxes, 1).
|
|
368
|
+
stride (list[int]): List of stride values for each feature map level.
|
|
332
369
|
|
|
333
370
|
Returns:
|
|
334
371
|
(torch.Tensor): Boolean mask of positive anchors with shape (b, n_boxes, h*w).
|
|
@@ -377,10 +414,13 @@ def dist2bbox(distance, anchor_points, xywh=True, dim=-1):
|
|
|
377
414
|
return torch.cat((x1y1, x2y2), dim) # xyxy bbox
|
|
378
415
|
|
|
379
416
|
|
|
380
|
-
def bbox2dist(anchor_points, bbox, reg_max):
|
|
417
|
+
def bbox2dist(anchor_points: torch.Tensor, bbox: torch.Tensor, reg_max: int | None = None) -> torch.Tensor:
|
|
381
418
|
"""Transform bbox(xyxy) to dist(ltrb)."""
|
|
382
419
|
x1y1, x2y2 = bbox.chunk(2, -1)
|
|
383
|
-
|
|
420
|
+
dist = torch.cat((anchor_points - x1y1, x2y2 - anchor_points), -1)
|
|
421
|
+
if reg_max is not None:
|
|
422
|
+
dist = dist.clamp_(0, reg_max - 0.01) # dist (lt, rb)
|
|
423
|
+
return dist
|
|
384
424
|
|
|
385
425
|
|
|
386
426
|
def dist2rbox(pred_dist, pred_angle, anchor_points, dim=-1):
|
|
@@ -402,3 +442,42 @@ def dist2rbox(pred_dist, pred_angle, anchor_points, dim=-1):
|
|
|
402
442
|
x, y = xf * cos - yf * sin, xf * sin + yf * cos
|
|
403
443
|
xy = torch.cat([x, y], dim=dim) + anchor_points
|
|
404
444
|
return torch.cat([xy, lt + rb], dim=dim)
|
|
445
|
+
|
|
446
|
+
|
|
447
|
+
def rbox2dist(
|
|
448
|
+
target_bboxes: torch.Tensor,
|
|
449
|
+
anchor_points: torch.Tensor,
|
|
450
|
+
target_angle: torch.Tensor,
|
|
451
|
+
dim: int = -1,
|
|
452
|
+
reg_max: int | None = None,
|
|
453
|
+
):
|
|
454
|
+
"""Decode rotated bounding box (xywh) to distance(ltrb). This is the inverse of dist2rbox.
|
|
455
|
+
|
|
456
|
+
Args:
|
|
457
|
+
target_bboxes (torch.Tensor): Target rotated bounding boxes with shape (bs, h*w, 4), format [x, y, w, h].
|
|
458
|
+
anchor_points (torch.Tensor): Anchor points with shape (h*w, 2).
|
|
459
|
+
target_angle (torch.Tensor): Target angle with shape (bs, h*w, 1).
|
|
460
|
+
dim (int, optional): Dimension along which to split.
|
|
461
|
+
reg_max (int, optional): Maximum regression value for clamping.
|
|
462
|
+
|
|
463
|
+
Returns:
|
|
464
|
+
(torch.Tensor): Predicted rotated distance with shape (bs, h*w, 4), format [l, t, r, b].
|
|
465
|
+
"""
|
|
466
|
+
xy, wh = target_bboxes.split(2, dim=dim)
|
|
467
|
+
offset = xy - anchor_points # (bs, h*w, 2)
|
|
468
|
+
offset_x, offset_y = offset.split(1, dim=dim)
|
|
469
|
+
cos, sin = torch.cos(target_angle), torch.sin(target_angle)
|
|
470
|
+
xf = offset_x * cos + offset_y * sin
|
|
471
|
+
yf = -offset_x * sin + offset_y * cos
|
|
472
|
+
|
|
473
|
+
w, h = wh.split(1, dim=dim)
|
|
474
|
+
target_l = w / 2 - xf
|
|
475
|
+
target_t = h / 2 - yf
|
|
476
|
+
target_r = w / 2 + xf
|
|
477
|
+
target_b = h / 2 + yf
|
|
478
|
+
|
|
479
|
+
dist = torch.cat([target_l, target_t, target_r, target_b], dim=dim)
|
|
480
|
+
if reg_max is not None:
|
|
481
|
+
dist = dist.clamp_(0, reg_max - 0.01)
|
|
482
|
+
|
|
483
|
+
return dist
|
ultralytics/utils/tuner.py
CHANGED
|
@@ -29,9 +29,9 @@ def run_ray_tune(
|
|
|
29
29
|
|
|
30
30
|
Examples:
|
|
31
31
|
>>> from ultralytics import YOLO
|
|
32
|
-
>>> model = YOLO("
|
|
32
|
+
>>> model = YOLO("yolo26n.pt") # Load a YOLO26n model
|
|
33
33
|
|
|
34
|
-
Start tuning hyperparameters for
|
|
34
|
+
Start tuning hyperparameters for YOLO26n training on the COCO8 dataset
|
|
35
35
|
>>> result_grid = model.tune(data="coco8.yaml", use_ray=True)
|
|
36
36
|
"""
|
|
37
37
|
LOGGER.info("💡 Learn about RayTune at https://docs.ultralytics.com/integrations/ray-tune")
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|