dgenerate-ultralytics-headless 8.3.253__py3-none-any.whl → 8.4.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (61) hide show
  1. {dgenerate_ultralytics_headless-8.3.253.dist-info → dgenerate_ultralytics_headless-8.4.1.dist-info}/METADATA +31 -39
  2. {dgenerate_ultralytics_headless-8.3.253.dist-info → dgenerate_ultralytics_headless-8.4.1.dist-info}/RECORD +61 -50
  3. tests/__init__.py +2 -2
  4. tests/conftest.py +1 -1
  5. tests/test_cuda.py +8 -2
  6. tests/test_engine.py +8 -8
  7. tests/test_exports.py +13 -4
  8. tests/test_integrations.py +9 -9
  9. tests/test_python.py +14 -14
  10. tests/test_solutions.py +3 -3
  11. ultralytics/__init__.py +1 -1
  12. ultralytics/cfg/__init__.py +6 -6
  13. ultralytics/cfg/default.yaml +3 -1
  14. ultralytics/cfg/models/26/yolo26-cls.yaml +33 -0
  15. ultralytics/cfg/models/26/yolo26-obb.yaml +52 -0
  16. ultralytics/cfg/models/26/yolo26-p2.yaml +60 -0
  17. ultralytics/cfg/models/26/yolo26-p6.yaml +62 -0
  18. ultralytics/cfg/models/26/yolo26-pose.yaml +53 -0
  19. ultralytics/cfg/models/26/yolo26-seg.yaml +52 -0
  20. ultralytics/cfg/models/26/yolo26.yaml +52 -0
  21. ultralytics/cfg/models/26/yoloe-26-seg.yaml +53 -0
  22. ultralytics/cfg/models/26/yoloe-26.yaml +53 -0
  23. ultralytics/data/augment.py +7 -0
  24. ultralytics/data/dataset.py +1 -1
  25. ultralytics/engine/exporter.py +9 -4
  26. ultralytics/engine/model.py +1 -1
  27. ultralytics/engine/trainer.py +40 -15
  28. ultralytics/engine/tuner.py +15 -7
  29. ultralytics/models/fastsam/predict.py +1 -1
  30. ultralytics/models/yolo/detect/train.py +3 -2
  31. ultralytics/models/yolo/detect/val.py +6 -0
  32. ultralytics/models/yolo/model.py +1 -1
  33. ultralytics/models/yolo/obb/predict.py +1 -1
  34. ultralytics/models/yolo/obb/train.py +1 -1
  35. ultralytics/models/yolo/pose/train.py +1 -1
  36. ultralytics/models/yolo/segment/predict.py +1 -1
  37. ultralytics/models/yolo/segment/train.py +1 -1
  38. ultralytics/models/yolo/segment/val.py +3 -1
  39. ultralytics/models/yolo/yoloe/train.py +6 -1
  40. ultralytics/models/yolo/yoloe/train_seg.py +6 -1
  41. ultralytics/nn/autobackend.py +3 -3
  42. ultralytics/nn/modules/__init__.py +8 -0
  43. ultralytics/nn/modules/block.py +128 -8
  44. ultralytics/nn/modules/head.py +789 -204
  45. ultralytics/nn/tasks.py +74 -29
  46. ultralytics/nn/text_model.py +5 -2
  47. ultralytics/optim/__init__.py +5 -0
  48. ultralytics/optim/muon.py +338 -0
  49. ultralytics/utils/callbacks/platform.py +9 -7
  50. ultralytics/utils/downloads.py +3 -1
  51. ultralytics/utils/export/engine.py +19 -10
  52. ultralytics/utils/export/imx.py +22 -11
  53. ultralytics/utils/export/tensorflow.py +21 -21
  54. ultralytics/utils/loss.py +587 -203
  55. ultralytics/utils/metrics.py +1 -0
  56. ultralytics/utils/ops.py +11 -2
  57. ultralytics/utils/tal.py +98 -19
  58. {dgenerate_ultralytics_headless-8.3.253.dist-info → dgenerate_ultralytics_headless-8.4.1.dist-info}/WHEEL +0 -0
  59. {dgenerate_ultralytics_headless-8.3.253.dist-info → dgenerate_ultralytics_headless-8.4.1.dist-info}/entry_points.txt +0 -0
  60. {dgenerate_ultralytics_headless-8.3.253.dist-info → dgenerate_ultralytics_headless-8.4.1.dist-info}/licenses/LICENSE +0 -0
  61. {dgenerate_ultralytics_headless-8.3.253.dist-info → dgenerate_ultralytics_headless-8.4.1.dist-info}/top_level.txt +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: dgenerate-ultralytics-headless
3
- Version: 8.3.253
3
+ Version: 8.4.1
4
4
  Summary: Automatically built Ultralytics package with python-opencv-headless dependency instead of python-opencv
5
5
  Author-email: Glenn Jocher <glenn.jocher@ultralytics.com>, Jing Qiu <jing.qiu@ultralytics.com>
6
6
  Maintainer-email: Ultralytics <hello@ultralytics.com>
@@ -129,7 +129,6 @@ The workflow runs automatically every day at midnight UTC to check for new Ultra
129
129
  <div>
130
130
  <a href="https://github.com/ultralytics/ultralytics/actions/workflows/ci.yml"><img src="https://github.com/ultralytics/ultralytics/actions/workflows/ci.yml/badge.svg" alt="Ultralytics CI"></a>
131
131
  <a href="https://clickpy.clickhouse.com/dashboard/ultralytics"><img src="https://static.pepy.tech/badge/ultralytics" alt="Ultralytics Downloads"></a>
132
- <a href="https://zenodo.org/badge/latestdoi/264818686"><img src="https://zenodo.org/badge/264818686.svg" alt="Ultralytics YOLO Citation"></a>
133
132
  <a href="https://discord.com/invite/ultralytics"><img alt="Ultralytics Discord" src="https://img.shields.io/discord/1089800235347353640?logo=discord&logoColor=white&label=Discord&color=blue"></a>
134
133
  <a href="https://community.ultralytics.com/"><img alt="Ultralytics Forums" src="https://img.shields.io/discourse/users?server=https%3A%2F%2Fcommunity.ultralytics.com&logo=discourse&label=Forums&color=blue"></a>
135
134
  <a href="https://www.reddit.com/r/ultralytics/"><img alt="Ultralytics Reddit" src="https://img.shields.io/reddit/subreddit-subscribers/ultralytics?style=flat&logo=reddit&logoColor=white&label=Reddit&color=blue"></a>
@@ -197,8 +196,8 @@ For alternative installation methods, including [Conda](https://anaconda.org/con
197
196
  You can use Ultralytics YOLO directly from the Command Line Interface (CLI) with the `yolo` command:
198
197
 
199
198
  ```bash
200
- # Predict using a pretrained YOLO model (e.g., YOLO11n) on an image
201
- yolo predict model=yolo11n.pt source='https://ultralytics.com/images/bus.jpg'
199
+ # Predict using a pretrained YOLO model (e.g., YOLO26n) on an image
200
+ yolo predict model=yolo26n.pt source='https://ultralytics.com/images/bus.jpg'
202
201
  ```
203
202
 
204
203
  The `yolo` command supports various tasks and modes, accepting additional arguments like `imgsz=640`. Explore the YOLO [CLI Docs](https://docs.ultralytics.com/usage/cli/) for more examples.
@@ -210,8 +209,8 @@ Ultralytics YOLO can also be integrated directly into your Python projects. It a
210
209
  ```python
211
210
  from ultralytics import YOLO
212
211
 
213
- # Load a pretrained YOLO11n model
214
- model = YOLO("yolo11n.pt")
212
+ # Load a pretrained YOLO26n model
213
+ model = YOLO("yolo26n.pt")
215
214
 
216
215
  # Train the model on the COCO8 dataset for 100 epochs
217
216
  train_results = model.train(
@@ -238,7 +237,7 @@ Discover more examples in the YOLO [Python Docs](https://docs.ultralytics.com/us
238
237
 
239
238
  ## ✨ Models
240
239
 
241
- Ultralytics supports a wide range of YOLO models, from early versions like [YOLOv3](https://docs.ultralytics.com/models/yolov3/) to the latest [YOLO11](https://docs.ultralytics.com/models/yolo11/). The tables below showcase YOLO11 models pretrained on the [COCO](https://docs.ultralytics.com/datasets/detect/coco/) dataset for [Detection](https://docs.ultralytics.com/tasks/detect/), [Segmentation](https://docs.ultralytics.com/tasks/segment/), and [Pose Estimation](https://docs.ultralytics.com/tasks/pose/). Additionally, [Classification](https://docs.ultralytics.com/tasks/classify/) models pretrained on the [ImageNet](https://docs.ultralytics.com/datasets/classify/imagenet/) dataset are available. [Tracking](https://docs.ultralytics.com/modes/track/) mode is compatible with all Detection, Segmentation, and Pose models. All [Models](https://docs.ultralytics.com/models/) are automatically downloaded from the latest Ultralytics [release](https://github.com/ultralytics/assets/releases) upon first use.
240
+ Ultralytics supports a wide range of YOLO models, from early versions like [YOLOv3](https://docs.ultralytics.com/models/yolov3/) to the latest [YOLO26](https://docs.ultralytics.com/models/yolo26/). The tables below showcase YOLO26 models pretrained on the [COCO](https://docs.ultralytics.com/datasets/detect/coco/) dataset for [Detection](https://docs.ultralytics.com/tasks/detect/), [Segmentation](https://docs.ultralytics.com/tasks/segment/), and [Pose Estimation](https://docs.ultralytics.com/tasks/pose/). Additionally, [Classification](https://docs.ultralytics.com/tasks/classify/) models pretrained on the [ImageNet](https://docs.ultralytics.com/datasets/classify/imagenet/) dataset are available. [Tracking](https://docs.ultralytics.com/modes/track/) mode is compatible with all Detection, Segmentation, and Pose models. All [Models](https://docs.ultralytics.com/models/) are automatically downloaded from the latest Ultralytics [release](https://github.com/ultralytics/assets/releases) upon first use.
242
241
 
243
242
  <a href="https://docs.ultralytics.com/tasks/" target="_blank">
244
243
  <img width="100%" src="https://github.com/ultralytics/docs/releases/download/0/ultralytics-yolov8-tasks-banner.avif" alt="Ultralytics YOLO supported tasks">
@@ -252,11 +251,11 @@ Explore the [Detection Docs](https://docs.ultralytics.com/tasks/detect/) for usa
252
251
 
253
252
  | Model | size<br><sup>(pixels) | mAP<sup>val<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
254
253
  | ------------------------------------------------------------------------------------ | --------------------- | -------------------- | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
255
- | [YOLO11n](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n.pt) | 640 | 39.5 | 56.1 ± 0.8 | 1.5 ± 0.0 | 2.6 | 6.5 |
256
- | [YOLO11s](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s.pt) | 640 | 47.0 | 90.0 ± 1.2 | 2.5 ± 0.0 | 9.4 | 21.5 |
257
- | [YOLO11m](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m.pt) | 640 | 51.5 | 183.2 ± 2.0 | 4.7 ± 0.1 | 20.1 | 68.0 |
258
- | [YOLO11l](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l.pt) | 640 | 53.4 | 238.6 ± 1.4 | 6.2 ± 0.1 | 25.3 | 86.9 |
259
- | [YOLO11x](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x.pt) | 640 | 54.7 | 462.8 ± 6.7 | 11.3 ± 0.2 | 56.9 | 194.9 |
254
+ | [YOLO26n](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26n.pt) | 640 | 40.9 | 38.9 ± 0.7 | 1.7 ± 0.0 | 2.4 | 5.4 |
255
+ | [YOLO26s](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26s.pt) | 640 | 48.6 | 87.2 ± 0.9 | 2.5 ± 0.0 | 9.5 | 20.7 |
256
+ | [YOLO26m](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26m.pt) | 640 | 53.1 | 220.0 ± 1.4 | 4.7 ± 0.1 | 20.4 | 68.2 |
257
+ | [YOLO26l](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26l.pt) | 640 | 55.0 | 286.2 ± 2.0 | 6.2 ± 0.2 | 24.8 | 86.4 |
258
+ | [YOLO26x](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26x.pt) | 640 | 57.5 | 525.8 ± 4.0 | 11.8 ± 0.2 | 55.7 | 193.9 |
260
259
 
261
260
  - **mAP<sup>val</sup>** values refer to single-model single-scale performance on the [COCO val2017](https://cocodataset.org/) dataset. See [YOLO Performance Metrics](https://docs.ultralytics.com/guides/yolo-performance-metrics/) for details. <br>Reproduce with `yolo val detect data=coco.yaml device=0`
262
261
  - **Speed** metrics are averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. CPU speeds measured with [ONNX](https://onnx.ai/) export. GPU speeds measured with [TensorRT](https://developer.nvidia.com/tensorrt) export. <br>Reproduce with `yolo val detect data=coco.yaml batch=1 device=0|cpu`
@@ -269,11 +268,11 @@ Refer to the [Segmentation Docs](https://docs.ultralytics.com/tasks/segment/) fo
269
268
 
270
269
  | Model | size<br><sup>(pixels) | mAP<sup>box<br>50-95 | mAP<sup>mask<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
271
270
  | -------------------------------------------------------------------------------------------- | --------------------- | -------------------- | --------------------- | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
272
- | [YOLO11n-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-seg.pt) | 640 | 38.9 | 32.0 | 65.9 ± 1.1 | 1.8 ± 0.0 | 2.9 | 9.7 |
273
- | [YOLO11s-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-seg.pt) | 640 | 46.6 | 37.8 | 117.6 ± 4.9 | 2.9 ± 0.0 | 10.1 | 33.0 |
274
- | [YOLO11m-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-seg.pt) | 640 | 51.5 | 41.5 | 281.6 ± 1.2 | 6.3 ± 0.1 | 22.4 | 113.2 |
275
- | [YOLO11l-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-seg.pt) | 640 | 53.4 | 42.9 | 344.2 ± 3.2 | 7.8 ± 0.2 | 27.6 | 132.2 |
276
- | [YOLO11x-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-seg.pt) | 640 | 54.7 | 43.8 | 664.5 ± 3.2 | 15.8 ± 0.7 | 62.1 | 296.4 |
271
+ | [YOLO26n-seg](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26n-seg.pt) | 640 | 39.6 | 33.9 | 53.3 ± 0.5 | 2.1 ± 0.0 | 2.7 | 9.1 |
272
+ | [YOLO26s-seg](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26s-seg.pt) | 640 | 47.3 | 40.0 | 118.4 ± 0.9 | 3.3 ± 0.0 | 10.4 | 34.2 |
273
+ | [YOLO26m-seg](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26m-seg.pt) | 640 | 52.5 | 44.1 | 328.2 ± 2.4 | 6.7 ± 0.1 | 23.6 | 121.5 |
274
+ | [YOLO26l-seg](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26l-seg.pt) | 640 | 54.4 | 45.5 | 387.0 ± 3.7 | 8.0 ± 0.1 | 28.0 | 139.8 |
275
+ | [YOLO26x-seg](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26x-seg.pt) | 640 | 56.5 | 47.0 | 787.0 ± 6.8 | 16.4 ± 0.1 | 62.8 | 313.5 |
277
276
 
278
277
  - **mAP<sup>val</sup>** values are for single-model single-scale on the [COCO val2017](https://cocodataset.org/) dataset. See [YOLO Performance Metrics](https://docs.ultralytics.com/guides/yolo-performance-metrics/) for details. <br>Reproduce with `yolo val segment data=coco.yaml device=0`
279
278
  - **Speed** metrics are averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. CPU speeds measured with [ONNX](https://onnx.ai/) export. GPU speeds measured with [TensorRT](https://developer.nvidia.com/tensorrt) export. <br>Reproduce with `yolo val segment data=coco.yaml batch=1 device=0|cpu`
@@ -286,11 +285,11 @@ Consult the [Classification Docs](https://docs.ultralytics.com/tasks/classify/)
286
285
 
287
286
  | Model | size<br><sup>(pixels) | acc<br><sup>top1 | acc<br><sup>top5 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) at 224 |
288
287
  | -------------------------------------------------------------------------------------------- | --------------------- | ---------------- | ---------------- | ------------------------------ | ----------------------------------- | ------------------ | ------------------------ |
289
- | [YOLO11n-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-cls.pt) | 224 | 70.0 | 89.4 | 5.0 ± 0.3 | 1.1 ± 0.0 | 2.8 | 0.5 |
290
- | [YOLO11s-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-cls.pt) | 224 | 75.4 | 92.7 | 7.9 ± 0.2 | 1.3 ± 0.0 | 6.7 | 1.6 |
291
- | [YOLO11m-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-cls.pt) | 224 | 77.3 | 93.9 | 17.2 ± 0.4 | 2.0 ± 0.0 | 11.6 | 4.9 |
292
- | [YOLO11l-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-cls.pt) | 224 | 78.3 | 94.3 | 23.2 ± 0.3 | 2.8 ± 0.0 | 14.1 | 6.2 |
293
- | [YOLO11x-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-cls.pt) | 224 | 79.5 | 94.9 | 41.4 ± 0.9 | 3.8 ± 0.0 | 29.6 | 13.6 |
288
+ | [YOLO26n-cls](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26n-cls.pt) | 224 | 71.4 | 90.1 | 5.0 ± 0.3 | 1.1 ± 0.0 | 2.8 | 0.5 |
289
+ | [YOLO26s-cls](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26s-cls.pt) | 224 | 76.0 | 92.9 | 7.9 ± 0.2 | 1.3 ± 0.0 | 6.7 | 1.6 |
290
+ | [YOLO26m-cls](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26m-cls.pt) | 224 | 78.1 | 94.2 | 17.2 ± 0.4 | 2.0 ± 0.0 | 11.6 | 4.9 |
291
+ | [YOLO26l-cls](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26l-cls.pt) | 224 | 79.0 | 94.6 | 23.2 ± 0.3 | 2.8 ± 0.0 | 14.1 | 6.2 |
292
+ | [YOLO26x-cls](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26x-cls.pt) | 224 | 79.9 | 95.0 | 41.4 ± 0.9 | 3.8 ± 0.0 | 29.6 | 13.6 |
294
293
 
295
294
  - **acc** values represent model accuracy on the [ImageNet](https://www.image-net.org/) dataset validation set. <br>Reproduce with `yolo val classify data=path/to/ImageNet device=0`
296
295
  - **Speed** metrics are averaged over ImageNet val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. CPU speeds measured with [ONNX](https://onnx.ai/) export. GPU speeds measured with [TensorRT](https://developer.nvidia.com/tensorrt) export. <br>Reproduce with `yolo val classify data=path/to/ImageNet batch=1 device=0|cpu`
@@ -303,11 +302,11 @@ See the [Pose Estimation Docs](https://docs.ultralytics.com/tasks/pose/) for usa
303
302
 
304
303
  | Model | size<br><sup>(pixels) | mAP<sup>pose<br>50-95 | mAP<sup>pose<br>50 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
305
304
  | ---------------------------------------------------------------------------------------------- | --------------------- | --------------------- | ------------------ | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
306
- | [YOLO11n-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-pose.pt) | 640 | 50.0 | 81.0 | 52.4 ± 0.5 | 1.7 ± 0.0 | 2.9 | 7.4 |
307
- | [YOLO11s-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-pose.pt) | 640 | 58.9 | 86.3 | 90.5 ± 0.6 | 2.6 ± 0.0 | 9.9 | 23.1 |
308
- | [YOLO11m-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-pose.pt) | 640 | 64.9 | 89.4 | 187.3 ± 0.8 | 4.9 ± 0.1 | 20.9 | 71.4 |
309
- | [YOLO11l-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-pose.pt) | 640 | 66.1 | 89.9 | 247.7 ± 1.1 | 6.4 ± 0.1 | 26.1 | 90.3 |
310
- | [YOLO11x-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-pose.pt) | 640 | 69.5 | 91.1 | 488.0 ± 13.9 | 12.1 ± 0.2 | 58.8 | 202.8 |
305
+ | [YOLO26n-pose](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26n-pose.pt) | 640 | 57.2 | 83.3 | 40.3 ± 0.5 | 1.8 ± 0.0 | 2.9 | 7.5 |
306
+ | [YOLO26s-pose](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26s-pose.pt) | 640 | 63.0 | 86.6 | 85.3 ± 0.9 | 2.7 ± 0.0 | 10.4 | 23.9 |
307
+ | [YOLO26m-pose](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26m-pose.pt) | 640 | 68.8 | 89.6 | 218.0 ± 1.5 | 5.0 ± 0.1 | 21.5 | 73.1 |
308
+ | [YOLO26l-pose](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26l-pose.pt) | 640 | 70.4 | 90.5 | 275.4 ± 2.4 | 6.5 ± 0.1 | 25.9 | 91.3 |
309
+ | [YOLO26x-pose](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26x-pose.pt) | 640 | 71.6 | 91.6 | 565.4 ± 3.0 | 12.2 ± 0.2 | 57.6 | 201.7 |
311
310
 
312
311
  - **mAP<sup>val</sup>** values are for single-model single-scale on the [COCO Keypoints val2017](https://docs.ultralytics.com/datasets/pose/coco/) dataset. See [YOLO Performance Metrics](https://docs.ultralytics.com/guides/yolo-performance-metrics/) for details. <br>Reproduce with `yolo val pose data=coco-pose.yaml device=0`
313
312
  - **Speed** metrics are averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. CPU speeds measured with [ONNX](https://onnx.ai/) export. GPU speeds measured with [TensorRT](https://developer.nvidia.com/tensorrt) export. <br>Reproduce with `yolo val pose data=coco-pose.yaml batch=1 device=0|cpu`
@@ -320,11 +319,11 @@ Check the [OBB Docs](https://docs.ultralytics.com/tasks/obb/) for usage examples
320
319
 
321
320
  | Model | size<br><sup>(pixels) | mAP<sup>test<br>50 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
322
321
  | -------------------------------------------------------------------------------------------- | --------------------- | ------------------ | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
323
- | [YOLO11n-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-obb.pt) | 1024 | 78.4 | 117.6 ± 0.8 | 4.4 ± 0.0 | 2.7 | 16.8 |
324
- | [YOLO11s-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-obb.pt) | 1024 | 79.5 | 219.4 ± 4.0 | 5.1 ± 0.0 | 9.7 | 57.1 |
325
- | [YOLO11m-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-obb.pt) | 1024 | 80.9 | 562.8 ± 2.9 | 10.1 ± 0.4 | 20.9 | 182.8 |
326
- | [YOLO11l-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-obb.pt) | 1024 | 81.0 | 712.5 ± 5.0 | 13.5 ± 0.6 | 26.1 | 231.2 |
327
- | [YOLO11x-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-obb.pt) | 1024 | 81.3 | 1408.6 ± 7.7 | 28.6 ± 1.0 | 58.8 | 519.1 |
322
+ | [YOLO26n-obb](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26n-obb.pt) | 1024 | 78.9 | 97.7 ± 0.9 | 2.8 ± 0.0 | 2.5 | 14.0 |
323
+ | [YOLO26s-obb](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26s-obb.pt) | 1024 | 80.9 | 218.0 ± 1.4 | 4.9 ± 0.1 | 9.8 | 55.1 |
324
+ | [YOLO26m-obb](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26m-obb.pt) | 1024 | 81.0 | 579.2 ± 3.8 | 10.2 ± 0.3 | 21.2 | 183.3 |
325
+ | [YOLO26l-obb](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26l-obb.pt) | 1024 | 81.6 | 735.6 ± 3.1 | 13.0 ± 0.2 | 25.6 | 230.0 |
326
+ | [YOLO26x-obb](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26x-obb.pt) | 1024 | 81.7 | 1485.7 ± 11.5 | 30.5 ± 0.9 | 57.6 | 516.5 |
328
327
 
329
328
  - **mAP<sup>test</sup>** values are for single-model multiscale performance on the [DOTAv1 test set](https://captain-whu.github.io/DOTA/dataset.html). <br>Reproduce by `yolo val obb data=DOTAv1.yaml device=0 split=test` and submit merged results to the [DOTA evaluation server](https://captain-whu.github.io/DOTA/evaluation.html).
330
329
  - **Speed** metrics are averaged over [DOTAv1 val images](https://docs.ultralytics.com/datasets/obb/dota-v2/#dota-v10) using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. CPU speeds measured with [ONNX](https://onnx.ai/) export. GPU speeds measured with [TensorRT](https://developer.nvidia.com/tensorrt) export. <br>Reproduce by `yolo val obb data=DOTAv1.yaml batch=1 device=0|cpu`
@@ -359,13 +358,6 @@ Our key integrations with leading AI platforms extend the functionality of Ultra
359
358
  | :-----------------------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------------------------------------------------------------------: | :-------------------------------------------------------------------------------------------------------------------------------------------------------------: | :-------------------------------------------------------------------------------------------------------------------------: |
360
359
  | Streamline YOLO workflows: Label, train, and deploy effortlessly with [Ultralytics HUB](https://hub.ultralytics.com/). Try now! | Track experiments, hyperparameters, and results with [Weights & Biases](https://docs.ultralytics.com/integrations/weights-biases/). | Free forever, [Comet ML](https://docs.ultralytics.com/integrations/comet/) lets you save YOLO models, resume training, and interactively visualize predictions. | Run YOLO inference up to 6x faster with [Neural Magic DeepSparse](https://docs.ultralytics.com/integrations/neural-magic/). |
361
360
 
362
- ## 🌟 Ultralytics HUB
363
-
364
- Experience seamless AI with [Ultralytics HUB](https://hub.ultralytics.com/), the all-in-one platform for data visualization, training YOLO models, and deployment—no coding required. Transform images into actionable insights and bring your AI visions to life effortlessly using our cutting-edge platform and user-friendly [Ultralytics App](https://www.ultralytics.com/app-install). Start your journey for **Free** today!
365
-
366
- <a href="https://www.ultralytics.com/hub" target="_blank">
367
- <img width="100%" src="https://github.com/ultralytics/assets/raw/main/im/ultralytics-hub.png" alt="Ultralytics HUB preview image"></a>
368
-
369
361
  ## 🤝 Contribute
370
362
 
371
363
  We thrive on community collaboration! Ultralytics YOLO wouldn't be the SOTA framework it is without contributions from developers like you. Please see our [Contributing Guide](https://docs.ultralytics.com/help/contributing/) to get started. We also welcome your feedback—share your experience by completing our [Survey](https://www.ultralytics.com/survey?utm_source=github&utm_medium=social&utm_campaign=Survey). A huge **Thank You** 🙏 to everyone who contributes!
@@ -1,19 +1,19 @@
1
- dgenerate_ultralytics_headless-8.3.253.dist-info/licenses/LICENSE,sha256=DZak_2itbUtvHzD3E7GNUYSRK6jdOJ-GqncQ2weavLA,34523
2
- tests/__init__.py,sha256=bCox_hLdGRFYGLb2kd722VdNP2zEXNYNuLLYtqZSrbw,804
3
- tests/conftest.py,sha256=mOy9lGpNp7lk1hHl6_pVE0f9cU-72gnkoSm4TO-CNZU,2318
1
+ dgenerate_ultralytics_headless-8.4.1.dist-info/licenses/LICENSE,sha256=DZak_2itbUtvHzD3E7GNUYSRK6jdOJ-GqncQ2weavLA,34523
2
+ tests/__init__.py,sha256=hfUXxYLJB3846OCzWV94ZKEZsi8vq9Pqrdd2mMgjjck,804
3
+ tests/conftest.py,sha256=rlKyDuOC_3ptXrWS8Q19bNEGOupUmYXHj3nB6o1GBGY,2318
4
4
  tests/test_cli.py,sha256=GhIFHi-_WIJpDgoGNRi0DnjbfwP1wHbklBMnkCM-P_4,5464
5
- tests/test_cuda.py,sha256=eQew1rNwU3VViQCG6HZj5SWcYmWYop9gJ0jv9U1bGDE,8203
6
- tests/test_engine.py,sha256=0SWVHTs-feV07spjRMJ078Ipdg6m3uymNHwgTIZjZtc,5732
7
- tests/test_exports.py,sha256=5G5EgDmars6d-N7TVnJdDFWId0IJs-yw03DvdQIjrNU,14246
8
- tests/test_integrations.py,sha256=6QgSh9n0J04RdUYz08VeVOnKmf4S5MDEQ0chzS7jo_c,6220
9
- tests/test_python.py,sha256=viMvRajIbDZdm64hRRg9i8qZ1sU9frwB69e56mxwEXk,29266
10
- tests/test_solutions.py,sha256=CIaphpmOXgz9AE9xcm1RWODKrwGfZLCc84IggGXArNM,14122
11
- ultralytics/__init__.py,sha256=cqnBNS4T-JWe8DwcLEN_GwX_fpL1gxiWwY8LjwC8sEo,1302
5
+ tests/test_cuda.py,sha256=2TBe-ZkecMOGPWLdHcbsAjH3m9c5SQJ2KeyICgS0aeo,8426
6
+ tests/test_engine.py,sha256=ufSn3X4kL_Lpn2O25jKAfw_9QwHTMRjP9shDdpgBqnY,5740
7
+ tests/test_exports.py,sha256=j1o0DYeHM2ulXv1UPkHFcZFWGv8ichY7KHhrb4U89QI,14894
8
+ tests/test_integrations.py,sha256=FjvTGjXm3bvYHK3_obgObhC5SzHCTzw4aOJV9Hh08jQ,6220
9
+ tests/test_python.py,sha256=np6on3Sa0NNi5pquvilekjKxxedAJMpLOQEthGaIalQ,29284
10
+ tests/test_solutions.py,sha256=1tRlM72YciE42Nk9v83gsXOD5RSx9GSWVsKGhH7-HxE,14122
11
+ ultralytics/__init__.py,sha256=v6vc7C81LzYC2a4F7ZEElHt1Wi-uMsbkbC59Zh_dHvw,1300
12
12
  ultralytics/py.typed,sha256=la67KBlbjXN-_-DfGNcdOcjYumVpKG_Tkw-8n5dnGB4,8
13
13
  ultralytics/assets/bus.jpg,sha256=wCAZxJecGR63Od3ZRERe9Aja1Weayrb9Ug751DS_vGM,137419
14
14
  ultralytics/assets/zidane.jpg,sha256=Ftc4aeMmen1O0A3o6GCDO9FlfBslLpTAw0gnetx7bts,50427
15
- ultralytics/cfg/__init__.py,sha256=sJfreQYmFkCaW9eWex-Um1tG-4zRpC2Q7GuJAWBrFpk,40401
16
- ultralytics/cfg/default.yaml,sha256=KKENSHolDSto1HJVGjBvTXvz9ae-XMcYRzKrjU3QfZc,8912
15
+ ultralytics/cfg/__init__.py,sha256=ihvr4XZnnbYWFwSYtFxWdNK7fN4D1Bm19XLkD_-bCXo,40401
16
+ ultralytics/cfg/default.yaml,sha256=E__q2msvK9XCQngf0YFLpueCer_1tRcMJM0p3ahBdbA,9015
17
17
  ultralytics/cfg/datasets/Argoverse.yaml,sha256=QGpdh3Hj5dFrvbsaE_8rAVj9BO4XpKTB7uhXaTTnE-o,3364
18
18
  ultralytics/cfg/datasets/DOTAv1.5.yaml,sha256=KE7VC-ZMDSei1pLPm-pdk_ZAMRU_gLwGgtIQNbwp6dA,1212
19
19
  ultralytics/cfg/datasets/DOTAv1.yaml,sha256=DUmBEfvdlCRH2t9aqhc3uk55sOXWWsY9v6RVYaELeTA,1182
@@ -64,6 +64,15 @@ ultralytics/cfg/models/12/yolo12-obb.yaml,sha256=JMviFAOmDbW0aMNzZNqispP0wxWw3mt
64
64
  ultralytics/cfg/models/12/yolo12-pose.yaml,sha256=Mr9xjYclLQzxYhMqjIKQTdiTvtqZvEXBtclADFggaMA,2074
65
65
  ultralytics/cfg/models/12/yolo12-seg.yaml,sha256=RBFFz4b95Dupfg0fmqCkZ4i1Zzai_QyJrI6Y2oLsocM,1984
66
66
  ultralytics/cfg/models/12/yolo12.yaml,sha256=ZeA8LuymJXPNjZ5xkxkZHkcktDaKDzUBb2Kc3gCLC1w,1953
67
+ ultralytics/cfg/models/26/yolo26-cls.yaml,sha256=GmaLvnB62X6r9_mZwpx0b2LTRYIXzVYqSqR3Mcy336g,1432
68
+ ultralytics/cfg/models/26/yolo26-obb.yaml,sha256=3EKhFjHlOV0XBgb8J2B4iMd7dONiBC1iohYQStk6cyw,2147
69
+ ultralytics/cfg/models/26/yolo26-p2.yaml,sha256=Dbwvo9_t5e3NolZquMfqFQrQZuop155o1sTaK6tHYnk,2405
70
+ ultralytics/cfg/models/26/yolo26-p6.yaml,sha256=YFWaH6NAOHoLYmH4Te3edcj5-c7QJ-glzri-xPFk4U0,2457
71
+ ultralytics/cfg/models/26/yolo26-pose.yaml,sha256=ac9XyCyVrTUHkjEoSkYKtQrawZQ6Vr4hQZE1aO83b7s,2245
72
+ ultralytics/cfg/models/26/yolo26-seg.yaml,sha256=iL4euVjAg8dSq0oN-71-VDk0EqSruTGBjfCHqQYUqrg,2154
73
+ ultralytics/cfg/models/26/yolo26.yaml,sha256=sdH6DGns7WT5k5U2A4vY1pfDLnIgCzQYenZ95DGvfvA,2120
74
+ ultralytics/cfg/models/26/yoloe-26-seg.yaml,sha256=QlyK3awjLOjs9q0raj0we5QCG1tDy-NvQ2uQzKDoBYk,2223
75
+ ultralytics/cfg/models/26/yoloe-26.yaml,sha256=YWsBS4D3f7QhqLQzYT-LVdCOISo0VaTILIaLKmujDdo,2191
67
76
  ultralytics/cfg/models/rt-detr/rtdetr-l.yaml,sha256=hAZti6u7lYIeYERsRrsdU9wekNFHURH_mq6Ow4XfhB4,2036
68
77
  ultralytics/cfg/models/rt-detr/rtdetr-resnet101.yaml,sha256=Rtj3KCpxsvvFmYTJ2NKqoc0fk7-I5gaZiDsdgXFZ_6g,1689
69
78
  ultralytics/cfg/models/rt-detr/rtdetr-resnet50.yaml,sha256=QLhmuMS9OEuLFbMuaDrjtzCizpYzddQcM6QyBL6rhPg,1685
@@ -110,11 +119,11 @@ ultralytics/cfg/trackers/botsort.yaml,sha256=tRxC-qT4Wz0mLn5x7ZEwrqgGKrmTDVY7gMg
110
119
  ultralytics/cfg/trackers/bytetrack.yaml,sha256=7LS1ObP5u7BUFcmeY6L2m3bRuPUktnpJspFKd_ElVWc,908
111
120
  ultralytics/data/__init__.py,sha256=ToR8zl0JhBHy42ZvV7zIwO_F3lbi5oNlGQNPK3dlddU,644
112
121
  ultralytics/data/annotator.py,sha256=kbfSPBesKEVK6ys3dilTdMh7rCKyp0xV7tGQeEDbpWI,2985
113
- ultralytics/data/augment.py,sha256=ahqEe2ZBLeMZbK44Z-QihfCVCArOqtHjSSD-41_NlA8,127503
122
+ ultralytics/data/augment.py,sha256=4xtggkuysYcbK5pYwNuAaoCzshb5wwD9KN6_pP4uSFU,128003
114
123
  ultralytics/data/base.py,sha256=pMs8yJOmAFPXdgfLCDtUemSvkPNDzxReP-fWzkNtonc,19723
115
124
  ultralytics/data/build.py,sha256=s-tkSZPf3OfQyfXPXB9XxdW_gIcU6Xy_u21ekSgTnRo,17205
116
125
  ultralytics/data/converter.py,sha256=1m345J7YUn7gtaChO7To4BWZm72pC8D8L2O0k99q0DE,31898
117
- ultralytics/data/dataset.py,sha256=L5QYgic_B1e1zffgRA5lqKDd5PQuMDg6PZVd-RTUA7E,36523
126
+ ultralytics/data/dataset.py,sha256=r_BZy4FwMZ-dYkaJiz1E3jr2pI6dn7V3hZwf2RM9_RQ,36536
118
127
  ultralytics/data/loaders.py,sha256=BQbhgjiLCGcRBPkGVG9Hr1jeNfG1nuZD3jstiWb7zS8,31889
119
128
  ultralytics/data/split.py,sha256=HpR0ltf5oN1DpZstavFbBFC1YdpGPaATXxDOcAMwOqc,5101
120
129
  ultralytics/data/split_dota.py,sha256=Qp9vGB2lzb5fQOrpNupKc8KN9ulqZoco9d4gRcx7JZk,12873
@@ -124,12 +133,12 @@ ultralytics/data/scripts/get_coco.sh,sha256=UuJpJeo3qQpTHVINeOpmP0NYmg8PhEFE3A8J
124
133
  ultralytics/data/scripts/get_coco128.sh,sha256=qmRQl_hOKrsdHrTrnyQuFIH01oDz3lfaz138OgGfLt8,650
125
134
  ultralytics/data/scripts/get_imagenet.sh,sha256=hr42H16bM47iT27rgS7MpEo-GeOZAYUQXgr0B2cwn48,1705
126
135
  ultralytics/engine/__init__.py,sha256=lm6MckFYCPTbqIoX7w0s_daxdjNeBeKW6DXppv1-QUM,70
127
- ultralytics/engine/exporter.py,sha256=Lvs2vHcBP7YeHxYhyD7dvEshnNeYn5IzRHhdA7VRfbY,72997
128
- ultralytics/engine/model.py,sha256=1Ex0Q7XOwWWtTsTMk-7O4wWiA2cYGayKJwB3zDC1XTg,53223
136
+ ultralytics/engine/exporter.py,sha256=SpA0Oj4w8yjYUde1okc4XfyCK376t1zZPr-bx1-p_WE,73429
137
+ ultralytics/engine/model.py,sha256=bKoiy8ImddK-e87NmVbO5nlktqgebRM7D65epD4Cvjk,53211
129
138
  ultralytics/engine/predictor.py,sha256=neYmNDX27Vv3ggk9xqaKlH6XzB2vlFIghU5o7ZC0zFo,22838
130
139
  ultralytics/engine/results.py,sha256=DomI01voqR_i7v8LhDGb6jWCprWB4H6I436GSO2NMBY,68030
131
- ultralytics/engine/trainer.py,sha256=riVwjf_4uhrkH5TYjAvRQmIerNT7pxPBM8jWA60oF-A,45851
132
- ultralytics/engine/tuner.py,sha256=xZGIYwpQVdnzQcdEmLc70eQy7G7swQQEgdDGxoBLmHY,21570
140
+ ultralytics/engine/trainer.py,sha256=W8xFyTBZ_hFRvzMccugqLw3dBXNfRH1d8KoRO4DWFcE,46985
141
+ ultralytics/engine/tuner.py,sha256=mD4bjddz7CE7ExKgEaIoSQw22Lg9V0NBXqR9Vey2gIs,21840
133
142
  ultralytics/engine/validator.py,sha256=2rqdVt4hB9ruMJq-L7PbaCNFwuERS7ZHdVSg91RM3wk,17761
134
143
  ultralytics/hub/__init__.py,sha256=Z0K_E00jzQh90b18q3IDChwVmTvyIYp6C00sCV-n2F8,6709
135
144
  ultralytics/hub/auth.py,sha256=ANzCeZA7lUzTWc_sFHbDuuyBh1jLl2sTpHkoUbIkFYE,6254
@@ -139,7 +148,7 @@ ultralytics/hub/google/__init__.py,sha256=r06Ld4TuZEBOqg4iagpeN-eMAkg43T2OTxOH4_
139
148
  ultralytics/models/__init__.py,sha256=ljus_u1CIuP99k9fu6sCtzIeFZ-TCE28NZ8kefZHFNY,309
140
149
  ultralytics/models/fastsam/__init__.py,sha256=Ku89Fy_X8ok3YPEUajjUZ5i4O08jdJMjJHt-3Z99Frk,231
141
150
  ultralytics/models/fastsam/model.py,sha256=HN6CAHCTwMmyBCQlXx4wMBU7XqkvVHyUawRaxn2Gur8,3426
142
- ultralytics/models/fastsam/predict.py,sha256=b4wisfRMvv8mGyfqxDk_LD4fyiFush-yQX4i2-R9n_o,8534
151
+ ultralytics/models/fastsam/predict.py,sha256=zYhlXIrn69ryPnBEwEx4YkgYobPPE3_zvZAX2uAUIP4,8543
143
152
  ultralytics/models/fastsam/utils.py,sha256=de9ieh4pBUuTNh5HTiNdRpWZhXAaSfNo3R1FNMt2GOE,879
144
153
  ultralytics/models/fastsam/val.py,sha256=T76Yl4PtPezjGOcpXUxEobr0xnkR42Z-wnIz89cZ-IE,2028
145
154
  ultralytics/models/nas/__init__.py,sha256=Q4ZQak8xNWtV5YSw_pFu0anbCyDxxEAuMMDfMzu6-0s,207
@@ -181,46 +190,48 @@ ultralytics/models/utils/__init__.py,sha256=lm6MckFYCPTbqIoX7w0s_daxdjNeBeKW6DXp
181
190
  ultralytics/models/utils/loss.py,sha256=9CcqRXDj5-I-7eZuenInvyoLcPf22Ynf3rUFA5V22bI,21131
182
191
  ultralytics/models/utils/ops.py,sha256=z-Ebjv_k14bWOoP6nszDzDBiy3yELcVtbj6M8PsRpvE,15207
183
192
  ultralytics/models/yolo/__init__.py,sha256=YD407NDDiyjo0x_MR6usJaTpePKPgsfBUYehlCw7lRs,307
184
- ultralytics/models/yolo/model.py,sha256=-U7TQ2HlW5JdePBBzNpxK172uCXpM2RKMlhuZsMbxSw,18495
193
+ ultralytics/models/yolo/model.py,sha256=BbVMlUNrnjPmS9OZbETSlmUjCYxdUwYyiY3I2TtLAqw,18504
185
194
  ultralytics/models/yolo/classify/__init__.py,sha256=9--HVaNOfI1K7rn_rRqclL8FUAnpfeBrRqEQIaQw2xM,383
186
195
  ultralytics/models/yolo/classify/predict.py,sha256=wKICjwofH7-7QLJhX2vYSNJXWu2-5kWzjoXXmUPI0pU,4137
187
196
  ultralytics/models/yolo/classify/train.py,sha256=oODDfPwjgKzsbpO7NCYnOp_uwkWD7HNLhvsHxAJTA4g,8958
188
197
  ultralytics/models/yolo/classify/val.py,sha256=gtoUJN5_-56EbiYp5Ur-shfdBNMJOqToWmup_-1wW7I,10503
189
198
  ultralytics/models/yolo/detect/__init__.py,sha256=GIRsLYR-kT4JJx7lh4ZZAFGBZj0aebokuU0A7JbjDVA,257
190
199
  ultralytics/models/yolo/detect/predict.py,sha256=Sct-UwkDe54ZmVtTYl0-fKgx_0BOlPBUsr4NodFd-eU,5385
191
- ultralytics/models/yolo/detect/train.py,sha256=-PHH6i767_XKCPsBeAOi7AxfHpoq451GfjY4TRMuo7c,10469
192
- ultralytics/models/yolo/detect/val.py,sha256=-UTrVG3HturHHAY76BUegO2s5d9Xq_dEumebLiNkSVc,22351
200
+ ultralytics/models/yolo/detect/train.py,sha256=jWWzOvvcfb6s8HXMKi6l1sr1QCslN3GsqzQQ51OSpJk,10519
201
+ ultralytics/models/yolo/detect/val.py,sha256=NXSeeXtucOMHaR64GSYjxoss5Lhqh3qtbDKJ-crf2Do,22818
193
202
  ultralytics/models/yolo/obb/__init__.py,sha256=tQmpG8wVHsajWkZdmD6cjGohJ4ki64iSXQT8JY_dydo,221
194
- ultralytics/models/yolo/obb/predict.py,sha256=vA_BueSJJJuyaAZPWE0xKk7KI_YPQCUOCqeZZLMTeXM,2600
195
- ultralytics/models/yolo/obb/train.py,sha256=qtBjwOHOq0oQ9mK0mOtnUrXAQ5UCUrntKq_Z0-oCBHo,3438
203
+ ultralytics/models/yolo/obb/predict.py,sha256=K7KtQKA-7JVLxLSOZ-X38YepZkUAOH5rUwHidm7geYU,2577
204
+ ultralytics/models/yolo/obb/train.py,sha256=6lFDUhAYrIJeDZz7A7ZgPkoDPY4b-0Aqb8noFpCH1Ck,3452
196
205
  ultralytics/models/yolo/obb/val.py,sha256=XkZhjPqF7bdYotyUTnRCj6Zre6QsB1M3ulZ0DMf-xiE,14513
197
206
  ultralytics/models/yolo/pose/__init__.py,sha256=_9OFLj19XwvJHBRxQtVW5CV7rvJ_3hDPE97miit0sPc,227
198
207
  ultralytics/models/yolo/pose/predict.py,sha256=rsorTRpyL-x40R2QVDDG2isc1e2F2lGfD13oKaD5ANs,3118
199
- ultralytics/models/yolo/pose/train.py,sha256=lKxZ1dnkN3WlEPGlIlLF7ZuR_W2eoPrxhVrKGbJIQto,4628
208
+ ultralytics/models/yolo/pose/train.py,sha256=fy0XE3sC3Ue-kzCyi9rNz3zygMqlfZuZiDFyrD8d6cs,4640
200
209
  ultralytics/models/yolo/pose/val.py,sha256=s5WmXcZI5cAi3LPdIVHnkFUbEoFZsw5PBnnLnZ3Ep_c,12004
201
210
  ultralytics/models/yolo/segment/__init__.py,sha256=3IThhZ1wlkY9FvmWm9cE-5-ZyE6F1FgzAtQ6jOOFzzw,275
202
- ultralytics/models/yolo/segment/predict.py,sha256=XK-SOrxfcIT8c52JC2ruEf3y9xcWSHsi6Yj1jZ0JqdU,5429
203
- ultralytics/models/yolo/segment/train.py,sha256=i1nDO0B7ScFo3G64ZSTmRZ2WLUVaMsvAoedSYa_MoIU,3009
204
- ultralytics/models/yolo/segment/val.py,sha256=LkyV5_I5YPdJNyI6OGy2i7J_r0Ll-jYdru_HXS1mN6s,13252
211
+ ultralytics/models/yolo/segment/predict.py,sha256=dWb39_G5EMl9J6AeO8_u-G2di7PdIDzy9iVwcFv7zvU,5430
212
+ ultralytics/models/yolo/segment/train.py,sha256=aMsQprA1FX28a0T1cWYmbrsMPawJE6SGwX2rgS_Eb_E,3021
213
+ ultralytics/models/yolo/segment/val.py,sha256=XauBfmC-B4ZZQk9qfuI-7tHq1TQ5hemnidlTs4S1WEo,13286
205
214
  ultralytics/models/yolo/world/__init__.py,sha256=nlh8I6t8hMGz_vZg8QSlsUW1R-2eKvn9CGUoPPQEGhA,131
206
215
  ultralytics/models/yolo/world/train.py,sha256=80kswko6Zu7peXPBhXcfrTo5HO3Rg8C_cu4vPBQlk7M,7906
207
216
  ultralytics/models/yolo/world/train_world.py,sha256=5Jj4gzEwDJtz37bEahL6Lf4xp-c1xiYjGKeg_w7Esns,8723
208
217
  ultralytics/models/yolo/yoloe/__init__.py,sha256=zaZo1_ommaxNv7mD7xpdSomNF4s8mpOcCVTXspg0ncY,760
209
218
  ultralytics/models/yolo/yoloe/predict.py,sha256=zeu_whH4e2SIWXV8MmJ1NNzoM_cNsiI2kOTjlAhV4qg,7065
210
- ultralytics/models/yolo/yoloe/train.py,sha256=giX6zDu5Z3z48PCaBHzu7v9NH3BrpUaGAYNIQvqO3Og,12937
211
- ultralytics/models/yolo/yoloe/train_seg.py,sha256=0hRByMXsEJA-J2B1wXDMVhiW9f9MOTj3LlrGTibN6Ww,4919
219
+ ultralytics/models/yolo/yoloe/train.py,sha256=99iSHQs--5VU_s82Q4w-fAJmyT5-y0TykTul8bo4xFo,13303
220
+ ultralytics/models/yolo/yoloe/train_seg.py,sha256=rV2Jnbuh6vvBMaupaZK_aRXBMevO0XhN2VUR43ZwlIY,5285
212
221
  ultralytics/models/yolo/yoloe/val.py,sha256=utUFWeFKRFWZrPr1y3A8ztbTwdoWMYqzlwBN7CQ0tCA,9418
213
222
  ultralytics/nn/__init__.py,sha256=538LZPUKKvc3JCMgiQ4VLGqRN2ZAaVLFcQbeNNHFkEA,545
214
- ultralytics/nn/autobackend.py,sha256=NOp-hhkx1V-I6JgjloNZYek_kMGdPhVyiWHbcU0J2qI,45135
215
- ultralytics/nn/tasks.py,sha256=nHhP3R8r17K_pHSfGXwDAPEwUyV0sbqzkSHjeZ2PRkg,70418
216
- ultralytics/nn/text_model.py,sha256=novnuosqXnW1NmlOzWOk7dEKuN6Vq40CTksr6hI3Knc,15109
217
- ultralytics/nn/modules/__init__.py,sha256=5Sg_28MDfKwdu14Ty_WCaiIXZyjBSQ-xCNCwnoz_w-w,3198
223
+ ultralytics/nn/autobackend.py,sha256=8OzCzLPr7Ube2KAQJg8VSRlSE149Sq9cIWBpI8KzIlg,45057
224
+ ultralytics/nn/tasks.py,sha256=dbW3Dn87iSjQK6kqp0oY1mVZJg_zVTwWogMspZ2EyqA,72010
225
+ ultralytics/nn/text_model.py,sha256=c--WzxjFEDb7p95u3YGcSsJLjj91zFNqXshij8Evrwg,15291
226
+ ultralytics/nn/modules/__init__.py,sha256=9KyQBxpomp5uJJ1PvMGuOFs2pR3NpqZcFHJlM6Q56c0,3322
218
227
  ultralytics/nn/modules/activation.py,sha256=J6n-CJKFK0YbhwcRDqm9zEJM9pSAEycj5quQss_3x6E,2219
219
- ultralytics/nn/modules/block.py,sha256=YRALZHImSMdLpmF0qIf8uF3yENz0EK63SFp7gzylo5g,69885
228
+ ultralytics/nn/modules/block.py,sha256=9d1eelj3uRnf-HWTHYTjsBqLSpMCrwBQuX52MjeapN4,74499
220
229
  ultralytics/nn/modules/conv.py,sha256=9WUlBzHD-wLgz0riLyttzASLIqBtXPK6Jk5EdyIiGCM,21100
221
- ultralytics/nn/modules/head.py,sha256=V1zSWN-AOHPkciqvfruDA0LgBgSGyKc_CULNCNEAe8o,51875
230
+ ultralytics/nn/modules/head.py,sha256=faOX-YkBJTdEHrwJhFBH1LYRjwoP9yxy6mQf6EIfV3c,78084
222
231
  ultralytics/nn/modules/transformer.py,sha256=lAjTH-U8IkBp_1cXSOOFSus9tJf-s8WISKKcXPB84CM,31972
223
232
  ultralytics/nn/modules/utils.py,sha256=EyhENse_RESlXjLHAJWvV07_tq1MVMmfzXgPR1fiT9w,6066
233
+ ultralytics/optim/__init__.py,sha256=Sl3Dx2eiaJd_u4VbmqcBqWWDF8FHnO5W0nBEL8_M_C4,130
234
+ ultralytics/optim/muon.py,sha256=Cuak4LOcVVEWIhYm4WzGmww7nhfR1N_uQOpLPX7gV-c,14243
224
235
  ultralytics/solutions/__init__.py,sha256=Jj7OcRiYjHH-e104H4xTgjjR5W6aPB4mBRndbaSPmgU,1209
225
236
  ultralytics/solutions/ai_gym.py,sha256=ItLE6HYMx6AEgiHEDG1HKDkippnrnycb-79S2g72AYA,5181
226
237
  ultralytics/solutions/analytics.py,sha256=UaH-B6h8Ir9l00deRUeAIW6QQTIO_595HTp93sdwteM,12820
@@ -258,20 +269,20 @@ ultralytics/utils/benchmarks.py,sha256=KOFm2AZPehrJajbUu6NTdZoVOFjTpLhUUnfL59sC6
258
269
  ultralytics/utils/checks.py,sha256=DheB1ip9ba7ZW_fjPieNdx98vZpwUDbnCKmavAIzJL4,39411
259
270
  ultralytics/utils/cpu.py,sha256=OksKOlX93AsbSsFuoYvLXRXgpkOibrZSwQyW6lipt4Q,3493
260
271
  ultralytics/utils/dist.py,sha256=hOuY1-unhQAY-uWiZw3LWw36d1mqJuYK75NdlwB4oKE,4131
261
- ultralytics/utils/downloads.py,sha256=IyiGjjXqOyf1B0qLMk7vE6sSQ8s232OhKS8aj9XbTgs,22883
272
+ ultralytics/utils/downloads.py,sha256=IXM9eTJtt5mdV_9Q-3udwWov0JiVzRI-TXHon-U9gPw,23069
262
273
  ultralytics/utils/errors.py,sha256=dUZcTWpbJJHqEuWHM6IbeoJJ4TzA_yHBP8E7tEEpBVs,1388
263
274
  ultralytics/utils/events.py,sha256=6vqs_iSxoXIhQ804sOjApNZmXwNW9FUFtjaHPY8ta10,4665
264
275
  ultralytics/utils/files.py,sha256=BdaRwEKqzle4glSj8n_jq6bDjTCAs_H1SN06ZOQ9qFU,8190
265
276
  ultralytics/utils/git.py,sha256=UdqeIiiEzg1qkerAZrg5YtTYPuJYwrpxW9N_6Pq6s8U,5501
266
277
  ultralytics/utils/instance.py,sha256=11mhefvTI9ftMqSirXuiViAi0Fxlo6v84qvNxfRNUoE,18862
267
278
  ultralytics/utils/logger.py,sha256=T5iaNnaqbCvx_FZf1dhVkr5FVxyxb4vO17t4SJfCIhg,19132
268
- ultralytics/utils/loss.py,sha256=t-z7qkvqF8OtuRHrj2wmvClZV2CCumIRi9jnqkc9i_A,39573
269
- ultralytics/utils/metrics.py,sha256=SpyMGnuRwwmorJqSdUsDQquVpGmgfj1X3PNDiw_ZZWM,69152
279
+ ultralytics/utils/loss.py,sha256=Y0_EiJtfUwu1gvFIrmnmtrQiJ5rUAZZX4r7DhmG2T3c,56522
280
+ ultralytics/utils/metrics.py,sha256=puMGn1LfVIlDvx5K7US4RtK8HYW6cRl9OznfV0nUPvk,69261
270
281
  ultralytics/utils/nms.py,sha256=zv1rOzMF6WU8Kdk41VzNf1H1EMt_vZHcbDFbg3mnN2o,14248
271
- ultralytics/utils/ops.py,sha256=nWvTLJSBeW_XrxCy5Ytxl7sZJHp2sRqyCv4mm8QwYnw,25797
282
+ ultralytics/utils/ops.py,sha256=4xqb7kwrAWm8c_zxOWP5JoXozgsA1Slk2s4XFwmEZCs,26089
272
283
  ultralytics/utils/patches.py,sha256=mD3slAMAhcezzP42_fOWmacNMU6zXB68Br4_EBCyIjs,7117
273
284
  ultralytics/utils/plotting.py,sha256=_iXs4gs8tzMSgiKxCriD4un-MJkOsC3lGSy0wn7qZGk,48433
274
- ultralytics/utils/tal.py,sha256=iabLTij-MVyKxrkwhIOC1ouRB5Iy80Zp5H8aoYjvJJY,20773
285
+ ultralytics/utils/tal.py,sha256=vfcfSy78zdtHbGzlvo5UDx-sCwHLRdGBqDO3CX7ZiR0,24182
275
286
  ultralytics/utils/torch_utils.py,sha256=dHvLaQopIOr9NcIWkLWPX36f5OAFR4thcqm379Zayfc,40278
276
287
  ultralytics/utils/tqdm.py,sha256=f2W608Qpvgu6tFi28qylaZpcRv3IX8wTGY_8lgicaqY,16343
277
288
  ultralytics/utils/triton.py,sha256=BQu3CD3OlT76d1OtmnX5slQU37VC1kzRvEtfI2saIQA,5211
@@ -284,16 +295,16 @@ ultralytics/utils/callbacks/dvc.py,sha256=YT0Sa5P8Huj8Fn9jM2P6MYzUY3PIVxsa5BInVi
284
295
  ultralytics/utils/callbacks/hub.py,sha256=fVLqqr3ZM6hoYFlVMEeejfq1MWDrkWCskPFOG3HGILQ,4159
285
296
  ultralytics/utils/callbacks/mlflow.py,sha256=wCXjQgdufp9LYujqMzLZOmIOur6kvrApHNeo9dA7t_g,5323
286
297
  ultralytics/utils/callbacks/neptune.py,sha256=_vt3cMwDHCR-LyT3KtRikGpj6AG11oQ-skUUUUdZ74o,4391
287
- ultralytics/utils/callbacks/platform.py,sha256=eFPP5vgwGhGb0lHbJgaU24JDz8l6vEO9qQuzUIYhSsU,15977
298
+ ultralytics/utils/callbacks/platform.py,sha256=0Em258lYzL0CLRJWt6ut3_AiQNIZ4y-P-CBZqRbwhOg,16020
288
299
  ultralytics/utils/callbacks/raytune.py,sha256=Y0dFyNZVRuFovSh7nkgUIHTQL3xIXOACElgHuYbg_5I,1278
289
300
  ultralytics/utils/callbacks/tensorboard.py,sha256=PTJYvD2gqRUN8xw5VoTjvKnu2adukLfvhMlDgTnTiFU,4952
290
301
  ultralytics/utils/callbacks/wb.py,sha256=ghmL3gigOa-z_F54-TzMraKw9MAaYX-Wk4H8dLoRvX8,7705
291
302
  ultralytics/utils/export/__init__.py,sha256=Cfh-PwVfTF_lwPp-Ss4wiX4z8Sm1XRPklsqdFfmTZ30,333
292
- ultralytics/utils/export/engine.py,sha256=23-lC6dNsmz5vprSJzaN7UGNXrFlVedNcqhlOH_IXes,9956
293
- ultralytics/utils/export/imx.py,sha256=0TNooKXzMagOMQxGxj90kEOAHrycQNNSLMdRQH-SJ30,13299
294
- ultralytics/utils/export/tensorflow.py,sha256=igYzwbdblb9YgfV4Jgl5lMvynuVRcF51dAzI7j-BBI0,9966
295
- dgenerate_ultralytics_headless-8.3.253.dist-info/METADATA,sha256=8F2QzsvX2nGJjkeafPvrszwkVoCCAmly8CctVjjk5I8,38799
296
- dgenerate_ultralytics_headless-8.3.253.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
297
- dgenerate_ultralytics_headless-8.3.253.dist-info/entry_points.txt,sha256=YM_wiKyTe9yRrsEfqvYolNO5ngwfoL4-NwgKzc8_7sI,93
298
- dgenerate_ultralytics_headless-8.3.253.dist-info/top_level.txt,sha256=XP49TwiMw4QGsvTLSYiJhz1xF_k7ev5mQ8jJXaXi45Q,12
299
- dgenerate_ultralytics_headless-8.3.253.dist-info/RECORD,,
303
+ ultralytics/utils/export/engine.py,sha256=QoXPqnmQn6W5TOUAygOtCG63R9ExDG4-Df6X6W-_Mzo,10470
304
+ ultralytics/utils/export/imx.py,sha256=U9CFQJGRSNa5gyrVxW9fEvnhCd6Ut9_mFZZgzhrGhuI,13783
305
+ ultralytics/utils/export/tensorflow.py,sha256=xHEcEM3_VeYctyqkJCpgkqcNie1M8xLqcFKr6uANEEQ,9951
306
+ dgenerate_ultralytics_headless-8.4.1.dist-info/METADATA,sha256=c0kIYqkwyFg10MgqsPgPGCNYAWbeazz732RiblaVvTo,38008
307
+ dgenerate_ultralytics_headless-8.4.1.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
308
+ dgenerate_ultralytics_headless-8.4.1.dist-info/entry_points.txt,sha256=YM_wiKyTe9yRrsEfqvYolNO5ngwfoL4-NwgKzc8_7sI,93
309
+ dgenerate_ultralytics_headless-8.4.1.dist-info/top_level.txt,sha256=XP49TwiMw4QGsvTLSYiJhz1xF_k7ev5mQ8jJXaXi45Q,12
310
+ dgenerate_ultralytics_headless-8.4.1.dist-info/RECORD,,
tests/__init__.py CHANGED
@@ -4,8 +4,8 @@ from ultralytics.cfg import TASK2DATA, TASK2MODEL, TASKS
4
4
  from ultralytics.utils import ASSETS, WEIGHTS_DIR, checks
5
5
 
6
6
  # Constants used in tests
7
- MODEL = WEIGHTS_DIR / "path with spaces" / "yolo11n.pt" # test spaces in path
8
- CFG = "yolo11n.yaml"
7
+ MODEL = WEIGHTS_DIR / "path with spaces" / "yolo26n.pt" # test spaces in path
8
+ CFG = "yolo26n.yaml"
9
9
  SOURCE = ASSETS / "bus.jpg"
10
10
  SOURCES_LIST = [ASSETS / "bus.jpg", ASSETS, ASSETS / "*", ASSETS / "**/*.jpg"]
11
11
  CUDA_IS_AVAILABLE = checks.cuda_is_available()
tests/conftest.py CHANGED
@@ -50,7 +50,7 @@ def pytest_terminal_summary(terminalreporter, exitstatus, config):
50
50
 
51
51
  # Remove files
52
52
  models = [path for x in {"*.onnx", "*.torchscript"} for path in WEIGHTS_DIR.rglob(x)]
53
- for file in ["decelera_portrait_min.mov", "bus.jpg", "yolo11n.onnx", "yolo11n.torchscript", *models]:
53
+ for file in ["decelera_portrait_min.mov", "bus.jpg", "yolo26n.onnx", "yolo26n.torchscript", *models]:
54
54
  Path(file).unlink(missing_ok=True)
55
55
 
56
56
  # Remove directories
tests/test_cuda.py CHANGED
@@ -41,7 +41,7 @@ def test_checks():
41
41
  @pytest.mark.skipif(not DEVICES, reason="No CUDA devices available")
42
42
  def test_amp():
43
43
  """Test AMP training checks."""
44
- model = YOLO("yolo11n.pt").model.to(f"cuda:{DEVICES[0]}")
44
+ model = YOLO("yolo26n.pt").model.to(f"cuda:{DEVICES[0]}")
45
45
  assert check_amp(model)
46
46
 
47
47
 
@@ -91,6 +91,12 @@ def test_export_onnx_matrix(task, dynamic, int8, half, batch, simplify, nms):
91
91
  )
92
92
  def test_export_engine_matrix(task, dynamic, int8, half, batch):
93
93
  """Test YOLO model export to TensorRT format for various configurations and run inference."""
94
+ import tensorrt as trt
95
+
96
+ is_trt10 = int(trt.__version__.split(".", 1)[0]) >= 10
97
+ if is_trt10 and int8 and dynamic:
98
+ pytest.skip("YOLO26 INT8+dynamic export requires explicit quantization on TensorRT 10+")
99
+
94
100
  file = YOLO(TASK2MODEL[task]).export(
95
101
  format="engine",
96
102
  imgsz=32,
@@ -126,7 +132,7 @@ def test_train():
126
132
  @pytest.mark.skipif(not DEVICES, reason="No CUDA devices available")
127
133
  def test_predict_multiple_devices():
128
134
  """Validate model prediction consistency across CPU and CUDA devices."""
129
- model = YOLO("yolo11n.pt")
135
+ model = YOLO("yolo26n.pt")
130
136
 
131
137
  # Test CPU
132
138
  model = model.cpu()
tests/test_engine.py CHANGED
@@ -5,7 +5,7 @@ from unittest import mock
5
5
 
6
6
  import torch
7
7
 
8
- from tests import MODEL
8
+ from tests import MODEL, SOURCE
9
9
  from ultralytics import YOLO
10
10
  from ultralytics.cfg import get_cfg
11
11
  from ultralytics.engine.exporter import Exporter
@@ -23,13 +23,13 @@ def test_export():
23
23
  exporter = Exporter()
24
24
  exporter.add_callback("on_export_start", test_func)
25
25
  assert test_func in exporter.callbacks["on_export_start"], "callback test failed"
26
- f = exporter(model=YOLO("yolo11n.yaml").model)
27
- YOLO(f)(ASSETS) # exported model inference
26
+ f = exporter(model=YOLO("yolo26n.yaml").model)
27
+ YOLO(f)(SOURCE) # exported model inference
28
28
 
29
29
 
30
30
  def test_detect():
31
31
  """Test YOLO object detection training, validation, and prediction functionality."""
32
- overrides = {"data": "coco8.yaml", "model": "yolo11n.yaml", "imgsz": 32, "epochs": 1, "save": False}
32
+ overrides = {"data": "coco8.yaml", "model": "yolo26n.yaml", "imgsz": 32, "epochs": 1, "save": False}
33
33
  cfg = get_cfg(DEFAULT_CFG)
34
34
  cfg.data = "coco8.yaml"
35
35
  cfg.imgsz = 32
@@ -71,7 +71,7 @@ def test_segment():
71
71
  """Test image segmentation training, validation, and prediction pipelines using YOLO models."""
72
72
  overrides = {
73
73
  "data": "coco8-seg.yaml",
74
- "model": "yolo11n-seg.yaml",
74
+ "model": "yolo26n-seg.yaml",
75
75
  "imgsz": 32,
76
76
  "epochs": 1,
77
77
  "save": False,
@@ -98,7 +98,7 @@ def test_segment():
98
98
  pred = segment.SegmentationPredictor(overrides={"imgsz": [64, 64]})
99
99
  pred.add_callback("on_predict_start", test_func)
100
100
  assert test_func in pred.callbacks["on_predict_start"], "callback test failed"
101
- result = pred(source=ASSETS, model=WEIGHTS_DIR / "yolo11n-seg.pt")
101
+ result = pred(source=ASSETS, model=WEIGHTS_DIR / "yolo26n-seg.pt")
102
102
  assert len(result), "predictor test failed"
103
103
 
104
104
  # Test resume functionality
@@ -115,7 +115,7 @@ def test_segment():
115
115
 
116
116
  def test_classify():
117
117
  """Test image classification including training, validation, and prediction phases."""
118
- overrides = {"data": "imagenet10", "model": "yolo11n-cls.yaml", "imgsz": 32, "epochs": 1, "save": False}
118
+ overrides = {"data": "imagenet10", "model": "yolo26n-cls.yaml", "imgsz": 32, "epochs": 1, "save": False}
119
119
  cfg = get_cfg(DEFAULT_CFG)
120
120
  cfg.data = "imagenet10"
121
121
  cfg.imgsz = 32
@@ -150,7 +150,7 @@ def test_nan_recovery():
150
150
  trainer.tloss *= torch.tensor(float("nan"))
151
151
  nan_injected[0] = True
152
152
 
153
- overrides = {"data": "coco8.yaml", "model": "yolo11n.yaml", "imgsz": 32, "epochs": 3}
153
+ overrides = {"data": "coco8.yaml", "model": "yolo26n.yaml", "imgsz": 32, "epochs": 3}
154
154
  trainer = detect.DetectionTrainer(overrides=overrides)
155
155
  trainer.add_callback("on_train_batch_end", inject_nan)
156
156
  trainer.train()
tests/test_exports.py CHANGED
@@ -12,8 +12,8 @@ import pytest
12
12
  from tests import MODEL, SOURCE
13
13
  from ultralytics import YOLO
14
14
  from ultralytics.cfg import TASK2DATA, TASK2MODEL, TASKS
15
- from ultralytics.utils import ARM64, IS_RASPBERRYPI, LINUX, MACOS, WINDOWS, checks
16
- from ultralytics.utils.torch_utils import TORCH_1_10, TORCH_1_11, TORCH_1_13, TORCH_2_1, TORCH_2_8, TORCH_2_9
15
+ from ultralytics.utils import ARM64, IS_RASPBERRYPI, LINUX, MACOS, MACOS_VERSION, WINDOWS, checks
16
+ from ultralytics.utils.torch_utils import TORCH_1_10, TORCH_1_11, TORCH_1_13, TORCH_2_0, TORCH_2_1, TORCH_2_8, TORCH_2_9
17
17
 
18
18
 
19
19
  def test_export_torchscript():
@@ -112,6 +112,9 @@ def test_export_torchscript_matrix(task, dynamic, int8, half, batch, nms):
112
112
  @pytest.mark.skipif(not MACOS, reason="CoreML inference only supported on macOS")
113
113
  @pytest.mark.skipif(not TORCH_1_11, reason="CoreML export requires torch>=1.11")
114
114
  @pytest.mark.skipif(checks.IS_PYTHON_3_13, reason="CoreML not supported in Python 3.13")
115
+ @pytest.mark.skipif(
116
+ MACOS and MACOS_VERSION and MACOS_VERSION >= "15", reason="CoreML YOLO26 matrix test crashes on macOS 15+"
117
+ )
115
118
  @pytest.mark.parametrize(
116
119
  "task, dynamic, int8, half, nms, batch",
117
120
  [ # generate all combinations except for exclusion cases
@@ -141,7 +144,9 @@ def test_export_coreml_matrix(task, dynamic, int8, half, nms, batch):
141
144
 
142
145
 
143
146
  @pytest.mark.slow
144
- @pytest.mark.skipif(not checks.IS_PYTHON_MINIMUM_3_10, reason="TFLite export requires Python>=3.10")
147
+ @pytest.mark.skipif(
148
+ not checks.IS_PYTHON_MINIMUM_3_10 or not TORCH_1_13, reason="TFLite export requires Python>=3.10 and torch>=1.13"
149
+ )
145
150
  @pytest.mark.skipif(
146
151
  not LINUX or IS_RASPBERRYPI,
147
152
  reason="Test disabled as TF suffers from install conflicts on Windows, macOS and Raspberry Pi",
@@ -235,6 +240,8 @@ def test_export_mnn_matrix(task, int8, half, batch):
235
240
 
236
241
 
237
242
  @pytest.mark.slow
243
+ @pytest.mark.skipif(ARM64, reason="NCNN not supported on ARM64") # https://github.com/Tencent/ncnn/issues/6509
244
+ @pytest.mark.skipif(not TORCH_2_0, reason="NCNN inference causes segfault on PyTorch<2.0")
238
245
  def test_export_ncnn():
239
246
  """Test YOLO export to NCNN format."""
240
247
  file = YOLO(MODEL).export(format="ncnn", imgsz=32)
@@ -242,6 +249,8 @@ def test_export_ncnn():
242
249
 
243
250
 
244
251
  @pytest.mark.slow
252
+ @pytest.mark.skipif(ARM64, reason="NCNN not supported on ARM64") # https://github.com/Tencent/ncnn/issues/6509
253
+ @pytest.mark.skipif(not TORCH_2_0, reason="NCNN inference causes segfault on PyTorch<2.0")
245
254
  @pytest.mark.parametrize("task, half, batch", list(product(TASKS, [True, False], [1])))
246
255
  def test_export_ncnn_matrix(task, half, batch):
247
256
  """Test YOLO export to NCNN format considering various export configurations."""
@@ -256,7 +265,7 @@ def test_export_ncnn_matrix(task, half, batch):
256
265
  @pytest.mark.skipif(ARM64, reason="IMX export is not supported on ARM64 architectures.")
257
266
  def test_export_imx():
258
267
  """Test YOLO export to IMX format."""
259
- model = YOLO(MODEL)
268
+ model = YOLO("yolo11n.pt") # IMX export only supports YOLO11
260
269
  file = model.export(format="imx", imgsz=32)
261
270
  YOLO(file)(SOURCE, imgsz=32)
262
271