dgenerate-ultralytics-headless 8.3.253__py3-none-any.whl → 8.4.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {dgenerate_ultralytics_headless-8.3.253.dist-info → dgenerate_ultralytics_headless-8.4.1.dist-info}/METADATA +31 -39
- {dgenerate_ultralytics_headless-8.3.253.dist-info → dgenerate_ultralytics_headless-8.4.1.dist-info}/RECORD +61 -50
- tests/__init__.py +2 -2
- tests/conftest.py +1 -1
- tests/test_cuda.py +8 -2
- tests/test_engine.py +8 -8
- tests/test_exports.py +13 -4
- tests/test_integrations.py +9 -9
- tests/test_python.py +14 -14
- tests/test_solutions.py +3 -3
- ultralytics/__init__.py +1 -1
- ultralytics/cfg/__init__.py +6 -6
- ultralytics/cfg/default.yaml +3 -1
- ultralytics/cfg/models/26/yolo26-cls.yaml +33 -0
- ultralytics/cfg/models/26/yolo26-obb.yaml +52 -0
- ultralytics/cfg/models/26/yolo26-p2.yaml +60 -0
- ultralytics/cfg/models/26/yolo26-p6.yaml +62 -0
- ultralytics/cfg/models/26/yolo26-pose.yaml +53 -0
- ultralytics/cfg/models/26/yolo26-seg.yaml +52 -0
- ultralytics/cfg/models/26/yolo26.yaml +52 -0
- ultralytics/cfg/models/26/yoloe-26-seg.yaml +53 -0
- ultralytics/cfg/models/26/yoloe-26.yaml +53 -0
- ultralytics/data/augment.py +7 -0
- ultralytics/data/dataset.py +1 -1
- ultralytics/engine/exporter.py +9 -4
- ultralytics/engine/model.py +1 -1
- ultralytics/engine/trainer.py +40 -15
- ultralytics/engine/tuner.py +15 -7
- ultralytics/models/fastsam/predict.py +1 -1
- ultralytics/models/yolo/detect/train.py +3 -2
- ultralytics/models/yolo/detect/val.py +6 -0
- ultralytics/models/yolo/model.py +1 -1
- ultralytics/models/yolo/obb/predict.py +1 -1
- ultralytics/models/yolo/obb/train.py +1 -1
- ultralytics/models/yolo/pose/train.py +1 -1
- ultralytics/models/yolo/segment/predict.py +1 -1
- ultralytics/models/yolo/segment/train.py +1 -1
- ultralytics/models/yolo/segment/val.py +3 -1
- ultralytics/models/yolo/yoloe/train.py +6 -1
- ultralytics/models/yolo/yoloe/train_seg.py +6 -1
- ultralytics/nn/autobackend.py +3 -3
- ultralytics/nn/modules/__init__.py +8 -0
- ultralytics/nn/modules/block.py +128 -8
- ultralytics/nn/modules/head.py +789 -204
- ultralytics/nn/tasks.py +74 -29
- ultralytics/nn/text_model.py +5 -2
- ultralytics/optim/__init__.py +5 -0
- ultralytics/optim/muon.py +338 -0
- ultralytics/utils/callbacks/platform.py +9 -7
- ultralytics/utils/downloads.py +3 -1
- ultralytics/utils/export/engine.py +19 -10
- ultralytics/utils/export/imx.py +22 -11
- ultralytics/utils/export/tensorflow.py +21 -21
- ultralytics/utils/loss.py +587 -203
- ultralytics/utils/metrics.py +1 -0
- ultralytics/utils/ops.py +11 -2
- ultralytics/utils/tal.py +98 -19
- {dgenerate_ultralytics_headless-8.3.253.dist-info → dgenerate_ultralytics_headless-8.4.1.dist-info}/WHEEL +0 -0
- {dgenerate_ultralytics_headless-8.3.253.dist-info → dgenerate_ultralytics_headless-8.4.1.dist-info}/entry_points.txt +0 -0
- {dgenerate_ultralytics_headless-8.3.253.dist-info → dgenerate_ultralytics_headless-8.4.1.dist-info}/licenses/LICENSE +0 -0
- {dgenerate_ultralytics_headless-8.3.253.dist-info → dgenerate_ultralytics_headless-8.4.1.dist-info}/top_level.txt +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: dgenerate-ultralytics-headless
|
|
3
|
-
Version: 8.
|
|
3
|
+
Version: 8.4.1
|
|
4
4
|
Summary: Automatically built Ultralytics package with python-opencv-headless dependency instead of python-opencv
|
|
5
5
|
Author-email: Glenn Jocher <glenn.jocher@ultralytics.com>, Jing Qiu <jing.qiu@ultralytics.com>
|
|
6
6
|
Maintainer-email: Ultralytics <hello@ultralytics.com>
|
|
@@ -129,7 +129,6 @@ The workflow runs automatically every day at midnight UTC to check for new Ultra
|
|
|
129
129
|
<div>
|
|
130
130
|
<a href="https://github.com/ultralytics/ultralytics/actions/workflows/ci.yml"><img src="https://github.com/ultralytics/ultralytics/actions/workflows/ci.yml/badge.svg" alt="Ultralytics CI"></a>
|
|
131
131
|
<a href="https://clickpy.clickhouse.com/dashboard/ultralytics"><img src="https://static.pepy.tech/badge/ultralytics" alt="Ultralytics Downloads"></a>
|
|
132
|
-
<a href="https://zenodo.org/badge/latestdoi/264818686"><img src="https://zenodo.org/badge/264818686.svg" alt="Ultralytics YOLO Citation"></a>
|
|
133
132
|
<a href="https://discord.com/invite/ultralytics"><img alt="Ultralytics Discord" src="https://img.shields.io/discord/1089800235347353640?logo=discord&logoColor=white&label=Discord&color=blue"></a>
|
|
134
133
|
<a href="https://community.ultralytics.com/"><img alt="Ultralytics Forums" src="https://img.shields.io/discourse/users?server=https%3A%2F%2Fcommunity.ultralytics.com&logo=discourse&label=Forums&color=blue"></a>
|
|
135
134
|
<a href="https://www.reddit.com/r/ultralytics/"><img alt="Ultralytics Reddit" src="https://img.shields.io/reddit/subreddit-subscribers/ultralytics?style=flat&logo=reddit&logoColor=white&label=Reddit&color=blue"></a>
|
|
@@ -197,8 +196,8 @@ For alternative installation methods, including [Conda](https://anaconda.org/con
|
|
|
197
196
|
You can use Ultralytics YOLO directly from the Command Line Interface (CLI) with the `yolo` command:
|
|
198
197
|
|
|
199
198
|
```bash
|
|
200
|
-
# Predict using a pretrained YOLO model (e.g.,
|
|
201
|
-
yolo predict model=
|
|
199
|
+
# Predict using a pretrained YOLO model (e.g., YOLO26n) on an image
|
|
200
|
+
yolo predict model=yolo26n.pt source='https://ultralytics.com/images/bus.jpg'
|
|
202
201
|
```
|
|
203
202
|
|
|
204
203
|
The `yolo` command supports various tasks and modes, accepting additional arguments like `imgsz=640`. Explore the YOLO [CLI Docs](https://docs.ultralytics.com/usage/cli/) for more examples.
|
|
@@ -210,8 +209,8 @@ Ultralytics YOLO can also be integrated directly into your Python projects. It a
|
|
|
210
209
|
```python
|
|
211
210
|
from ultralytics import YOLO
|
|
212
211
|
|
|
213
|
-
# Load a pretrained
|
|
214
|
-
model = YOLO("
|
|
212
|
+
# Load a pretrained YOLO26n model
|
|
213
|
+
model = YOLO("yolo26n.pt")
|
|
215
214
|
|
|
216
215
|
# Train the model on the COCO8 dataset for 100 epochs
|
|
217
216
|
train_results = model.train(
|
|
@@ -238,7 +237,7 @@ Discover more examples in the YOLO [Python Docs](https://docs.ultralytics.com/us
|
|
|
238
237
|
|
|
239
238
|
## ✨ Models
|
|
240
239
|
|
|
241
|
-
Ultralytics supports a wide range of YOLO models, from early versions like [YOLOv3](https://docs.ultralytics.com/models/yolov3/) to the latest [
|
|
240
|
+
Ultralytics supports a wide range of YOLO models, from early versions like [YOLOv3](https://docs.ultralytics.com/models/yolov3/) to the latest [YOLO26](https://docs.ultralytics.com/models/yolo26/). The tables below showcase YOLO26 models pretrained on the [COCO](https://docs.ultralytics.com/datasets/detect/coco/) dataset for [Detection](https://docs.ultralytics.com/tasks/detect/), [Segmentation](https://docs.ultralytics.com/tasks/segment/), and [Pose Estimation](https://docs.ultralytics.com/tasks/pose/). Additionally, [Classification](https://docs.ultralytics.com/tasks/classify/) models pretrained on the [ImageNet](https://docs.ultralytics.com/datasets/classify/imagenet/) dataset are available. [Tracking](https://docs.ultralytics.com/modes/track/) mode is compatible with all Detection, Segmentation, and Pose models. All [Models](https://docs.ultralytics.com/models/) are automatically downloaded from the latest Ultralytics [release](https://github.com/ultralytics/assets/releases) upon first use.
|
|
242
241
|
|
|
243
242
|
<a href="https://docs.ultralytics.com/tasks/" target="_blank">
|
|
244
243
|
<img width="100%" src="https://github.com/ultralytics/docs/releases/download/0/ultralytics-yolov8-tasks-banner.avif" alt="Ultralytics YOLO supported tasks">
|
|
@@ -252,11 +251,11 @@ Explore the [Detection Docs](https://docs.ultralytics.com/tasks/detect/) for usa
|
|
|
252
251
|
|
|
253
252
|
| Model | size<br><sup>(pixels) | mAP<sup>val<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
|
|
254
253
|
| ------------------------------------------------------------------------------------ | --------------------- | -------------------- | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
|
|
255
|
-
| [
|
|
256
|
-
| [
|
|
257
|
-
| [
|
|
258
|
-
| [
|
|
259
|
-
| [
|
|
254
|
+
| [YOLO26n](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26n.pt) | 640 | 40.9 | 38.9 ± 0.7 | 1.7 ± 0.0 | 2.4 | 5.4 |
|
|
255
|
+
| [YOLO26s](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26s.pt) | 640 | 48.6 | 87.2 ± 0.9 | 2.5 ± 0.0 | 9.5 | 20.7 |
|
|
256
|
+
| [YOLO26m](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26m.pt) | 640 | 53.1 | 220.0 ± 1.4 | 4.7 ± 0.1 | 20.4 | 68.2 |
|
|
257
|
+
| [YOLO26l](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26l.pt) | 640 | 55.0 | 286.2 ± 2.0 | 6.2 ± 0.2 | 24.8 | 86.4 |
|
|
258
|
+
| [YOLO26x](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26x.pt) | 640 | 57.5 | 525.8 ± 4.0 | 11.8 ± 0.2 | 55.7 | 193.9 |
|
|
260
259
|
|
|
261
260
|
- **mAP<sup>val</sup>** values refer to single-model single-scale performance on the [COCO val2017](https://cocodataset.org/) dataset. See [YOLO Performance Metrics](https://docs.ultralytics.com/guides/yolo-performance-metrics/) for details. <br>Reproduce with `yolo val detect data=coco.yaml device=0`
|
|
262
261
|
- **Speed** metrics are averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. CPU speeds measured with [ONNX](https://onnx.ai/) export. GPU speeds measured with [TensorRT](https://developer.nvidia.com/tensorrt) export. <br>Reproduce with `yolo val detect data=coco.yaml batch=1 device=0|cpu`
|
|
@@ -269,11 +268,11 @@ Refer to the [Segmentation Docs](https://docs.ultralytics.com/tasks/segment/) fo
|
|
|
269
268
|
|
|
270
269
|
| Model | size<br><sup>(pixels) | mAP<sup>box<br>50-95 | mAP<sup>mask<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
|
|
271
270
|
| -------------------------------------------------------------------------------------------- | --------------------- | -------------------- | --------------------- | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
|
|
272
|
-
| [
|
|
273
|
-
| [
|
|
274
|
-
| [
|
|
275
|
-
| [
|
|
276
|
-
| [
|
|
271
|
+
| [YOLO26n-seg](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26n-seg.pt) | 640 | 39.6 | 33.9 | 53.3 ± 0.5 | 2.1 ± 0.0 | 2.7 | 9.1 |
|
|
272
|
+
| [YOLO26s-seg](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26s-seg.pt) | 640 | 47.3 | 40.0 | 118.4 ± 0.9 | 3.3 ± 0.0 | 10.4 | 34.2 |
|
|
273
|
+
| [YOLO26m-seg](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26m-seg.pt) | 640 | 52.5 | 44.1 | 328.2 ± 2.4 | 6.7 ± 0.1 | 23.6 | 121.5 |
|
|
274
|
+
| [YOLO26l-seg](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26l-seg.pt) | 640 | 54.4 | 45.5 | 387.0 ± 3.7 | 8.0 ± 0.1 | 28.0 | 139.8 |
|
|
275
|
+
| [YOLO26x-seg](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26x-seg.pt) | 640 | 56.5 | 47.0 | 787.0 ± 6.8 | 16.4 ± 0.1 | 62.8 | 313.5 |
|
|
277
276
|
|
|
278
277
|
- **mAP<sup>val</sup>** values are for single-model single-scale on the [COCO val2017](https://cocodataset.org/) dataset. See [YOLO Performance Metrics](https://docs.ultralytics.com/guides/yolo-performance-metrics/) for details. <br>Reproduce with `yolo val segment data=coco.yaml device=0`
|
|
279
278
|
- **Speed** metrics are averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. CPU speeds measured with [ONNX](https://onnx.ai/) export. GPU speeds measured with [TensorRT](https://developer.nvidia.com/tensorrt) export. <br>Reproduce with `yolo val segment data=coco.yaml batch=1 device=0|cpu`
|
|
@@ -286,11 +285,11 @@ Consult the [Classification Docs](https://docs.ultralytics.com/tasks/classify/)
|
|
|
286
285
|
|
|
287
286
|
| Model | size<br><sup>(pixels) | acc<br><sup>top1 | acc<br><sup>top5 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) at 224 |
|
|
288
287
|
| -------------------------------------------------------------------------------------------- | --------------------- | ---------------- | ---------------- | ------------------------------ | ----------------------------------- | ------------------ | ------------------------ |
|
|
289
|
-
| [
|
|
290
|
-
| [
|
|
291
|
-
| [
|
|
292
|
-
| [
|
|
293
|
-
| [
|
|
288
|
+
| [YOLO26n-cls](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26n-cls.pt) | 224 | 71.4 | 90.1 | 5.0 ± 0.3 | 1.1 ± 0.0 | 2.8 | 0.5 |
|
|
289
|
+
| [YOLO26s-cls](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26s-cls.pt) | 224 | 76.0 | 92.9 | 7.9 ± 0.2 | 1.3 ± 0.0 | 6.7 | 1.6 |
|
|
290
|
+
| [YOLO26m-cls](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26m-cls.pt) | 224 | 78.1 | 94.2 | 17.2 ± 0.4 | 2.0 ± 0.0 | 11.6 | 4.9 |
|
|
291
|
+
| [YOLO26l-cls](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26l-cls.pt) | 224 | 79.0 | 94.6 | 23.2 ± 0.3 | 2.8 ± 0.0 | 14.1 | 6.2 |
|
|
292
|
+
| [YOLO26x-cls](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26x-cls.pt) | 224 | 79.9 | 95.0 | 41.4 ± 0.9 | 3.8 ± 0.0 | 29.6 | 13.6 |
|
|
294
293
|
|
|
295
294
|
- **acc** values represent model accuracy on the [ImageNet](https://www.image-net.org/) dataset validation set. <br>Reproduce with `yolo val classify data=path/to/ImageNet device=0`
|
|
296
295
|
- **Speed** metrics are averaged over ImageNet val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. CPU speeds measured with [ONNX](https://onnx.ai/) export. GPU speeds measured with [TensorRT](https://developer.nvidia.com/tensorrt) export. <br>Reproduce with `yolo val classify data=path/to/ImageNet batch=1 device=0|cpu`
|
|
@@ -303,11 +302,11 @@ See the [Pose Estimation Docs](https://docs.ultralytics.com/tasks/pose/) for usa
|
|
|
303
302
|
|
|
304
303
|
| Model | size<br><sup>(pixels) | mAP<sup>pose<br>50-95 | mAP<sup>pose<br>50 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
|
|
305
304
|
| ---------------------------------------------------------------------------------------------- | --------------------- | --------------------- | ------------------ | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
|
|
306
|
-
| [
|
|
307
|
-
| [
|
|
308
|
-
| [
|
|
309
|
-
| [
|
|
310
|
-
| [
|
|
305
|
+
| [YOLO26n-pose](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26n-pose.pt) | 640 | 57.2 | 83.3 | 40.3 ± 0.5 | 1.8 ± 0.0 | 2.9 | 7.5 |
|
|
306
|
+
| [YOLO26s-pose](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26s-pose.pt) | 640 | 63.0 | 86.6 | 85.3 ± 0.9 | 2.7 ± 0.0 | 10.4 | 23.9 |
|
|
307
|
+
| [YOLO26m-pose](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26m-pose.pt) | 640 | 68.8 | 89.6 | 218.0 ± 1.5 | 5.0 ± 0.1 | 21.5 | 73.1 |
|
|
308
|
+
| [YOLO26l-pose](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26l-pose.pt) | 640 | 70.4 | 90.5 | 275.4 ± 2.4 | 6.5 ± 0.1 | 25.9 | 91.3 |
|
|
309
|
+
| [YOLO26x-pose](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26x-pose.pt) | 640 | 71.6 | 91.6 | 565.4 ± 3.0 | 12.2 ± 0.2 | 57.6 | 201.7 |
|
|
311
310
|
|
|
312
311
|
- **mAP<sup>val</sup>** values are for single-model single-scale on the [COCO Keypoints val2017](https://docs.ultralytics.com/datasets/pose/coco/) dataset. See [YOLO Performance Metrics](https://docs.ultralytics.com/guides/yolo-performance-metrics/) for details. <br>Reproduce with `yolo val pose data=coco-pose.yaml device=0`
|
|
313
312
|
- **Speed** metrics are averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. CPU speeds measured with [ONNX](https://onnx.ai/) export. GPU speeds measured with [TensorRT](https://developer.nvidia.com/tensorrt) export. <br>Reproduce with `yolo val pose data=coco-pose.yaml batch=1 device=0|cpu`
|
|
@@ -320,11 +319,11 @@ Check the [OBB Docs](https://docs.ultralytics.com/tasks/obb/) for usage examples
|
|
|
320
319
|
|
|
321
320
|
| Model | size<br><sup>(pixels) | mAP<sup>test<br>50 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
|
|
322
321
|
| -------------------------------------------------------------------------------------------- | --------------------- | ------------------ | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
|
|
323
|
-
| [
|
|
324
|
-
| [
|
|
325
|
-
| [
|
|
326
|
-
| [
|
|
327
|
-
| [
|
|
322
|
+
| [YOLO26n-obb](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26n-obb.pt) | 1024 | 78.9 | 97.7 ± 0.9 | 2.8 ± 0.0 | 2.5 | 14.0 |
|
|
323
|
+
| [YOLO26s-obb](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26s-obb.pt) | 1024 | 80.9 | 218.0 ± 1.4 | 4.9 ± 0.1 | 9.8 | 55.1 |
|
|
324
|
+
| [YOLO26m-obb](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26m-obb.pt) | 1024 | 81.0 | 579.2 ± 3.8 | 10.2 ± 0.3 | 21.2 | 183.3 |
|
|
325
|
+
| [YOLO26l-obb](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26l-obb.pt) | 1024 | 81.6 | 735.6 ± 3.1 | 13.0 ± 0.2 | 25.6 | 230.0 |
|
|
326
|
+
| [YOLO26x-obb](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26x-obb.pt) | 1024 | 81.7 | 1485.7 ± 11.5 | 30.5 ± 0.9 | 57.6 | 516.5 |
|
|
328
327
|
|
|
329
328
|
- **mAP<sup>test</sup>** values are for single-model multiscale performance on the [DOTAv1 test set](https://captain-whu.github.io/DOTA/dataset.html). <br>Reproduce by `yolo val obb data=DOTAv1.yaml device=0 split=test` and submit merged results to the [DOTA evaluation server](https://captain-whu.github.io/DOTA/evaluation.html).
|
|
330
329
|
- **Speed** metrics are averaged over [DOTAv1 val images](https://docs.ultralytics.com/datasets/obb/dota-v2/#dota-v10) using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. CPU speeds measured with [ONNX](https://onnx.ai/) export. GPU speeds measured with [TensorRT](https://developer.nvidia.com/tensorrt) export. <br>Reproduce by `yolo val obb data=DOTAv1.yaml batch=1 device=0|cpu`
|
|
@@ -359,13 +358,6 @@ Our key integrations with leading AI platforms extend the functionality of Ultra
|
|
|
359
358
|
| :-----------------------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------------------------------------------------------------------: | :-------------------------------------------------------------------------------------------------------------------------------------------------------------: | :-------------------------------------------------------------------------------------------------------------------------: |
|
|
360
359
|
| Streamline YOLO workflows: Label, train, and deploy effortlessly with [Ultralytics HUB](https://hub.ultralytics.com/). Try now! | Track experiments, hyperparameters, and results with [Weights & Biases](https://docs.ultralytics.com/integrations/weights-biases/). | Free forever, [Comet ML](https://docs.ultralytics.com/integrations/comet/) lets you save YOLO models, resume training, and interactively visualize predictions. | Run YOLO inference up to 6x faster with [Neural Magic DeepSparse](https://docs.ultralytics.com/integrations/neural-magic/). |
|
|
361
360
|
|
|
362
|
-
## 🌟 Ultralytics HUB
|
|
363
|
-
|
|
364
|
-
Experience seamless AI with [Ultralytics HUB](https://hub.ultralytics.com/), the all-in-one platform for data visualization, training YOLO models, and deployment—no coding required. Transform images into actionable insights and bring your AI visions to life effortlessly using our cutting-edge platform and user-friendly [Ultralytics App](https://www.ultralytics.com/app-install). Start your journey for **Free** today!
|
|
365
|
-
|
|
366
|
-
<a href="https://www.ultralytics.com/hub" target="_blank">
|
|
367
|
-
<img width="100%" src="https://github.com/ultralytics/assets/raw/main/im/ultralytics-hub.png" alt="Ultralytics HUB preview image"></a>
|
|
368
|
-
|
|
369
361
|
## 🤝 Contribute
|
|
370
362
|
|
|
371
363
|
We thrive on community collaboration! Ultralytics YOLO wouldn't be the SOTA framework it is without contributions from developers like you. Please see our [Contributing Guide](https://docs.ultralytics.com/help/contributing/) to get started. We also welcome your feedback—share your experience by completing our [Survey](https://www.ultralytics.com/survey?utm_source=github&utm_medium=social&utm_campaign=Survey). A huge **Thank You** 🙏 to everyone who contributes!
|
|
@@ -1,19 +1,19 @@
|
|
|
1
|
-
dgenerate_ultralytics_headless-8.
|
|
2
|
-
tests/__init__.py,sha256=
|
|
3
|
-
tests/conftest.py,sha256=
|
|
1
|
+
dgenerate_ultralytics_headless-8.4.1.dist-info/licenses/LICENSE,sha256=DZak_2itbUtvHzD3E7GNUYSRK6jdOJ-GqncQ2weavLA,34523
|
|
2
|
+
tests/__init__.py,sha256=hfUXxYLJB3846OCzWV94ZKEZsi8vq9Pqrdd2mMgjjck,804
|
|
3
|
+
tests/conftest.py,sha256=rlKyDuOC_3ptXrWS8Q19bNEGOupUmYXHj3nB6o1GBGY,2318
|
|
4
4
|
tests/test_cli.py,sha256=GhIFHi-_WIJpDgoGNRi0DnjbfwP1wHbklBMnkCM-P_4,5464
|
|
5
|
-
tests/test_cuda.py,sha256=
|
|
6
|
-
tests/test_engine.py,sha256=
|
|
7
|
-
tests/test_exports.py,sha256=
|
|
8
|
-
tests/test_integrations.py,sha256=
|
|
9
|
-
tests/test_python.py,sha256=
|
|
10
|
-
tests/test_solutions.py,sha256=
|
|
11
|
-
ultralytics/__init__.py,sha256=
|
|
5
|
+
tests/test_cuda.py,sha256=2TBe-ZkecMOGPWLdHcbsAjH3m9c5SQJ2KeyICgS0aeo,8426
|
|
6
|
+
tests/test_engine.py,sha256=ufSn3X4kL_Lpn2O25jKAfw_9QwHTMRjP9shDdpgBqnY,5740
|
|
7
|
+
tests/test_exports.py,sha256=j1o0DYeHM2ulXv1UPkHFcZFWGv8ichY7KHhrb4U89QI,14894
|
|
8
|
+
tests/test_integrations.py,sha256=FjvTGjXm3bvYHK3_obgObhC5SzHCTzw4aOJV9Hh08jQ,6220
|
|
9
|
+
tests/test_python.py,sha256=np6on3Sa0NNi5pquvilekjKxxedAJMpLOQEthGaIalQ,29284
|
|
10
|
+
tests/test_solutions.py,sha256=1tRlM72YciE42Nk9v83gsXOD5RSx9GSWVsKGhH7-HxE,14122
|
|
11
|
+
ultralytics/__init__.py,sha256=v6vc7C81LzYC2a4F7ZEElHt1Wi-uMsbkbC59Zh_dHvw,1300
|
|
12
12
|
ultralytics/py.typed,sha256=la67KBlbjXN-_-DfGNcdOcjYumVpKG_Tkw-8n5dnGB4,8
|
|
13
13
|
ultralytics/assets/bus.jpg,sha256=wCAZxJecGR63Od3ZRERe9Aja1Weayrb9Ug751DS_vGM,137419
|
|
14
14
|
ultralytics/assets/zidane.jpg,sha256=Ftc4aeMmen1O0A3o6GCDO9FlfBslLpTAw0gnetx7bts,50427
|
|
15
|
-
ultralytics/cfg/__init__.py,sha256=
|
|
16
|
-
ultralytics/cfg/default.yaml,sha256=
|
|
15
|
+
ultralytics/cfg/__init__.py,sha256=ihvr4XZnnbYWFwSYtFxWdNK7fN4D1Bm19XLkD_-bCXo,40401
|
|
16
|
+
ultralytics/cfg/default.yaml,sha256=E__q2msvK9XCQngf0YFLpueCer_1tRcMJM0p3ahBdbA,9015
|
|
17
17
|
ultralytics/cfg/datasets/Argoverse.yaml,sha256=QGpdh3Hj5dFrvbsaE_8rAVj9BO4XpKTB7uhXaTTnE-o,3364
|
|
18
18
|
ultralytics/cfg/datasets/DOTAv1.5.yaml,sha256=KE7VC-ZMDSei1pLPm-pdk_ZAMRU_gLwGgtIQNbwp6dA,1212
|
|
19
19
|
ultralytics/cfg/datasets/DOTAv1.yaml,sha256=DUmBEfvdlCRH2t9aqhc3uk55sOXWWsY9v6RVYaELeTA,1182
|
|
@@ -64,6 +64,15 @@ ultralytics/cfg/models/12/yolo12-obb.yaml,sha256=JMviFAOmDbW0aMNzZNqispP0wxWw3mt
|
|
|
64
64
|
ultralytics/cfg/models/12/yolo12-pose.yaml,sha256=Mr9xjYclLQzxYhMqjIKQTdiTvtqZvEXBtclADFggaMA,2074
|
|
65
65
|
ultralytics/cfg/models/12/yolo12-seg.yaml,sha256=RBFFz4b95Dupfg0fmqCkZ4i1Zzai_QyJrI6Y2oLsocM,1984
|
|
66
66
|
ultralytics/cfg/models/12/yolo12.yaml,sha256=ZeA8LuymJXPNjZ5xkxkZHkcktDaKDzUBb2Kc3gCLC1w,1953
|
|
67
|
+
ultralytics/cfg/models/26/yolo26-cls.yaml,sha256=GmaLvnB62X6r9_mZwpx0b2LTRYIXzVYqSqR3Mcy336g,1432
|
|
68
|
+
ultralytics/cfg/models/26/yolo26-obb.yaml,sha256=3EKhFjHlOV0XBgb8J2B4iMd7dONiBC1iohYQStk6cyw,2147
|
|
69
|
+
ultralytics/cfg/models/26/yolo26-p2.yaml,sha256=Dbwvo9_t5e3NolZquMfqFQrQZuop155o1sTaK6tHYnk,2405
|
|
70
|
+
ultralytics/cfg/models/26/yolo26-p6.yaml,sha256=YFWaH6NAOHoLYmH4Te3edcj5-c7QJ-glzri-xPFk4U0,2457
|
|
71
|
+
ultralytics/cfg/models/26/yolo26-pose.yaml,sha256=ac9XyCyVrTUHkjEoSkYKtQrawZQ6Vr4hQZE1aO83b7s,2245
|
|
72
|
+
ultralytics/cfg/models/26/yolo26-seg.yaml,sha256=iL4euVjAg8dSq0oN-71-VDk0EqSruTGBjfCHqQYUqrg,2154
|
|
73
|
+
ultralytics/cfg/models/26/yolo26.yaml,sha256=sdH6DGns7WT5k5U2A4vY1pfDLnIgCzQYenZ95DGvfvA,2120
|
|
74
|
+
ultralytics/cfg/models/26/yoloe-26-seg.yaml,sha256=QlyK3awjLOjs9q0raj0we5QCG1tDy-NvQ2uQzKDoBYk,2223
|
|
75
|
+
ultralytics/cfg/models/26/yoloe-26.yaml,sha256=YWsBS4D3f7QhqLQzYT-LVdCOISo0VaTILIaLKmujDdo,2191
|
|
67
76
|
ultralytics/cfg/models/rt-detr/rtdetr-l.yaml,sha256=hAZti6u7lYIeYERsRrsdU9wekNFHURH_mq6Ow4XfhB4,2036
|
|
68
77
|
ultralytics/cfg/models/rt-detr/rtdetr-resnet101.yaml,sha256=Rtj3KCpxsvvFmYTJ2NKqoc0fk7-I5gaZiDsdgXFZ_6g,1689
|
|
69
78
|
ultralytics/cfg/models/rt-detr/rtdetr-resnet50.yaml,sha256=QLhmuMS9OEuLFbMuaDrjtzCizpYzddQcM6QyBL6rhPg,1685
|
|
@@ -110,11 +119,11 @@ ultralytics/cfg/trackers/botsort.yaml,sha256=tRxC-qT4Wz0mLn5x7ZEwrqgGKrmTDVY7gMg
|
|
|
110
119
|
ultralytics/cfg/trackers/bytetrack.yaml,sha256=7LS1ObP5u7BUFcmeY6L2m3bRuPUktnpJspFKd_ElVWc,908
|
|
111
120
|
ultralytics/data/__init__.py,sha256=ToR8zl0JhBHy42ZvV7zIwO_F3lbi5oNlGQNPK3dlddU,644
|
|
112
121
|
ultralytics/data/annotator.py,sha256=kbfSPBesKEVK6ys3dilTdMh7rCKyp0xV7tGQeEDbpWI,2985
|
|
113
|
-
ultralytics/data/augment.py,sha256=
|
|
122
|
+
ultralytics/data/augment.py,sha256=4xtggkuysYcbK5pYwNuAaoCzshb5wwD9KN6_pP4uSFU,128003
|
|
114
123
|
ultralytics/data/base.py,sha256=pMs8yJOmAFPXdgfLCDtUemSvkPNDzxReP-fWzkNtonc,19723
|
|
115
124
|
ultralytics/data/build.py,sha256=s-tkSZPf3OfQyfXPXB9XxdW_gIcU6Xy_u21ekSgTnRo,17205
|
|
116
125
|
ultralytics/data/converter.py,sha256=1m345J7YUn7gtaChO7To4BWZm72pC8D8L2O0k99q0DE,31898
|
|
117
|
-
ultralytics/data/dataset.py,sha256=
|
|
126
|
+
ultralytics/data/dataset.py,sha256=r_BZy4FwMZ-dYkaJiz1E3jr2pI6dn7V3hZwf2RM9_RQ,36536
|
|
118
127
|
ultralytics/data/loaders.py,sha256=BQbhgjiLCGcRBPkGVG9Hr1jeNfG1nuZD3jstiWb7zS8,31889
|
|
119
128
|
ultralytics/data/split.py,sha256=HpR0ltf5oN1DpZstavFbBFC1YdpGPaATXxDOcAMwOqc,5101
|
|
120
129
|
ultralytics/data/split_dota.py,sha256=Qp9vGB2lzb5fQOrpNupKc8KN9ulqZoco9d4gRcx7JZk,12873
|
|
@@ -124,12 +133,12 @@ ultralytics/data/scripts/get_coco.sh,sha256=UuJpJeo3qQpTHVINeOpmP0NYmg8PhEFE3A8J
|
|
|
124
133
|
ultralytics/data/scripts/get_coco128.sh,sha256=qmRQl_hOKrsdHrTrnyQuFIH01oDz3lfaz138OgGfLt8,650
|
|
125
134
|
ultralytics/data/scripts/get_imagenet.sh,sha256=hr42H16bM47iT27rgS7MpEo-GeOZAYUQXgr0B2cwn48,1705
|
|
126
135
|
ultralytics/engine/__init__.py,sha256=lm6MckFYCPTbqIoX7w0s_daxdjNeBeKW6DXppv1-QUM,70
|
|
127
|
-
ultralytics/engine/exporter.py,sha256=
|
|
128
|
-
ultralytics/engine/model.py,sha256=
|
|
136
|
+
ultralytics/engine/exporter.py,sha256=SpA0Oj4w8yjYUde1okc4XfyCK376t1zZPr-bx1-p_WE,73429
|
|
137
|
+
ultralytics/engine/model.py,sha256=bKoiy8ImddK-e87NmVbO5nlktqgebRM7D65epD4Cvjk,53211
|
|
129
138
|
ultralytics/engine/predictor.py,sha256=neYmNDX27Vv3ggk9xqaKlH6XzB2vlFIghU5o7ZC0zFo,22838
|
|
130
139
|
ultralytics/engine/results.py,sha256=DomI01voqR_i7v8LhDGb6jWCprWB4H6I436GSO2NMBY,68030
|
|
131
|
-
ultralytics/engine/trainer.py,sha256=
|
|
132
|
-
ultralytics/engine/tuner.py,sha256=
|
|
140
|
+
ultralytics/engine/trainer.py,sha256=W8xFyTBZ_hFRvzMccugqLw3dBXNfRH1d8KoRO4DWFcE,46985
|
|
141
|
+
ultralytics/engine/tuner.py,sha256=mD4bjddz7CE7ExKgEaIoSQw22Lg9V0NBXqR9Vey2gIs,21840
|
|
133
142
|
ultralytics/engine/validator.py,sha256=2rqdVt4hB9ruMJq-L7PbaCNFwuERS7ZHdVSg91RM3wk,17761
|
|
134
143
|
ultralytics/hub/__init__.py,sha256=Z0K_E00jzQh90b18q3IDChwVmTvyIYp6C00sCV-n2F8,6709
|
|
135
144
|
ultralytics/hub/auth.py,sha256=ANzCeZA7lUzTWc_sFHbDuuyBh1jLl2sTpHkoUbIkFYE,6254
|
|
@@ -139,7 +148,7 @@ ultralytics/hub/google/__init__.py,sha256=r06Ld4TuZEBOqg4iagpeN-eMAkg43T2OTxOH4_
|
|
|
139
148
|
ultralytics/models/__init__.py,sha256=ljus_u1CIuP99k9fu6sCtzIeFZ-TCE28NZ8kefZHFNY,309
|
|
140
149
|
ultralytics/models/fastsam/__init__.py,sha256=Ku89Fy_X8ok3YPEUajjUZ5i4O08jdJMjJHt-3Z99Frk,231
|
|
141
150
|
ultralytics/models/fastsam/model.py,sha256=HN6CAHCTwMmyBCQlXx4wMBU7XqkvVHyUawRaxn2Gur8,3426
|
|
142
|
-
ultralytics/models/fastsam/predict.py,sha256=
|
|
151
|
+
ultralytics/models/fastsam/predict.py,sha256=zYhlXIrn69ryPnBEwEx4YkgYobPPE3_zvZAX2uAUIP4,8543
|
|
143
152
|
ultralytics/models/fastsam/utils.py,sha256=de9ieh4pBUuTNh5HTiNdRpWZhXAaSfNo3R1FNMt2GOE,879
|
|
144
153
|
ultralytics/models/fastsam/val.py,sha256=T76Yl4PtPezjGOcpXUxEobr0xnkR42Z-wnIz89cZ-IE,2028
|
|
145
154
|
ultralytics/models/nas/__init__.py,sha256=Q4ZQak8xNWtV5YSw_pFu0anbCyDxxEAuMMDfMzu6-0s,207
|
|
@@ -181,46 +190,48 @@ ultralytics/models/utils/__init__.py,sha256=lm6MckFYCPTbqIoX7w0s_daxdjNeBeKW6DXp
|
|
|
181
190
|
ultralytics/models/utils/loss.py,sha256=9CcqRXDj5-I-7eZuenInvyoLcPf22Ynf3rUFA5V22bI,21131
|
|
182
191
|
ultralytics/models/utils/ops.py,sha256=z-Ebjv_k14bWOoP6nszDzDBiy3yELcVtbj6M8PsRpvE,15207
|
|
183
192
|
ultralytics/models/yolo/__init__.py,sha256=YD407NDDiyjo0x_MR6usJaTpePKPgsfBUYehlCw7lRs,307
|
|
184
|
-
ultralytics/models/yolo/model.py,sha256
|
|
193
|
+
ultralytics/models/yolo/model.py,sha256=BbVMlUNrnjPmS9OZbETSlmUjCYxdUwYyiY3I2TtLAqw,18504
|
|
185
194
|
ultralytics/models/yolo/classify/__init__.py,sha256=9--HVaNOfI1K7rn_rRqclL8FUAnpfeBrRqEQIaQw2xM,383
|
|
186
195
|
ultralytics/models/yolo/classify/predict.py,sha256=wKICjwofH7-7QLJhX2vYSNJXWu2-5kWzjoXXmUPI0pU,4137
|
|
187
196
|
ultralytics/models/yolo/classify/train.py,sha256=oODDfPwjgKzsbpO7NCYnOp_uwkWD7HNLhvsHxAJTA4g,8958
|
|
188
197
|
ultralytics/models/yolo/classify/val.py,sha256=gtoUJN5_-56EbiYp5Ur-shfdBNMJOqToWmup_-1wW7I,10503
|
|
189
198
|
ultralytics/models/yolo/detect/__init__.py,sha256=GIRsLYR-kT4JJx7lh4ZZAFGBZj0aebokuU0A7JbjDVA,257
|
|
190
199
|
ultralytics/models/yolo/detect/predict.py,sha256=Sct-UwkDe54ZmVtTYl0-fKgx_0BOlPBUsr4NodFd-eU,5385
|
|
191
|
-
ultralytics/models/yolo/detect/train.py,sha256
|
|
192
|
-
ultralytics/models/yolo/detect/val.py,sha256
|
|
200
|
+
ultralytics/models/yolo/detect/train.py,sha256=jWWzOvvcfb6s8HXMKi6l1sr1QCslN3GsqzQQ51OSpJk,10519
|
|
201
|
+
ultralytics/models/yolo/detect/val.py,sha256=NXSeeXtucOMHaR64GSYjxoss5Lhqh3qtbDKJ-crf2Do,22818
|
|
193
202
|
ultralytics/models/yolo/obb/__init__.py,sha256=tQmpG8wVHsajWkZdmD6cjGohJ4ki64iSXQT8JY_dydo,221
|
|
194
|
-
ultralytics/models/yolo/obb/predict.py,sha256=
|
|
195
|
-
ultralytics/models/yolo/obb/train.py,sha256=
|
|
203
|
+
ultralytics/models/yolo/obb/predict.py,sha256=K7KtQKA-7JVLxLSOZ-X38YepZkUAOH5rUwHidm7geYU,2577
|
|
204
|
+
ultralytics/models/yolo/obb/train.py,sha256=6lFDUhAYrIJeDZz7A7ZgPkoDPY4b-0Aqb8noFpCH1Ck,3452
|
|
196
205
|
ultralytics/models/yolo/obb/val.py,sha256=XkZhjPqF7bdYotyUTnRCj6Zre6QsB1M3ulZ0DMf-xiE,14513
|
|
197
206
|
ultralytics/models/yolo/pose/__init__.py,sha256=_9OFLj19XwvJHBRxQtVW5CV7rvJ_3hDPE97miit0sPc,227
|
|
198
207
|
ultralytics/models/yolo/pose/predict.py,sha256=rsorTRpyL-x40R2QVDDG2isc1e2F2lGfD13oKaD5ANs,3118
|
|
199
|
-
ultralytics/models/yolo/pose/train.py,sha256=
|
|
208
|
+
ultralytics/models/yolo/pose/train.py,sha256=fy0XE3sC3Ue-kzCyi9rNz3zygMqlfZuZiDFyrD8d6cs,4640
|
|
200
209
|
ultralytics/models/yolo/pose/val.py,sha256=s5WmXcZI5cAi3LPdIVHnkFUbEoFZsw5PBnnLnZ3Ep_c,12004
|
|
201
210
|
ultralytics/models/yolo/segment/__init__.py,sha256=3IThhZ1wlkY9FvmWm9cE-5-ZyE6F1FgzAtQ6jOOFzzw,275
|
|
202
|
-
ultralytics/models/yolo/segment/predict.py,sha256=
|
|
203
|
-
ultralytics/models/yolo/segment/train.py,sha256=
|
|
204
|
-
ultralytics/models/yolo/segment/val.py,sha256=
|
|
211
|
+
ultralytics/models/yolo/segment/predict.py,sha256=dWb39_G5EMl9J6AeO8_u-G2di7PdIDzy9iVwcFv7zvU,5430
|
|
212
|
+
ultralytics/models/yolo/segment/train.py,sha256=aMsQprA1FX28a0T1cWYmbrsMPawJE6SGwX2rgS_Eb_E,3021
|
|
213
|
+
ultralytics/models/yolo/segment/val.py,sha256=XauBfmC-B4ZZQk9qfuI-7tHq1TQ5hemnidlTs4S1WEo,13286
|
|
205
214
|
ultralytics/models/yolo/world/__init__.py,sha256=nlh8I6t8hMGz_vZg8QSlsUW1R-2eKvn9CGUoPPQEGhA,131
|
|
206
215
|
ultralytics/models/yolo/world/train.py,sha256=80kswko6Zu7peXPBhXcfrTo5HO3Rg8C_cu4vPBQlk7M,7906
|
|
207
216
|
ultralytics/models/yolo/world/train_world.py,sha256=5Jj4gzEwDJtz37bEahL6Lf4xp-c1xiYjGKeg_w7Esns,8723
|
|
208
217
|
ultralytics/models/yolo/yoloe/__init__.py,sha256=zaZo1_ommaxNv7mD7xpdSomNF4s8mpOcCVTXspg0ncY,760
|
|
209
218
|
ultralytics/models/yolo/yoloe/predict.py,sha256=zeu_whH4e2SIWXV8MmJ1NNzoM_cNsiI2kOTjlAhV4qg,7065
|
|
210
|
-
ultralytics/models/yolo/yoloe/train.py,sha256=
|
|
211
|
-
ultralytics/models/yolo/yoloe/train_seg.py,sha256=
|
|
219
|
+
ultralytics/models/yolo/yoloe/train.py,sha256=99iSHQs--5VU_s82Q4w-fAJmyT5-y0TykTul8bo4xFo,13303
|
|
220
|
+
ultralytics/models/yolo/yoloe/train_seg.py,sha256=rV2Jnbuh6vvBMaupaZK_aRXBMevO0XhN2VUR43ZwlIY,5285
|
|
212
221
|
ultralytics/models/yolo/yoloe/val.py,sha256=utUFWeFKRFWZrPr1y3A8ztbTwdoWMYqzlwBN7CQ0tCA,9418
|
|
213
222
|
ultralytics/nn/__init__.py,sha256=538LZPUKKvc3JCMgiQ4VLGqRN2ZAaVLFcQbeNNHFkEA,545
|
|
214
|
-
ultralytics/nn/autobackend.py,sha256=
|
|
215
|
-
ultralytics/nn/tasks.py,sha256=
|
|
216
|
-
ultralytics/nn/text_model.py,sha256=
|
|
217
|
-
ultralytics/nn/modules/__init__.py,sha256=
|
|
223
|
+
ultralytics/nn/autobackend.py,sha256=8OzCzLPr7Ube2KAQJg8VSRlSE149Sq9cIWBpI8KzIlg,45057
|
|
224
|
+
ultralytics/nn/tasks.py,sha256=dbW3Dn87iSjQK6kqp0oY1mVZJg_zVTwWogMspZ2EyqA,72010
|
|
225
|
+
ultralytics/nn/text_model.py,sha256=c--WzxjFEDb7p95u3YGcSsJLjj91zFNqXshij8Evrwg,15291
|
|
226
|
+
ultralytics/nn/modules/__init__.py,sha256=9KyQBxpomp5uJJ1PvMGuOFs2pR3NpqZcFHJlM6Q56c0,3322
|
|
218
227
|
ultralytics/nn/modules/activation.py,sha256=J6n-CJKFK0YbhwcRDqm9zEJM9pSAEycj5quQss_3x6E,2219
|
|
219
|
-
ultralytics/nn/modules/block.py,sha256=
|
|
228
|
+
ultralytics/nn/modules/block.py,sha256=9d1eelj3uRnf-HWTHYTjsBqLSpMCrwBQuX52MjeapN4,74499
|
|
220
229
|
ultralytics/nn/modules/conv.py,sha256=9WUlBzHD-wLgz0riLyttzASLIqBtXPK6Jk5EdyIiGCM,21100
|
|
221
|
-
ultralytics/nn/modules/head.py,sha256=
|
|
230
|
+
ultralytics/nn/modules/head.py,sha256=faOX-YkBJTdEHrwJhFBH1LYRjwoP9yxy6mQf6EIfV3c,78084
|
|
222
231
|
ultralytics/nn/modules/transformer.py,sha256=lAjTH-U8IkBp_1cXSOOFSus9tJf-s8WISKKcXPB84CM,31972
|
|
223
232
|
ultralytics/nn/modules/utils.py,sha256=EyhENse_RESlXjLHAJWvV07_tq1MVMmfzXgPR1fiT9w,6066
|
|
233
|
+
ultralytics/optim/__init__.py,sha256=Sl3Dx2eiaJd_u4VbmqcBqWWDF8FHnO5W0nBEL8_M_C4,130
|
|
234
|
+
ultralytics/optim/muon.py,sha256=Cuak4LOcVVEWIhYm4WzGmww7nhfR1N_uQOpLPX7gV-c,14243
|
|
224
235
|
ultralytics/solutions/__init__.py,sha256=Jj7OcRiYjHH-e104H4xTgjjR5W6aPB4mBRndbaSPmgU,1209
|
|
225
236
|
ultralytics/solutions/ai_gym.py,sha256=ItLE6HYMx6AEgiHEDG1HKDkippnrnycb-79S2g72AYA,5181
|
|
226
237
|
ultralytics/solutions/analytics.py,sha256=UaH-B6h8Ir9l00deRUeAIW6QQTIO_595HTp93sdwteM,12820
|
|
@@ -258,20 +269,20 @@ ultralytics/utils/benchmarks.py,sha256=KOFm2AZPehrJajbUu6NTdZoVOFjTpLhUUnfL59sC6
|
|
|
258
269
|
ultralytics/utils/checks.py,sha256=DheB1ip9ba7ZW_fjPieNdx98vZpwUDbnCKmavAIzJL4,39411
|
|
259
270
|
ultralytics/utils/cpu.py,sha256=OksKOlX93AsbSsFuoYvLXRXgpkOibrZSwQyW6lipt4Q,3493
|
|
260
271
|
ultralytics/utils/dist.py,sha256=hOuY1-unhQAY-uWiZw3LWw36d1mqJuYK75NdlwB4oKE,4131
|
|
261
|
-
ultralytics/utils/downloads.py,sha256=
|
|
272
|
+
ultralytics/utils/downloads.py,sha256=IXM9eTJtt5mdV_9Q-3udwWov0JiVzRI-TXHon-U9gPw,23069
|
|
262
273
|
ultralytics/utils/errors.py,sha256=dUZcTWpbJJHqEuWHM6IbeoJJ4TzA_yHBP8E7tEEpBVs,1388
|
|
263
274
|
ultralytics/utils/events.py,sha256=6vqs_iSxoXIhQ804sOjApNZmXwNW9FUFtjaHPY8ta10,4665
|
|
264
275
|
ultralytics/utils/files.py,sha256=BdaRwEKqzle4glSj8n_jq6bDjTCAs_H1SN06ZOQ9qFU,8190
|
|
265
276
|
ultralytics/utils/git.py,sha256=UdqeIiiEzg1qkerAZrg5YtTYPuJYwrpxW9N_6Pq6s8U,5501
|
|
266
277
|
ultralytics/utils/instance.py,sha256=11mhefvTI9ftMqSirXuiViAi0Fxlo6v84qvNxfRNUoE,18862
|
|
267
278
|
ultralytics/utils/logger.py,sha256=T5iaNnaqbCvx_FZf1dhVkr5FVxyxb4vO17t4SJfCIhg,19132
|
|
268
|
-
ultralytics/utils/loss.py,sha256=
|
|
269
|
-
ultralytics/utils/metrics.py,sha256=
|
|
279
|
+
ultralytics/utils/loss.py,sha256=Y0_EiJtfUwu1gvFIrmnmtrQiJ5rUAZZX4r7DhmG2T3c,56522
|
|
280
|
+
ultralytics/utils/metrics.py,sha256=puMGn1LfVIlDvx5K7US4RtK8HYW6cRl9OznfV0nUPvk,69261
|
|
270
281
|
ultralytics/utils/nms.py,sha256=zv1rOzMF6WU8Kdk41VzNf1H1EMt_vZHcbDFbg3mnN2o,14248
|
|
271
|
-
ultralytics/utils/ops.py,sha256=
|
|
282
|
+
ultralytics/utils/ops.py,sha256=4xqb7kwrAWm8c_zxOWP5JoXozgsA1Slk2s4XFwmEZCs,26089
|
|
272
283
|
ultralytics/utils/patches.py,sha256=mD3slAMAhcezzP42_fOWmacNMU6zXB68Br4_EBCyIjs,7117
|
|
273
284
|
ultralytics/utils/plotting.py,sha256=_iXs4gs8tzMSgiKxCriD4un-MJkOsC3lGSy0wn7qZGk,48433
|
|
274
|
-
ultralytics/utils/tal.py,sha256=
|
|
285
|
+
ultralytics/utils/tal.py,sha256=vfcfSy78zdtHbGzlvo5UDx-sCwHLRdGBqDO3CX7ZiR0,24182
|
|
275
286
|
ultralytics/utils/torch_utils.py,sha256=dHvLaQopIOr9NcIWkLWPX36f5OAFR4thcqm379Zayfc,40278
|
|
276
287
|
ultralytics/utils/tqdm.py,sha256=f2W608Qpvgu6tFi28qylaZpcRv3IX8wTGY_8lgicaqY,16343
|
|
277
288
|
ultralytics/utils/triton.py,sha256=BQu3CD3OlT76d1OtmnX5slQU37VC1kzRvEtfI2saIQA,5211
|
|
@@ -284,16 +295,16 @@ ultralytics/utils/callbacks/dvc.py,sha256=YT0Sa5P8Huj8Fn9jM2P6MYzUY3PIVxsa5BInVi
|
|
|
284
295
|
ultralytics/utils/callbacks/hub.py,sha256=fVLqqr3ZM6hoYFlVMEeejfq1MWDrkWCskPFOG3HGILQ,4159
|
|
285
296
|
ultralytics/utils/callbacks/mlflow.py,sha256=wCXjQgdufp9LYujqMzLZOmIOur6kvrApHNeo9dA7t_g,5323
|
|
286
297
|
ultralytics/utils/callbacks/neptune.py,sha256=_vt3cMwDHCR-LyT3KtRikGpj6AG11oQ-skUUUUdZ74o,4391
|
|
287
|
-
ultralytics/utils/callbacks/platform.py,sha256=
|
|
298
|
+
ultralytics/utils/callbacks/platform.py,sha256=0Em258lYzL0CLRJWt6ut3_AiQNIZ4y-P-CBZqRbwhOg,16020
|
|
288
299
|
ultralytics/utils/callbacks/raytune.py,sha256=Y0dFyNZVRuFovSh7nkgUIHTQL3xIXOACElgHuYbg_5I,1278
|
|
289
300
|
ultralytics/utils/callbacks/tensorboard.py,sha256=PTJYvD2gqRUN8xw5VoTjvKnu2adukLfvhMlDgTnTiFU,4952
|
|
290
301
|
ultralytics/utils/callbacks/wb.py,sha256=ghmL3gigOa-z_F54-TzMraKw9MAaYX-Wk4H8dLoRvX8,7705
|
|
291
302
|
ultralytics/utils/export/__init__.py,sha256=Cfh-PwVfTF_lwPp-Ss4wiX4z8Sm1XRPklsqdFfmTZ30,333
|
|
292
|
-
ultralytics/utils/export/engine.py,sha256=
|
|
293
|
-
ultralytics/utils/export/imx.py,sha256=
|
|
294
|
-
ultralytics/utils/export/tensorflow.py,sha256=
|
|
295
|
-
dgenerate_ultralytics_headless-8.
|
|
296
|
-
dgenerate_ultralytics_headless-8.
|
|
297
|
-
dgenerate_ultralytics_headless-8.
|
|
298
|
-
dgenerate_ultralytics_headless-8.
|
|
299
|
-
dgenerate_ultralytics_headless-8.
|
|
303
|
+
ultralytics/utils/export/engine.py,sha256=QoXPqnmQn6W5TOUAygOtCG63R9ExDG4-Df6X6W-_Mzo,10470
|
|
304
|
+
ultralytics/utils/export/imx.py,sha256=U9CFQJGRSNa5gyrVxW9fEvnhCd6Ut9_mFZZgzhrGhuI,13783
|
|
305
|
+
ultralytics/utils/export/tensorflow.py,sha256=xHEcEM3_VeYctyqkJCpgkqcNie1M8xLqcFKr6uANEEQ,9951
|
|
306
|
+
dgenerate_ultralytics_headless-8.4.1.dist-info/METADATA,sha256=c0kIYqkwyFg10MgqsPgPGCNYAWbeazz732RiblaVvTo,38008
|
|
307
|
+
dgenerate_ultralytics_headless-8.4.1.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
|
308
|
+
dgenerate_ultralytics_headless-8.4.1.dist-info/entry_points.txt,sha256=YM_wiKyTe9yRrsEfqvYolNO5ngwfoL4-NwgKzc8_7sI,93
|
|
309
|
+
dgenerate_ultralytics_headless-8.4.1.dist-info/top_level.txt,sha256=XP49TwiMw4QGsvTLSYiJhz1xF_k7ev5mQ8jJXaXi45Q,12
|
|
310
|
+
dgenerate_ultralytics_headless-8.4.1.dist-info/RECORD,,
|
tests/__init__.py
CHANGED
|
@@ -4,8 +4,8 @@ from ultralytics.cfg import TASK2DATA, TASK2MODEL, TASKS
|
|
|
4
4
|
from ultralytics.utils import ASSETS, WEIGHTS_DIR, checks
|
|
5
5
|
|
|
6
6
|
# Constants used in tests
|
|
7
|
-
MODEL = WEIGHTS_DIR / "path with spaces" / "
|
|
8
|
-
CFG = "
|
|
7
|
+
MODEL = WEIGHTS_DIR / "path with spaces" / "yolo26n.pt" # test spaces in path
|
|
8
|
+
CFG = "yolo26n.yaml"
|
|
9
9
|
SOURCE = ASSETS / "bus.jpg"
|
|
10
10
|
SOURCES_LIST = [ASSETS / "bus.jpg", ASSETS, ASSETS / "*", ASSETS / "**/*.jpg"]
|
|
11
11
|
CUDA_IS_AVAILABLE = checks.cuda_is_available()
|
tests/conftest.py
CHANGED
|
@@ -50,7 +50,7 @@ def pytest_terminal_summary(terminalreporter, exitstatus, config):
|
|
|
50
50
|
|
|
51
51
|
# Remove files
|
|
52
52
|
models = [path for x in {"*.onnx", "*.torchscript"} for path in WEIGHTS_DIR.rglob(x)]
|
|
53
|
-
for file in ["decelera_portrait_min.mov", "bus.jpg", "
|
|
53
|
+
for file in ["decelera_portrait_min.mov", "bus.jpg", "yolo26n.onnx", "yolo26n.torchscript", *models]:
|
|
54
54
|
Path(file).unlink(missing_ok=True)
|
|
55
55
|
|
|
56
56
|
# Remove directories
|
tests/test_cuda.py
CHANGED
|
@@ -41,7 +41,7 @@ def test_checks():
|
|
|
41
41
|
@pytest.mark.skipif(not DEVICES, reason="No CUDA devices available")
|
|
42
42
|
def test_amp():
|
|
43
43
|
"""Test AMP training checks."""
|
|
44
|
-
model = YOLO("
|
|
44
|
+
model = YOLO("yolo26n.pt").model.to(f"cuda:{DEVICES[0]}")
|
|
45
45
|
assert check_amp(model)
|
|
46
46
|
|
|
47
47
|
|
|
@@ -91,6 +91,12 @@ def test_export_onnx_matrix(task, dynamic, int8, half, batch, simplify, nms):
|
|
|
91
91
|
)
|
|
92
92
|
def test_export_engine_matrix(task, dynamic, int8, half, batch):
|
|
93
93
|
"""Test YOLO model export to TensorRT format for various configurations and run inference."""
|
|
94
|
+
import tensorrt as trt
|
|
95
|
+
|
|
96
|
+
is_trt10 = int(trt.__version__.split(".", 1)[0]) >= 10
|
|
97
|
+
if is_trt10 and int8 and dynamic:
|
|
98
|
+
pytest.skip("YOLO26 INT8+dynamic export requires explicit quantization on TensorRT 10+")
|
|
99
|
+
|
|
94
100
|
file = YOLO(TASK2MODEL[task]).export(
|
|
95
101
|
format="engine",
|
|
96
102
|
imgsz=32,
|
|
@@ -126,7 +132,7 @@ def test_train():
|
|
|
126
132
|
@pytest.mark.skipif(not DEVICES, reason="No CUDA devices available")
|
|
127
133
|
def test_predict_multiple_devices():
|
|
128
134
|
"""Validate model prediction consistency across CPU and CUDA devices."""
|
|
129
|
-
model = YOLO("
|
|
135
|
+
model = YOLO("yolo26n.pt")
|
|
130
136
|
|
|
131
137
|
# Test CPU
|
|
132
138
|
model = model.cpu()
|
tests/test_engine.py
CHANGED
|
@@ -5,7 +5,7 @@ from unittest import mock
|
|
|
5
5
|
|
|
6
6
|
import torch
|
|
7
7
|
|
|
8
|
-
from tests import MODEL
|
|
8
|
+
from tests import MODEL, SOURCE
|
|
9
9
|
from ultralytics import YOLO
|
|
10
10
|
from ultralytics.cfg import get_cfg
|
|
11
11
|
from ultralytics.engine.exporter import Exporter
|
|
@@ -23,13 +23,13 @@ def test_export():
|
|
|
23
23
|
exporter = Exporter()
|
|
24
24
|
exporter.add_callback("on_export_start", test_func)
|
|
25
25
|
assert test_func in exporter.callbacks["on_export_start"], "callback test failed"
|
|
26
|
-
f = exporter(model=YOLO("
|
|
27
|
-
YOLO(f)(
|
|
26
|
+
f = exporter(model=YOLO("yolo26n.yaml").model)
|
|
27
|
+
YOLO(f)(SOURCE) # exported model inference
|
|
28
28
|
|
|
29
29
|
|
|
30
30
|
def test_detect():
|
|
31
31
|
"""Test YOLO object detection training, validation, and prediction functionality."""
|
|
32
|
-
overrides = {"data": "coco8.yaml", "model": "
|
|
32
|
+
overrides = {"data": "coco8.yaml", "model": "yolo26n.yaml", "imgsz": 32, "epochs": 1, "save": False}
|
|
33
33
|
cfg = get_cfg(DEFAULT_CFG)
|
|
34
34
|
cfg.data = "coco8.yaml"
|
|
35
35
|
cfg.imgsz = 32
|
|
@@ -71,7 +71,7 @@ def test_segment():
|
|
|
71
71
|
"""Test image segmentation training, validation, and prediction pipelines using YOLO models."""
|
|
72
72
|
overrides = {
|
|
73
73
|
"data": "coco8-seg.yaml",
|
|
74
|
-
"model": "
|
|
74
|
+
"model": "yolo26n-seg.yaml",
|
|
75
75
|
"imgsz": 32,
|
|
76
76
|
"epochs": 1,
|
|
77
77
|
"save": False,
|
|
@@ -98,7 +98,7 @@ def test_segment():
|
|
|
98
98
|
pred = segment.SegmentationPredictor(overrides={"imgsz": [64, 64]})
|
|
99
99
|
pred.add_callback("on_predict_start", test_func)
|
|
100
100
|
assert test_func in pred.callbacks["on_predict_start"], "callback test failed"
|
|
101
|
-
result = pred(source=ASSETS, model=WEIGHTS_DIR / "
|
|
101
|
+
result = pred(source=ASSETS, model=WEIGHTS_DIR / "yolo26n-seg.pt")
|
|
102
102
|
assert len(result), "predictor test failed"
|
|
103
103
|
|
|
104
104
|
# Test resume functionality
|
|
@@ -115,7 +115,7 @@ def test_segment():
|
|
|
115
115
|
|
|
116
116
|
def test_classify():
|
|
117
117
|
"""Test image classification including training, validation, and prediction phases."""
|
|
118
|
-
overrides = {"data": "imagenet10", "model": "
|
|
118
|
+
overrides = {"data": "imagenet10", "model": "yolo26n-cls.yaml", "imgsz": 32, "epochs": 1, "save": False}
|
|
119
119
|
cfg = get_cfg(DEFAULT_CFG)
|
|
120
120
|
cfg.data = "imagenet10"
|
|
121
121
|
cfg.imgsz = 32
|
|
@@ -150,7 +150,7 @@ def test_nan_recovery():
|
|
|
150
150
|
trainer.tloss *= torch.tensor(float("nan"))
|
|
151
151
|
nan_injected[0] = True
|
|
152
152
|
|
|
153
|
-
overrides = {"data": "coco8.yaml", "model": "
|
|
153
|
+
overrides = {"data": "coco8.yaml", "model": "yolo26n.yaml", "imgsz": 32, "epochs": 3}
|
|
154
154
|
trainer = detect.DetectionTrainer(overrides=overrides)
|
|
155
155
|
trainer.add_callback("on_train_batch_end", inject_nan)
|
|
156
156
|
trainer.train()
|
tests/test_exports.py
CHANGED
|
@@ -12,8 +12,8 @@ import pytest
|
|
|
12
12
|
from tests import MODEL, SOURCE
|
|
13
13
|
from ultralytics import YOLO
|
|
14
14
|
from ultralytics.cfg import TASK2DATA, TASK2MODEL, TASKS
|
|
15
|
-
from ultralytics.utils import ARM64, IS_RASPBERRYPI, LINUX, MACOS, WINDOWS, checks
|
|
16
|
-
from ultralytics.utils.torch_utils import TORCH_1_10, TORCH_1_11, TORCH_1_13, TORCH_2_1, TORCH_2_8, TORCH_2_9
|
|
15
|
+
from ultralytics.utils import ARM64, IS_RASPBERRYPI, LINUX, MACOS, MACOS_VERSION, WINDOWS, checks
|
|
16
|
+
from ultralytics.utils.torch_utils import TORCH_1_10, TORCH_1_11, TORCH_1_13, TORCH_2_0, TORCH_2_1, TORCH_2_8, TORCH_2_9
|
|
17
17
|
|
|
18
18
|
|
|
19
19
|
def test_export_torchscript():
|
|
@@ -112,6 +112,9 @@ def test_export_torchscript_matrix(task, dynamic, int8, half, batch, nms):
|
|
|
112
112
|
@pytest.mark.skipif(not MACOS, reason="CoreML inference only supported on macOS")
|
|
113
113
|
@pytest.mark.skipif(not TORCH_1_11, reason="CoreML export requires torch>=1.11")
|
|
114
114
|
@pytest.mark.skipif(checks.IS_PYTHON_3_13, reason="CoreML not supported in Python 3.13")
|
|
115
|
+
@pytest.mark.skipif(
|
|
116
|
+
MACOS and MACOS_VERSION and MACOS_VERSION >= "15", reason="CoreML YOLO26 matrix test crashes on macOS 15+"
|
|
117
|
+
)
|
|
115
118
|
@pytest.mark.parametrize(
|
|
116
119
|
"task, dynamic, int8, half, nms, batch",
|
|
117
120
|
[ # generate all combinations except for exclusion cases
|
|
@@ -141,7 +144,9 @@ def test_export_coreml_matrix(task, dynamic, int8, half, nms, batch):
|
|
|
141
144
|
|
|
142
145
|
|
|
143
146
|
@pytest.mark.slow
|
|
144
|
-
@pytest.mark.skipif(
|
|
147
|
+
@pytest.mark.skipif(
|
|
148
|
+
not checks.IS_PYTHON_MINIMUM_3_10 or not TORCH_1_13, reason="TFLite export requires Python>=3.10 and torch>=1.13"
|
|
149
|
+
)
|
|
145
150
|
@pytest.mark.skipif(
|
|
146
151
|
not LINUX or IS_RASPBERRYPI,
|
|
147
152
|
reason="Test disabled as TF suffers from install conflicts on Windows, macOS and Raspberry Pi",
|
|
@@ -235,6 +240,8 @@ def test_export_mnn_matrix(task, int8, half, batch):
|
|
|
235
240
|
|
|
236
241
|
|
|
237
242
|
@pytest.mark.slow
|
|
243
|
+
@pytest.mark.skipif(ARM64, reason="NCNN not supported on ARM64") # https://github.com/Tencent/ncnn/issues/6509
|
|
244
|
+
@pytest.mark.skipif(not TORCH_2_0, reason="NCNN inference causes segfault on PyTorch<2.0")
|
|
238
245
|
def test_export_ncnn():
|
|
239
246
|
"""Test YOLO export to NCNN format."""
|
|
240
247
|
file = YOLO(MODEL).export(format="ncnn", imgsz=32)
|
|
@@ -242,6 +249,8 @@ def test_export_ncnn():
|
|
|
242
249
|
|
|
243
250
|
|
|
244
251
|
@pytest.mark.slow
|
|
252
|
+
@pytest.mark.skipif(ARM64, reason="NCNN not supported on ARM64") # https://github.com/Tencent/ncnn/issues/6509
|
|
253
|
+
@pytest.mark.skipif(not TORCH_2_0, reason="NCNN inference causes segfault on PyTorch<2.0")
|
|
245
254
|
@pytest.mark.parametrize("task, half, batch", list(product(TASKS, [True, False], [1])))
|
|
246
255
|
def test_export_ncnn_matrix(task, half, batch):
|
|
247
256
|
"""Test YOLO export to NCNN format considering various export configurations."""
|
|
@@ -256,7 +265,7 @@ def test_export_ncnn_matrix(task, half, batch):
|
|
|
256
265
|
@pytest.mark.skipif(ARM64, reason="IMX export is not supported on ARM64 architectures.")
|
|
257
266
|
def test_export_imx():
|
|
258
267
|
"""Test YOLO export to IMX format."""
|
|
259
|
-
model = YOLO(
|
|
268
|
+
model = YOLO("yolo11n.pt") # IMX export only supports YOLO11
|
|
260
269
|
file = model.export(format="imx", imgsz=32)
|
|
261
270
|
YOLO(file)(SOURCE, imgsz=32)
|
|
262
271
|
|