dgenerate-ultralytics-headless 8.3.248__py3-none-any.whl → 8.4.7__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {dgenerate_ultralytics_headless-8.3.248.dist-info → dgenerate_ultralytics_headless-8.4.7.dist-info}/METADATA +52 -61
- {dgenerate_ultralytics_headless-8.3.248.dist-info → dgenerate_ultralytics_headless-8.4.7.dist-info}/RECORD +97 -84
- {dgenerate_ultralytics_headless-8.3.248.dist-info → dgenerate_ultralytics_headless-8.4.7.dist-info}/WHEEL +1 -1
- tests/__init__.py +2 -2
- tests/conftest.py +1 -1
- tests/test_cuda.py +8 -2
- tests/test_engine.py +8 -8
- tests/test_exports.py +11 -4
- tests/test_integrations.py +9 -9
- tests/test_python.py +41 -16
- tests/test_solutions.py +3 -3
- ultralytics/__init__.py +1 -1
- ultralytics/cfg/__init__.py +31 -31
- ultralytics/cfg/datasets/TT100K.yaml +346 -0
- ultralytics/cfg/datasets/coco12-formats.yaml +101 -0
- ultralytics/cfg/default.yaml +3 -1
- ultralytics/cfg/models/26/yolo26-cls.yaml +33 -0
- ultralytics/cfg/models/26/yolo26-obb.yaml +52 -0
- ultralytics/cfg/models/26/yolo26-p2.yaml +60 -0
- ultralytics/cfg/models/26/yolo26-p6.yaml +62 -0
- ultralytics/cfg/models/26/yolo26-pose.yaml +53 -0
- ultralytics/cfg/models/26/yolo26-seg.yaml +52 -0
- ultralytics/cfg/models/26/yolo26.yaml +52 -0
- ultralytics/cfg/models/26/yoloe-26-seg.yaml +53 -0
- ultralytics/cfg/models/26/yoloe-26.yaml +53 -0
- ultralytics/data/annotator.py +2 -2
- ultralytics/data/augment.py +15 -0
- ultralytics/data/converter.py +76 -45
- ultralytics/data/dataset.py +1 -1
- ultralytics/data/utils.py +2 -2
- ultralytics/engine/exporter.py +34 -28
- ultralytics/engine/model.py +38 -37
- ultralytics/engine/predictor.py +17 -17
- ultralytics/engine/results.py +22 -15
- ultralytics/engine/trainer.py +83 -48
- ultralytics/engine/tuner.py +20 -11
- ultralytics/engine/validator.py +16 -16
- ultralytics/models/fastsam/predict.py +1 -1
- ultralytics/models/yolo/classify/predict.py +1 -1
- ultralytics/models/yolo/classify/train.py +1 -1
- ultralytics/models/yolo/classify/val.py +1 -1
- ultralytics/models/yolo/detect/predict.py +2 -2
- ultralytics/models/yolo/detect/train.py +6 -3
- ultralytics/models/yolo/detect/val.py +7 -1
- ultralytics/models/yolo/model.py +8 -8
- ultralytics/models/yolo/obb/predict.py +2 -2
- ultralytics/models/yolo/obb/train.py +3 -3
- ultralytics/models/yolo/obb/val.py +1 -1
- ultralytics/models/yolo/pose/predict.py +1 -1
- ultralytics/models/yolo/pose/train.py +3 -1
- ultralytics/models/yolo/pose/val.py +1 -1
- ultralytics/models/yolo/segment/predict.py +3 -3
- ultralytics/models/yolo/segment/train.py +4 -4
- ultralytics/models/yolo/segment/val.py +2 -2
- ultralytics/models/yolo/yoloe/train.py +6 -1
- ultralytics/models/yolo/yoloe/train_seg.py +6 -1
- ultralytics/nn/autobackend.py +14 -8
- ultralytics/nn/modules/__init__.py +8 -0
- ultralytics/nn/modules/block.py +128 -8
- ultralytics/nn/modules/head.py +788 -203
- ultralytics/nn/tasks.py +86 -41
- ultralytics/nn/text_model.py +5 -2
- ultralytics/optim/__init__.py +5 -0
- ultralytics/optim/muon.py +338 -0
- ultralytics/solutions/ai_gym.py +3 -3
- ultralytics/solutions/config.py +1 -1
- ultralytics/solutions/heatmap.py +1 -1
- ultralytics/solutions/instance_segmentation.py +2 -2
- ultralytics/solutions/object_counter.py +1 -1
- ultralytics/solutions/parking_management.py +1 -1
- ultralytics/solutions/solutions.py +2 -2
- ultralytics/trackers/byte_tracker.py +7 -7
- ultralytics/trackers/track.py +1 -1
- ultralytics/utils/__init__.py +8 -8
- ultralytics/utils/benchmarks.py +26 -26
- ultralytics/utils/callbacks/platform.py +173 -64
- ultralytics/utils/callbacks/tensorboard.py +2 -0
- ultralytics/utils/callbacks/wb.py +6 -1
- ultralytics/utils/checks.py +28 -9
- ultralytics/utils/dist.py +1 -0
- ultralytics/utils/downloads.py +5 -3
- ultralytics/utils/export/engine.py +19 -10
- ultralytics/utils/export/imx.py +38 -20
- ultralytics/utils/export/tensorflow.py +21 -21
- ultralytics/utils/files.py +2 -2
- ultralytics/utils/loss.py +597 -203
- ultralytics/utils/metrics.py +2 -1
- ultralytics/utils/ops.py +11 -2
- ultralytics/utils/patches.py +42 -0
- ultralytics/utils/plotting.py +3 -0
- ultralytics/utils/tal.py +100 -20
- ultralytics/utils/torch_utils.py +1 -1
- ultralytics/utils/tqdm.py +4 -1
- ultralytics/utils/tuner.py +2 -5
- {dgenerate_ultralytics_headless-8.3.248.dist-info → dgenerate_ultralytics_headless-8.4.7.dist-info}/entry_points.txt +0 -0
- {dgenerate_ultralytics_headless-8.3.248.dist-info → dgenerate_ultralytics_headless-8.4.7.dist-info}/licenses/LICENSE +0 -0
- {dgenerate_ultralytics_headless-8.3.248.dist-info → dgenerate_ultralytics_headless-8.4.7.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,346 @@
|
|
|
1
|
+
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
|
2
|
+
|
|
3
|
+
# Tsinghua-Tencent 100K (TT100K) dataset https://cg.cs.tsinghua.edu.cn/traffic-sign/ by Tsinghua University
|
|
4
|
+
# Documentation: https://cg.cs.tsinghua.edu.cn/traffic-sign/tutorial.html
|
|
5
|
+
# Paper: Traffic-Sign Detection and Classification in the Wild (CVPR 2016)
|
|
6
|
+
# License: CC BY-NC 2.0 license for non-commercial use only
|
|
7
|
+
# Example usage: yolo train data=TT100K.yaml
|
|
8
|
+
# parent
|
|
9
|
+
# ├── ultralytics
|
|
10
|
+
# └── datasets
|
|
11
|
+
# └── TT100K ← downloads here (~18 GB)
|
|
12
|
+
|
|
13
|
+
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
|
14
|
+
path: TT100K # dataset root dir
|
|
15
|
+
train: images/train # train images (relative to 'path') 6105 images
|
|
16
|
+
val: images/val # val images (relative to 'path') 7641 images (original 'other' split)
|
|
17
|
+
test: images/test # test images (relative to 'path') 3071 images
|
|
18
|
+
|
|
19
|
+
# Classes (221 traffic sign categories, 45 with sufficient training instances)
|
|
20
|
+
names:
|
|
21
|
+
0: pl5
|
|
22
|
+
1: pl10
|
|
23
|
+
2: pl15
|
|
24
|
+
3: pl20
|
|
25
|
+
4: pl25
|
|
26
|
+
5: pl30
|
|
27
|
+
6: pl40
|
|
28
|
+
7: pl50
|
|
29
|
+
8: pl60
|
|
30
|
+
9: pl70
|
|
31
|
+
10: pl80
|
|
32
|
+
11: pl90
|
|
33
|
+
12: pl100
|
|
34
|
+
13: pl110
|
|
35
|
+
14: pl120
|
|
36
|
+
15: pm5
|
|
37
|
+
16: pm10
|
|
38
|
+
17: pm13
|
|
39
|
+
18: pm15
|
|
40
|
+
19: pm20
|
|
41
|
+
20: pm25
|
|
42
|
+
21: pm30
|
|
43
|
+
22: pm35
|
|
44
|
+
23: pm40
|
|
45
|
+
24: pm46
|
|
46
|
+
25: pm50
|
|
47
|
+
26: pm55
|
|
48
|
+
27: pm8
|
|
49
|
+
28: pn
|
|
50
|
+
29: pne
|
|
51
|
+
30: ph4
|
|
52
|
+
31: ph4.5
|
|
53
|
+
32: ph5
|
|
54
|
+
33: ps
|
|
55
|
+
34: pg
|
|
56
|
+
35: ph1.5
|
|
57
|
+
36: ph2
|
|
58
|
+
37: ph2.1
|
|
59
|
+
38: ph2.2
|
|
60
|
+
39: ph2.4
|
|
61
|
+
40: ph2.5
|
|
62
|
+
41: ph2.8
|
|
63
|
+
42: ph2.9
|
|
64
|
+
43: ph3
|
|
65
|
+
44: ph3.2
|
|
66
|
+
45: ph3.5
|
|
67
|
+
46: ph3.8
|
|
68
|
+
47: ph4.2
|
|
69
|
+
48: ph4.3
|
|
70
|
+
49: ph4.8
|
|
71
|
+
50: ph5.3
|
|
72
|
+
51: ph5.5
|
|
73
|
+
52: pb
|
|
74
|
+
53: pr10
|
|
75
|
+
54: pr100
|
|
76
|
+
55: pr20
|
|
77
|
+
56: pr30
|
|
78
|
+
57: pr40
|
|
79
|
+
58: pr45
|
|
80
|
+
59: pr50
|
|
81
|
+
60: pr60
|
|
82
|
+
61: pr70
|
|
83
|
+
62: pr80
|
|
84
|
+
63: pr90
|
|
85
|
+
64: p1
|
|
86
|
+
65: p2
|
|
87
|
+
66: p3
|
|
88
|
+
67: p4
|
|
89
|
+
68: p5
|
|
90
|
+
69: p6
|
|
91
|
+
70: p7
|
|
92
|
+
71: p8
|
|
93
|
+
72: p9
|
|
94
|
+
73: p10
|
|
95
|
+
74: p11
|
|
96
|
+
75: p12
|
|
97
|
+
76: p13
|
|
98
|
+
77: p14
|
|
99
|
+
78: p15
|
|
100
|
+
79: p16
|
|
101
|
+
80: p17
|
|
102
|
+
81: p18
|
|
103
|
+
82: p19
|
|
104
|
+
83: p20
|
|
105
|
+
84: p21
|
|
106
|
+
85: p22
|
|
107
|
+
86: p23
|
|
108
|
+
87: p24
|
|
109
|
+
88: p25
|
|
110
|
+
89: p26
|
|
111
|
+
90: p27
|
|
112
|
+
91: p28
|
|
113
|
+
92: pa8
|
|
114
|
+
93: pa10
|
|
115
|
+
94: pa12
|
|
116
|
+
95: pa13
|
|
117
|
+
96: pa14
|
|
118
|
+
97: pb5
|
|
119
|
+
98: pc
|
|
120
|
+
99: pg
|
|
121
|
+
100: ph1
|
|
122
|
+
101: ph1.3
|
|
123
|
+
102: ph1.5
|
|
124
|
+
103: ph2
|
|
125
|
+
104: ph3
|
|
126
|
+
105: ph4
|
|
127
|
+
106: ph5
|
|
128
|
+
107: pi
|
|
129
|
+
108: pl0
|
|
130
|
+
109: pl4
|
|
131
|
+
110: pl5
|
|
132
|
+
111: pl8
|
|
133
|
+
112: pl10
|
|
134
|
+
113: pl15
|
|
135
|
+
114: pl20
|
|
136
|
+
115: pl25
|
|
137
|
+
116: pl30
|
|
138
|
+
117: pl35
|
|
139
|
+
118: pl40
|
|
140
|
+
119: pl50
|
|
141
|
+
120: pl60
|
|
142
|
+
121: pl65
|
|
143
|
+
122: pl70
|
|
144
|
+
123: pl80
|
|
145
|
+
124: pl90
|
|
146
|
+
125: pl100
|
|
147
|
+
126: pl110
|
|
148
|
+
127: pl120
|
|
149
|
+
128: pm2
|
|
150
|
+
129: pm8
|
|
151
|
+
130: pm10
|
|
152
|
+
131: pm13
|
|
153
|
+
132: pm15
|
|
154
|
+
133: pm20
|
|
155
|
+
134: pm25
|
|
156
|
+
135: pm30
|
|
157
|
+
136: pm35
|
|
158
|
+
137: pm40
|
|
159
|
+
138: pm46
|
|
160
|
+
139: pm50
|
|
161
|
+
140: pm55
|
|
162
|
+
141: pn
|
|
163
|
+
142: pne
|
|
164
|
+
143: po
|
|
165
|
+
144: pr10
|
|
166
|
+
145: pr100
|
|
167
|
+
146: pr20
|
|
168
|
+
147: pr30
|
|
169
|
+
148: pr40
|
|
170
|
+
149: pr45
|
|
171
|
+
150: pr50
|
|
172
|
+
151: pr60
|
|
173
|
+
152: pr70
|
|
174
|
+
153: pr80
|
|
175
|
+
154: ps
|
|
176
|
+
155: w1
|
|
177
|
+
156: w2
|
|
178
|
+
157: w3
|
|
179
|
+
158: w5
|
|
180
|
+
159: w8
|
|
181
|
+
160: w10
|
|
182
|
+
161: w12
|
|
183
|
+
162: w13
|
|
184
|
+
163: w16
|
|
185
|
+
164: w18
|
|
186
|
+
165: w20
|
|
187
|
+
166: w21
|
|
188
|
+
167: w22
|
|
189
|
+
168: w24
|
|
190
|
+
169: w28
|
|
191
|
+
170: w30
|
|
192
|
+
171: w31
|
|
193
|
+
172: w32
|
|
194
|
+
173: w34
|
|
195
|
+
174: w35
|
|
196
|
+
175: w37
|
|
197
|
+
176: w38
|
|
198
|
+
177: w41
|
|
199
|
+
178: w42
|
|
200
|
+
179: w43
|
|
201
|
+
180: w44
|
|
202
|
+
181: w45
|
|
203
|
+
182: w46
|
|
204
|
+
183: w47
|
|
205
|
+
184: w48
|
|
206
|
+
185: w49
|
|
207
|
+
186: w50
|
|
208
|
+
187: w51
|
|
209
|
+
188: w52
|
|
210
|
+
189: w53
|
|
211
|
+
190: w54
|
|
212
|
+
191: w55
|
|
213
|
+
192: w56
|
|
214
|
+
193: w57
|
|
215
|
+
194: w58
|
|
216
|
+
195: w59
|
|
217
|
+
196: w60
|
|
218
|
+
197: w62
|
|
219
|
+
198: w63
|
|
220
|
+
199: w66
|
|
221
|
+
200: i1
|
|
222
|
+
201: i2
|
|
223
|
+
202: i3
|
|
224
|
+
203: i4
|
|
225
|
+
204: i5
|
|
226
|
+
205: i6
|
|
227
|
+
206: i7
|
|
228
|
+
207: i8
|
|
229
|
+
208: i9
|
|
230
|
+
209: i10
|
|
231
|
+
210: i11
|
|
232
|
+
211: i12
|
|
233
|
+
212: i13
|
|
234
|
+
213: i14
|
|
235
|
+
214: i15
|
|
236
|
+
215: il60
|
|
237
|
+
216: il80
|
|
238
|
+
217: il100
|
|
239
|
+
218: il110
|
|
240
|
+
219: io
|
|
241
|
+
220: ip
|
|
242
|
+
|
|
243
|
+
# Download script/URL (optional) ---------------------------------------------------------------------------------------
|
|
244
|
+
download: |
|
|
245
|
+
import json
|
|
246
|
+
import shutil
|
|
247
|
+
from pathlib import Path
|
|
248
|
+
|
|
249
|
+
from PIL import Image
|
|
250
|
+
|
|
251
|
+
from ultralytics.utils import TQDM
|
|
252
|
+
from ultralytics.utils.downloads import download
|
|
253
|
+
|
|
254
|
+
|
|
255
|
+
def tt100k2yolo(dir):
|
|
256
|
+
"""Convert TT100K annotations to YOLO format with images/{split} and labels/{split} structure."""
|
|
257
|
+
data_dir = dir / "data"
|
|
258
|
+
anno_file = data_dir / "annotations.json"
|
|
259
|
+
|
|
260
|
+
print("Loading annotations...")
|
|
261
|
+
with open(anno_file, encoding="utf-8") as f:
|
|
262
|
+
data = json.load(f)
|
|
263
|
+
|
|
264
|
+
# Build class name to index mapping from yaml
|
|
265
|
+
names = yaml["names"]
|
|
266
|
+
class_to_idx = {v: k for k, v in names.items()}
|
|
267
|
+
|
|
268
|
+
# Create directories
|
|
269
|
+
for split in ["train", "val", "test"]:
|
|
270
|
+
(dir / "images" / split).mkdir(parents=True, exist_ok=True)
|
|
271
|
+
(dir / "labels" / split).mkdir(parents=True, exist_ok=True)
|
|
272
|
+
|
|
273
|
+
print("Converting annotations to YOLO format...")
|
|
274
|
+
skipped = 0
|
|
275
|
+
for img_id, img_data in TQDM(data["imgs"].items(), desc="Processing"):
|
|
276
|
+
img_path_str = img_data["path"]
|
|
277
|
+
if "train" in img_path_str:
|
|
278
|
+
split = "train"
|
|
279
|
+
elif "test" in img_path_str:
|
|
280
|
+
split = "test"
|
|
281
|
+
else:
|
|
282
|
+
split = "val"
|
|
283
|
+
|
|
284
|
+
# Source and destination paths
|
|
285
|
+
src_img = data_dir / img_path_str
|
|
286
|
+
if not src_img.exists():
|
|
287
|
+
continue
|
|
288
|
+
|
|
289
|
+
dst_img = dir / "images" / split / src_img.name
|
|
290
|
+
|
|
291
|
+
# Get image dimensions
|
|
292
|
+
try:
|
|
293
|
+
with Image.open(src_img) as img:
|
|
294
|
+
img_width, img_height = img.size
|
|
295
|
+
except Exception as e:
|
|
296
|
+
print(f"Error reading {src_img}: {e}")
|
|
297
|
+
continue
|
|
298
|
+
|
|
299
|
+
# Copy image to destination
|
|
300
|
+
shutil.copy2(src_img, dst_img)
|
|
301
|
+
|
|
302
|
+
# Convert annotations
|
|
303
|
+
label_file = dir / "labels" / split / f"{src_img.stem}.txt"
|
|
304
|
+
lines = []
|
|
305
|
+
|
|
306
|
+
for obj in img_data.get("objects", []):
|
|
307
|
+
category = obj["category"]
|
|
308
|
+
if category not in class_to_idx:
|
|
309
|
+
skipped += 1
|
|
310
|
+
continue
|
|
311
|
+
|
|
312
|
+
bbox = obj["bbox"]
|
|
313
|
+
xmin, ymin = bbox["xmin"], bbox["ymin"]
|
|
314
|
+
xmax, ymax = bbox["xmax"], bbox["ymax"]
|
|
315
|
+
|
|
316
|
+
# Convert to YOLO format (normalized center coordinates and dimensions)
|
|
317
|
+
x_center = ((xmin + xmax) / 2.0) / img_width
|
|
318
|
+
y_center = ((ymin + ymax) / 2.0) / img_height
|
|
319
|
+
width = (xmax - xmin) / img_width
|
|
320
|
+
height = (ymax - ymin) / img_height
|
|
321
|
+
|
|
322
|
+
# Clip to valid range
|
|
323
|
+
x_center = max(0, min(1, x_center))
|
|
324
|
+
y_center = max(0, min(1, y_center))
|
|
325
|
+
width = max(0, min(1, width))
|
|
326
|
+
height = max(0, min(1, height))
|
|
327
|
+
|
|
328
|
+
cls_idx = class_to_idx[category]
|
|
329
|
+
lines.append(f"{cls_idx} {x_center:.6f} {y_center:.6f} {width:.6f} {height:.6f}\n")
|
|
330
|
+
|
|
331
|
+
# Write label file
|
|
332
|
+
if lines:
|
|
333
|
+
label_file.write_text("".join(lines), encoding="utf-8")
|
|
334
|
+
|
|
335
|
+
if skipped:
|
|
336
|
+
print(f"Skipped {skipped} annotations with unknown categories")
|
|
337
|
+
print("Conversion complete!")
|
|
338
|
+
|
|
339
|
+
|
|
340
|
+
# Download
|
|
341
|
+
dir = Path(yaml["path"]) # dataset root dir
|
|
342
|
+
urls = ["https://cg.cs.tsinghua.edu.cn/traffic-sign/data_model_code/data.zip"]
|
|
343
|
+
download(urls, dir=dir, curl=True, threads=1)
|
|
344
|
+
|
|
345
|
+
# Convert
|
|
346
|
+
tt100k2yolo(dir)
|
|
@@ -0,0 +1,101 @@
|
|
|
1
|
+
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
|
2
|
+
|
|
3
|
+
# COCO12-Formats dataset (12 images testing all supported image formats) by Ultralytics
|
|
4
|
+
# Documentation: https://docs.ultralytics.com/datasets/detect/coco12-formats/
|
|
5
|
+
# Example usage: yolo train data=coco12-formats.yaml
|
|
6
|
+
# parent
|
|
7
|
+
# ├── ultralytics
|
|
8
|
+
# └── datasets
|
|
9
|
+
# └── coco12-formats ← downloads here (1 MB)
|
|
10
|
+
|
|
11
|
+
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
|
12
|
+
path: coco12-formats # dataset root dir
|
|
13
|
+
train: images/train # train images (relative to 'path') 6 images
|
|
14
|
+
val: images/val # val images (relative to 'path') 6 images
|
|
15
|
+
test: # test images (optional)
|
|
16
|
+
|
|
17
|
+
# Classes
|
|
18
|
+
names:
|
|
19
|
+
0: person
|
|
20
|
+
1: bicycle
|
|
21
|
+
2: car
|
|
22
|
+
3: motorcycle
|
|
23
|
+
4: airplane
|
|
24
|
+
5: bus
|
|
25
|
+
6: train
|
|
26
|
+
7: truck
|
|
27
|
+
8: boat
|
|
28
|
+
9: traffic light
|
|
29
|
+
10: fire hydrant
|
|
30
|
+
11: stop sign
|
|
31
|
+
12: parking meter
|
|
32
|
+
13: bench
|
|
33
|
+
14: bird
|
|
34
|
+
15: cat
|
|
35
|
+
16: dog
|
|
36
|
+
17: horse
|
|
37
|
+
18: sheep
|
|
38
|
+
19: cow
|
|
39
|
+
20: elephant
|
|
40
|
+
21: bear
|
|
41
|
+
22: zebra
|
|
42
|
+
23: giraffe
|
|
43
|
+
24: backpack
|
|
44
|
+
25: umbrella
|
|
45
|
+
26: handbag
|
|
46
|
+
27: tie
|
|
47
|
+
28: suitcase
|
|
48
|
+
29: frisbee
|
|
49
|
+
30: skis
|
|
50
|
+
31: snowboard
|
|
51
|
+
32: sports ball
|
|
52
|
+
33: kite
|
|
53
|
+
34: baseball bat
|
|
54
|
+
35: baseball glove
|
|
55
|
+
36: skateboard
|
|
56
|
+
37: surfboard
|
|
57
|
+
38: tennis racket
|
|
58
|
+
39: bottle
|
|
59
|
+
40: wine glass
|
|
60
|
+
41: cup
|
|
61
|
+
42: fork
|
|
62
|
+
43: knife
|
|
63
|
+
44: spoon
|
|
64
|
+
45: bowl
|
|
65
|
+
46: banana
|
|
66
|
+
47: apple
|
|
67
|
+
48: sandwich
|
|
68
|
+
49: orange
|
|
69
|
+
50: broccoli
|
|
70
|
+
51: carrot
|
|
71
|
+
52: hot dog
|
|
72
|
+
53: pizza
|
|
73
|
+
54: donut
|
|
74
|
+
55: cake
|
|
75
|
+
56: chair
|
|
76
|
+
57: couch
|
|
77
|
+
58: potted plant
|
|
78
|
+
59: bed
|
|
79
|
+
60: dining table
|
|
80
|
+
61: toilet
|
|
81
|
+
62: tv
|
|
82
|
+
63: laptop
|
|
83
|
+
64: mouse
|
|
84
|
+
65: remote
|
|
85
|
+
66: keyboard
|
|
86
|
+
67: cell phone
|
|
87
|
+
68: microwave
|
|
88
|
+
69: oven
|
|
89
|
+
70: toaster
|
|
90
|
+
71: sink
|
|
91
|
+
72: refrigerator
|
|
92
|
+
73: book
|
|
93
|
+
74: clock
|
|
94
|
+
75: vase
|
|
95
|
+
76: scissors
|
|
96
|
+
77: teddy bear
|
|
97
|
+
78: hair drier
|
|
98
|
+
79: toothbrush
|
|
99
|
+
|
|
100
|
+
# Download script/URL (optional)
|
|
101
|
+
download: https://github.com/ultralytics/assets/releases/download/v0.0.0/coco12-formats.zip
|
ultralytics/cfg/default.yaml
CHANGED
|
@@ -36,7 +36,7 @@ amp: True # (bool) Automatic Mixed Precision (AMP) training; True runs AMP capab
|
|
|
36
36
|
fraction: 1.0 # (float) fraction of training dataset to use (1.0 = all)
|
|
37
37
|
profile: False # (bool) profile ONNX/TensorRT speeds during training for loggers
|
|
38
38
|
freeze: # (int | list, optional) freeze first N layers (int) or specific layer indices (list)
|
|
39
|
-
multi_scale:
|
|
39
|
+
multi_scale: 0.0 # (float) multi-scale range as a fraction of imgsz; sizes are rounded to stride multiples
|
|
40
40
|
compile: False # (bool | str) enable torch.compile() backend='inductor'; True="default", False=off, or "default|reduce-overhead|max-autotune-no-cudagraphs"
|
|
41
41
|
|
|
42
42
|
# Segmentation
|
|
@@ -103,6 +103,8 @@ cls: 0.5 # (float) classification loss gain
|
|
|
103
103
|
dfl: 1.5 # (float) distribution focal loss gain
|
|
104
104
|
pose: 12.0 # (float) pose loss gain (pose tasks)
|
|
105
105
|
kobj: 1.0 # (float) keypoint objectness loss gain (pose tasks)
|
|
106
|
+
rle: 1.0 # (float) rle loss gain (pose tasks)
|
|
107
|
+
angle: 1.0 # (float) oriented angle loss gain (obb tasks)
|
|
106
108
|
nbs: 64 # (int) nominal batch size used for loss normalization
|
|
107
109
|
hsv_h: 0.015 # (float) HSV hue augmentation fraction
|
|
108
110
|
hsv_s: 0.7 # (float) HSV saturation augmentation fraction
|
|
@@ -0,0 +1,33 @@
|
|
|
1
|
+
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
|
2
|
+
|
|
3
|
+
# Ultralytics YOLO26-cls image classification model
|
|
4
|
+
# Model docs: https://docs.ultralytics.com/models/yolo26
|
|
5
|
+
# Task docs: https://docs.ultralytics.com/tasks/classify
|
|
6
|
+
|
|
7
|
+
# Parameters
|
|
8
|
+
nc: 1000 # number of classes
|
|
9
|
+
scales: # model compound scaling constants, i.e. 'model=yolo26n-cls.yaml' will call yolo26-cls.yaml with scale 'n'
|
|
10
|
+
# [depth, width, max_channels]
|
|
11
|
+
n: [0.50, 0.25, 1024] # summary: 86 layers, 2,812,104 parameters, 2,812,104 gradients, 0.5 GFLOPs
|
|
12
|
+
s: [0.50, 0.50, 1024] # summary: 86 layers, 6,724,008 parameters, 6,724,008 gradients, 1.6 GFLOPs
|
|
13
|
+
m: [0.50, 1.00, 512] # summary: 106 layers, 11,634,216 parameters, 11,634,216 gradients, 5.0 GFLOPs
|
|
14
|
+
l: [1.00, 1.00, 512] # summary: 176 layers, 14,115,624 parameters, 14,115,624 gradients, 6.2 GFLOPs
|
|
15
|
+
x: [1.00, 1.50, 512] # summary: 176 layers, 29,637,064 parameters, 29,637,064 gradients, 13.7 GFLOPs
|
|
16
|
+
|
|
17
|
+
# YOLO26n backbone
|
|
18
|
+
backbone:
|
|
19
|
+
# [from, repeats, module, args]
|
|
20
|
+
- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
|
|
21
|
+
- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
|
|
22
|
+
- [-1, 2, C3k2, [256, False, 0.25]]
|
|
23
|
+
- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
|
|
24
|
+
- [-1, 2, C3k2, [512, False, 0.25]]
|
|
25
|
+
- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
|
|
26
|
+
- [-1, 2, C3k2, [512, True]]
|
|
27
|
+
- [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
|
|
28
|
+
- [-1, 2, C3k2, [1024, True]]
|
|
29
|
+
- [-1, 2, C2PSA, [1024]] # 9
|
|
30
|
+
|
|
31
|
+
# YOLO26n head
|
|
32
|
+
head:
|
|
33
|
+
- [-1, 1, Classify, [nc]] # Classify
|
|
@@ -0,0 +1,52 @@
|
|
|
1
|
+
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
|
2
|
+
|
|
3
|
+
# Ultralytics YOLO26-obb Oriented Bounding Boxes (OBB) model with P3/8 - P5/32 outputs
|
|
4
|
+
# Model docs: https://docs.ultralytics.com/models/yolo26
|
|
5
|
+
# Task docs: https://docs.ultralytics.com/tasks/obb
|
|
6
|
+
|
|
7
|
+
# Parameters
|
|
8
|
+
nc: 80 # number of classes
|
|
9
|
+
end2end: True # whether to use end-to-end mode
|
|
10
|
+
reg_max: 1 # DFL bins
|
|
11
|
+
scales: # model compound scaling constants, i.e. 'model=yolo26n-obb.yaml' will call yolo26-obb.yaml with scale 'n'
|
|
12
|
+
# [depth, width, max_channels]
|
|
13
|
+
n: [0.50, 0.25, 1024] # summary: 291 layers, 2,715,614 parameters, 2,715,614 gradients, 16.9 GFLOPs
|
|
14
|
+
s: [0.50, 0.50, 1024] # summary: 291 layers, 10,582,142 parameters, 10,582,142 gradients, 63.5 GFLOPs
|
|
15
|
+
m: [0.50, 1.00, 512] # summary: 311 layers, 23,593,918 parameters, 23,593,918 gradients, 211.9 GFLOPs
|
|
16
|
+
l: [1.00, 1.00, 512] # summary: 423 layers, 27,997,374 parameters, 27,997,374 gradients, 259.0 GFLOPs
|
|
17
|
+
x: [1.00, 1.50, 512] # summary: 423 layers, 62,811,678 parameters, 62,811,678 gradients, 578.9 GFLOPs
|
|
18
|
+
|
|
19
|
+
# YOLO26n backbone
|
|
20
|
+
backbone:
|
|
21
|
+
# [from, repeats, module, args]
|
|
22
|
+
- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
|
|
23
|
+
- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
|
|
24
|
+
- [-1, 2, C3k2, [256, False, 0.25]]
|
|
25
|
+
- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
|
|
26
|
+
- [-1, 2, C3k2, [512, False, 0.25]]
|
|
27
|
+
- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
|
|
28
|
+
- [-1, 2, C3k2, [512, True]]
|
|
29
|
+
- [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
|
|
30
|
+
- [-1, 2, C3k2, [1024, True]]
|
|
31
|
+
- [-1, 1, SPPF, [1024, 5, 3, True]] # 9
|
|
32
|
+
- [-1, 2, C2PSA, [1024]] # 10
|
|
33
|
+
|
|
34
|
+
# YOLO26n head
|
|
35
|
+
head:
|
|
36
|
+
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
|
|
37
|
+
- [[-1, 6], 1, Concat, [1]] # cat backbone P4
|
|
38
|
+
- [-1, 2, C3k2, [512, True]] # 13
|
|
39
|
+
|
|
40
|
+
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
|
|
41
|
+
- [[-1, 4], 1, Concat, [1]] # cat backbone P3
|
|
42
|
+
- [-1, 2, C3k2, [256, True]] # 16 (P3/8-small)
|
|
43
|
+
|
|
44
|
+
- [-1, 1, Conv, [256, 3, 2]]
|
|
45
|
+
- [[-1, 13], 1, Concat, [1]] # cat head P4
|
|
46
|
+
- [-1, 2, C3k2, [512, True]] # 19 (P4/16-medium)
|
|
47
|
+
|
|
48
|
+
- [-1, 1, Conv, [512, 3, 2]]
|
|
49
|
+
- [[-1, 10], 1, Concat, [1]] # cat head P5
|
|
50
|
+
- [-1, 1, C3k2, [1024, True, 0.5, True]] # 22 (P5/32-large)
|
|
51
|
+
|
|
52
|
+
- [[16, 19, 22], 1, OBB26, [nc, 1]] # Detect(P3, P4, P5)
|
|
@@ -0,0 +1,60 @@
|
|
|
1
|
+
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
|
2
|
+
|
|
3
|
+
# Ultralytics YOLO26 object detection model with P2/4 - P5/32 outputs
|
|
4
|
+
# Model docs: https://docs.ultralytics.com/models/yolo26
|
|
5
|
+
# Task docs: https://docs.ultralytics.com/tasks/detect
|
|
6
|
+
|
|
7
|
+
# Parameters
|
|
8
|
+
nc: 80 # number of classes
|
|
9
|
+
end2end: True # whether to use end-to-end mode
|
|
10
|
+
reg_max: 1 # DFL bins
|
|
11
|
+
scales: # model compound scaling constants, i.e. 'model=yolo26n-p2.yaml' will call yolo26-p2.yaml with scale 'n'
|
|
12
|
+
# [depth, width, max_channels]
|
|
13
|
+
n: [0.50, 0.25, 1024] # summary: 329 layers, 2,662,400 parameters, 2,662,400 gradients, 9.5 GFLOPs
|
|
14
|
+
s: [0.50, 0.50, 1024] # summary: 329 layers, 9,765,856 parameters, 9,765,856 gradients, 27.8 GFLOPs
|
|
15
|
+
m: [0.50, 1.00, 512] # summary: 349 layers, 21,144,288 parameters, 21,144,288 gradients, 91.4 GFLOPs
|
|
16
|
+
l: [1.00, 1.00, 512] # summary: 489 layers, 25,815,520 parameters, 25,815,520 gradients, 115.3 GFLOPs
|
|
17
|
+
x: [1.00, 1.50, 512] # summary: 489 layers, 57,935,232 parameters, 57,935,232 gradients, 256.9 GFLOPs
|
|
18
|
+
|
|
19
|
+
# YOLO26n backbone
|
|
20
|
+
backbone:
|
|
21
|
+
# [from, repeats, module, args]
|
|
22
|
+
- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
|
|
23
|
+
- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
|
|
24
|
+
- [-1, 2, C3k2, [256, False, 0.25]]
|
|
25
|
+
- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
|
|
26
|
+
- [-1, 2, C3k2, [512, False, 0.25]]
|
|
27
|
+
- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
|
|
28
|
+
- [-1, 2, C3k2, [512, True]]
|
|
29
|
+
- [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
|
|
30
|
+
- [-1, 2, C3k2, [1024, True]]
|
|
31
|
+
- [-1, 1, SPPF, [1024, 5, 3, True]] # 9
|
|
32
|
+
- [-1, 2, C2PSA, [1024]] # 10
|
|
33
|
+
|
|
34
|
+
# YOLO26n head
|
|
35
|
+
head:
|
|
36
|
+
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
|
|
37
|
+
- [[-1, 6], 1, Concat, [1]] # cat backbone P4
|
|
38
|
+
- [-1, 2, C3k2, [512, True]] # 13
|
|
39
|
+
|
|
40
|
+
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
|
|
41
|
+
- [[-1, 4], 1, Concat, [1]] # cat backbone P3
|
|
42
|
+
- [-1, 2, C3k2, [256, True]] # 16 (P3/8-small)
|
|
43
|
+
|
|
44
|
+
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
|
|
45
|
+
- [[-1, 2], 1, Concat, [1]] # cat backbone P2
|
|
46
|
+
- [-1, 2, C3k2, [128, True]] # 19 (P2/4-xsmall)
|
|
47
|
+
|
|
48
|
+
- [-1, 1, Conv, [128, 3, 2]]
|
|
49
|
+
- [[-1, 16], 1, Concat, [1]] # cat head P3
|
|
50
|
+
- [-1, 2, C3k2, [256, True]] # 22 (P3/8-small)
|
|
51
|
+
|
|
52
|
+
- [-1, 1, Conv, [256, 3, 2]]
|
|
53
|
+
- [[-1, 13], 1, Concat, [1]] # cat head P4
|
|
54
|
+
- [-1, 2, C3k2, [512, True]] # 25 (P4/16-medium)
|
|
55
|
+
|
|
56
|
+
- [-1, 1, Conv, [512, 3, 2]]
|
|
57
|
+
- [[-1, 10], 1, Concat, [1]] # cat head P5
|
|
58
|
+
- [-1, 1, C3k2, [1024, True, 0.5, True]] # 28 (P5/32-large)
|
|
59
|
+
|
|
60
|
+
- [[19, 22, 25, 28], 1, Detect, [nc]] # Detect(P2, P3, P4, P5)
|
|
@@ -0,0 +1,62 @@
|
|
|
1
|
+
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
|
2
|
+
|
|
3
|
+
# Ultralytics YOLO26 object detection model with P3/8 - P6/64 outputs
|
|
4
|
+
# Model docs: https://docs.ultralytics.com/models/yolo26
|
|
5
|
+
# Task docs: https://docs.ultralytics.com/tasks/detect
|
|
6
|
+
|
|
7
|
+
# Parameters
|
|
8
|
+
nc: 80 # number of classes
|
|
9
|
+
end2end: True # whether to use end-to-end mode
|
|
10
|
+
reg_max: 1 # DFL bins
|
|
11
|
+
scales: # model compound scaling constants, i.e. 'model=yolo26n-p6.yaml' will call yolo26-p6.yaml with scale 'n'
|
|
12
|
+
# [depth, width, max_channels]
|
|
13
|
+
n: [0.50, 0.25, 1024] # summary: 349 layers, 4,063,872 parameters, 4,063,872 gradients, 6.0 GFLOPs
|
|
14
|
+
s: [0.50, 0.50, 1024] # summary: 349 layers, 15,876,448 parameters, 15,876,448 gradients, 22.3 GFLOPs
|
|
15
|
+
m: [0.50, 1.00, 512] # summary: 369 layers, 32,400,096 parameters, 32,400,096 gradients, 77.3 GFLOPs
|
|
16
|
+
l: [1.00, 1.00, 512] # summary: 523 layers, 39,365,600 parameters, 39,365,600 gradients, 97.0 GFLOPs
|
|
17
|
+
x: [1.00, 1.50, 512] # summary: 523 layers, 88,330,368 parameters, 88,330,368 gradients, 216.6 GFLOPs
|
|
18
|
+
|
|
19
|
+
# YOLO26n backbone
|
|
20
|
+
backbone:
|
|
21
|
+
# [from, repeats, module, args]
|
|
22
|
+
- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
|
|
23
|
+
- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
|
|
24
|
+
- [-1, 2, C3k2, [256, False, 0.25]]
|
|
25
|
+
- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
|
|
26
|
+
- [-1, 2, C3k2, [512, False, 0.25]]
|
|
27
|
+
- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
|
|
28
|
+
- [-1, 2, C3k2, [512, True]]
|
|
29
|
+
- [-1, 1, Conv, [768, 3, 2]] # 7-P5/32
|
|
30
|
+
- [-1, 2, C3k2, [768, True]]
|
|
31
|
+
- [-1, 1, Conv, [1024, 3, 2]] # 9-P6/64
|
|
32
|
+
- [-1, 2, C3k2, [1024, True]]
|
|
33
|
+
- [-1, 1, SPPF, [1024, 5]] # 11
|
|
34
|
+
- [-1, 2, C2PSA, [1024]] # 12
|
|
35
|
+
|
|
36
|
+
# YOLO26n head
|
|
37
|
+
head:
|
|
38
|
+
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
|
|
39
|
+
- [[-1, 8], 1, Concat, [1]] # cat backbone P5
|
|
40
|
+
- [-1, 2, C3k2, [768, True]] # 15
|
|
41
|
+
|
|
42
|
+
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
|
|
43
|
+
- [[-1, 6], 1, Concat, [1]] # cat backbone P4
|
|
44
|
+
- [-1, 2, C3k2, [512, True]] # 18
|
|
45
|
+
|
|
46
|
+
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
|
|
47
|
+
- [[-1, 4], 1, Concat, [1]] # cat backbone P3
|
|
48
|
+
- [-1, 2, C3k2, [256, True]] # 21 (P3/8-small)
|
|
49
|
+
|
|
50
|
+
- [-1, 1, Conv, [256, 3, 2]]
|
|
51
|
+
- [[-1, 18], 1, Concat, [1]] # cat head P4
|
|
52
|
+
- [-1, 2, C3k2, [512, True]] # 24 (P4/16-medium)
|
|
53
|
+
|
|
54
|
+
- [-1, 1, Conv, [512, 3, 2]]
|
|
55
|
+
- [[-1, 15], 1, Concat, [1]] # cat head P5
|
|
56
|
+
- [-1, 2, C3k2, [768, True]] # 27 (P5/32-large)
|
|
57
|
+
|
|
58
|
+
- [-1, 1, Conv, [768, 3, 2]]
|
|
59
|
+
- [[-1, 12], 1, Concat, [1]] # cat head P6
|
|
60
|
+
- [-1, 1, C3k2, [1024, True, 0.5, True]] # 30 (P6/64-large)
|
|
61
|
+
|
|
62
|
+
- [[21, 24, 27, 30], 1, Detect, [nc]] # Detect(P3, P4, P5, P6)
|