dgenerate-ultralytics-headless 8.3.235__py3-none-any.whl → 8.3.237__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {dgenerate_ultralytics_headless-8.3.235.dist-info → dgenerate_ultralytics_headless-8.3.237.dist-info}/METADATA +1 -1
- {dgenerate_ultralytics_headless-8.3.235.dist-info → dgenerate_ultralytics_headless-8.3.237.dist-info}/RECORD +41 -28
- tests/test_exports.py +15 -1
- ultralytics/__init__.py +1 -1
- ultralytics/engine/exporter.py +113 -12
- ultralytics/engine/predictor.py +3 -2
- ultralytics/engine/trainer.py +8 -0
- ultralytics/models/rtdetr/val.py +5 -1
- ultralytics/models/sam/__init__.py +14 -1
- ultralytics/models/sam/build.py +17 -8
- ultralytics/models/sam/build_sam3.py +374 -0
- ultralytics/models/sam/model.py +12 -4
- ultralytics/models/sam/modules/blocks.py +20 -8
- ultralytics/models/sam/modules/decoders.py +2 -3
- ultralytics/models/sam/modules/encoders.py +4 -1
- ultralytics/models/sam/modules/memory_attention.py +6 -2
- ultralytics/models/sam/modules/sam.py +150 -6
- ultralytics/models/sam/modules/utils.py +134 -4
- ultralytics/models/sam/predict.py +2076 -118
- ultralytics/models/sam/sam3/__init__.py +3 -0
- ultralytics/models/sam/sam3/decoder.py +546 -0
- ultralytics/models/sam/sam3/encoder.py +535 -0
- ultralytics/models/sam/sam3/geometry_encoders.py +415 -0
- ultralytics/models/sam/sam3/maskformer_segmentation.py +286 -0
- ultralytics/models/sam/sam3/model_misc.py +198 -0
- ultralytics/models/sam/sam3/necks.py +129 -0
- ultralytics/models/sam/sam3/sam3_image.py +357 -0
- ultralytics/models/sam/sam3/text_encoder_ve.py +307 -0
- ultralytics/models/sam/sam3/tokenizer_ve.py +242 -0
- ultralytics/models/sam/sam3/vitdet.py +546 -0
- ultralytics/models/sam/sam3/vl_combiner.py +165 -0
- ultralytics/models/yolo/obb/val.py +18 -7
- ultralytics/nn/autobackend.py +35 -0
- ultralytics/nn/modules/transformer.py +21 -1
- ultralytics/utils/checks.py +41 -0
- ultralytics/utils/ops.py +1 -3
- ultralytics/utils/torch_utils.py +1 -0
- {dgenerate_ultralytics_headless-8.3.235.dist-info → dgenerate_ultralytics_headless-8.3.237.dist-info}/WHEEL +0 -0
- {dgenerate_ultralytics_headless-8.3.235.dist-info → dgenerate_ultralytics_headless-8.3.237.dist-info}/entry_points.txt +0 -0
- {dgenerate_ultralytics_headless-8.3.235.dist-info → dgenerate_ultralytics_headless-8.3.237.dist-info}/licenses/LICENSE +0 -0
- {dgenerate_ultralytics_headless-8.3.235.dist-info → dgenerate_ultralytics_headless-8.3.237.dist-info}/top_level.txt +0 -0
|
@@ -10,7 +10,8 @@ segmentation tasks.
|
|
|
10
10
|
|
|
11
11
|
from __future__ import annotations
|
|
12
12
|
|
|
13
|
-
from collections import OrderedDict
|
|
13
|
+
from collections import OrderedDict, defaultdict
|
|
14
|
+
from copy import deepcopy
|
|
14
15
|
from typing import Any
|
|
15
16
|
|
|
16
17
|
import cv2
|
|
@@ -21,7 +22,8 @@ import torch.nn.functional as F
|
|
|
21
22
|
from ultralytics.data.augment import LetterBox
|
|
22
23
|
from ultralytics.engine.predictor import BasePredictor
|
|
23
24
|
from ultralytics.engine.results import Results
|
|
24
|
-
from ultralytics.utils import DEFAULT_CFG, ops
|
|
25
|
+
from ultralytics.utils import DEFAULT_CFG, LOGGER, ops
|
|
26
|
+
from ultralytics.utils.metrics import box_iou, mask_iou
|
|
25
27
|
from ultralytics.utils.torch_utils import select_device, smart_inference_mode
|
|
26
28
|
|
|
27
29
|
from .amg import (
|
|
@@ -35,6 +37,7 @@ from .amg import (
|
|
|
35
37
|
uncrop_boxes_xyxy,
|
|
36
38
|
uncrop_masks,
|
|
37
39
|
)
|
|
40
|
+
from .sam3.geometry_encoders import Prompt
|
|
38
41
|
|
|
39
42
|
|
|
40
43
|
class Predictor(BasePredictor):
|
|
@@ -79,6 +82,8 @@ class Predictor(BasePredictor):
|
|
|
79
82
|
>>> results = predictor(bboxes=bboxes)
|
|
80
83
|
"""
|
|
81
84
|
|
|
85
|
+
stride = 16
|
|
86
|
+
|
|
82
87
|
def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None):
|
|
83
88
|
"""Initialize the Predictor with configuration, overrides, and callbacks.
|
|
84
89
|
|
|
@@ -156,7 +161,7 @@ class Predictor(BasePredictor):
|
|
|
156
161
|
1
|
|
157
162
|
"""
|
|
158
163
|
assert len(im) == 1, "SAM model does not currently support batched inference"
|
|
159
|
-
letterbox = LetterBox(self.
|
|
164
|
+
letterbox = LetterBox(self.imgsz, auto=False, center=False)
|
|
160
165
|
return [letterbox(image=x) for x in im]
|
|
161
166
|
|
|
162
167
|
def inference(self, im, bboxes=None, points=None, labels=None, masks=None, multimask_output=False, *args, **kwargs):
|
|
@@ -520,30 +525,6 @@ class Predictor(BasePredictor):
|
|
|
520
525
|
self.segment_all = False
|
|
521
526
|
return results
|
|
522
527
|
|
|
523
|
-
def setup_source(self, source):
|
|
524
|
-
"""Set up the data source for inference.
|
|
525
|
-
|
|
526
|
-
This method configures the data source from which images will be fetched for inference. It supports various
|
|
527
|
-
input types such as image files, directories, video files, and other compatible data sources.
|
|
528
|
-
|
|
529
|
-
Args:
|
|
530
|
-
source (str | Path | None): The path or identifier for the image data source. Can be a file path, directory
|
|
531
|
-
path, URL, or other supported source types.
|
|
532
|
-
|
|
533
|
-
Examples:
|
|
534
|
-
>>> predictor = Predictor()
|
|
535
|
-
>>> predictor.setup_source("path/to/images")
|
|
536
|
-
>>> predictor.setup_source("video.mp4")
|
|
537
|
-
>>> predictor.setup_source(None) # Uses default source if available
|
|
538
|
-
|
|
539
|
-
Notes:
|
|
540
|
-
- If source is None, the method may use a default source if configured.
|
|
541
|
-
- The method adapts to different source types and prepares them for subsequent inference steps.
|
|
542
|
-
- Supported source types may include local files, directories, URLs, and video streams.
|
|
543
|
-
"""
|
|
544
|
-
if source is not None:
|
|
545
|
-
super().setup_source(source)
|
|
546
|
-
|
|
547
528
|
def set_image(self, image):
|
|
548
529
|
"""Preprocess and set a single image for inference.
|
|
549
530
|
|
|
@@ -576,12 +557,18 @@ class Predictor(BasePredictor):
|
|
|
576
557
|
self.features = self.get_im_features(im)
|
|
577
558
|
break
|
|
578
559
|
|
|
579
|
-
def
|
|
580
|
-
"""
|
|
560
|
+
def setup_source(self, source):
|
|
561
|
+
"""Set up the data source for SAM inference."""
|
|
562
|
+
if source is None: # handle the situation when set_imgsz in advance
|
|
563
|
+
return
|
|
564
|
+
super().setup_source(source, self.stride)
|
|
581
565
|
assert isinstance(self.imgsz, (tuple, list)) and self.imgsz[0] == self.imgsz[1], (
|
|
582
566
|
f"SAM models only support square image size, but got {self.imgsz}."
|
|
583
567
|
)
|
|
584
568
|
self.model.set_imgsz(self.imgsz)
|
|
569
|
+
|
|
570
|
+
def get_im_features(self, im):
|
|
571
|
+
"""Extract image features using the SAM model's image encoder for subsequent mask prediction."""
|
|
585
572
|
return self.model.image_encoder(im)
|
|
586
573
|
|
|
587
574
|
def set_prompts(self, prompts):
|
|
@@ -726,6 +713,7 @@ class SAM2Predictor(Predictor):
|
|
|
726
713
|
(128, 128),
|
|
727
714
|
(64, 64),
|
|
728
715
|
]
|
|
716
|
+
stride = 16
|
|
729
717
|
|
|
730
718
|
def get_model(self):
|
|
731
719
|
"""Retrieve and initialize the Segment Anything Model 2 (SAM2) for image segmentation tasks."""
|
|
@@ -767,45 +755,13 @@ class SAM2Predictor(Predictor):
|
|
|
767
755
|
points, labels = bboxes, bbox_labels
|
|
768
756
|
return points, labels, masks
|
|
769
757
|
|
|
770
|
-
def
|
|
771
|
-
"""
|
|
772
|
-
|
|
773
|
-
|
|
774
|
-
preprocesses the image for feature extraction. It supports setting only one image at a time.
|
|
775
|
-
|
|
776
|
-
Args:
|
|
777
|
-
image (str | np.ndarray): Path to the image file as a string, or a numpy array representing the image.
|
|
778
|
-
|
|
779
|
-
Raises:
|
|
780
|
-
AssertionError: If more than one image is attempted to be set.
|
|
781
|
-
|
|
782
|
-
Examples:
|
|
783
|
-
>>> predictor = SAM2Predictor()
|
|
784
|
-
>>> predictor.set_image("path/to/image.jpg")
|
|
785
|
-
>>> predictor.set_image(np.array([...])) # Using a numpy array
|
|
786
|
-
|
|
787
|
-
Notes:
|
|
788
|
-
- This method must be called before performing any inference on a new image.
|
|
789
|
-
- The method caches the extracted features for efficient subsequent inferences on the same image.
|
|
790
|
-
- Only one image can be set at a time. To process multiple images, call this method for each new image.
|
|
791
|
-
"""
|
|
792
|
-
if self.model is None:
|
|
793
|
-
self.setup_model(model=None)
|
|
794
|
-
self.setup_source(image)
|
|
795
|
-
assert len(self.dataset) == 1, "`set_image` only supports setting one image!"
|
|
796
|
-
for batch in self.dataset:
|
|
797
|
-
im = self.preprocess(batch[1])
|
|
798
|
-
self.features = self.get_im_features(im)
|
|
799
|
-
break
|
|
758
|
+
def setup_source(self, source):
|
|
759
|
+
"""Set up the data source and image size for SAM2 inference."""
|
|
760
|
+
super().setup_source(source)
|
|
761
|
+
self._bb_feat_sizes = [[int(x / (self.stride * i)) for x in self.imgsz] for i in [1 / 4, 1 / 2, 1]]
|
|
800
762
|
|
|
801
763
|
def get_im_features(self, im):
|
|
802
764
|
"""Extract image features from the SAM image encoder for subsequent processing."""
|
|
803
|
-
assert isinstance(self.imgsz, (tuple, list)) and self.imgsz[0] == self.imgsz[1], (
|
|
804
|
-
f"SAM 2 models only support square image size, but got {self.imgsz}."
|
|
805
|
-
)
|
|
806
|
-
self.model.set_imgsz(self.imgsz)
|
|
807
|
-
self._bb_feat_sizes = [[x // (4 * i) for x in self.imgsz] for i in [1, 2, 4]]
|
|
808
|
-
|
|
809
765
|
backbone_out = self.model.forward_image(im)
|
|
810
766
|
_, vision_feats, _, _ = self.model._prepare_backbone_features(backbone_out)
|
|
811
767
|
if self.model.directly_add_no_mem_embed:
|
|
@@ -1037,6 +993,7 @@ class SAM2VideoPredictor(SAM2Predictor):
|
|
|
1037
993
|
labels=None,
|
|
1038
994
|
masks=None,
|
|
1039
995
|
frame_idx=0,
|
|
996
|
+
inference_state: dict[str, Any] | None = None,
|
|
1040
997
|
):
|
|
1041
998
|
"""Add new points or masks to a specific frame for a given object ID.
|
|
1042
999
|
|
|
@@ -1051,6 +1008,8 @@ class SAM2VideoPredictor(SAM2Predictor):
|
|
|
1051
1008
|
labels (torch.Tensor, optional): The labels corresponding to the points.
|
|
1052
1009
|
masks (torch.Tensor, optional): Binary masks for the object.
|
|
1053
1010
|
frame_idx (int, optional): The index of the frame to which the prompts are applied.
|
|
1011
|
+
inference_state (dict[str, Any], optional): The current inference state. If None, uses the instance's
|
|
1012
|
+
inference state.
|
|
1054
1013
|
|
|
1055
1014
|
Returns:
|
|
1056
1015
|
pred_masks (torch.Tensor): The flattened predicted masks.
|
|
@@ -1064,24 +1023,25 @@ class SAM2VideoPredictor(SAM2Predictor):
|
|
|
1064
1023
|
- If the frame is being tracked for the first time, it is treated as an initial conditioning frame.
|
|
1065
1024
|
- The method handles the consolidation of outputs and resizing of masks to the original video resolution.
|
|
1066
1025
|
"""
|
|
1026
|
+
inference_state = inference_state or self.inference_state
|
|
1067
1027
|
assert (masks is None) ^ (points is None), "'masks' and 'points' prompts are not compatible with each other."
|
|
1068
|
-
obj_idx = self._obj_id_to_idx(obj_id)
|
|
1028
|
+
obj_idx = self._obj_id_to_idx(obj_id, inference_state)
|
|
1069
1029
|
|
|
1070
1030
|
point_inputs = None
|
|
1071
1031
|
pop_key = "point_inputs_per_obj"
|
|
1072
1032
|
if points is not None:
|
|
1073
1033
|
point_inputs = {"point_coords": points, "point_labels": labels}
|
|
1074
|
-
|
|
1034
|
+
inference_state["point_inputs_per_obj"][obj_idx][frame_idx] = point_inputs
|
|
1075
1035
|
pop_key = "mask_inputs_per_obj"
|
|
1076
|
-
|
|
1077
|
-
|
|
1036
|
+
inference_state["mask_inputs_per_obj"][obj_idx][frame_idx] = masks
|
|
1037
|
+
inference_state[pop_key][obj_idx].pop(frame_idx, None)
|
|
1078
1038
|
# If this frame hasn't been tracked before, we treat it as an initial conditioning
|
|
1079
1039
|
# frame, meaning that the inputs points are to generate segments on this frame without
|
|
1080
1040
|
# using any memory from other frames, like in SAM. Otherwise (if it has been tracked),
|
|
1081
1041
|
# the input points will be used to correct the already tracked masks.
|
|
1082
|
-
is_init_cond_frame = frame_idx not in
|
|
1083
|
-
obj_output_dict =
|
|
1084
|
-
obj_temp_output_dict =
|
|
1042
|
+
is_init_cond_frame = frame_idx not in inference_state["frames_already_tracked"]
|
|
1043
|
+
obj_output_dict = inference_state["output_dict_per_obj"][obj_idx]
|
|
1044
|
+
obj_temp_output_dict = inference_state["temp_output_dict_per_obj"][obj_idx]
|
|
1085
1045
|
# Add a frame to conditioning output if it's an initial conditioning frame or
|
|
1086
1046
|
# if the model sees all frames receiving clicks/mask as conditioning frames.
|
|
1087
1047
|
is_cond = is_init_cond_frame or self.model.add_all_frames_to_correct_as_cond
|
|
@@ -1119,6 +1079,7 @@ class SAM2VideoPredictor(SAM2Predictor):
|
|
|
1119
1079
|
# them into memory.
|
|
1120
1080
|
run_mem_encoder=False,
|
|
1121
1081
|
prev_sam_mask_logits=prev_sam_mask_logits,
|
|
1082
|
+
inference_state=inference_state,
|
|
1122
1083
|
)
|
|
1123
1084
|
# Add the output to the output dict (to be used as future memory)
|
|
1124
1085
|
obj_temp_output_dict[storage_key][frame_idx] = current_out
|
|
@@ -1128,31 +1089,37 @@ class SAM2VideoPredictor(SAM2Predictor):
|
|
|
1128
1089
|
frame_idx,
|
|
1129
1090
|
is_cond=is_cond,
|
|
1130
1091
|
run_mem_encoder=False,
|
|
1092
|
+
inference_state=inference_state,
|
|
1131
1093
|
)
|
|
1132
1094
|
pred_masks = consolidated_out["pred_masks"].flatten(0, 1)
|
|
1133
1095
|
return pred_masks.flatten(0, 1), torch.ones(1, dtype=pred_masks.dtype, device=pred_masks.device)
|
|
1134
1096
|
|
|
1135
1097
|
@smart_inference_mode()
|
|
1136
|
-
def propagate_in_video_preflight(self):
|
|
1098
|
+
def propagate_in_video_preflight(self, inference_state: dict[str, Any] | None = None):
|
|
1137
1099
|
"""Prepare inference_state and consolidate temporary outputs before tracking.
|
|
1138
1100
|
|
|
1139
1101
|
This method marks the start of tracking, disallowing the addition of new objects until the session is reset. It
|
|
1140
1102
|
consolidates temporary outputs from `temp_output_dict_per_obj` and merges them into `output_dict`. Additionally,
|
|
1141
1103
|
it clears non-conditioning memory around input frames and ensures that the state is consistent with the provided
|
|
1142
1104
|
inputs.
|
|
1105
|
+
|
|
1106
|
+
Args:
|
|
1107
|
+
inference_state (dict[str, Any], optional): The current inference state. If None, uses the instance's
|
|
1108
|
+
inference state.
|
|
1143
1109
|
"""
|
|
1110
|
+
inference_state = inference_state or self.inference_state
|
|
1144
1111
|
# Tracking has started and we don't allow adding new objects until session is reset.
|
|
1145
|
-
|
|
1146
|
-
batch_size = len(
|
|
1112
|
+
inference_state["tracking_has_started"] = True
|
|
1113
|
+
batch_size = len(inference_state["obj_idx_to_id"])
|
|
1147
1114
|
|
|
1148
1115
|
# Consolidate per-object temporary outputs in "temp_output_dict_per_obj" and
|
|
1149
1116
|
# add them into "output_dict".
|
|
1150
|
-
temp_output_dict_per_obj =
|
|
1151
|
-
output_dict =
|
|
1117
|
+
temp_output_dict_per_obj = inference_state["temp_output_dict_per_obj"]
|
|
1118
|
+
output_dict = inference_state["output_dict"]
|
|
1152
1119
|
# "consolidated_frame_inds" contains indices of those frames where consolidated
|
|
1153
1120
|
# temporary outputs have been added (either in this call or any previous calls
|
|
1154
1121
|
# to `propagate_in_video_preflight`).
|
|
1155
|
-
consolidated_frame_inds =
|
|
1122
|
+
consolidated_frame_inds = inference_state["consolidated_frame_inds"]
|
|
1156
1123
|
for is_cond in {False, True}:
|
|
1157
1124
|
# Separately consolidate conditioning and non-conditioning temp outputs
|
|
1158
1125
|
storage_key = "cond_frame_outputs" if is_cond else "non_cond_frame_outputs"
|
|
@@ -1166,11 +1133,11 @@ class SAM2VideoPredictor(SAM2Predictor):
|
|
|
1166
1133
|
# consolidate the temporary output across all objects on this frame
|
|
1167
1134
|
for frame_idx in temp_frame_inds:
|
|
1168
1135
|
consolidated_out = self._consolidate_temp_output_across_obj(
|
|
1169
|
-
frame_idx, is_cond=is_cond, run_mem_encoder=True
|
|
1136
|
+
frame_idx, is_cond=is_cond, run_mem_encoder=True, inference_state=inference_state
|
|
1170
1137
|
)
|
|
1171
1138
|
# merge them into "output_dict" and also create per-object slices
|
|
1172
1139
|
output_dict[storage_key][frame_idx] = consolidated_out
|
|
1173
|
-
self._add_output_per_object(frame_idx, consolidated_out, storage_key)
|
|
1140
|
+
self._add_output_per_object(frame_idx, consolidated_out, storage_key, inference_state=inference_state)
|
|
1174
1141
|
if self.clear_non_cond_mem_around_input and (self.clear_non_cond_mem_for_multi_obj or batch_size <= 1):
|
|
1175
1142
|
# clear non-conditioning memory of the surrounding frames
|
|
1176
1143
|
self._clear_non_cond_mem_around_input(frame_idx)
|
|
@@ -1183,7 +1150,7 @@ class SAM2VideoPredictor(SAM2Predictor):
|
|
|
1183
1150
|
# output on the same frame in "non_cond_frame_outputs"
|
|
1184
1151
|
for frame_idx in output_dict["cond_frame_outputs"]:
|
|
1185
1152
|
output_dict["non_cond_frame_outputs"].pop(frame_idx, None)
|
|
1186
|
-
for obj_output_dict in
|
|
1153
|
+
for obj_output_dict in inference_state["output_dict_per_obj"].values():
|
|
1187
1154
|
for frame_idx in obj_output_dict["cond_frame_outputs"]:
|
|
1188
1155
|
obj_output_dict["non_cond_frame_outputs"].pop(frame_idx, None)
|
|
1189
1156
|
for frame_idx in consolidated_frame_inds["cond_frame_outputs"]:
|
|
@@ -1196,9 +1163,9 @@ class SAM2VideoPredictor(SAM2Predictor):
|
|
|
1196
1163
|
consolidated_frame_inds["cond_frame_outputs"] | consolidated_frame_inds["non_cond_frame_outputs"]
|
|
1197
1164
|
)
|
|
1198
1165
|
input_frames_inds = set()
|
|
1199
|
-
for point_inputs_per_frame in
|
|
1166
|
+
for point_inputs_per_frame in inference_state["point_inputs_per_obj"].values():
|
|
1200
1167
|
input_frames_inds.update(point_inputs_per_frame.keys())
|
|
1201
|
-
for mask_inputs_per_frame in
|
|
1168
|
+
for mask_inputs_per_frame in inference_state["mask_inputs_per_obj"].values():
|
|
1202
1169
|
input_frames_inds.update(mask_inputs_per_frame.keys())
|
|
1203
1170
|
assert all_consolidated_frame_inds == input_frames_inds
|
|
1204
1171
|
|
|
@@ -1217,9 +1184,21 @@ class SAM2VideoPredictor(SAM2Predictor):
|
|
|
1217
1184
|
return
|
|
1218
1185
|
assert predictor.dataset is not None
|
|
1219
1186
|
assert predictor.dataset.mode == "video"
|
|
1187
|
+
predictor.inference_state = predictor._init_state(predictor.dataset.frames)
|
|
1188
|
+
|
|
1189
|
+
@staticmethod
|
|
1190
|
+
def _init_state(num_frames):
|
|
1191
|
+
"""Initialize an inference state.
|
|
1192
|
+
|
|
1193
|
+
This function sets up the initial state required for performing inference on video data. It includes
|
|
1194
|
+
initializing various dictionaries and ordered dictionaries that will store inputs, outputs, and other metadata
|
|
1195
|
+
relevant to the tracking process.
|
|
1220
1196
|
|
|
1197
|
+
Args:
|
|
1198
|
+
num_frames (int): The number of frames in the video.
|
|
1199
|
+
"""
|
|
1221
1200
|
inference_state = {
|
|
1222
|
-
"num_frames":
|
|
1201
|
+
"num_frames": num_frames, # TODO: see if there's any chance to remove it
|
|
1223
1202
|
"point_inputs_per_obj": {}, # inputs points on each frame
|
|
1224
1203
|
"mask_inputs_per_obj": {}, # inputs mask on each frame
|
|
1225
1204
|
"constants": {}, # values that don't change across frames (so we only need to hold one copy of them)
|
|
@@ -1247,7 +1226,7 @@ class SAM2VideoPredictor(SAM2Predictor):
|
|
|
1247
1226
|
"tracking_has_started": False,
|
|
1248
1227
|
"frames_already_tracked": [],
|
|
1249
1228
|
}
|
|
1250
|
-
|
|
1229
|
+
return inference_state
|
|
1251
1230
|
|
|
1252
1231
|
def get_im_features(self, im, batch=1):
|
|
1253
1232
|
"""Extract and process image features using SAM2's image encoder for subsequent segmentation tasks.
|
|
@@ -1265,7 +1244,6 @@ class SAM2VideoPredictor(SAM2Predictor):
|
|
|
1265
1244
|
- If `batch` is greater than 1, the features are expanded to fit the batch size.
|
|
1266
1245
|
- The method leverages the model's `_prepare_backbone_features` method to prepare the backbone features.
|
|
1267
1246
|
"""
|
|
1268
|
-
self.model.set_imgsz(self.imgsz)
|
|
1269
1247
|
backbone_out = self.model.forward_image(im)
|
|
1270
1248
|
if batch > 1: # expand features if there's more than one prompt
|
|
1271
1249
|
for i, feat in enumerate(backbone_out["backbone_fpn"]):
|
|
@@ -1276,11 +1254,13 @@ class SAM2VideoPredictor(SAM2Predictor):
|
|
|
1276
1254
|
_, vis_feats, vis_pos_embed, feat_sizes = self.model._prepare_backbone_features(backbone_out)
|
|
1277
1255
|
return vis_feats, vis_pos_embed, feat_sizes
|
|
1278
1256
|
|
|
1279
|
-
def _obj_id_to_idx(self, obj_id):
|
|
1257
|
+
def _obj_id_to_idx(self, obj_id, inference_state: dict[str, Any] | None = None):
|
|
1280
1258
|
"""Map client-side object id to model-side object index.
|
|
1281
1259
|
|
|
1282
1260
|
Args:
|
|
1283
1261
|
obj_id (int): The unique identifier of the object provided by the client side.
|
|
1262
|
+
inference_state (dict[str, Any], optional): The current inference state. If None, uses the instance's
|
|
1263
|
+
inference state.
|
|
1284
1264
|
|
|
1285
1265
|
Returns:
|
|
1286
1266
|
(int): The index of the object on the model side.
|
|
@@ -1295,27 +1275,28 @@ class SAM2VideoPredictor(SAM2Predictor):
|
|
|
1295
1275
|
- It maintains two-way mappings between IDs and indices (`obj_id_to_idx` and `obj_idx_to_id`).
|
|
1296
1276
|
- Additional data structures are initialized for the new object to store inputs and outputs.
|
|
1297
1277
|
"""
|
|
1298
|
-
|
|
1278
|
+
inference_state = inference_state or self.inference_state
|
|
1279
|
+
obj_idx = inference_state["obj_id_to_idx"].get(obj_id, None)
|
|
1299
1280
|
if obj_idx is not None:
|
|
1300
1281
|
return obj_idx
|
|
1301
1282
|
|
|
1302
1283
|
# This is a new object id not sent to the server before. We only allow adding
|
|
1303
1284
|
# new objects *before* the tracking starts.
|
|
1304
|
-
allow_new_object = not
|
|
1285
|
+
allow_new_object = not inference_state["tracking_has_started"]
|
|
1305
1286
|
if allow_new_object:
|
|
1306
1287
|
# get the next object slot
|
|
1307
|
-
obj_idx = len(
|
|
1308
|
-
|
|
1309
|
-
|
|
1310
|
-
|
|
1288
|
+
obj_idx = len(inference_state["obj_id_to_idx"])
|
|
1289
|
+
inference_state["obj_id_to_idx"][obj_id] = obj_idx
|
|
1290
|
+
inference_state["obj_idx_to_id"][obj_idx] = obj_id
|
|
1291
|
+
inference_state["obj_ids"] = list(inference_state["obj_id_to_idx"])
|
|
1311
1292
|
# set up input and output structures for this object
|
|
1312
|
-
|
|
1313
|
-
|
|
1314
|
-
|
|
1293
|
+
inference_state["point_inputs_per_obj"][obj_idx] = {}
|
|
1294
|
+
inference_state["mask_inputs_per_obj"][obj_idx] = {}
|
|
1295
|
+
inference_state["output_dict_per_obj"][obj_idx] = {
|
|
1315
1296
|
"cond_frame_outputs": {}, # dict containing {frame_idx: <out>}
|
|
1316
1297
|
"non_cond_frame_outputs": {}, # dict containing {frame_idx: <out>}
|
|
1317
1298
|
}
|
|
1318
|
-
|
|
1299
|
+
inference_state["temp_output_dict_per_obj"][obj_idx] = {
|
|
1319
1300
|
"cond_frame_outputs": {}, # dict containing {frame_idx: <out>}
|
|
1320
1301
|
"non_cond_frame_outputs": {}, # dict containing {frame_idx: <out>}
|
|
1321
1302
|
}
|
|
@@ -1323,7 +1304,7 @@ class SAM2VideoPredictor(SAM2Predictor):
|
|
|
1323
1304
|
else:
|
|
1324
1305
|
raise RuntimeError(
|
|
1325
1306
|
f"Cannot add new object id {obj_id} after tracking starts. "
|
|
1326
|
-
f"All existing object ids: {
|
|
1307
|
+
f"All existing object ids: {inference_state['obj_ids']}. "
|
|
1327
1308
|
f"Please call 'reset_state' to restart from scratch."
|
|
1328
1309
|
)
|
|
1329
1310
|
|
|
@@ -1338,6 +1319,7 @@ class SAM2VideoPredictor(SAM2Predictor):
|
|
|
1338
1319
|
reverse,
|
|
1339
1320
|
run_mem_encoder,
|
|
1340
1321
|
prev_sam_mask_logits=None,
|
|
1322
|
+
inference_state: dict[str, Any] | None = None,
|
|
1341
1323
|
):
|
|
1342
1324
|
"""Run tracking on a single frame based on current inputs and previous memory.
|
|
1343
1325
|
|
|
@@ -1351,6 +1333,8 @@ class SAM2VideoPredictor(SAM2Predictor):
|
|
|
1351
1333
|
reverse (bool): Indicates if the tracking should be performed in reverse order.
|
|
1352
1334
|
run_mem_encoder (bool): Indicates if the memory encoder should be executed.
|
|
1353
1335
|
prev_sam_mask_logits (torch.Tensor | None): Previous mask logits for the current object.
|
|
1336
|
+
inference_state (dict[str, Any], optional): The current inference state. If None, uses the instance's
|
|
1337
|
+
inference state.
|
|
1354
1338
|
|
|
1355
1339
|
Returns:
|
|
1356
1340
|
(dict): A dictionary containing the output of the tracking step, including updated features and predictions.
|
|
@@ -1364,9 +1348,10 @@ class SAM2VideoPredictor(SAM2Predictor):
|
|
|
1364
1348
|
- The `maskmem_pos_enc` is assumed to be constant across frames, hence only one copy is stored.
|
|
1365
1349
|
- The `fill_holes_in_mask_scores` function is commented out and currently unsupported due to CUDA extension requirements.
|
|
1366
1350
|
"""
|
|
1351
|
+
inference_state = inference_state or self.inference_state
|
|
1367
1352
|
# Retrieve correct image features
|
|
1368
1353
|
current_vision_feats, current_vision_pos_embeds, feat_sizes = self.get_im_features(
|
|
1369
|
-
|
|
1354
|
+
inference_state["im"], batch_size
|
|
1370
1355
|
)
|
|
1371
1356
|
|
|
1372
1357
|
# point and mask should not appear as input simultaneously on the same frame
|
|
@@ -1380,7 +1365,7 @@ class SAM2VideoPredictor(SAM2Predictor):
|
|
|
1380
1365
|
point_inputs=point_inputs,
|
|
1381
1366
|
mask_inputs=mask_inputs,
|
|
1382
1367
|
output_dict=output_dict,
|
|
1383
|
-
num_frames=
|
|
1368
|
+
num_frames=inference_state["num_frames"],
|
|
1384
1369
|
track_in_reverse=reverse,
|
|
1385
1370
|
run_mem_encoder=run_mem_encoder,
|
|
1386
1371
|
prev_sam_mask_logits=prev_sam_mask_logits,
|
|
@@ -1398,10 +1383,10 @@ class SAM2VideoPredictor(SAM2Predictor):
|
|
|
1398
1383
|
# pred_masks = fill_holes_in_mask_scores(pred_masks, self.fill_hole_area)
|
|
1399
1384
|
|
|
1400
1385
|
# "maskmem_pos_enc" is the same across frames, so we only need to store one copy of it
|
|
1401
|
-
current_out["maskmem_pos_enc"] = self._get_maskmem_pos_enc(current_out["maskmem_pos_enc"])
|
|
1386
|
+
current_out["maskmem_pos_enc"] = self._get_maskmem_pos_enc(current_out["maskmem_pos_enc"], inference_state)
|
|
1402
1387
|
return current_out
|
|
1403
1388
|
|
|
1404
|
-
def _get_maskmem_pos_enc(self, out_maskmem_pos_enc):
|
|
1389
|
+
def _get_maskmem_pos_enc(self, out_maskmem_pos_enc, inference_state: dict[str, Any] | None = None):
|
|
1405
1390
|
"""Cache and manage the positional encoding for mask memory across frames and objects.
|
|
1406
1391
|
|
|
1407
1392
|
This method optimizes storage by caching the positional encoding (`maskmem_pos_enc`) for mask memory, which is
|
|
@@ -1413,6 +1398,8 @@ class SAM2VideoPredictor(SAM2Predictor):
|
|
|
1413
1398
|
Args:
|
|
1414
1399
|
out_maskmem_pos_enc (list[torch.Tensor] | None): The positional encoding for mask memory. Should be a list
|
|
1415
1400
|
of tensors or None.
|
|
1401
|
+
inference_state (dict[str, Any], optional): The current inference state. If None, uses the instance's
|
|
1402
|
+
inference state.
|
|
1416
1403
|
|
|
1417
1404
|
Returns:
|
|
1418
1405
|
(list[torch.Tensor]): The positional encoding for mask memory, either cached or expanded.
|
|
@@ -1423,7 +1410,8 @@ class SAM2VideoPredictor(SAM2Predictor):
|
|
|
1423
1410
|
- The method checks if the positional encoding has already been cached in the session's constants.
|
|
1424
1411
|
- If the batch size is greater than one, the cached encoding is expanded to fit the batch size.
|
|
1425
1412
|
"""
|
|
1426
|
-
|
|
1413
|
+
inference_state = inference_state or self.inference_state
|
|
1414
|
+
model_constants = inference_state["constants"]
|
|
1427
1415
|
# "out_maskmem_pos_enc" should be either a list of tensors or None
|
|
1428
1416
|
if out_maskmem_pos_enc is not None:
|
|
1429
1417
|
if "maskmem_pos_enc" not in model_constants:
|
|
@@ -1444,6 +1432,7 @@ class SAM2VideoPredictor(SAM2Predictor):
|
|
|
1444
1432
|
frame_idx,
|
|
1445
1433
|
is_cond=False,
|
|
1446
1434
|
run_mem_encoder=False,
|
|
1435
|
+
inference_state: dict[str, Any] | None = None,
|
|
1447
1436
|
):
|
|
1448
1437
|
"""Consolidate per-object temporary outputs into a single output for all objects.
|
|
1449
1438
|
|
|
@@ -1457,6 +1446,8 @@ class SAM2VideoPredictor(SAM2Predictor):
|
|
|
1457
1446
|
is_cond (bool, optional): Indicates if the frame is considered a conditioning frame.
|
|
1458
1447
|
run_mem_encoder (bool, optional): Specifies whether to run the memory encoder after consolidating the
|
|
1459
1448
|
outputs.
|
|
1449
|
+
inference_state (dict[str, Any], optional): The current inference state. If None, uses the instance's
|
|
1450
|
+
inference state.
|
|
1460
1451
|
|
|
1461
1452
|
Returns:
|
|
1462
1453
|
(dict): A consolidated output dictionary containing the combined results for all objects.
|
|
@@ -1467,7 +1458,8 @@ class SAM2VideoPredictor(SAM2Predictor):
|
|
|
1467
1458
|
- If `run_mem_encoder` is True, it applies non-overlapping constraints and re-runs the memory encoder.
|
|
1468
1459
|
- The `maskmem_features` and `maskmem_pos_enc` are only populated when `run_mem_encoder` is True.
|
|
1469
1460
|
"""
|
|
1470
|
-
|
|
1461
|
+
inference_state = inference_state or self.inference_state
|
|
1462
|
+
batch_size = len(inference_state["obj_idx_to_id"])
|
|
1471
1463
|
storage_key = "cond_frame_outputs" if is_cond else "non_cond_frame_outputs"
|
|
1472
1464
|
|
|
1473
1465
|
# Initialize `consolidated_out`. Its "maskmem_features" and "maskmem_pos_enc"
|
|
@@ -1478,7 +1470,8 @@ class SAM2VideoPredictor(SAM2Predictor):
|
|
|
1478
1470
|
"maskmem_features": None,
|
|
1479
1471
|
"maskmem_pos_enc": None,
|
|
1480
1472
|
"pred_masks": torch.full(
|
|
1481
|
-
size=(batch_size, 1, self.imgsz[0] // 4, self.imgsz[1] // 4),
|
|
1473
|
+
# size=(batch_size, 1, self.imgsz[0] // 4, self.imgsz[1] // 4),
|
|
1474
|
+
size=(batch_size, 1, *self._bb_feat_sizes[0]),
|
|
1482
1475
|
fill_value=-1024.0,
|
|
1483
1476
|
dtype=self.torch_dtype,
|
|
1484
1477
|
device=self.device,
|
|
@@ -1499,8 +1492,8 @@ class SAM2VideoPredictor(SAM2Predictor):
|
|
|
1499
1492
|
),
|
|
1500
1493
|
}
|
|
1501
1494
|
for obj_idx in range(batch_size):
|
|
1502
|
-
obj_temp_output_dict =
|
|
1503
|
-
obj_output_dict =
|
|
1495
|
+
obj_temp_output_dict = inference_state["temp_output_dict_per_obj"][obj_idx]
|
|
1496
|
+
obj_output_dict = inference_state["output_dict_per_obj"][obj_idx]
|
|
1504
1497
|
out = (
|
|
1505
1498
|
obj_temp_output_dict[storage_key].get(frame_idx)
|
|
1506
1499
|
# If the object doesn't appear in "temp_output_dict_per_obj" on this frame,
|
|
@@ -1540,21 +1533,25 @@ class SAM2VideoPredictor(SAM2Predictor):
|
|
|
1540
1533
|
high_res_masks=high_res_masks,
|
|
1541
1534
|
is_mask_from_pts=True, # these frames are what the user interacted with
|
|
1542
1535
|
object_score_logits=consolidated_out["object_score_logits"],
|
|
1536
|
+
inference_state=inference_state,
|
|
1543
1537
|
)
|
|
1544
1538
|
|
|
1545
1539
|
return consolidated_out
|
|
1546
1540
|
|
|
1547
|
-
def _get_empty_mask_ptr(self, frame_idx):
|
|
1541
|
+
def _get_empty_mask_ptr(self, frame_idx, inference_state: dict[str, Any] | None = None):
|
|
1548
1542
|
"""Get a dummy object pointer based on an empty mask on the current frame.
|
|
1549
1543
|
|
|
1550
1544
|
Args:
|
|
1551
1545
|
frame_idx (int): The index of the current frame for which to generate the dummy object pointer.
|
|
1546
|
+
inference_state (dict[str, Any], optional): The current inference state. If None, uses the instance's
|
|
1547
|
+
inference state.
|
|
1552
1548
|
|
|
1553
1549
|
Returns:
|
|
1554
1550
|
(torch.Tensor): A tensor representing the dummy object pointer generated from the empty mask.
|
|
1555
1551
|
"""
|
|
1552
|
+
inference_state = inference_state or self.inference_state
|
|
1556
1553
|
# Retrieve correct image features
|
|
1557
|
-
current_vision_feats, current_vision_pos_embeds, feat_sizes = self.get_im_features(
|
|
1554
|
+
current_vision_feats, current_vision_pos_embeds, feat_sizes = self.get_im_features(inference_state["im"])
|
|
1558
1555
|
|
|
1559
1556
|
# Feed the empty mask and image feature above to get a dummy object pointer
|
|
1560
1557
|
current_out = self.model.track_step(
|
|
@@ -1567,14 +1564,21 @@ class SAM2VideoPredictor(SAM2Predictor):
|
|
|
1567
1564
|
# A dummy (empty) mask with a single object
|
|
1568
1565
|
mask_inputs=torch.zeros((1, 1, *self.imgsz), dtype=self.torch_dtype, device=self.device),
|
|
1569
1566
|
output_dict={},
|
|
1570
|
-
num_frames=
|
|
1567
|
+
num_frames=inference_state["num_frames"],
|
|
1571
1568
|
track_in_reverse=False,
|
|
1572
1569
|
run_mem_encoder=False,
|
|
1573
1570
|
prev_sam_mask_logits=None,
|
|
1574
1571
|
)
|
|
1575
1572
|
return current_out["obj_ptr"]
|
|
1576
1573
|
|
|
1577
|
-
def _run_memory_encoder(
|
|
1574
|
+
def _run_memory_encoder(
|
|
1575
|
+
self,
|
|
1576
|
+
batch_size,
|
|
1577
|
+
high_res_masks,
|
|
1578
|
+
object_score_logits,
|
|
1579
|
+
is_mask_from_pts,
|
|
1580
|
+
inference_state: dict[str, Any] | None = None,
|
|
1581
|
+
):
|
|
1578
1582
|
"""Run the memory encoder on masks.
|
|
1579
1583
|
|
|
1580
1584
|
This is usually after applying non-overlapping constraints to object scores. Since their scores changed, their
|
|
@@ -1585,13 +1589,16 @@ class SAM2VideoPredictor(SAM2Predictor):
|
|
|
1585
1589
|
high_res_masks (torch.Tensor): High-resolution masks for which to compute the memory.
|
|
1586
1590
|
object_score_logits (torch.Tensor): Logits representing the object scores.
|
|
1587
1591
|
is_mask_from_pts (bool): Indicates if the mask is derived from point interactions.
|
|
1592
|
+
inference_state (dict[str, Any], optional): The current inference state. If None, uses the instance's
|
|
1593
|
+
inference state.
|
|
1588
1594
|
|
|
1589
1595
|
Returns:
|
|
1590
1596
|
maskmem_features (torch.Tensor): The encoded mask features.
|
|
1591
1597
|
maskmem_pos_enc (torch.Tensor): The positional encoding.
|
|
1592
1598
|
"""
|
|
1599
|
+
inference_state = inference_state or self.inference_state
|
|
1593
1600
|
# Retrieve correct image features
|
|
1594
|
-
current_vision_feats, _, feat_sizes = self.get_im_features(
|
|
1601
|
+
current_vision_feats, _, feat_sizes = self.get_im_features(inference_state["im"], batch_size)
|
|
1595
1602
|
maskmem_features, maskmem_pos_enc = self.model._encode_new_memory(
|
|
1596
1603
|
current_vision_feats=current_vision_feats,
|
|
1597
1604
|
feat_sizes=feat_sizes,
|
|
@@ -1601,12 +1608,14 @@ class SAM2VideoPredictor(SAM2Predictor):
|
|
|
1601
1608
|
)
|
|
1602
1609
|
|
|
1603
1610
|
# "maskmem_pos_enc" is the same across frames, so we only need to store one copy of it
|
|
1604
|
-
maskmem_pos_enc = self._get_maskmem_pos_enc(maskmem_pos_enc)
|
|
1611
|
+
maskmem_pos_enc = self._get_maskmem_pos_enc(maskmem_pos_enc, inference_state)
|
|
1605
1612
|
return maskmem_features.to(
|
|
1606
1613
|
dtype=torch.float16, device=self.device, non_blocking=self.device.type == "cuda"
|
|
1607
1614
|
), maskmem_pos_enc
|
|
1608
1615
|
|
|
1609
|
-
def _add_output_per_object(
|
|
1616
|
+
def _add_output_per_object(
|
|
1617
|
+
self, frame_idx, current_out, storage_key, inference_state: dict[str, Any] | None = None
|
|
1618
|
+
):
|
|
1610
1619
|
"""Split a multi-object output into per-object output slices and add them into Output_Dict_Per_Obj.
|
|
1611
1620
|
|
|
1612
1621
|
The resulting slices share the same tensor storage.
|
|
@@ -1615,14 +1624,17 @@ class SAM2VideoPredictor(SAM2Predictor):
|
|
|
1615
1624
|
frame_idx (int): The index of the current frame.
|
|
1616
1625
|
current_out (dict): The current output dictionary containing multi-object outputs.
|
|
1617
1626
|
storage_key (str): The key used to store the output in the per-object output dictionary.
|
|
1627
|
+
inference_state (dict[str, Any], optional): The current inference state. If None, uses the instance's
|
|
1628
|
+
inference state.
|
|
1618
1629
|
"""
|
|
1630
|
+
inference_state = inference_state or self.inference_state
|
|
1619
1631
|
maskmem_features = current_out["maskmem_features"]
|
|
1620
1632
|
assert maskmem_features is None or isinstance(maskmem_features, torch.Tensor)
|
|
1621
1633
|
|
|
1622
1634
|
maskmem_pos_enc = current_out["maskmem_pos_enc"]
|
|
1623
1635
|
assert maskmem_pos_enc is None or isinstance(maskmem_pos_enc, list)
|
|
1624
1636
|
|
|
1625
|
-
for obj_idx, obj_output_dict in
|
|
1637
|
+
for obj_idx, obj_output_dict in inference_state["output_dict_per_obj"].items():
|
|
1626
1638
|
obj_slice = slice(obj_idx, obj_idx + 1)
|
|
1627
1639
|
obj_out = {
|
|
1628
1640
|
"maskmem_features": None,
|
|
@@ -1636,7 +1648,7 @@ class SAM2VideoPredictor(SAM2Predictor):
|
|
|
1636
1648
|
obj_out["maskmem_pos_enc"] = [x[obj_slice] for x in maskmem_pos_enc]
|
|
1637
1649
|
obj_output_dict[storage_key][frame_idx] = obj_out
|
|
1638
1650
|
|
|
1639
|
-
def _clear_non_cond_mem_around_input(self, frame_idx):
|
|
1651
|
+
def _clear_non_cond_mem_around_input(self, frame_idx, inference_state: dict[str, Any] | None = None):
|
|
1640
1652
|
"""Remove the non-conditioning memory around the input frame.
|
|
1641
1653
|
|
|
1642
1654
|
When users provide correction clicks, the surrounding frames' non-conditioning memories can still contain
|
|
@@ -1646,15 +1658,179 @@ class SAM2VideoPredictor(SAM2Predictor):
|
|
|
1646
1658
|
|
|
1647
1659
|
Args:
|
|
1648
1660
|
frame_idx (int): The index of the current frame where user interaction occurred.
|
|
1661
|
+
inference_state (dict[str, Any], optional): The current inference state. If None, uses the instance's
|
|
1662
|
+
inference state.
|
|
1649
1663
|
"""
|
|
1664
|
+
inference_state = inference_state or self.inference_state
|
|
1650
1665
|
r = self.model.memory_temporal_stride_for_eval
|
|
1651
1666
|
frame_idx_begin = frame_idx - r * self.model.num_maskmem
|
|
1652
1667
|
frame_idx_end = frame_idx + r * self.model.num_maskmem
|
|
1653
1668
|
for t in range(frame_idx_begin, frame_idx_end + 1):
|
|
1654
|
-
|
|
1655
|
-
for obj_output_dict in
|
|
1669
|
+
inference_state["output_dict"]["non_cond_frame_outputs"].pop(t, None)
|
|
1670
|
+
for obj_output_dict in inference_state["output_dict_per_obj"].values():
|
|
1656
1671
|
obj_output_dict["non_cond_frame_outputs"].pop(t, None)
|
|
1657
1672
|
|
|
1673
|
+
@smart_inference_mode()
|
|
1674
|
+
def remove_object(self, inference_state, obj_id, strict=False):
|
|
1675
|
+
"""Remove an object id from the tracking state. If strict is True, we check whether the object id actually
|
|
1676
|
+
exists and raise an error if it doesn't exist.
|
|
1677
|
+
"""
|
|
1678
|
+
old_obj_idx_to_rm = inference_state["obj_id_to_idx"].get(obj_id, None)
|
|
1679
|
+
# Check whether this object_id to remove actually exists and possibly raise an error.
|
|
1680
|
+
if old_obj_idx_to_rm is None:
|
|
1681
|
+
if not strict:
|
|
1682
|
+
return inference_state["obj_ids"]
|
|
1683
|
+
raise RuntimeError(
|
|
1684
|
+
f"Cannot remove object id {obj_id} as it doesn't exist. "
|
|
1685
|
+
f"All existing object ids: {inference_state['obj_ids']}."
|
|
1686
|
+
)
|
|
1687
|
+
|
|
1688
|
+
# If this is the only remaining object id, we simply reset the state.
|
|
1689
|
+
if len(inference_state["obj_id_to_idx"]) == 1:
|
|
1690
|
+
self.clear_all_points_in_video(inference_state)
|
|
1691
|
+
return inference_state["obj_ids"]
|
|
1692
|
+
|
|
1693
|
+
# There are still remaining objects after removing this object id. In this case,
|
|
1694
|
+
# we need to delete the object storage from inference state tensors.
|
|
1695
|
+
# Step 0: clear the input on those frames where this object id has point or mask input
|
|
1696
|
+
# (note that this step is required as it might downgrade conditioning frames to
|
|
1697
|
+
# non-conditioning ones)
|
|
1698
|
+
obj_input_frames_inds = set()
|
|
1699
|
+
obj_input_frames_inds.update(inference_state["point_inputs_per_obj"][old_obj_idx_to_rm])
|
|
1700
|
+
obj_input_frames_inds.update(inference_state["mask_inputs_per_obj"][old_obj_idx_to_rm])
|
|
1701
|
+
for frame_idx in obj_input_frames_inds:
|
|
1702
|
+
self.clear_all_points_in_frame(inference_state, frame_idx, obj_id)
|
|
1703
|
+
|
|
1704
|
+
# Step 1: Update the object id mapping (note that it must be done after Step 0,
|
|
1705
|
+
# since Step 0 still requires the old object id mappings in inference_state)
|
|
1706
|
+
old_obj_ids = inference_state["obj_ids"]
|
|
1707
|
+
old_obj_inds = list(range(len(old_obj_ids)))
|
|
1708
|
+
remain_old_obj_inds = old_obj_inds.copy()
|
|
1709
|
+
remain_old_obj_inds.remove(old_obj_idx_to_rm)
|
|
1710
|
+
new_obj_ids = [old_obj_ids[old_idx] for old_idx in remain_old_obj_inds]
|
|
1711
|
+
new_obj_inds = list(range(len(new_obj_ids)))
|
|
1712
|
+
# build new mappings
|
|
1713
|
+
old_idx_to_new_idx = dict(zip(remain_old_obj_inds, new_obj_inds))
|
|
1714
|
+
inference_state["obj_id_to_idx"] = dict(zip(new_obj_ids, new_obj_inds))
|
|
1715
|
+
inference_state["obj_idx_to_id"] = dict(zip(new_obj_inds, new_obj_ids))
|
|
1716
|
+
inference_state["obj_ids"] = new_obj_ids
|
|
1717
|
+
|
|
1718
|
+
# Step 2: For per-object tensor storage, we shift their obj_idx in the dict keys.
|
|
1719
|
+
# (note that "consolidated_frame_inds" doesn't need to be updated in this step as
|
|
1720
|
+
# it's already handled in Step 0)
|
|
1721
|
+
def _map_keys(container):
|
|
1722
|
+
new_kvs = []
|
|
1723
|
+
for k in old_obj_inds:
|
|
1724
|
+
v = container.pop(k)
|
|
1725
|
+
if k in old_idx_to_new_idx:
|
|
1726
|
+
new_kvs.append((old_idx_to_new_idx[k], v))
|
|
1727
|
+
container.update(new_kvs)
|
|
1728
|
+
|
|
1729
|
+
_map_keys(inference_state["point_inputs_per_obj"])
|
|
1730
|
+
_map_keys(inference_state["mask_inputs_per_obj"])
|
|
1731
|
+
_map_keys(inference_state["output_dict_per_obj"])
|
|
1732
|
+
_map_keys(inference_state["temp_output_dict_per_obj"])
|
|
1733
|
+
|
|
1734
|
+
# Step 3: For packed tensor storage, we index the remaining ids and rebuild the per-object slices.
|
|
1735
|
+
def _slice_state(output_dict, storage_key):
|
|
1736
|
+
for frame_idx, out in output_dict[storage_key].items():
|
|
1737
|
+
out["maskmem_features"] = out["maskmem_features"][remain_old_obj_inds]
|
|
1738
|
+
out["maskmem_pos_enc"] = [x[remain_old_obj_inds] for x in out["maskmem_pos_enc"]]
|
|
1739
|
+
# "maskmem_pos_enc" is the same across frames, so we only need to store one copy of it
|
|
1740
|
+
out["maskmem_pos_enc"] = self._get_maskmem_pos_enc(out["maskmem_pos_enc"], inference_state)
|
|
1741
|
+
out["pred_masks"] = out["pred_masks"][remain_old_obj_inds]
|
|
1742
|
+
out["obj_ptr"] = out["obj_ptr"][remain_old_obj_inds]
|
|
1743
|
+
out["object_score_logits"] = out["object_score_logits"][remain_old_obj_inds]
|
|
1744
|
+
# also update the per-object slices
|
|
1745
|
+
self._add_output_per_object(frame_idx, out, storage_key, inference_state=inference_state)
|
|
1746
|
+
|
|
1747
|
+
_slice_state(inference_state["output_dict"], "cond_frame_outputs")
|
|
1748
|
+
_slice_state(inference_state["output_dict"], "non_cond_frame_outputs")
|
|
1749
|
+
|
|
1750
|
+
return inference_state["obj_ids"]
|
|
1751
|
+
|
|
1752
|
+
@smart_inference_mode()
|
|
1753
|
+
def clear_all_points_in_frame(self, inference_state, frame_idx, obj_id):
|
|
1754
|
+
"""Remove all input points or mask in a specific frame for a given object."""
|
|
1755
|
+
obj_idx = self._obj_id_to_idx(obj_id, inference_state)
|
|
1756
|
+
|
|
1757
|
+
# Clear the conditioning information on the given frame
|
|
1758
|
+
inference_state["point_inputs_per_obj"][obj_idx].pop(frame_idx, None)
|
|
1759
|
+
inference_state["mask_inputs_per_obj"][obj_idx].pop(frame_idx, None)
|
|
1760
|
+
|
|
1761
|
+
temp_output_dict_per_obj = inference_state["temp_output_dict_per_obj"]
|
|
1762
|
+
temp_output_dict_per_obj[obj_idx]["cond_frame_outputs"].pop(frame_idx, None)
|
|
1763
|
+
temp_output_dict_per_obj[obj_idx]["non_cond_frame_outputs"].pop(frame_idx, None)
|
|
1764
|
+
|
|
1765
|
+
# Check and see if there are still any inputs left on this frame
|
|
1766
|
+
batch_size = len(inference_state["obj_idx_to_id"])
|
|
1767
|
+
frame_has_input = False
|
|
1768
|
+
for obj_idx2 in range(batch_size):
|
|
1769
|
+
if frame_idx in inference_state["point_inputs_per_obj"][obj_idx2]:
|
|
1770
|
+
frame_has_input = True
|
|
1771
|
+
break
|
|
1772
|
+
if frame_idx in inference_state["mask_inputs_per_obj"][obj_idx2]:
|
|
1773
|
+
frame_has_input = True
|
|
1774
|
+
break
|
|
1775
|
+
|
|
1776
|
+
# If this frame has no remaining inputs for any objects, we further clear its
|
|
1777
|
+
# conditioning frame status
|
|
1778
|
+
if not frame_has_input:
|
|
1779
|
+
output_dict = inference_state["output_dict"]
|
|
1780
|
+
consolidated_frame_inds = inference_state["consolidated_frame_inds"]
|
|
1781
|
+
consolidated_frame_inds["cond_frame_outputs"].discard(frame_idx)
|
|
1782
|
+
consolidated_frame_inds["non_cond_frame_outputs"].discard(frame_idx)
|
|
1783
|
+
# Remove the frame's conditioning output (possibly downgrading it to non-conditioning)
|
|
1784
|
+
out = output_dict["cond_frame_outputs"].pop(frame_idx, None)
|
|
1785
|
+
if out is not None:
|
|
1786
|
+
# The frame is not a conditioning frame anymore since it's not receiving inputs,
|
|
1787
|
+
# so we "downgrade" its output (if exists) to a non-conditioning frame output.
|
|
1788
|
+
output_dict["non_cond_frame_outputs"][frame_idx] = out
|
|
1789
|
+
inference_state["frames_already_tracked"].pop(frame_idx, None)
|
|
1790
|
+
# Similarly, do it for the sliced output on each object.
|
|
1791
|
+
for obj_idx2 in range(batch_size):
|
|
1792
|
+
obj_output_dict = inference_state["output_dict_per_obj"][obj_idx2]
|
|
1793
|
+
obj_out = obj_output_dict["cond_frame_outputs"].pop(frame_idx, None)
|
|
1794
|
+
if obj_out is not None:
|
|
1795
|
+
obj_output_dict["non_cond_frame_outputs"][frame_idx] = obj_out
|
|
1796
|
+
|
|
1797
|
+
# If all the conditioning frames have been removed, we also clear the tracking outputs
|
|
1798
|
+
if len(output_dict["cond_frame_outputs"]) == 0:
|
|
1799
|
+
self._reset_tracking_results(inference_state)
|
|
1800
|
+
|
|
1801
|
+
@smart_inference_mode()
|
|
1802
|
+
def clear_all_points_in_video(self, inference_state):
|
|
1803
|
+
"""Remove all input points or mask in all frames throughout the video."""
|
|
1804
|
+
self._reset_tracking_results(inference_state)
|
|
1805
|
+
# Remove all object ids
|
|
1806
|
+
inference_state["obj_id_to_idx"].clear()
|
|
1807
|
+
inference_state["obj_idx_to_id"].clear()
|
|
1808
|
+
inference_state["obj_ids"].clear()
|
|
1809
|
+
inference_state["point_inputs_per_obj"].clear()
|
|
1810
|
+
inference_state["mask_inputs_per_obj"].clear()
|
|
1811
|
+
inference_state["output_dict_per_obj"].clear()
|
|
1812
|
+
inference_state["temp_output_dict_per_obj"].clear()
|
|
1813
|
+
|
|
1814
|
+
def _reset_tracking_results(self, inference_state):
|
|
1815
|
+
"""Reset all tracking inputs and results across the videos."""
|
|
1816
|
+
for v in inference_state["point_inputs_per_obj"].values():
|
|
1817
|
+
v.clear()
|
|
1818
|
+
for v in inference_state["mask_inputs_per_obj"].values():
|
|
1819
|
+
v.clear()
|
|
1820
|
+
for v in inference_state["output_dict_per_obj"].values():
|
|
1821
|
+
v["cond_frame_outputs"].clear()
|
|
1822
|
+
v["non_cond_frame_outputs"].clear()
|
|
1823
|
+
for v in inference_state["temp_output_dict_per_obj"].values():
|
|
1824
|
+
v["cond_frame_outputs"].clear()
|
|
1825
|
+
v["non_cond_frame_outputs"].clear()
|
|
1826
|
+
inference_state["output_dict"]["cond_frame_outputs"].clear()
|
|
1827
|
+
inference_state["output_dict"]["non_cond_frame_outputs"].clear()
|
|
1828
|
+
inference_state["consolidated_frame_inds"]["cond_frame_outputs"].clear()
|
|
1829
|
+
inference_state["consolidated_frame_inds"]["non_cond_frame_outputs"].clear()
|
|
1830
|
+
inference_state["tracking_has_started"] = False
|
|
1831
|
+
inference_state["frames_already_tracked"].clear()
|
|
1832
|
+
inference_state["first_ann_frame_idx"] = None
|
|
1833
|
+
|
|
1658
1834
|
|
|
1659
1835
|
class SAM2DynamicInteractivePredictor(SAM2Predictor):
|
|
1660
1836
|
"""SAM2DynamicInteractivePredictor extends SAM2Predictor to support dynamic interactions with video frames or a
|
|
@@ -1986,3 +2162,1785 @@ class SAM2DynamicInteractivePredictor(SAM2Predictor):
|
|
|
1986
2162
|
"obj_ptr": obj_ptr,
|
|
1987
2163
|
"object_score_logits": object_score_logits,
|
|
1988
2164
|
}
|
|
2165
|
+
|
|
2166
|
+
|
|
2167
|
+
class SAM3Predictor(SAM2Predictor):
|
|
2168
|
+
"""Segment Anything Model 3 (SAM3) Interactive Predictor for image segmentation tasks."""
|
|
2169
|
+
|
|
2170
|
+
_bb_feat_sizes = [
|
|
2171
|
+
(288, 288),
|
|
2172
|
+
(144, 144),
|
|
2173
|
+
(72, 72),
|
|
2174
|
+
]
|
|
2175
|
+
stride = 14
|
|
2176
|
+
|
|
2177
|
+
def setup_model(self, model=None, verbose=True):
|
|
2178
|
+
"""Setup the SAM3 model with appropriate mean and standard deviation for preprocessing."""
|
|
2179
|
+
super().setup_model(model, verbose)
|
|
2180
|
+
# update mean and std
|
|
2181
|
+
self.mean = torch.tensor([127.5, 127.5, 127.5]).view(-1, 1, 1).to(self.device)
|
|
2182
|
+
self.std = torch.tensor([127.5, 127.5, 127.5]).view(-1, 1, 1).to(self.device)
|
|
2183
|
+
|
|
2184
|
+
def get_model(self):
|
|
2185
|
+
"""Retrieve and initialize the Segment Anything Model 2 (SAM2) for image segmentation tasks."""
|
|
2186
|
+
from .build_sam3 import build_interactive_sam3 # slow import
|
|
2187
|
+
|
|
2188
|
+
return build_interactive_sam3(self.args.model, compile=self.args.compile)
|
|
2189
|
+
|
|
2190
|
+
|
|
2191
|
+
class SAM3SemanticPredictor(SAM3Predictor):
|
|
2192
|
+
"""Segment Anything Model 3 (SAM3) Predictor for image segmentation tasks."""
|
|
2193
|
+
|
|
2194
|
+
def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None, bpe_path=None):
|
|
2195
|
+
"""Initialize the SAM3SemanticPredictor with configuration and optional overrides."""
|
|
2196
|
+
super().__init__(cfg, overrides, _callbacks)
|
|
2197
|
+
self.bpe_path = bpe_path
|
|
2198
|
+
|
|
2199
|
+
def get_model(self):
|
|
2200
|
+
"""Retrieve and initialize the Segment Anything Model 3 (SAM3) for image segmentation tasks."""
|
|
2201
|
+
from .build_sam3 import build_sam3_image_model # slow import
|
|
2202
|
+
|
|
2203
|
+
return build_sam3_image_model(self.args.model, bpe_path=self.bpe_path, compile=self.args.compile)
|
|
2204
|
+
|
|
2205
|
+
@smart_inference_mode()
|
|
2206
|
+
def get_im_features(self, im):
|
|
2207
|
+
"""Extract image features using the model's backbone."""
|
|
2208
|
+
return self.model.backbone.forward_image(im)
|
|
2209
|
+
|
|
2210
|
+
def pre_transform(self, im):
|
|
2211
|
+
"""Perform initial transformations on the input image for preprocessing.
|
|
2212
|
+
|
|
2213
|
+
This method applies transformations such as resizing to prepare the image for further preprocessing. Currently,
|
|
2214
|
+
batched inference is not supported; hence the list length should be 1.
|
|
2215
|
+
|
|
2216
|
+
Args:
|
|
2217
|
+
im (list[np.ndarray]): List containing a single image in HWC numpy array format.
|
|
2218
|
+
|
|
2219
|
+
Returns:
|
|
2220
|
+
(list[np.ndarray]): List containing the transformed image.
|
|
2221
|
+
|
|
2222
|
+
Raises:
|
|
2223
|
+
AssertionError: If the input list contains more than one image.
|
|
2224
|
+
|
|
2225
|
+
Examples:
|
|
2226
|
+
>>> predictor = Predictor()
|
|
2227
|
+
>>> image = np.random.rand(480, 640, 3) # Single HWC image
|
|
2228
|
+
>>> transformed = predictor.pre_transform([image])
|
|
2229
|
+
>>> print(len(transformed))
|
|
2230
|
+
1
|
|
2231
|
+
"""
|
|
2232
|
+
assert len(im) == 1, "SAM model does not currently support batched inference"
|
|
2233
|
+
letterbox = LetterBox(self.imgsz, auto=False, center=False, scale_fill=True) # hardcode here for sam3
|
|
2234
|
+
return [letterbox(image=x) for x in im]
|
|
2235
|
+
|
|
2236
|
+
def _prepare_geometric_prompts(self, src_shape, bboxes=None, labels=None):
|
|
2237
|
+
"""Prepare prompts by normalizing bounding boxes and points to the destination shape."""
|
|
2238
|
+
if bboxes is not None:
|
|
2239
|
+
bboxes = torch.as_tensor(bboxes, dtype=self.torch_dtype, device=self.device)
|
|
2240
|
+
bboxes = bboxes[None] if bboxes.ndim == 1 else bboxes
|
|
2241
|
+
# needs xywh as input
|
|
2242
|
+
bboxes = ops.xyxy2xywh(bboxes)
|
|
2243
|
+
bboxes[:, 0::2] /= src_shape[1]
|
|
2244
|
+
bboxes[:, 1::2] /= src_shape[0]
|
|
2245
|
+
# Assuming labels are all positive if users don't pass labels.
|
|
2246
|
+
if labels is None:
|
|
2247
|
+
labels = np.ones(bboxes.shape[:-1])
|
|
2248
|
+
labels = torch.as_tensor(labels, dtype=torch.int32, device=self.device)
|
|
2249
|
+
assert bboxes.shape[-2] == labels.shape[-1], (
|
|
2250
|
+
f"Number of points {bboxes.shape[-2]} should match number of labels {labels.shape[-1]}."
|
|
2251
|
+
)
|
|
2252
|
+
bboxes = bboxes.view(-1, 1, 4) # (N, 1, 4)
|
|
2253
|
+
labels = labels.view(-1, 1) # (N, 1)
|
|
2254
|
+
return bboxes, labels
|
|
2255
|
+
|
|
2256
|
+
def _inference_features(self, features, bboxes=None, labels=None, text: list[str] | None = None):
|
|
2257
|
+
"""Run inference on the extracted features with optional bounding boxes and labels."""
|
|
2258
|
+
# NOTE: priority: bboxes > text > pre-set classes
|
|
2259
|
+
nc = 1 if bboxes is not None else len(text) if text is not None else len(self.model.names)
|
|
2260
|
+
geometric_prompt = self._get_dummy_prompt(nc)
|
|
2261
|
+
if bboxes is not None:
|
|
2262
|
+
for i in range(len(bboxes)):
|
|
2263
|
+
geometric_prompt.append_boxes(bboxes[[i]], labels[[i]])
|
|
2264
|
+
if text is None:
|
|
2265
|
+
text = ["visual"] # bboxes needs this `visual` text prompt if no text passed
|
|
2266
|
+
if text is not None and self.model.names != text:
|
|
2267
|
+
self.model.set_classes(text=text)
|
|
2268
|
+
outputs = self.model.forward_grounding(
|
|
2269
|
+
backbone_out=features,
|
|
2270
|
+
text_ids=torch.arange(nc, device=self.device, dtype=torch.long),
|
|
2271
|
+
geometric_prompt=geometric_prompt,
|
|
2272
|
+
)
|
|
2273
|
+
return outputs
|
|
2274
|
+
|
|
2275
|
+
def postprocess(self, preds, img, orig_imgs):
|
|
2276
|
+
"""Post-process the predictions to apply non-overlapping constraints if required."""
|
|
2277
|
+
pred_boxes = preds["pred_boxes"] # (nc, num_query, 4)
|
|
2278
|
+
pred_logits = preds["pred_logits"]
|
|
2279
|
+
pred_masks = preds["pred_masks"]
|
|
2280
|
+
pred_scores = pred_logits.sigmoid()
|
|
2281
|
+
presence_score = preds["presence_logit_dec"].sigmoid().unsqueeze(1)
|
|
2282
|
+
pred_scores = (pred_scores * presence_score).squeeze(-1)
|
|
2283
|
+
pred_cls = torch.tensor(
|
|
2284
|
+
list(range(pred_scores.shape[0])),
|
|
2285
|
+
dtype=pred_scores.dtype,
|
|
2286
|
+
device=pred_scores.device,
|
|
2287
|
+
)[:, None].expand_as(pred_scores)
|
|
2288
|
+
pred_boxes = torch.cat([pred_boxes, pred_scores[..., None], pred_cls[..., None]], dim=-1)
|
|
2289
|
+
|
|
2290
|
+
keep = pred_scores > self.args.conf
|
|
2291
|
+
pred_masks = pred_masks[keep]
|
|
2292
|
+
pred_boxes = pred_boxes[keep]
|
|
2293
|
+
pred_boxes[:, :4] = ops.xywh2xyxy(pred_boxes[:, :4])
|
|
2294
|
+
|
|
2295
|
+
names = getattr(self.model, "names", [str(i) for i in range(pred_scores.shape[0])])
|
|
2296
|
+
if not isinstance(orig_imgs, list): # input images are a torch.Tensor, not a list
|
|
2297
|
+
orig_imgs = ops.convert_torch2numpy_batch(orig_imgs)
|
|
2298
|
+
results = []
|
|
2299
|
+
for masks, boxes, orig_img, img_path in zip([pred_masks], [pred_boxes], orig_imgs, self.batch[0]):
|
|
2300
|
+
if masks.shape[0] == 0:
|
|
2301
|
+
masks, boxes = None, torch.zeros((0, 6), device=pred_masks.device)
|
|
2302
|
+
else:
|
|
2303
|
+
masks = F.interpolate(masks.float()[None], orig_img.shape[:2], mode="bilinear")[0] > 0.5
|
|
2304
|
+
boxes[..., [0, 2]] *= orig_img.shape[1]
|
|
2305
|
+
boxes[..., [1, 3]] *= orig_img.shape[0]
|
|
2306
|
+
results.append(Results(orig_img, path=img_path, names=names, masks=masks, boxes=boxes))
|
|
2307
|
+
return results
|
|
2308
|
+
|
|
2309
|
+
def inference(self, im, bboxes=None, labels=None, text: list[str] | None = None, *args, **kwargs):
|
|
2310
|
+
"""Perform inference on a single image with optional prompts."""
|
|
2311
|
+
bboxes = self.prompts.pop("bboxes", bboxes)
|
|
2312
|
+
labels = self.prompts.pop("labels", labels)
|
|
2313
|
+
text = self.prompts.pop("text", text)
|
|
2314
|
+
features = self.get_im_features(im) if self.features is None else self.features
|
|
2315
|
+
prompts = self._prepare_geometric_prompts(self.batch[1][0].shape[:2], bboxes, labels)
|
|
2316
|
+
return self._inference_features(features, *prompts, text=text)
|
|
2317
|
+
|
|
2318
|
+
@smart_inference_mode()
|
|
2319
|
+
def inference_features(
|
|
2320
|
+
self,
|
|
2321
|
+
features,
|
|
2322
|
+
src_shape,
|
|
2323
|
+
bboxes=None,
|
|
2324
|
+
labels=None,
|
|
2325
|
+
text: list[str] | None = None,
|
|
2326
|
+
):
|
|
2327
|
+
"""Perform prompts preprocessing and inference on provided image features using the SAM model.
|
|
2328
|
+
|
|
2329
|
+
Args:
|
|
2330
|
+
features (dict[str, Any]): Extracted image features from the SAM3 model image encoder.
|
|
2331
|
+
src_shape (tuple[int, int]): The source shape (height, width) of the input image.
|
|
2332
|
+
bboxes (np.ndarray | list[list[float]] | None): Bounding boxes in xyxy format with shape (N, 4). pixels.
|
|
2333
|
+
labels (np.ndarray | list[int] | None): Point prompt labels with shape (N, ).
|
|
2334
|
+
text (list[str] | None): List of text prompts corresponding to the classes.
|
|
2335
|
+
|
|
2336
|
+
Returns:
|
|
2337
|
+
pred_masks (torch.Tensor): The output masks in shape (C, H, W), where C is the number of generated masks.
|
|
2338
|
+
pred_bboxes (torch.Tensor): Bounding boxes for each mask with shape (N, 6), where N is the number of boxes.
|
|
2339
|
+
Each box is in xyxy format with additional columns for score and class.
|
|
2340
|
+
|
|
2341
|
+
Notes:
|
|
2342
|
+
- The input features is a torch.Tensor of shape (B, C, H, W) if performing on SAM, or a dict[str, Any] if performing on SAM2.
|
|
2343
|
+
"""
|
|
2344
|
+
prompts = self._prepare_geometric_prompts(src_shape[:2], bboxes, labels)
|
|
2345
|
+
preds = self._inference_features(features, *prompts, text=text)
|
|
2346
|
+
pred_boxes = preds["pred_boxes"] # (nc, num_query, 4)
|
|
2347
|
+
pred_logits = preds["pred_logits"]
|
|
2348
|
+
pred_masks = preds["pred_masks"]
|
|
2349
|
+
pred_scores = pred_logits.sigmoid()
|
|
2350
|
+
presence_score = preds["presence_logit_dec"].sigmoid().unsqueeze(1)
|
|
2351
|
+
pred_scores = (pred_scores * presence_score).squeeze(-1)
|
|
2352
|
+
pred_cls = torch.tensor(
|
|
2353
|
+
list(range(pred_scores.shape[0])),
|
|
2354
|
+
dtype=pred_scores.dtype,
|
|
2355
|
+
device=pred_scores.device,
|
|
2356
|
+
)[:, None].expand_as(pred_scores)
|
|
2357
|
+
pred_boxes = torch.cat([pred_boxes, pred_scores[..., None], pred_cls[..., None]], dim=-1)
|
|
2358
|
+
|
|
2359
|
+
keep = pred_scores > self.args.conf
|
|
2360
|
+
pred_masks = pred_masks[keep]
|
|
2361
|
+
pred_boxes = pred_boxes[keep]
|
|
2362
|
+
pred_boxes[:, :4] = ops.xywh2xyxy(pred_boxes[:, :4])
|
|
2363
|
+
|
|
2364
|
+
if pred_masks.shape[0] == 0:
|
|
2365
|
+
pred_masks, pred_boxes = None, torch.zeros((0, 6), device=pred_masks.device)
|
|
2366
|
+
else:
|
|
2367
|
+
pred_masks = F.interpolate(pred_masks.float()[None], src_shape[:2], mode="bilinear")[0] > 0.5
|
|
2368
|
+
pred_boxes[..., 0] *= src_shape[1]
|
|
2369
|
+
pred_boxes[..., 1] *= src_shape[0]
|
|
2370
|
+
pred_boxes[..., 2] *= src_shape[1]
|
|
2371
|
+
pred_boxes[..., 3] *= src_shape[0]
|
|
2372
|
+
return pred_masks, pred_boxes
|
|
2373
|
+
|
|
2374
|
+
def reset_prompts(self):
|
|
2375
|
+
"""Reset the prompts for the predictor."""
|
|
2376
|
+
self.prompts = {}
|
|
2377
|
+
self.model.text_embeddings = {}
|
|
2378
|
+
|
|
2379
|
+
def _get_dummy_prompt(self, num_prompts=1):
|
|
2380
|
+
"""Get a dummy geometric prompt with zero boxes."""
|
|
2381
|
+
geometric_prompt = Prompt(
|
|
2382
|
+
box_embeddings=torch.zeros(0, num_prompts, 4, device=self.device),
|
|
2383
|
+
box_mask=torch.zeros(num_prompts, 0, device=self.device, dtype=torch.bool),
|
|
2384
|
+
)
|
|
2385
|
+
return geometric_prompt
|
|
2386
|
+
|
|
2387
|
+
|
|
2388
|
+
class SAM3VideoPredictor(SAM2VideoPredictor, SAM3Predictor):
|
|
2389
|
+
"""Segment Anything Model 3 (SAM3) Video Predictor for video segmentation tasks."""
|
|
2390
|
+
|
|
2391
|
+
def propagate_in_video(self, inference_state, frame_idx):
|
|
2392
|
+
"""Perform image segmentation inference based on the given input cues, using the currently loaded image. This
|
|
2393
|
+
method leverages SAM's (Segment Anything Model) architecture consisting of image encoder, prompt
|
|
2394
|
+
encoder, and mask decoder for real-time and promptable segmentation tasks.
|
|
2395
|
+
|
|
2396
|
+
Args:
|
|
2397
|
+
inference_state (dict): The current state of inference, including input cues and previous outputs.
|
|
2398
|
+
frame_idx (int): The index of the current frame in the video sequence.
|
|
2399
|
+
"""
|
|
2400
|
+
frame = frame_idx
|
|
2401
|
+
output_dict = inference_state["output_dict"]
|
|
2402
|
+
obj_ids = inference_state["obj_ids"]
|
|
2403
|
+
consolidated_frame_inds = inference_state["consolidated_frame_inds"]
|
|
2404
|
+
batch_size = len(inference_state["obj_idx_to_id"])
|
|
2405
|
+
if len(output_dict["cond_frame_outputs"]) == 0:
|
|
2406
|
+
raise RuntimeError("No points are provided; please add points first")
|
|
2407
|
+
|
|
2408
|
+
if frame in consolidated_frame_inds["cond_frame_outputs"]:
|
|
2409
|
+
storage_key = "cond_frame_outputs"
|
|
2410
|
+
current_out = output_dict[storage_key][frame]
|
|
2411
|
+
if self.clear_non_cond_mem_around_input and (self.clear_non_cond_mem_for_multi_obj or batch_size <= 1):
|
|
2412
|
+
# clear non-conditioning memory of the surrounding frames
|
|
2413
|
+
self._clear_non_cond_mem_around_input(frame)
|
|
2414
|
+
elif frame in consolidated_frame_inds["non_cond_frame_outputs"]:
|
|
2415
|
+
storage_key = "non_cond_frame_outputs"
|
|
2416
|
+
current_out = output_dict[storage_key][frame]
|
|
2417
|
+
else:
|
|
2418
|
+
storage_key = "non_cond_frame_outputs"
|
|
2419
|
+
current_out = self._run_single_frame_inference(
|
|
2420
|
+
output_dict=output_dict,
|
|
2421
|
+
frame_idx=frame,
|
|
2422
|
+
batch_size=batch_size,
|
|
2423
|
+
is_init_cond_frame=False,
|
|
2424
|
+
point_inputs=None,
|
|
2425
|
+
mask_inputs=None,
|
|
2426
|
+
reverse=False,
|
|
2427
|
+
run_mem_encoder=True,
|
|
2428
|
+
inference_state=inference_state,
|
|
2429
|
+
)
|
|
2430
|
+
output_dict[storage_key][frame] = current_out
|
|
2431
|
+
# Create slices of per-object outputs for subsequent interaction with each
|
|
2432
|
+
# individual object after tracking.
|
|
2433
|
+
self._add_output_per_object(frame, current_out, storage_key, inference_state=inference_state)
|
|
2434
|
+
inference_state["frames_already_tracked"].append(frame)
|
|
2435
|
+
pred_masks = current_out["pred_masks"].flatten(0, 1)
|
|
2436
|
+
obj_scores = current_out["object_score_logits"]
|
|
2437
|
+
|
|
2438
|
+
return obj_ids, pred_masks, obj_scores
|
|
2439
|
+
|
|
2440
|
+
def get_im_features(self, im, batch=1):
|
|
2441
|
+
"""A wrapper to get image features, supporting pre-extracted backbone outputs."""
|
|
2442
|
+
if getattr(self, "backbone_out", None):
|
|
2443
|
+
backbone_out = self.backbone_out
|
|
2444
|
+
if batch > 1: # expand features if there's more than one prompt
|
|
2445
|
+
backbone_out = {
|
|
2446
|
+
"backbone_fpn": backbone_out["backbone_fpn"].copy(),
|
|
2447
|
+
"vision_pos_enc": backbone_out["vision_pos_enc"].copy(),
|
|
2448
|
+
}
|
|
2449
|
+
for i, feat in enumerate(backbone_out["backbone_fpn"]):
|
|
2450
|
+
backbone_out["backbone_fpn"][i] = feat.expand(batch, -1, -1, -1)
|
|
2451
|
+
for i, pos in enumerate(backbone_out["vision_pos_enc"]):
|
|
2452
|
+
pos = pos.expand(batch, -1, -1, -1)
|
|
2453
|
+
backbone_out["vision_pos_enc"][i] = pos
|
|
2454
|
+
_, vis_feats, vis_pos_embed, feat_sizes = self.model._prepare_backbone_features(backbone_out)
|
|
2455
|
+
return vis_feats, vis_pos_embed, feat_sizes
|
|
2456
|
+
return super().get_im_features(im, batch)
|
|
2457
|
+
|
|
2458
|
+
|
|
2459
|
+
class SAM3VideoSemanticPredictor(SAM3SemanticPredictor):
|
|
2460
|
+
"""Segment Anything Model 3 (SAM3) Video Semantic Predictor."""
|
|
2461
|
+
|
|
2462
|
+
HIGH_CONF_THRESH = 0.8
|
|
2463
|
+
HIGH_IOU_THRESH = 0.8
|
|
2464
|
+
NO_OBJ_LOGIT = -10.0
|
|
2465
|
+
NEVER_OCCLUDED = -1
|
|
2466
|
+
ALWAYS_OCCLUDED = 100000
|
|
2467
|
+
|
|
2468
|
+
UNCONFIRMED = 1 # newly added masklet, not confirmed by any detection yet
|
|
2469
|
+
CONFIRMED = 2 # confirmed by at least one detection
|
|
2470
|
+
_bb_feat_sizes = [
|
|
2471
|
+
(288, 288),
|
|
2472
|
+
(144, 144),
|
|
2473
|
+
(72, 72),
|
|
2474
|
+
]
|
|
2475
|
+
stride = 14
|
|
2476
|
+
|
|
2477
|
+
def __init__(
|
|
2478
|
+
self,
|
|
2479
|
+
cfg=DEFAULT_CFG,
|
|
2480
|
+
overrides=None,
|
|
2481
|
+
_callbacks=None,
|
|
2482
|
+
bpe_path="bpe_simple_vocab_16e6.txt.gz",
|
|
2483
|
+
# prob threshold for detection outputs -- only keep detections above this threshold
|
|
2484
|
+
# enters NMS and det-to-track matching
|
|
2485
|
+
score_threshold_detection=0.5,
|
|
2486
|
+
# IoU threshold for detection NMS
|
|
2487
|
+
det_nms_thresh=0.0,
|
|
2488
|
+
# IoU threshold for det-to-track matching -- a detection is considered "matched" to a tracklet it
|
|
2489
|
+
# overlaps with a tracklet above this threshold -- it is often a loose threshold like 0.1
|
|
2490
|
+
assoc_iou_thresh=0.5,
|
|
2491
|
+
# IoU threshold for det-to-track matching, which is used to determine whether a masklet is "unmatched"
|
|
2492
|
+
# by any detections -- it is often a stricter threshold like 0.5
|
|
2493
|
+
trk_assoc_iou_thresh=0.5,
|
|
2494
|
+
# prob threshold for a detection to be added as a new object
|
|
2495
|
+
new_det_thresh=0.0,
|
|
2496
|
+
# hotstart parameters: we hold off the outputs for `hotstart_delay` frames and
|
|
2497
|
+
# 1) remove those tracklets unmatched by any detections based on `hotstart_unmatch_thresh`
|
|
2498
|
+
# 2) remove those tracklets overlapping with one another based on `hotstart_dup_thresh`
|
|
2499
|
+
hotstart_delay=0,
|
|
2500
|
+
hotstart_unmatch_thresh=3,
|
|
2501
|
+
hotstart_dup_thresh=3,
|
|
2502
|
+
# Whether to suppress masks only within hotstart. If False, we can suppress masks even if they start before hotstart period.
|
|
2503
|
+
suppress_unmatched_only_within_hotstart=True,
|
|
2504
|
+
init_trk_keep_alive=0,
|
|
2505
|
+
max_trk_keep_alive=8,
|
|
2506
|
+
min_trk_keep_alive=-4,
|
|
2507
|
+
# Threshold for suppressing overlapping objects based on recent occlusion
|
|
2508
|
+
suppress_overlapping_based_on_recent_occlusion_threshold=0.0,
|
|
2509
|
+
decrease_trk_keep_alive_for_empty_masklets=False,
|
|
2510
|
+
o2o_matching_masklets_enable=False, # Enable hungarian matching to match existing masklets
|
|
2511
|
+
suppress_det_close_to_boundary=False,
|
|
2512
|
+
fill_hole_area=16,
|
|
2513
|
+
# The maximum number of objects (masklets) to track across all GPUs (for no limit, set it to -1)
|
|
2514
|
+
max_num_objects=-1,
|
|
2515
|
+
recondition_every_nth_frame=-1,
|
|
2516
|
+
# masket confirmation status (to suppress unconfirmed masklets)
|
|
2517
|
+
masklet_confirmation_enable=False,
|
|
2518
|
+
# a masklet is confirmed after being consecutively detected and matched for
|
|
2519
|
+
# `masklet_confirmation_consecutive_det_thresh`
|
|
2520
|
+
masklet_confirmation_consecutive_det_thresh=3,
|
|
2521
|
+
# bbox heuristic parameters
|
|
2522
|
+
reconstruction_bbox_iou_thresh=0.0,
|
|
2523
|
+
reconstruction_bbox_det_score=0.0,
|
|
2524
|
+
):
|
|
2525
|
+
"""Initialize the SAM3VideoSemanticPredictor with configuration and optional overrides."""
|
|
2526
|
+
super().__init__(cfg, overrides, _callbacks, bpe_path=bpe_path)
|
|
2527
|
+
self.score_threshold_detection = score_threshold_detection
|
|
2528
|
+
self.det_nms_thresh = det_nms_thresh
|
|
2529
|
+
self.assoc_iou_thresh = assoc_iou_thresh
|
|
2530
|
+
self.trk_assoc_iou_thresh = trk_assoc_iou_thresh
|
|
2531
|
+
self.new_det_thresh = new_det_thresh
|
|
2532
|
+
|
|
2533
|
+
# hotstart parameters
|
|
2534
|
+
if hotstart_delay > 0:
|
|
2535
|
+
assert hotstart_unmatch_thresh <= hotstart_delay
|
|
2536
|
+
assert hotstart_dup_thresh <= hotstart_delay
|
|
2537
|
+
self.hotstart_delay = hotstart_delay
|
|
2538
|
+
self.hotstart_unmatch_thresh = hotstart_unmatch_thresh
|
|
2539
|
+
self.hotstart_dup_thresh = hotstart_dup_thresh
|
|
2540
|
+
self.suppress_unmatched_only_within_hotstart = suppress_unmatched_only_within_hotstart
|
|
2541
|
+
self.init_trk_keep_alive = init_trk_keep_alive
|
|
2542
|
+
self.max_trk_keep_alive = max_trk_keep_alive
|
|
2543
|
+
self.min_trk_keep_alive = min_trk_keep_alive
|
|
2544
|
+
self.suppress_overlapping_based_on_recent_occlusion_threshold = (
|
|
2545
|
+
suppress_overlapping_based_on_recent_occlusion_threshold
|
|
2546
|
+
)
|
|
2547
|
+
self.suppress_det_close_to_boundary = suppress_det_close_to_boundary
|
|
2548
|
+
self.decrease_trk_keep_alive_for_empty_masklets = decrease_trk_keep_alive_for_empty_masklets
|
|
2549
|
+
self.o2o_matching_masklets_enable = o2o_matching_masklets_enable
|
|
2550
|
+
self.fill_hole_area = fill_hole_area
|
|
2551
|
+
self._dist_pg_cpu = None # CPU process group (lazy-initialized on first use)
|
|
2552
|
+
|
|
2553
|
+
max_num_objects = 10000 # no limit
|
|
2554
|
+
num_obj_for_compile = 16
|
|
2555
|
+
self.max_num_objects = max_num_objects
|
|
2556
|
+
self.num_obj_for_compile = num_obj_for_compile
|
|
2557
|
+
self.recondition_every_nth_frame = recondition_every_nth_frame
|
|
2558
|
+
self.masklet_confirmation_enable = masklet_confirmation_enable
|
|
2559
|
+
self.masklet_confirmation_consecutive_det_thresh = masklet_confirmation_consecutive_det_thresh
|
|
2560
|
+
self.reconstruction_bbox_iou_thresh = reconstruction_bbox_iou_thresh
|
|
2561
|
+
self.reconstruction_bbox_det_score = reconstruction_bbox_det_score
|
|
2562
|
+
|
|
2563
|
+
# build SAM3 tracker
|
|
2564
|
+
self.tracker = SAM3VideoPredictor(overrides=overrides)
|
|
2565
|
+
|
|
2566
|
+
self.inference_state = {}
|
|
2567
|
+
self.callbacks["on_predict_start"].append(self.init_state)
|
|
2568
|
+
|
|
2569
|
+
def setup_model(self, model=None, verbose=True):
|
|
2570
|
+
"""Setup the SAM3VideoSemanticPredictor model."""
|
|
2571
|
+
super().setup_model(model, verbose)
|
|
2572
|
+
from .build_sam3 import build_interactive_sam3
|
|
2573
|
+
|
|
2574
|
+
# Initialize the SAM3 tracker model without backbone (backbone is handled in the detector)
|
|
2575
|
+
model = build_interactive_sam3(self.args.model, with_backbone=False)
|
|
2576
|
+
self.tracker.setup_model(model=model, verbose=False)
|
|
2577
|
+
|
|
2578
|
+
def setup_source(self, source):
|
|
2579
|
+
"""Setup the source for the SAM3VideoSemanticPredictor model."""
|
|
2580
|
+
super().setup_source(source)
|
|
2581
|
+
self.tracker.imgsz = self.imgsz
|
|
2582
|
+
self.tracker.model.set_imgsz(self.imgsz)
|
|
2583
|
+
self.tracker._bb_feat_sizes = [[int(x / (self.stride * i)) for x in self.imgsz] for i in [1 / 4, 1 / 2, 1]]
|
|
2584
|
+
self.interpol_size = self.tracker.model.memory_encoder.mask_downsampler.interpol_size
|
|
2585
|
+
|
|
2586
|
+
@staticmethod
|
|
2587
|
+
def init_state(predictor):
|
|
2588
|
+
"""Initialize an inference state for the predictor.
|
|
2589
|
+
|
|
2590
|
+
This function sets up the initial state required for performing inference on video data. It includes
|
|
2591
|
+
initializing various dictionaries and ordered dictionaries that will store inputs, outputs, and other metadata
|
|
2592
|
+
relevant to the tracking process.
|
|
2593
|
+
|
|
2594
|
+
Args:
|
|
2595
|
+
predictor (SAM3VideoSemanticPredictor): The predictor object for which to initialize the state.
|
|
2596
|
+
"""
|
|
2597
|
+
if len(predictor.inference_state) > 0: # means initialized
|
|
2598
|
+
return
|
|
2599
|
+
assert predictor.dataset is not None
|
|
2600
|
+
assert predictor.dataset.mode == "video"
|
|
2601
|
+
num_frames = predictor.dataset.frames
|
|
2602
|
+
inference_state = {
|
|
2603
|
+
"num_frames": num_frames,
|
|
2604
|
+
"tracker_inference_states": [],
|
|
2605
|
+
"tracker_metadata": {},
|
|
2606
|
+
}
|
|
2607
|
+
inference_state["text_prompt"] = None
|
|
2608
|
+
inference_state["per_frame_geometric_prompt"] = [None] * num_frames
|
|
2609
|
+
predictor.inference_state = inference_state
|
|
2610
|
+
|
|
2611
|
+
def inference(self, im, bboxes=None, labels=None, text: list[str] | None = None, *args, **kwargs):
|
|
2612
|
+
"""Perform inference on a video sequence with optional prompts."""
|
|
2613
|
+
frame = self.dataset.frame - 1 # align frame index to be 0-based
|
|
2614
|
+
self.inference_state["im"] = im # only pass image for subsequent frames
|
|
2615
|
+
if "text_ids" not in self.inference_state: # first frame processing
|
|
2616
|
+
self.add_prompt(frame_idx=frame, text=text, bboxes=bboxes, labels=labels)
|
|
2617
|
+
return self._run_single_frame_inference(frame, reverse=False)
|
|
2618
|
+
|
|
2619
|
+
def postprocess(self, preds, img, orig_imgs):
|
|
2620
|
+
"""Post-process the predictions to apply non-overlapping constraints if required."""
|
|
2621
|
+
obj_id_to_mask = preds["obj_id_to_mask"] # low res masks
|
|
2622
|
+
curr_obj_ids = sorted(obj_id_to_mask.keys())
|
|
2623
|
+
if not isinstance(orig_imgs, list): # input images are a torch.Tensor, not a list
|
|
2624
|
+
orig_imgs = ops.convert_torch2numpy_batch(orig_imgs)
|
|
2625
|
+
|
|
2626
|
+
if len(curr_obj_ids) == 0:
|
|
2627
|
+
pred_masks, pred_boxes = None, torch.zeros((0, 7), device=self.device)
|
|
2628
|
+
else:
|
|
2629
|
+
pred_masks = torch.cat([obj_id_to_mask[obj_id] for obj_id in curr_obj_ids], dim=0)
|
|
2630
|
+
pred_masks = F.interpolate(pred_masks.float()[None], orig_imgs[0].shape[:2], mode="bilinear")[0] > 0.5
|
|
2631
|
+
pred_ids = torch.tensor(curr_obj_ids, dtype=torch.int32, device=pred_masks.device)
|
|
2632
|
+
pred_scores = torch.tensor(
|
|
2633
|
+
[preds["obj_id_to_score"][obj_id] for obj_id in curr_obj_ids], device=pred_masks.device
|
|
2634
|
+
)
|
|
2635
|
+
pred_cls = torch.tensor(
|
|
2636
|
+
[preds["obj_id_to_cls"][obj_id] for obj_id in curr_obj_ids], device=pred_masks.device
|
|
2637
|
+
)
|
|
2638
|
+
keep = (pred_scores > self.args.conf) & pred_masks.any(dim=(1, 2))
|
|
2639
|
+
pred_masks = pred_masks[keep]
|
|
2640
|
+
pred_boxes = batched_mask_to_box(pred_masks)
|
|
2641
|
+
pred_boxes = torch.cat(
|
|
2642
|
+
[pred_boxes, pred_ids[keep][:, None], pred_scores[keep][..., None], pred_cls[keep][..., None]], dim=-1
|
|
2643
|
+
)
|
|
2644
|
+
if pred_masks.shape[0] > 1:
|
|
2645
|
+
tracker_scores = torch.tensor(
|
|
2646
|
+
[
|
|
2647
|
+
(
|
|
2648
|
+
preds["obj_id_to_tracker_score"][obj_id]
|
|
2649
|
+
if obj_id in preds["obj_id_to_tracker_score"]
|
|
2650
|
+
else 0.0
|
|
2651
|
+
)
|
|
2652
|
+
for obj_id in curr_obj_ids
|
|
2653
|
+
],
|
|
2654
|
+
device=pred_masks.device,
|
|
2655
|
+
)[keep]
|
|
2656
|
+
pred_masks = (
|
|
2657
|
+
self._apply_object_wise_non_overlapping_constraints(
|
|
2658
|
+
pred_masks.unsqueeze(1),
|
|
2659
|
+
tracker_scores.unsqueeze(1),
|
|
2660
|
+
background_value=0,
|
|
2661
|
+
).squeeze(1)
|
|
2662
|
+
) > 0
|
|
2663
|
+
|
|
2664
|
+
# names = getattr(self.model, "names", [str(i) for i in range(pred_scores.shape[0])])
|
|
2665
|
+
names = dict(enumerate(str(i) for i in range(pred_masks.shape[0])))
|
|
2666
|
+
results = []
|
|
2667
|
+
for masks, boxes, orig_img, img_path in zip([pred_masks], [pred_boxes], orig_imgs, self.batch[0]):
|
|
2668
|
+
results.append(Results(orig_img, path=img_path, names=names, masks=masks, boxes=boxes))
|
|
2669
|
+
return results
|
|
2670
|
+
|
|
2671
|
+
def _run_single_frame_inference(self, frame_idx, reverse=False, inference_state=None):
|
|
2672
|
+
"""Perform inference on a single frame and get its inference results."""
|
|
2673
|
+
inference_state = inference_state or self.inference_state
|
|
2674
|
+
# prepare inputs
|
|
2675
|
+
tracker_states_local = inference_state["tracker_inference_states"]
|
|
2676
|
+
has_text_prompt = inference_state["text_prompt"] is not None
|
|
2677
|
+
has_geometric_prompt = inference_state["per_frame_geometric_prompt"][frame_idx] is not None
|
|
2678
|
+
# run inference for the current frame
|
|
2679
|
+
(
|
|
2680
|
+
obj_id_to_mask,
|
|
2681
|
+
obj_id_to_score,
|
|
2682
|
+
obj_id_to_cls,
|
|
2683
|
+
tracker_states_local_new,
|
|
2684
|
+
tracker_metadata_new,
|
|
2685
|
+
frame_stats,
|
|
2686
|
+
_,
|
|
2687
|
+
) = self._det_track_one_frame(
|
|
2688
|
+
frame_idx=frame_idx,
|
|
2689
|
+
num_frames=inference_state["num_frames"],
|
|
2690
|
+
reverse=reverse,
|
|
2691
|
+
im=inference_state["im"],
|
|
2692
|
+
text_ids=inference_state["text_ids"],
|
|
2693
|
+
geometric_prompt=(
|
|
2694
|
+
self._get_dummy_prompt(num_prompts=len(inference_state["text_ids"]))
|
|
2695
|
+
if not has_geometric_prompt
|
|
2696
|
+
else inference_state["per_frame_geometric_prompt"][frame_idx]
|
|
2697
|
+
),
|
|
2698
|
+
tracker_states_local=tracker_states_local,
|
|
2699
|
+
tracker_metadata_prev=inference_state["tracker_metadata"],
|
|
2700
|
+
allow_new_detections=has_text_prompt or has_geometric_prompt,
|
|
2701
|
+
)
|
|
2702
|
+
# update inference state
|
|
2703
|
+
inference_state["tracker_inference_states"] = tracker_states_local_new
|
|
2704
|
+
inference_state["tracker_metadata"] = tracker_metadata_new
|
|
2705
|
+
|
|
2706
|
+
out = {
|
|
2707
|
+
"obj_id_to_mask": obj_id_to_mask,
|
|
2708
|
+
"obj_id_to_score": obj_id_to_score, # first frame detection score
|
|
2709
|
+
"obj_id_to_cls": obj_id_to_cls, # first frame detection score
|
|
2710
|
+
"obj_id_to_tracker_score": tracker_metadata_new["obj_id_to_tracker_score_frame_wise"][frame_idx],
|
|
2711
|
+
}
|
|
2712
|
+
# removed_obj_ids is only needed on rank 0 to handle hotstart delay buffer
|
|
2713
|
+
metadata = tracker_metadata_new["metadata"]
|
|
2714
|
+
removed_obj_ids = metadata["removed_obj_ids"]
|
|
2715
|
+
out["removed_obj_ids"] = removed_obj_ids
|
|
2716
|
+
out["suppressed_obj_ids"] = metadata["suppressed_obj_ids"][frame_idx]
|
|
2717
|
+
out["frame_stats"] = frame_stats
|
|
2718
|
+
if self.masklet_confirmation_enable:
|
|
2719
|
+
status = metadata["masklet_confirmation"]["status"]
|
|
2720
|
+
is_unconfirmed = status == self.UNCONFIRMED
|
|
2721
|
+
out["unconfirmed_obj_ids"] = tracker_metadata_new["obj_ids_all_gpu"][is_unconfirmed].tolist()
|
|
2722
|
+
else:
|
|
2723
|
+
out["unconfirmed_obj_ids"] = []
|
|
2724
|
+
return out
|
|
2725
|
+
|
|
2726
|
+
@smart_inference_mode()
|
|
2727
|
+
def add_prompt(
|
|
2728
|
+
self,
|
|
2729
|
+
frame_idx,
|
|
2730
|
+
text=None,
|
|
2731
|
+
bboxes=None,
|
|
2732
|
+
labels=None,
|
|
2733
|
+
inference_state=None,
|
|
2734
|
+
):
|
|
2735
|
+
"""Add text, point or box prompts on a single frame. This method returns the inference outputs only on the
|
|
2736
|
+
prompted frame.
|
|
2737
|
+
|
|
2738
|
+
Note that text prompts are NOT associated with a particular frame (i.e. they apply
|
|
2739
|
+
to all frames). However, we only run inference on the frame specified in `frame_idx`.
|
|
2740
|
+
"""
|
|
2741
|
+
inference_state = inference_state or self.inference_state
|
|
2742
|
+
assert text is not None or bboxes is not None, "at least one type of prompt (text, boxes) must be provided"
|
|
2743
|
+
|
|
2744
|
+
# 1) handle text prompt
|
|
2745
|
+
use_text = text is not None
|
|
2746
|
+
text = text if use_text else "visual"
|
|
2747
|
+
text_batch = [text] if isinstance(text, str) else text
|
|
2748
|
+
inference_state["text_prompt"] = text if use_text else None
|
|
2749
|
+
n = len(text_batch)
|
|
2750
|
+
text_ids = torch.arange(n, device=self.device, dtype=torch.long)
|
|
2751
|
+
inference_state["text_ids"] = text_ids
|
|
2752
|
+
if text is not None and self.model.names != text:
|
|
2753
|
+
self.model.set_classes(text=text)
|
|
2754
|
+
|
|
2755
|
+
# 2) handle box prompt
|
|
2756
|
+
bboxes, labels = self._prepare_geometric_prompts(self.batch[1][0].shape[:2], bboxes, labels)
|
|
2757
|
+
assert (bboxes is not None) == (labels is not None)
|
|
2758
|
+
geometric_prompt = self._get_dummy_prompt(num_prompts=n)
|
|
2759
|
+
if bboxes is not None:
|
|
2760
|
+
for i in range(len(bboxes)):
|
|
2761
|
+
geometric_prompt.append_boxes(bboxes[[i]], labels[[i]])
|
|
2762
|
+
inference_state["per_frame_geometric_prompt"][frame_idx] = geometric_prompt
|
|
2763
|
+
out = self._run_single_frame_inference(frame_idx, reverse=False, inference_state=inference_state)
|
|
2764
|
+
return frame_idx, out
|
|
2765
|
+
|
|
2766
|
+
def _apply_object_wise_non_overlapping_constraints(self, pred_masks, obj_scores, background_value=-10.0):
|
|
2767
|
+
"""Applies non-overlapping constraints object wise (i.e. only one object can claim the overlapping region)."""
|
|
2768
|
+
# Replace pixel scores with object scores
|
|
2769
|
+
pred_masks_single_score = torch.where(pred_masks > 0, obj_scores[..., None, None], background_value)
|
|
2770
|
+
# Apply pixel-wise non-overlapping constraint based on mask scores
|
|
2771
|
+
pixel_level_non_overlapping_masks = self.tracker.model._apply_non_overlapping_constraints(
|
|
2772
|
+
pred_masks_single_score
|
|
2773
|
+
)
|
|
2774
|
+
# Replace object scores with pixel scores. Note, that now only one object can claim the overlapping region
|
|
2775
|
+
pred_masks = torch.where(
|
|
2776
|
+
pixel_level_non_overlapping_masks > 0,
|
|
2777
|
+
pred_masks,
|
|
2778
|
+
torch.clamp(pred_masks, max=background_value),
|
|
2779
|
+
)
|
|
2780
|
+
return pred_masks
|
|
2781
|
+
|
|
2782
|
+
def _det_track_one_frame(
|
|
2783
|
+
self,
|
|
2784
|
+
im: torch.Tensor,
|
|
2785
|
+
text_ids: torch.Tensor,
|
|
2786
|
+
frame_idx: int,
|
|
2787
|
+
num_frames: int,
|
|
2788
|
+
reverse: bool,
|
|
2789
|
+
geometric_prompt: Prompt,
|
|
2790
|
+
tracker_states_local: list[Any],
|
|
2791
|
+
tracker_metadata_prev: dict[str, Any],
|
|
2792
|
+
allow_new_detections: bool = True,
|
|
2793
|
+
):
|
|
2794
|
+
"""This function handles one-step inference for the DenseTracking model in an SPMD manner. At a high-level, all
|
|
2795
|
+
GPUs execute the same function calls as if it's done on a single GPU, while under the hood, some
|
|
2796
|
+
function calls involve distributed computation based on sharded SAM2 states.
|
|
2797
|
+
|
|
2798
|
+
- `input_batch` contains image and other inputs on the entire video; it should be identical across GPUs
|
|
2799
|
+
- `tracker_states_local` holds the local masklet information in this GPU shard
|
|
2800
|
+
- `tracker_metadata_prev` manages the metadata for SAM2 objects, such as which masklet is hold on which GPUs
|
|
2801
|
+
it contains both global and local masklet information
|
|
2802
|
+
"""
|
|
2803
|
+
# Step 1: run backbone and detector in a distributed manner -- this is done via Sam3ImageOnVideoMultiGPU,
|
|
2804
|
+
# a MultiGPU model (assigned to `self.detector`) that shards frames in a round-robin manner.
|
|
2805
|
+
det_out = self.run_backbone_and_detection(
|
|
2806
|
+
im=im,
|
|
2807
|
+
text_ids=text_ids,
|
|
2808
|
+
geometric_prompt=geometric_prompt,
|
|
2809
|
+
allow_new_detections=allow_new_detections,
|
|
2810
|
+
)
|
|
2811
|
+
|
|
2812
|
+
# Step 2: each GPU propagates its local SAM2 states to get the SAM2 prediction masks.
|
|
2813
|
+
# the returned `tracker_low_res_masks_global` contains the concatenated masklet predictions
|
|
2814
|
+
# gathered from all GPUs (as if they are propagated on a single GPU). Note that this step only
|
|
2815
|
+
# runs the SAM2 propagation step, but doesn't encode new memory for the predicted masks;
|
|
2816
|
+
# we defer memory encoding to `run_tracker_update_execution_phase` after resolving all heuristics.
|
|
2817
|
+
if tracker_metadata_prev == {}:
|
|
2818
|
+
# initialize masklet metadata if it's uninitialized (empty dict)
|
|
2819
|
+
tracker_metadata_prev.update(self._initialize_metadata())
|
|
2820
|
+
tracker_low_res_masks_global, tracker_obj_scores_global = self.run_tracker_propagation(
|
|
2821
|
+
frame_idx=frame_idx,
|
|
2822
|
+
tracker_states_local=tracker_states_local,
|
|
2823
|
+
tracker_metadata_prev=tracker_metadata_prev,
|
|
2824
|
+
)
|
|
2825
|
+
|
|
2826
|
+
# Step 3: based on detection outputs and the propagated SAM2 prediction masks, we make plans
|
|
2827
|
+
# for SAM2 masklet updates (i.e. which objects to add and remove, how to load-balance them, etc).
|
|
2828
|
+
# We also run SAM2 memory encoder globally in this step to resolve non-overlapping constraints.
|
|
2829
|
+
# **This step should involve all the heuristics needed for any updates.** Most of the update
|
|
2830
|
+
# planning will be done on the master rank (GPU 0) and the resulting plan `tracker_update_plan` is
|
|
2831
|
+
# broadcasted to other GPUs (to be executed in a distributed manner). This step also generates the
|
|
2832
|
+
# new masklet metadata `tracker_metadata_new` (based on its previous version `tracker_metadata_prev`).
|
|
2833
|
+
tracker_update_plan, tracker_metadata_new = self.run_tracker_update_planning_phase(
|
|
2834
|
+
frame_idx=frame_idx,
|
|
2835
|
+
reverse=reverse,
|
|
2836
|
+
det_out=det_out,
|
|
2837
|
+
tracker_low_res_masks_global=tracker_low_res_masks_global,
|
|
2838
|
+
tracker_obj_scores_global=tracker_obj_scores_global,
|
|
2839
|
+
tracker_metadata_prev=tracker_metadata_prev,
|
|
2840
|
+
tracker_states_local=tracker_states_local,
|
|
2841
|
+
)
|
|
2842
|
+
|
|
2843
|
+
# Get reconditioning info from the update plan
|
|
2844
|
+
reconditioned_obj_ids = tracker_update_plan.get("reconditioned_obj_ids", set())
|
|
2845
|
+
|
|
2846
|
+
# Step 4: based on `tracker_update_plan`, each GPU executes the update w.r.t. its local SAM2 inference states
|
|
2847
|
+
tracker_states_local_new = self.run_tracker_update_execution_phase(
|
|
2848
|
+
frame_idx=frame_idx,
|
|
2849
|
+
num_frames=num_frames,
|
|
2850
|
+
det_out=det_out,
|
|
2851
|
+
tracker_states_local=tracker_states_local,
|
|
2852
|
+
tracker_update_plan=tracker_update_plan,
|
|
2853
|
+
)
|
|
2854
|
+
|
|
2855
|
+
# Step 5: finally, build the outputs for this frame (it only needs to be done on GPU 0 since
|
|
2856
|
+
# only GPU 0 will send outputs to the server).
|
|
2857
|
+
obj_id_to_mask = self.build_outputs(
|
|
2858
|
+
det_out=det_out,
|
|
2859
|
+
tracker_low_res_masks_global=tracker_low_res_masks_global,
|
|
2860
|
+
tracker_metadata_prev=tracker_metadata_prev,
|
|
2861
|
+
tracker_update_plan=tracker_update_plan,
|
|
2862
|
+
reconditioned_obj_ids=reconditioned_obj_ids,
|
|
2863
|
+
)
|
|
2864
|
+
obj_id_to_score = tracker_metadata_new["obj_id_to_score"]
|
|
2865
|
+
obj_id_to_cls = tracker_metadata_new["obj_id_to_cls"]
|
|
2866
|
+
# a few statistics for the current frame as a part of the output
|
|
2867
|
+
frame_stats = {
|
|
2868
|
+
"num_obj_tracked": np.sum(tracker_metadata_new["num_obj"]),
|
|
2869
|
+
"num_obj_dropped": tracker_update_plan["num_obj_dropped_due_to_limit"],
|
|
2870
|
+
}
|
|
2871
|
+
# add tracker scores to metadata, it should be fired for frames except the first frame
|
|
2872
|
+
if tracker_obj_scores_global.shape[0] > 0:
|
|
2873
|
+
# Convert tracker_obj_scores_global to sigmoid scores before updating
|
|
2874
|
+
tracker_obj_scores_global = tracker_obj_scores_global.sigmoid().tolist()
|
|
2875
|
+
tracker_obj_ids = tracker_metadata_prev["obj_ids"]
|
|
2876
|
+
tracker_metadata_new["obj_id_to_tracker_score_frame_wise"][frame_idx].update(
|
|
2877
|
+
dict(zip(tracker_obj_ids, tracker_obj_scores_global))
|
|
2878
|
+
)
|
|
2879
|
+
return (
|
|
2880
|
+
obj_id_to_mask, # a dict: obj_id --> output mask
|
|
2881
|
+
obj_id_to_score, # a dict: obj_id --> output score (prob)
|
|
2882
|
+
obj_id_to_cls, # a dict: obj_id --> output cls (int)
|
|
2883
|
+
tracker_states_local_new,
|
|
2884
|
+
tracker_metadata_new,
|
|
2885
|
+
frame_stats,
|
|
2886
|
+
tracker_obj_scores_global, # a dict: obj_id --> tracker frame-level scores
|
|
2887
|
+
)
|
|
2888
|
+
|
|
2889
|
+
def _suppress_detections_close_to_boundary(self, boxes, margin=0.025):
|
|
2890
|
+
"""Suppress detections too close to image edges (for normalized boxes).
|
|
2891
|
+
|
|
2892
|
+
boxes: (N, 4) in xyxy format, normalized [0,1]
|
|
2893
|
+
margin: fraction of image
|
|
2894
|
+
"""
|
|
2895
|
+
x_min, y_min, x_max, y_max = boxes.unbind(-1)
|
|
2896
|
+
x_c = (x_min + x_max) / 2
|
|
2897
|
+
y_c = (y_min + y_max) / 2
|
|
2898
|
+
keep = (x_c > margin) & (x_c < 1.0 - margin) & (y_c > margin) & (y_c < 1.0 - margin)
|
|
2899
|
+
|
|
2900
|
+
return keep
|
|
2901
|
+
|
|
2902
|
+
def run_backbone_and_detection(
|
|
2903
|
+
self, im: torch.Tensor, text_ids: torch.Tensor, geometric_prompt: Prompt, allow_new_detections: bool
|
|
2904
|
+
):
|
|
2905
|
+
"""Run backbone and detection for a single frame."""
|
|
2906
|
+
features = self.get_im_features(im)
|
|
2907
|
+
sam3_image_out = self.model.forward_grounding(
|
|
2908
|
+
backbone_out=features, text_ids=text_ids, geometric_prompt=geometric_prompt
|
|
2909
|
+
)
|
|
2910
|
+
det_out = self._extract_detection_outputs(sam3_image_out, allow_new_detections)
|
|
2911
|
+
self._cache_backbone_features(sam3_image_out)
|
|
2912
|
+
return det_out
|
|
2913
|
+
|
|
2914
|
+
def _extract_detection_outputs(self, sam3_image_out, allow_new_detections):
|
|
2915
|
+
"""Extract and filter detection outputs."""
|
|
2916
|
+
pred_probs = sam3_image_out["pred_logits"].squeeze(-1).sigmoid()
|
|
2917
|
+
if not allow_new_detections:
|
|
2918
|
+
pred_probs = pred_probs - 1e8
|
|
2919
|
+
|
|
2920
|
+
pred_cls = torch.tensor(
|
|
2921
|
+
list(range(pred_probs.shape[0])),
|
|
2922
|
+
dtype=pred_probs.dtype,
|
|
2923
|
+
device=pred_probs.device,
|
|
2924
|
+
)[:, None].expand_as(pred_probs)
|
|
2925
|
+
|
|
2926
|
+
pred_boxes_xyxy = sam3_image_out["pred_boxes_xyxy"]
|
|
2927
|
+
pred_masks = sam3_image_out["pred_masks"]
|
|
2928
|
+
|
|
2929
|
+
keep = pred_probs > self.score_threshold_detection
|
|
2930
|
+
return {
|
|
2931
|
+
"bbox": pred_boxes_xyxy[keep],
|
|
2932
|
+
"mask": pred_masks[keep],
|
|
2933
|
+
"scores": pred_probs[keep],
|
|
2934
|
+
"cls": pred_cls[keep],
|
|
2935
|
+
}
|
|
2936
|
+
|
|
2937
|
+
def _cache_backbone_features(self, sam3_image_out):
|
|
2938
|
+
"""Build and cache SAM2 backbone features."""
|
|
2939
|
+
sam_mask_decoder = self.tracker.model.sam_mask_decoder
|
|
2940
|
+
feats = sam3_image_out["backbone_out"]["sam2_backbone_out"]
|
|
2941
|
+
tracker_backbone_fpn = [
|
|
2942
|
+
sam_mask_decoder.conv_s0(feats["backbone_fpn"][0]),
|
|
2943
|
+
sam_mask_decoder.conv_s1(feats["backbone_fpn"][1]),
|
|
2944
|
+
feats["backbone_fpn"][2],
|
|
2945
|
+
]
|
|
2946
|
+
tracker_backbone_out = {
|
|
2947
|
+
"vision_features": tracker_backbone_fpn[-1],
|
|
2948
|
+
"vision_pos_enc": feats["vision_pos_enc"],
|
|
2949
|
+
"backbone_fpn": tracker_backbone_fpn,
|
|
2950
|
+
}
|
|
2951
|
+
# cache the SAM2 backbone features for `frame_idx` in the tracker
|
|
2952
|
+
self.tracker.backbone_out = tracker_backbone_out
|
|
2953
|
+
|
|
2954
|
+
def run_tracker_propagation(
|
|
2955
|
+
self, frame_idx: int, tracker_states_local: list[Any], tracker_metadata_prev: dict[str, np.ndarray]
|
|
2956
|
+
):
|
|
2957
|
+
"""Run the tracker propagation phase for a single frame in an SPMD manner."""
|
|
2958
|
+
# Step 1: propagate the local SAM2 states to get the current frame's prediction
|
|
2959
|
+
# `low_res_masks_local` of the existing masklets on this GPU
|
|
2960
|
+
# - obj_ids_local: list[int] -- list of object IDs
|
|
2961
|
+
# - low_res_masks_local: Tensor -- (num_local_obj, H_mask, W_mask)
|
|
2962
|
+
obj_ids_local, low_res_masks_local, obj_scores_local = self._propogate_tracker_one_frame_local_gpu(
|
|
2963
|
+
tracker_states_local, frame_idx=frame_idx
|
|
2964
|
+
)
|
|
2965
|
+
|
|
2966
|
+
assert np.all(obj_ids_local == tracker_metadata_prev["obj_ids"]), "{} != {}".format(
|
|
2967
|
+
obj_ids_local, tracker_metadata_prev["obj_ids"]
|
|
2968
|
+
)
|
|
2969
|
+
|
|
2970
|
+
# Step 2: all-gather `low_res_masks_local` into `low_res_masks_global`
|
|
2971
|
+
# - low_res_masks_global: Tensor -- (num_global_obj, H_mask, W_mask)
|
|
2972
|
+
low_res_masks_global = low_res_masks_local
|
|
2973
|
+
obj_scores_global = obj_scores_local
|
|
2974
|
+
return low_res_masks_global, obj_scores_global
|
|
2975
|
+
|
|
2976
|
+
def _recondition_masklets(
|
|
2977
|
+
self,
|
|
2978
|
+
frame_idx,
|
|
2979
|
+
det_out: dict[str, torch.Tensor],
|
|
2980
|
+
trk_id_to_max_iou_high_conf_det: list[int],
|
|
2981
|
+
tracker_states_local: list[Any],
|
|
2982
|
+
tracker_metadata: dict[str, np.ndarray],
|
|
2983
|
+
tracker_obj_scores_global: torch.Tensor,
|
|
2984
|
+
):
|
|
2985
|
+
"""Recondition masklets based on new high-confidence detections."""
|
|
2986
|
+
# Recondition the masklets based on the new detections
|
|
2987
|
+
for trk_obj_id, det_idx in trk_id_to_max_iou_high_conf_det.items():
|
|
2988
|
+
new_mask = det_out["mask"][det_idx : det_idx + 1]
|
|
2989
|
+
new_mask_binary = (
|
|
2990
|
+
F.interpolate(new_mask.unsqueeze(1), size=self.interpol_size, mode="bilinear", align_corners=False) > 0
|
|
2991
|
+
)
|
|
2992
|
+
HIGH_CONF_THRESH = 0.8
|
|
2993
|
+
reconditioned_states_idx = set()
|
|
2994
|
+
obj_idx = np.where(tracker_metadata["obj_ids"] == trk_obj_id)[0].item()
|
|
2995
|
+
obj_score = tracker_obj_scores_global[obj_idx]
|
|
2996
|
+
for state_idx, inference_state in enumerate(tracker_states_local):
|
|
2997
|
+
if (
|
|
2998
|
+
trk_obj_id in inference_state["obj_ids"]
|
|
2999
|
+
# NOTE: Goal of this condition is to avoid reconditioning masks that are occluded/low qualiy.
|
|
3000
|
+
# Unfortunately, these can get reconditioned anyway due to batching. We should consider removing these heuristics.
|
|
3001
|
+
and obj_score > HIGH_CONF_THRESH
|
|
3002
|
+
):
|
|
3003
|
+
LOGGER.debug(
|
|
3004
|
+
f"Adding new mask for track {trk_obj_id} at frame {frame_idx}. Objects {inference_state['obj_ids']} are all reconditioned."
|
|
3005
|
+
)
|
|
3006
|
+
self.tracker.add_new_prompts(
|
|
3007
|
+
inference_state=inference_state,
|
|
3008
|
+
frame_idx=frame_idx,
|
|
3009
|
+
obj_id=trk_obj_id,
|
|
3010
|
+
masks=new_mask_binary,
|
|
3011
|
+
)
|
|
3012
|
+
reconditioned_states_idx.add(state_idx)
|
|
3013
|
+
|
|
3014
|
+
for idx in reconditioned_states_idx:
|
|
3015
|
+
self.tracker.propagate_in_video_preflight(tracker_states_local[idx])
|
|
3016
|
+
return tracker_states_local
|
|
3017
|
+
|
|
3018
|
+
def run_tracker_update_planning_phase(
|
|
3019
|
+
self,
|
|
3020
|
+
frame_idx: int,
|
|
3021
|
+
reverse: bool,
|
|
3022
|
+
det_out: dict[str, torch.Tensor],
|
|
3023
|
+
tracker_low_res_masks_global: torch.Tensor,
|
|
3024
|
+
tracker_obj_scores_global: torch.Tensor,
|
|
3025
|
+
tracker_metadata_prev: dict[str, np.ndarray],
|
|
3026
|
+
tracker_states_local: list[Any],
|
|
3027
|
+
):
|
|
3028
|
+
"""Run the tracker update planning phase for a single frame in an SPMD manner."""
|
|
3029
|
+
# initialize new metadata from previous metadata (its values will be updated later)
|
|
3030
|
+
tracker_metadata_new = {
|
|
3031
|
+
"obj_ids": deepcopy(tracker_metadata_prev["obj_ids"]),
|
|
3032
|
+
"num_obj": deepcopy(tracker_metadata_prev["num_obj"]),
|
|
3033
|
+
"obj_id_to_score": deepcopy(tracker_metadata_prev["obj_id_to_score"]),
|
|
3034
|
+
"obj_id_to_cls": deepcopy(tracker_metadata_prev["obj_id_to_cls"]),
|
|
3035
|
+
"obj_id_to_tracker_score_frame_wise": deepcopy(tracker_metadata_prev["obj_id_to_tracker_score_frame_wise"]),
|
|
3036
|
+
"obj_id_to_last_occluded": {}, # will be filled later
|
|
3037
|
+
"max_obj_id": deepcopy(tracker_metadata_prev["max_obj_id"]),
|
|
3038
|
+
}
|
|
3039
|
+
|
|
3040
|
+
# Initialize reconditioned_obj_ids early to avoid UnboundLocalError
|
|
3041
|
+
reconditioned_obj_ids = set()
|
|
3042
|
+
|
|
3043
|
+
# Step 1: make the update plan and resolve heuristics on GPU 0
|
|
3044
|
+
det_mask_preds: torch.Tensor = det_out["mask"] # low-res mask logits
|
|
3045
|
+
det_scores_np: np.ndarray = det_out["scores"].float().cpu().numpy()
|
|
3046
|
+
det_cls_np: np.ndarray = det_out["cls"].float().cpu().numpy()
|
|
3047
|
+
det_bbox_xyxy: torch.Tensor = det_out["bbox"]
|
|
3048
|
+
# a) match detector and tracker masks and find new objects
|
|
3049
|
+
(
|
|
3050
|
+
new_det_fa_inds,
|
|
3051
|
+
unmatched_trk_obj_ids,
|
|
3052
|
+
det_to_matched_trk_obj_ids,
|
|
3053
|
+
trk_id_to_max_iou_high_conf_det,
|
|
3054
|
+
empty_trk_obj_ids,
|
|
3055
|
+
) = self._associate_det_trk(
|
|
3056
|
+
det_masks=det_mask_preds,
|
|
3057
|
+
det_scores_np=det_scores_np,
|
|
3058
|
+
trk_masks=tracker_low_res_masks_global,
|
|
3059
|
+
trk_obj_ids=tracker_metadata_prev["obj_ids"],
|
|
3060
|
+
)
|
|
3061
|
+
if self.suppress_det_close_to_boundary:
|
|
3062
|
+
keep = self._suppress_detections_close_to_boundary(det_bbox_xyxy[new_det_fa_inds])
|
|
3063
|
+
new_det_fa_inds = new_det_fa_inds[keep.cpu().numpy()]
|
|
3064
|
+
|
|
3065
|
+
# check whether we've hit the maximum number of objects we can track (and if so, drop some detections)
|
|
3066
|
+
prev_obj_num = np.sum(tracker_metadata_prev["num_obj"])
|
|
3067
|
+
new_det_num = len(new_det_fa_inds)
|
|
3068
|
+
num_obj_dropped_due_to_limit = 0
|
|
3069
|
+
if prev_obj_num + new_det_num > self.max_num_objects:
|
|
3070
|
+
LOGGER.warning(f"hitting {self.max_num_objects=} with {new_det_num=} and {prev_obj_num=}")
|
|
3071
|
+
new_det_num_to_keep = self.max_num_objects - prev_obj_num
|
|
3072
|
+
num_obj_dropped_due_to_limit = new_det_num - new_det_num_to_keep
|
|
3073
|
+
new_det_fa_inds = self._drop_new_det_with_obj_limit(new_det_fa_inds, det_scores_np, new_det_num_to_keep)
|
|
3074
|
+
assert len(new_det_fa_inds) == new_det_num_to_keep
|
|
3075
|
+
new_det_num = len(new_det_fa_inds)
|
|
3076
|
+
|
|
3077
|
+
# assign object IDs to new detections and decide which GPU to place them
|
|
3078
|
+
new_det_obj_ids = tracker_metadata_prev["max_obj_id"] + 1 + np.arange(new_det_num)
|
|
3079
|
+
|
|
3080
|
+
# b) handle hotstart heuristics to remove objects
|
|
3081
|
+
# here `metadata` contains metadata stored on (and only accessible to) GPU 0;
|
|
3082
|
+
# we avoid broadcasting them to other GPUs to save communication cost, assuming
|
|
3083
|
+
# that `metadata` is not needed by other GPUs
|
|
3084
|
+
metadata_new = deepcopy(tracker_metadata_prev["metadata"])
|
|
3085
|
+
if not hasattr(self, "_warm_up_complete") or self._warm_up_complete:
|
|
3086
|
+
obj_ids_newly_removed, metadata_new = self._process_hotstart(
|
|
3087
|
+
frame_idx=frame_idx,
|
|
3088
|
+
reverse=reverse,
|
|
3089
|
+
det_to_matched_trk_obj_ids=det_to_matched_trk_obj_ids,
|
|
3090
|
+
new_det_obj_ids=new_det_obj_ids,
|
|
3091
|
+
empty_trk_obj_ids=empty_trk_obj_ids,
|
|
3092
|
+
unmatched_trk_obj_ids=unmatched_trk_obj_ids,
|
|
3093
|
+
metadata=metadata_new,
|
|
3094
|
+
)
|
|
3095
|
+
else:
|
|
3096
|
+
# if warm-up is not complete, we don't remove any objects
|
|
3097
|
+
obj_ids_newly_removed = set()
|
|
3098
|
+
tracker_metadata_new["metadata"] = metadata_new
|
|
3099
|
+
|
|
3100
|
+
# `tracker_update_plan` should be identical on all GPUs after broadcasting
|
|
3101
|
+
tracker_update_plan = {
|
|
3102
|
+
"new_det_fa_inds": new_det_fa_inds, # np.ndarray
|
|
3103
|
+
"new_det_obj_ids": new_det_obj_ids, # np.ndarray
|
|
3104
|
+
# "new_det_gpu_ids": new_det_gpu_ids, # np.ndarray
|
|
3105
|
+
"unmatched_trk_obj_ids": unmatched_trk_obj_ids, # np.ndarray
|
|
3106
|
+
"det_to_matched_trk_obj_ids": det_to_matched_trk_obj_ids, # dict
|
|
3107
|
+
"obj_ids_newly_removed": obj_ids_newly_removed, # set
|
|
3108
|
+
"num_obj_dropped_due_to_limit": num_obj_dropped_due_to_limit, # int
|
|
3109
|
+
"trk_id_to_max_iou_high_conf_det": trk_id_to_max_iou_high_conf_det, # dict
|
|
3110
|
+
"reconditioned_obj_ids": reconditioned_obj_ids, # set
|
|
3111
|
+
}
|
|
3112
|
+
|
|
3113
|
+
# Step 3 (optional): recondition masklets based on high-confidence detections before memory encoding
|
|
3114
|
+
# NOTE: Running this in execution phase (after memory encoding) can lead to suboptimal results
|
|
3115
|
+
should_recondition_iou = False
|
|
3116
|
+
|
|
3117
|
+
# Evaluate tracklets for reconditioning based on bbox IoU mismatch with detections
|
|
3118
|
+
if self.reconstruction_bbox_iou_thresh > 0 and len(trk_id_to_max_iou_high_conf_det) > 0:
|
|
3119
|
+
for trk_obj_id, det_idx in trk_id_to_max_iou_high_conf_det.items():
|
|
3120
|
+
det_box = det_out["bbox"][det_idx]
|
|
3121
|
+
det_score = det_out["scores"][det_idx]
|
|
3122
|
+
|
|
3123
|
+
try:
|
|
3124
|
+
trk_idx = list(tracker_metadata_prev["obj_ids"]).index(trk_obj_id)
|
|
3125
|
+
except ValueError:
|
|
3126
|
+
continue # Skip if tracklet not found
|
|
3127
|
+
|
|
3128
|
+
tracker_mask = tracker_low_res_masks_global[trk_idx]
|
|
3129
|
+
mask_binary = tracker_mask > 0
|
|
3130
|
+
mask_area = mask_binary.sum().item()
|
|
3131
|
+
|
|
3132
|
+
if mask_area == 0:
|
|
3133
|
+
continue # Skip tracklets with zero mask area
|
|
3134
|
+
|
|
3135
|
+
# Get bounding box from SAM2 mask and convert to normalized coordinates
|
|
3136
|
+
tracker_box_pixels = batched_mask_to_box(mask_binary.unsqueeze(0)).squeeze(0)
|
|
3137
|
+
mask_height, mask_width = tracker_mask.shape[-2:]
|
|
3138
|
+
tracker_box_normalized = torch.tensor(
|
|
3139
|
+
[
|
|
3140
|
+
tracker_box_pixels[0] / mask_width,
|
|
3141
|
+
tracker_box_pixels[1] / mask_height,
|
|
3142
|
+
tracker_box_pixels[2] / mask_width,
|
|
3143
|
+
tracker_box_pixels[3] / mask_height,
|
|
3144
|
+
],
|
|
3145
|
+
device=tracker_box_pixels.device,
|
|
3146
|
+
)
|
|
3147
|
+
|
|
3148
|
+
# Compute IoU between detection and SAM2 tracklet bounding boxes
|
|
3149
|
+
det_box_batch = det_box.unsqueeze(0)
|
|
3150
|
+
tracker_box_batch = tracker_box_normalized.unsqueeze(0)
|
|
3151
|
+
iou = box_iou(det_box_batch, tracker_box_batch)[0]
|
|
3152
|
+
|
|
3153
|
+
if iou < self.reconstruction_bbox_iou_thresh and det_score >= self.reconstruction_bbox_det_score:
|
|
3154
|
+
should_recondition_iou = True
|
|
3155
|
+
reconditioned_obj_ids.add(trk_obj_id)
|
|
3156
|
+
|
|
3157
|
+
should_recondition_periodic = (
|
|
3158
|
+
self.recondition_every_nth_frame > 0
|
|
3159
|
+
and frame_idx % self.recondition_every_nth_frame == 0
|
|
3160
|
+
and len(trk_id_to_max_iou_high_conf_det) > 0
|
|
3161
|
+
)
|
|
3162
|
+
|
|
3163
|
+
# Recondition if periodic or IoU condition met
|
|
3164
|
+
if should_recondition_periodic or should_recondition_iou:
|
|
3165
|
+
self._recondition_masklets(
|
|
3166
|
+
frame_idx,
|
|
3167
|
+
det_out,
|
|
3168
|
+
trk_id_to_max_iou_high_conf_det,
|
|
3169
|
+
tracker_states_local,
|
|
3170
|
+
tracker_metadata_prev,
|
|
3171
|
+
tracker_obj_scores_global,
|
|
3172
|
+
)
|
|
3173
|
+
|
|
3174
|
+
# Step 4: Run SAM2 memory encoder on the current frame's prediction masks
|
|
3175
|
+
# This is done on all GPUs
|
|
3176
|
+
batch_size = tracker_low_res_masks_global.size(0)
|
|
3177
|
+
if batch_size > 0:
|
|
3178
|
+
if not hasattr(self, "_warm_up_complete") or self._warm_up_complete:
|
|
3179
|
+
if self.suppress_overlapping_based_on_recent_occlusion_threshold > 0.0:
|
|
3180
|
+
# NOTE: tracker_low_res_masks_global is updated in-place then returned
|
|
3181
|
+
tracker_low_res_masks_global = self._suppress_overlapping_based_on_recent_occlusion(
|
|
3182
|
+
frame_idx,
|
|
3183
|
+
tracker_low_res_masks_global,
|
|
3184
|
+
tracker_metadata_prev,
|
|
3185
|
+
tracker_metadata_new,
|
|
3186
|
+
obj_ids_newly_removed,
|
|
3187
|
+
reverse,
|
|
3188
|
+
)
|
|
3189
|
+
|
|
3190
|
+
self._tracker_update_memories(tracker_states_local, frame_idx, low_res_masks=tracker_low_res_masks_global)
|
|
3191
|
+
|
|
3192
|
+
# Step 4: update the SAM2 metadata based on the update plan
|
|
3193
|
+
updated_obj_ids_this_gpu = tracker_metadata_new["obj_ids"]
|
|
3194
|
+
if len(new_det_obj_ids) > 0:
|
|
3195
|
+
updated_obj_ids_this_gpu = np.concatenate([updated_obj_ids_this_gpu, new_det_obj_ids])
|
|
3196
|
+
if len(obj_ids_newly_removed) > 0:
|
|
3197
|
+
is_removed = np.isin(updated_obj_ids_this_gpu, list(obj_ids_newly_removed))
|
|
3198
|
+
updated_obj_ids_this_gpu = updated_obj_ids_this_gpu[~is_removed]
|
|
3199
|
+
tracker_metadata_new["obj_ids"] = updated_obj_ids_this_gpu
|
|
3200
|
+
tracker_metadata_new["num_obj"] = len(updated_obj_ids_this_gpu)
|
|
3201
|
+
# update object scores and the maximum object ID assigned so far
|
|
3202
|
+
if len(new_det_obj_ids) > 0:
|
|
3203
|
+
tracker_metadata_new["obj_id_to_score"].update(zip(new_det_obj_ids, det_scores_np[new_det_fa_inds]))
|
|
3204
|
+
tracker_metadata_new["obj_id_to_cls"].update(zip(new_det_obj_ids, det_cls_np[new_det_fa_inds]))
|
|
3205
|
+
# tracker scores are not available for new objects, use det score instead.
|
|
3206
|
+
tracker_metadata_new["obj_id_to_tracker_score_frame_wise"][frame_idx].update(
|
|
3207
|
+
zip(new_det_obj_ids, det_scores_np[new_det_fa_inds])
|
|
3208
|
+
)
|
|
3209
|
+
tracker_metadata_new["max_obj_id"] = max(tracker_metadata_new["max_obj_id"], np.max(new_det_obj_ids))
|
|
3210
|
+
# for removed objects, we set their scores to a very low value (-1e4) but still
|
|
3211
|
+
# keep them in "obj_id_to_score" (it's easier to handle outputs this way)
|
|
3212
|
+
for obj_id in obj_ids_newly_removed:
|
|
3213
|
+
tracker_metadata_new["obj_id_to_score"][obj_id] = -1e4
|
|
3214
|
+
tracker_metadata_new["obj_id_to_tracker_score_frame_wise"][frame_idx][obj_id] = -1e4
|
|
3215
|
+
tracker_metadata_new["obj_id_to_last_occluded"].pop(obj_id, None)
|
|
3216
|
+
# check that "metadata" is in tracker_metadata_new if and only if it's GPU 0
|
|
3217
|
+
assert "metadata" in tracker_metadata_new
|
|
3218
|
+
if self.masklet_confirmation_enable:
|
|
3219
|
+
metadata = self.update_masklet_confirmation_status(
|
|
3220
|
+
metadata=tracker_metadata_new["metadata"],
|
|
3221
|
+
obj_ids_all_gpu_prev=tracker_metadata_prev["obj_ids"],
|
|
3222
|
+
obj_ids_all_gpu_updated=tracker_metadata_new["obj_ids"],
|
|
3223
|
+
det_to_matched_trk_obj_ids=det_to_matched_trk_obj_ids,
|
|
3224
|
+
new_det_obj_ids=new_det_obj_ids,
|
|
3225
|
+
)
|
|
3226
|
+
tracker_metadata_new["metadata"] = metadata
|
|
3227
|
+
|
|
3228
|
+
return tracker_update_plan, tracker_metadata_new
|
|
3229
|
+
|
|
3230
|
+
def _suppress_overlapping_based_on_recent_occlusion(
|
|
3231
|
+
self,
|
|
3232
|
+
frame_idx: int,
|
|
3233
|
+
tracker_low_res_masks_global: torch.Tensor,
|
|
3234
|
+
tracker_metadata_prev: dict[str, Any],
|
|
3235
|
+
tracker_metadata_new: dict[str, Any],
|
|
3236
|
+
obj_ids_newly_removed: set[int],
|
|
3237
|
+
reverse: bool = False,
|
|
3238
|
+
):
|
|
3239
|
+
"""Suppress overlapping masks based on the most recent occlusion information. If an object is removed by
|
|
3240
|
+
hotstart, we always suppress it if it overlaps with any other object.
|
|
3241
|
+
|
|
3242
|
+
Args:
|
|
3243
|
+
frame_idx (int): The current frame index.
|
|
3244
|
+
tracker_low_res_masks_global (torch.Tensor): The low-resolution masks for the current frame.
|
|
3245
|
+
tracker_metadata_prev (dict[str, Any]): The metadata from the previous frame.
|
|
3246
|
+
tracker_metadata_new (dict[str, Any]): The metadata for the current frame.
|
|
3247
|
+
obj_ids_newly_removed (set[int]): The object IDs that have been removed.
|
|
3248
|
+
reverse (bool): Whether the tracking is in reverse order.
|
|
3249
|
+
|
|
3250
|
+
Returns:
|
|
3251
|
+
(torch.Tensor): The updated low-resolution masks with some objects suppressed.
|
|
3252
|
+
"""
|
|
3253
|
+
obj_ids_global = tracker_metadata_prev["obj_ids"]
|
|
3254
|
+
binary_tracker_low_res_masks_global = tracker_low_res_masks_global > 0
|
|
3255
|
+
batch_size = tracker_low_res_masks_global.size(0)
|
|
3256
|
+
if batch_size > 0:
|
|
3257
|
+
assert len(obj_ids_global) == batch_size, (
|
|
3258
|
+
f"Mismatch in number of objects: {len(obj_ids_global)} vs {batch_size}"
|
|
3259
|
+
)
|
|
3260
|
+
last_occluded_prev = torch.cat(
|
|
3261
|
+
[
|
|
3262
|
+
tracker_metadata_prev["obj_id_to_last_occluded"].get(
|
|
3263
|
+
obj_id,
|
|
3264
|
+
torch.full(
|
|
3265
|
+
(1,),
|
|
3266
|
+
fill_value=(
|
|
3267
|
+
self.NEVER_OCCLUDED if obj_id not in obj_ids_newly_removed else self.ALWAYS_OCCLUDED
|
|
3268
|
+
),
|
|
3269
|
+
device=binary_tracker_low_res_masks_global.device,
|
|
3270
|
+
dtype=torch.long,
|
|
3271
|
+
),
|
|
3272
|
+
)
|
|
3273
|
+
for obj_id in obj_ids_global
|
|
3274
|
+
],
|
|
3275
|
+
dim=0,
|
|
3276
|
+
)
|
|
3277
|
+
to_suppress = self._get_objects_to_suppress_based_on_most_recently_occluded(
|
|
3278
|
+
binary_tracker_low_res_masks_global,
|
|
3279
|
+
last_occluded_prev,
|
|
3280
|
+
obj_ids_global,
|
|
3281
|
+
frame_idx,
|
|
3282
|
+
reverse,
|
|
3283
|
+
)
|
|
3284
|
+
|
|
3285
|
+
# Update metadata with occlusion information
|
|
3286
|
+
is_obj_occluded = ~(binary_tracker_low_res_masks_global.any(dim=(-1, -2)))
|
|
3287
|
+
is_obj_occluded_or_suppressed = is_obj_occluded | to_suppress
|
|
3288
|
+
last_occluded_new = last_occluded_prev.clone()
|
|
3289
|
+
last_occluded_new[is_obj_occluded_or_suppressed] = frame_idx
|
|
3290
|
+
# Slice out the last occluded frame for each object
|
|
3291
|
+
tracker_metadata_new["obj_id_to_last_occluded"] = {
|
|
3292
|
+
obj_id: last_occluded_new[obj_idx : obj_idx + 1] for obj_idx, obj_id in enumerate(obj_ids_global)
|
|
3293
|
+
}
|
|
3294
|
+
|
|
3295
|
+
# Zero out suppressed masks before memory encoding
|
|
3296
|
+
tracker_low_res_masks_global[to_suppress] = self.NO_OBJ_LOGIT
|
|
3297
|
+
|
|
3298
|
+
return tracker_low_res_masks_global
|
|
3299
|
+
|
|
3300
|
+
def run_tracker_update_execution_phase(
|
|
3301
|
+
self,
|
|
3302
|
+
frame_idx: int,
|
|
3303
|
+
num_frames: int,
|
|
3304
|
+
det_out: dict[str, torch.Tensor],
|
|
3305
|
+
tracker_states_local: list[Any],
|
|
3306
|
+
tracker_update_plan: dict[str, np.ndarray],
|
|
3307
|
+
):
|
|
3308
|
+
"""Execute the tracker update plan for a single frame in an SPMD manner."""
|
|
3309
|
+
# initialize tracking scores with detection scores
|
|
3310
|
+
new_det_fa_inds: np.ndarray = tracker_update_plan["new_det_fa_inds"]
|
|
3311
|
+
new_det_obj_ids: np.ndarray = tracker_update_plan["new_det_obj_ids"]
|
|
3312
|
+
# new_det_gpu_ids: np.ndarray = tracker_update_plan["new_det_gpu_ids"]
|
|
3313
|
+
new_det_obj_ids_local: np.ndarray = new_det_obj_ids
|
|
3314
|
+
new_det_fa_inds_local: np.ndarray = new_det_fa_inds
|
|
3315
|
+
obj_ids_newly_removed: set[int] = tracker_update_plan["obj_ids_newly_removed"]
|
|
3316
|
+
|
|
3317
|
+
# Step 1: add new objects from the detector to SAM2 inference states
|
|
3318
|
+
if len(new_det_fa_inds_local) > 0:
|
|
3319
|
+
new_det_fa_inds_local_t = torch.from_numpy(new_det_fa_inds_local)
|
|
3320
|
+
new_det_masks: torch.Tensor = det_out["mask"][new_det_fa_inds_local_t]
|
|
3321
|
+
# initialize SAM2 with new object masks
|
|
3322
|
+
tracker_states_local = self._tracker_add_new_objects(
|
|
3323
|
+
frame_idx=frame_idx,
|
|
3324
|
+
num_frames=num_frames,
|
|
3325
|
+
new_obj_ids=new_det_obj_ids_local,
|
|
3326
|
+
new_obj_masks=new_det_masks,
|
|
3327
|
+
tracker_states_local=tracker_states_local,
|
|
3328
|
+
)
|
|
3329
|
+
|
|
3330
|
+
# Step 2: remove from SAM2 inference states those objects removed by heuristics
|
|
3331
|
+
if len(obj_ids_newly_removed) > 0:
|
|
3332
|
+
self._tracker_remove_objects(tracker_states_local, obj_ids_newly_removed)
|
|
3333
|
+
|
|
3334
|
+
return tracker_states_local
|
|
3335
|
+
|
|
3336
|
+
def build_outputs(
|
|
3337
|
+
self,
|
|
3338
|
+
det_out: dict[str, torch.Tensor],
|
|
3339
|
+
tracker_low_res_masks_global: torch.Tensor,
|
|
3340
|
+
tracker_metadata_prev: dict[str, np.ndarray],
|
|
3341
|
+
tracker_update_plan: dict[str, np.ndarray],
|
|
3342
|
+
reconditioned_obj_ids: set | None = None,
|
|
3343
|
+
):
|
|
3344
|
+
"""Build the output masks for the current frame."""
|
|
3345
|
+
new_det_fa_inds: np.ndarray = tracker_update_plan["new_det_fa_inds"]
|
|
3346
|
+
new_det_obj_ids: np.ndarray = tracker_update_plan["new_det_obj_ids"]
|
|
3347
|
+
obj_id_to_mask = {} # obj_id --> output mask tensor
|
|
3348
|
+
|
|
3349
|
+
# Part 1: masks from previous SAM2 propagation
|
|
3350
|
+
existing_masklet_obj_ids = tracker_metadata_prev["obj_ids"]
|
|
3351
|
+
existing_masklet_binary = tracker_low_res_masks_global.unsqueeze(1)
|
|
3352
|
+
assert len(existing_masklet_obj_ids) == len(existing_masklet_binary)
|
|
3353
|
+
for obj_id, mask in zip(existing_masklet_obj_ids, existing_masklet_binary):
|
|
3354
|
+
obj_id_to_mask[obj_id] = mask # (1, H_video, W_video)
|
|
3355
|
+
|
|
3356
|
+
# Part 2: masks from new detections
|
|
3357
|
+
new_det_fa_inds_t = torch.from_numpy(new_det_fa_inds)
|
|
3358
|
+
new_det_low_res_masks = det_out["mask"][new_det_fa_inds_t].unsqueeze(1)
|
|
3359
|
+
assert len(new_det_obj_ids) == len(new_det_low_res_masks)
|
|
3360
|
+
for obj_id, mask in zip(new_det_obj_ids, new_det_low_res_masks):
|
|
3361
|
+
obj_id_to_mask[obj_id] = mask # (1, H_video, W_video)
|
|
3362
|
+
|
|
3363
|
+
# Part 3: Override masks for reconditioned objects using detection masks
|
|
3364
|
+
if reconditioned_obj_ids is not None and len(reconditioned_obj_ids) > 0:
|
|
3365
|
+
trk_id_to_max_iou_high_conf_det = tracker_update_plan.get("trk_id_to_max_iou_high_conf_det", {})
|
|
3366
|
+
|
|
3367
|
+
for obj_id in reconditioned_obj_ids:
|
|
3368
|
+
det_idx = trk_id_to_max_iou_high_conf_det.get(obj_id)
|
|
3369
|
+
|
|
3370
|
+
if det_idx is not None:
|
|
3371
|
+
obj_id_to_mask[obj_id] = det_out["mask"][det_idx].unsqueeze(0)
|
|
3372
|
+
|
|
3373
|
+
return obj_id_to_mask
|
|
3374
|
+
|
|
3375
|
+
def _get_objects_to_suppress_based_on_most_recently_occluded(
|
|
3376
|
+
self,
|
|
3377
|
+
binary_low_res_masks: torch.Tensor,
|
|
3378
|
+
last_occluded: list[int],
|
|
3379
|
+
obj_ids: list[int],
|
|
3380
|
+
frame_idx: int | None = None,
|
|
3381
|
+
reverse: bool = False,
|
|
3382
|
+
):
|
|
3383
|
+
# Suppress overlapping masks for objects that were most recently occluded
|
|
3384
|
+
assert binary_low_res_masks.dtype == torch.bool, f"Expected boolean tensor, got {binary_low_res_masks.dtype}"
|
|
3385
|
+
to_suppress = torch.zeros(
|
|
3386
|
+
binary_low_res_masks.size(0),
|
|
3387
|
+
device=binary_low_res_masks.device,
|
|
3388
|
+
dtype=torch.bool,
|
|
3389
|
+
)
|
|
3390
|
+
if len(obj_ids) <= 1:
|
|
3391
|
+
return to_suppress
|
|
3392
|
+
|
|
3393
|
+
iou = mask_iou(binary_low_res_masks.flatten(1), binary_low_res_masks.flatten(1)) # [N,N]
|
|
3394
|
+
|
|
3395
|
+
# Create masks for upper triangular matrix (i < j) and IoU threshold
|
|
3396
|
+
mask_iou_thresh = iou >= self.suppress_overlapping_based_on_recent_occlusion_threshold
|
|
3397
|
+
overlapping_pairs = torch.triu(mask_iou_thresh, diagonal=1) # [N,N]
|
|
3398
|
+
|
|
3399
|
+
last_occ_expanded_i = last_occluded.unsqueeze(1) # (N, 1)
|
|
3400
|
+
last_occ_expanded_j = last_occluded.unsqueeze(0) # (1, N)
|
|
3401
|
+
# Suppress most recently occluded
|
|
3402
|
+
cmp_op = torch.gt if not reverse else torch.lt
|
|
3403
|
+
suppress_i_mask = (
|
|
3404
|
+
overlapping_pairs
|
|
3405
|
+
& cmp_op(last_occ_expanded_i, last_occ_expanded_j) # (last_occ_expanded_i > last_occ_expanded_j)
|
|
3406
|
+
& (last_occ_expanded_j > -1) # j can suppress i only if i was previously occluded
|
|
3407
|
+
)
|
|
3408
|
+
suppress_j_mask = (
|
|
3409
|
+
overlapping_pairs
|
|
3410
|
+
& cmp_op(last_occ_expanded_j, last_occ_expanded_i)
|
|
3411
|
+
& (last_occ_expanded_i > -1) # i can suppress j only if j was previously occluded
|
|
3412
|
+
)
|
|
3413
|
+
# Apply suppression
|
|
3414
|
+
to_suppress = suppress_i_mask.any(dim=1) | suppress_j_mask.any(dim=0)
|
|
3415
|
+
|
|
3416
|
+
# Log for debugging
|
|
3417
|
+
if LOGGER.isEnabledFor(10) and frame_idx is not None:
|
|
3418
|
+
suppress_i_mask = suppress_i_mask.cpu().numpy()
|
|
3419
|
+
suppress_j_mask = suppress_j_mask.cpu().numpy()
|
|
3420
|
+
last_occluded = last_occluded.cpu().numpy()
|
|
3421
|
+
|
|
3422
|
+
# Find all suppression pairs without using torch.where
|
|
3423
|
+
batch_size = suppress_i_mask.shape[0]
|
|
3424
|
+
|
|
3425
|
+
# Log i-suppression cases (where i gets suppressed in favor of j)
|
|
3426
|
+
for i in range(batch_size):
|
|
3427
|
+
for j in range(batch_size):
|
|
3428
|
+
if suppress_i_mask[i, j]:
|
|
3429
|
+
LOGGER.debug(
|
|
3430
|
+
f"{frame_idx=}: Suppressing obj {obj_ids[i]} last occluded {last_occluded[i]} in favor of {obj_ids[j]} last occluded {last_occluded[j]}"
|
|
3431
|
+
)
|
|
3432
|
+
|
|
3433
|
+
# Log j-suppression cases (where j gets suppressed in favor of i)
|
|
3434
|
+
for i in range(batch_size):
|
|
3435
|
+
for j in range(batch_size):
|
|
3436
|
+
if suppress_j_mask[i, j]:
|
|
3437
|
+
LOGGER.debug(
|
|
3438
|
+
f"{frame_idx=}: Suppressing obj {obj_ids[j]} last occluded {last_occluded[j]} in favor of {obj_ids[i]} last occluded {last_occluded[i]}"
|
|
3439
|
+
)
|
|
3440
|
+
|
|
3441
|
+
return to_suppress
|
|
3442
|
+
|
|
3443
|
+
def _propogate_tracker_one_frame_local_gpu(self, inference_states: list[Any], frame_idx: int):
|
|
3444
|
+
"""Inference_states: list of inference states, each state corresponds to a different set of objects."""
|
|
3445
|
+
obj_ids_local = []
|
|
3446
|
+
low_res_masks_list = []
|
|
3447
|
+
obj_scores_list = []
|
|
3448
|
+
for inference_state in inference_states:
|
|
3449
|
+
if len(inference_state["obj_ids"]) == 0:
|
|
3450
|
+
continue # skip propagation on empty inference states
|
|
3451
|
+
|
|
3452
|
+
out_obj_ids, out_low_res_masks, out_obj_scores = self.tracker.propagate_in_video(
|
|
3453
|
+
inference_state, frame_idx=frame_idx
|
|
3454
|
+
)
|
|
3455
|
+
assert isinstance(out_obj_ids, list)
|
|
3456
|
+
obj_ids_local.extend(out_obj_ids)
|
|
3457
|
+
low_res_masks_list.append(out_low_res_masks.squeeze(1))
|
|
3458
|
+
obj_scores_list.append(out_obj_scores.squeeze(1))
|
|
3459
|
+
|
|
3460
|
+
# concatenate the output masklets from all local inference states
|
|
3461
|
+
if len(low_res_masks_list) > 0:
|
|
3462
|
+
low_res_masks_local = torch.cat(low_res_masks_list, dim=0)
|
|
3463
|
+
obj_scores_local = torch.cat(obj_scores_list, dim=0)
|
|
3464
|
+
low_res_masks_local = low_res_masks_local.squeeze(1)
|
|
3465
|
+
else:
|
|
3466
|
+
low_res_masks_local = torch.zeros(0, *self._bb_feat_sizes[0], device=self.device)
|
|
3467
|
+
obj_scores_local = torch.zeros(0, device=self.device)
|
|
3468
|
+
|
|
3469
|
+
return obj_ids_local, low_res_masks_local, obj_scores_local
|
|
3470
|
+
|
|
3471
|
+
def _associate_det_trk(
|
|
3472
|
+
self,
|
|
3473
|
+
det_masks: torch.Tensor,
|
|
3474
|
+
det_scores_np: np.ndarray,
|
|
3475
|
+
trk_masks: torch.Tensor,
|
|
3476
|
+
trk_obj_ids: np.ndarray,
|
|
3477
|
+
):
|
|
3478
|
+
"""Match detections on the current frame with the existing masklets.
|
|
3479
|
+
|
|
3480
|
+
Args:
|
|
3481
|
+
det_masks: (N, H, W) tensor of predicted masks
|
|
3482
|
+
det_scores_np: (N,) array of detection scores
|
|
3483
|
+
trk_masks: (M, H, W) tensor of track masks
|
|
3484
|
+
trk_obj_ids: (M,) array of object IDs corresponding to trk_masks
|
|
3485
|
+
|
|
3486
|
+
Returns:
|
|
3487
|
+
new_det_fa_inds: array of new object indices.
|
|
3488
|
+
unmatched_trk_obj_ids: array of existing masklet object IDs that are not matched to any detections on this
|
|
3489
|
+
frame (for unmatched, we only count masklets with >0 area)
|
|
3490
|
+
det_to_matched_trk_obj_ids: dict[int, np.ndarray]: mapping from detector's detection indices to the list of
|
|
3491
|
+
matched tracklet object IDs
|
|
3492
|
+
empty_trk_obj_ids: array of existing masklet object IDs with zero area in SAM2 prediction
|
|
3493
|
+
"""
|
|
3494
|
+
iou_threshold = self.assoc_iou_thresh
|
|
3495
|
+
iou_threshold_trk = self.trk_assoc_iou_thresh
|
|
3496
|
+
new_det_thresh = self.new_det_thresh
|
|
3497
|
+
|
|
3498
|
+
assert det_masks.is_floating_point(), "float tensor expected (do not binarize)"
|
|
3499
|
+
assert trk_masks.is_floating_point(), "float tensor expected (do not binarize)"
|
|
3500
|
+
assert trk_masks.size(0) == len(trk_obj_ids), (
|
|
3501
|
+
f"trk_masks and trk_obj_ids should have the same length, {trk_masks.size(0)} vs {len(trk_obj_ids)}"
|
|
3502
|
+
)
|
|
3503
|
+
if trk_masks.size(0) == 0:
|
|
3504
|
+
# all detections are new
|
|
3505
|
+
new_det_fa_inds = np.arange(det_masks.size(0))
|
|
3506
|
+
unmatched_trk_obj_ids = np.array([], np.int64)
|
|
3507
|
+
empty_trk_obj_ids = np.array([], np.int64)
|
|
3508
|
+
det_to_matched_trk_obj_ids = {}
|
|
3509
|
+
trk_id_to_max_iou_high_conf_det = {}
|
|
3510
|
+
return (
|
|
3511
|
+
new_det_fa_inds,
|
|
3512
|
+
unmatched_trk_obj_ids,
|
|
3513
|
+
det_to_matched_trk_obj_ids,
|
|
3514
|
+
trk_id_to_max_iou_high_conf_det,
|
|
3515
|
+
empty_trk_obj_ids,
|
|
3516
|
+
)
|
|
3517
|
+
elif det_masks.size(0) == 0:
|
|
3518
|
+
# all previous tracklets are unmatched if they have a non-zero area
|
|
3519
|
+
new_det_fa_inds = np.array([], np.int64)
|
|
3520
|
+
trk_is_nonempty = (trk_masks > 0).any(dim=(1, 2)).cpu().numpy()
|
|
3521
|
+
unmatched_trk_obj_ids = trk_obj_ids[trk_is_nonempty]
|
|
3522
|
+
empty_trk_obj_ids = trk_obj_ids[~trk_is_nonempty]
|
|
3523
|
+
det_to_matched_trk_obj_ids = {}
|
|
3524
|
+
trk_id_to_max_iou_high_conf_det = {}
|
|
3525
|
+
return (
|
|
3526
|
+
new_det_fa_inds,
|
|
3527
|
+
unmatched_trk_obj_ids,
|
|
3528
|
+
det_to_matched_trk_obj_ids,
|
|
3529
|
+
trk_id_to_max_iou_high_conf_det,
|
|
3530
|
+
empty_trk_obj_ids,
|
|
3531
|
+
)
|
|
3532
|
+
|
|
3533
|
+
if det_masks.shape[-2:] != trk_masks.shape[-2:]:
|
|
3534
|
+
# resize to the smaller size to save GPU memory
|
|
3535
|
+
if np.prod(det_masks.shape[-2:]) < np.prod(trk_masks.shape[-2:]):
|
|
3536
|
+
trk_masks = F.interpolate(
|
|
3537
|
+
trk_masks.unsqueeze(1),
|
|
3538
|
+
size=det_masks.shape[-2:],
|
|
3539
|
+
mode="bilinear",
|
|
3540
|
+
align_corners=False,
|
|
3541
|
+
).squeeze(1)
|
|
3542
|
+
else:
|
|
3543
|
+
# resize detections to track size
|
|
3544
|
+
det_masks = F.interpolate(
|
|
3545
|
+
det_masks.unsqueeze(1),
|
|
3546
|
+
size=trk_masks.shape[-2:],
|
|
3547
|
+
mode="bilinear",
|
|
3548
|
+
align_corners=False,
|
|
3549
|
+
).squeeze(1)
|
|
3550
|
+
|
|
3551
|
+
det_masks_binary = det_masks > 0
|
|
3552
|
+
trk_masks_binary = trk_masks > 0
|
|
3553
|
+
ious = mask_iou(det_masks_binary.flatten(1).float(), trk_masks_binary.flatten(1).float()) # (N, M)
|
|
3554
|
+
|
|
3555
|
+
ious_np = ious.cpu().numpy()
|
|
3556
|
+
if self.o2o_matching_masklets_enable:
|
|
3557
|
+
from scipy.optimize import linear_sum_assignment
|
|
3558
|
+
|
|
3559
|
+
# Hungarian matching for tracks (one-to-one: each track matches at most one detection)
|
|
3560
|
+
cost_matrix = 1 - ious_np # Hungarian solves for minimum cost
|
|
3561
|
+
row_ind, col_ind = linear_sum_assignment(cost_matrix)
|
|
3562
|
+
trk_is_matched = np.zeros(trk_masks.size(0), dtype=bool)
|
|
3563
|
+
for d, t in zip(row_ind, col_ind):
|
|
3564
|
+
if ious_np[d, t] >= iou_threshold_trk:
|
|
3565
|
+
trk_is_matched[t] = True
|
|
3566
|
+
else:
|
|
3567
|
+
trk_is_matched = (ious_np >= iou_threshold_trk).any(axis=0)
|
|
3568
|
+
# Non-empty tracks not matched by Hungarian assignment above threshold are unmatched
|
|
3569
|
+
trk_is_nonempty = trk_masks_binary.any(dim=(1, 2)).cpu().numpy()
|
|
3570
|
+
trk_is_unmatched = np.logical_and(trk_is_nonempty, ~trk_is_matched)
|
|
3571
|
+
unmatched_trk_obj_ids = trk_obj_ids[trk_is_unmatched]
|
|
3572
|
+
# also record masklets that have zero area in SAM 2 prediction
|
|
3573
|
+
empty_trk_obj_ids = trk_obj_ids[~trk_is_nonempty]
|
|
3574
|
+
|
|
3575
|
+
# For detections: allow many tracks to match to the same detection (many-to-one)
|
|
3576
|
+
# So, a detection is 'new' if it does not match any track above threshold
|
|
3577
|
+
is_new_det = np.logical_and(
|
|
3578
|
+
det_scores_np >= new_det_thresh,
|
|
3579
|
+
np.logical_not(np.any(ious_np >= iou_threshold, axis=1)),
|
|
3580
|
+
)
|
|
3581
|
+
new_det_fa_inds = np.nonzero(is_new_det)[0]
|
|
3582
|
+
|
|
3583
|
+
# for each detection, which tracks it matched to (above threshold)
|
|
3584
|
+
det_to_matched_trk_obj_ids = {}
|
|
3585
|
+
trk_id_to_max_iou_high_conf_det = {} # trk id --> exactly one detection idx
|
|
3586
|
+
det_to_max_iou_trk_idx = np.argmax(ious_np, axis=1)
|
|
3587
|
+
det_is_high_conf = (det_scores_np >= self.HIGH_CONF_THRESH) & ~is_new_det
|
|
3588
|
+
det_is_high_iou = np.max(ious_np, axis=1) >= self.HIGH_IOU_THRESH
|
|
3589
|
+
det_is_high_conf_and_iou = set(np.nonzero(det_is_high_conf & det_is_high_iou)[0])
|
|
3590
|
+
for d in range(det_masks.size(0)):
|
|
3591
|
+
det_to_matched_trk_obj_ids[d] = trk_obj_ids[ious_np[d, :] >= iou_threshold]
|
|
3592
|
+
if d in det_is_high_conf_and_iou:
|
|
3593
|
+
trk_obj_id = trk_obj_ids[det_to_max_iou_trk_idx[d]].item()
|
|
3594
|
+
trk_id_to_max_iou_high_conf_det[trk_obj_id] = d
|
|
3595
|
+
|
|
3596
|
+
return (
|
|
3597
|
+
new_det_fa_inds,
|
|
3598
|
+
unmatched_trk_obj_ids,
|
|
3599
|
+
det_to_matched_trk_obj_ids,
|
|
3600
|
+
trk_id_to_max_iou_high_conf_det,
|
|
3601
|
+
empty_trk_obj_ids,
|
|
3602
|
+
)
|
|
3603
|
+
|
|
3604
|
+
def _process_hotstart(
|
|
3605
|
+
self,
|
|
3606
|
+
frame_idx: int,
|
|
3607
|
+
reverse: bool,
|
|
3608
|
+
det_to_matched_trk_obj_ids: dict[int, np.ndarray],
|
|
3609
|
+
new_det_obj_ids: np.ndarray,
|
|
3610
|
+
empty_trk_obj_ids: np.ndarray,
|
|
3611
|
+
unmatched_trk_obj_ids: np.ndarray,
|
|
3612
|
+
metadata: dict[str, Any],
|
|
3613
|
+
):
|
|
3614
|
+
"""Handle hotstart heuristics to remove unmatched or duplicated objects."""
|
|
3615
|
+
# obj_id --> first frame index where the object was detected
|
|
3616
|
+
obj_first_frame_idx = metadata["obj_first_frame_idx"]
|
|
3617
|
+
# obj_id --> [mismatched frame indices]
|
|
3618
|
+
unmatched_frame_inds = metadata["unmatched_frame_inds"]
|
|
3619
|
+
trk_keep_alive = metadata["trk_keep_alive"]
|
|
3620
|
+
# (first_appear_obj_id, obj_id) --> [overlap frame indices]
|
|
3621
|
+
overlap_pair_to_frame_inds = metadata["overlap_pair_to_frame_inds"]
|
|
3622
|
+
# removed_obj_ids: object IDs that are suppressed via hot-start
|
|
3623
|
+
removed_obj_ids = metadata["removed_obj_ids"]
|
|
3624
|
+
suppressed_obj_ids = metadata["suppressed_obj_ids"][frame_idx]
|
|
3625
|
+
|
|
3626
|
+
obj_ids_newly_removed = set() # object IDs to be newly removed on this frame
|
|
3627
|
+
hotstart_diff = frame_idx - self.hotstart_delay if not reverse else frame_idx + self.hotstart_delay
|
|
3628
|
+
|
|
3629
|
+
# Step 1: log the frame index where each object ID first appears
|
|
3630
|
+
for obj_id in new_det_obj_ids:
|
|
3631
|
+
if obj_id not in obj_first_frame_idx:
|
|
3632
|
+
obj_first_frame_idx[obj_id] = frame_idx
|
|
3633
|
+
assert obj_id not in trk_keep_alive
|
|
3634
|
+
trk_keep_alive[obj_id] = self.init_trk_keep_alive
|
|
3635
|
+
|
|
3636
|
+
matched_trks = set()
|
|
3637
|
+
# We use the det-->tracks list to check for matched objects. Otherwise, we need to compute areas to decide whether they're occluded
|
|
3638
|
+
for matched_trks_per_det in det_to_matched_trk_obj_ids.values():
|
|
3639
|
+
matched_trks.update(matched_trks_per_det)
|
|
3640
|
+
for obj_id in matched_trks:
|
|
3641
|
+
# NOTE: To minimize number of configurable params, we use the hotstart_unmatch_thresh to set the max value of trk_keep_alive
|
|
3642
|
+
trk_keep_alive[obj_id] = min(self.max_trk_keep_alive, trk_keep_alive[obj_id] + 1)
|
|
3643
|
+
for obj_id in unmatched_trk_obj_ids:
|
|
3644
|
+
unmatched_frame_inds[obj_id].append(frame_idx)
|
|
3645
|
+
# NOTE: To minimize number of configurable params, we use the hotstart_unmatch_thresh to set the min value of trk_keep_alive
|
|
3646
|
+
# The max keep alive is 2x the min, means the model prefers to keep the prediction rather than suppress it if it was matched long enough.
|
|
3647
|
+
trk_keep_alive[obj_id] = max(self.min_trk_keep_alive, trk_keep_alive[obj_id] - 1)
|
|
3648
|
+
if self.decrease_trk_keep_alive_for_empty_masklets:
|
|
3649
|
+
for obj_id in empty_trk_obj_ids:
|
|
3650
|
+
# NOTE: To minimize number of configurable params, we use the hotstart_unmatch_thresh to set the min value of trk_keep_alive
|
|
3651
|
+
trk_keep_alive[obj_id] = max(self.min_trk_keep_alive, trk_keep_alive[obj_id] - 1)
|
|
3652
|
+
|
|
3653
|
+
# Step 2: removed tracks that has not matched with detections for `hotstart_unmatch_thresh` frames with hotstart period
|
|
3654
|
+
# a) add unmatched frame indices for each existing object ID
|
|
3655
|
+
# note that `unmatched_trk_obj_ids` contains those frames where the SAM2 output mask
|
|
3656
|
+
# doesn't match any detection; it excludes those frames where SAM2 gives an empty mask
|
|
3657
|
+
# b) remove a masklet if it first appears after `hotstart_diff` and is unmatched for more
|
|
3658
|
+
# than `self.hotstart_unmatch_thresh` frames
|
|
3659
|
+
for obj_id, frame_indices in unmatched_frame_inds.items():
|
|
3660
|
+
if obj_id in removed_obj_ids or obj_id in obj_ids_newly_removed:
|
|
3661
|
+
continue # skip if the object is already removed
|
|
3662
|
+
if len(frame_indices) >= self.hotstart_unmatch_thresh:
|
|
3663
|
+
is_within_hotstart = (obj_first_frame_idx[obj_id] > hotstart_diff and not reverse) or (
|
|
3664
|
+
obj_first_frame_idx[obj_id] < hotstart_diff and reverse
|
|
3665
|
+
)
|
|
3666
|
+
if is_within_hotstart:
|
|
3667
|
+
obj_ids_newly_removed.add(obj_id)
|
|
3668
|
+
LOGGER.debug(
|
|
3669
|
+
f"Removing object {obj_id} at frame {frame_idx} "
|
|
3670
|
+
f"since it is unmatched for frames: {frame_indices}"
|
|
3671
|
+
)
|
|
3672
|
+
if (
|
|
3673
|
+
trk_keep_alive[obj_id] <= 0 # Object has not been matched for too long
|
|
3674
|
+
and not self.suppress_unmatched_only_within_hotstart
|
|
3675
|
+
and obj_id not in removed_obj_ids
|
|
3676
|
+
and obj_id not in obj_ids_newly_removed
|
|
3677
|
+
):
|
|
3678
|
+
LOGGER.debug(f"Suppressing object {obj_id} at frame {frame_idx}, due to being unmatched")
|
|
3679
|
+
suppressed_obj_ids.add(obj_id)
|
|
3680
|
+
|
|
3681
|
+
# Step 3: removed tracks that overlaps with another track for `hotstart_dup_thresh` frames
|
|
3682
|
+
# a) find overlaps tracks -- we consider overlap if they match to the same detection
|
|
3683
|
+
for _, matched_trk_obj_ids in det_to_matched_trk_obj_ids.items():
|
|
3684
|
+
if len(matched_trk_obj_ids) < 2:
|
|
3685
|
+
continue # only count detections that are matched to multiple (>=2) masklets
|
|
3686
|
+
# if there are multiple matched track ids, we need to find the one that appeared first;
|
|
3687
|
+
# these later appearing ids may be removed since they may be considered as duplicates
|
|
3688
|
+
first_appear_obj_id = (
|
|
3689
|
+
min(matched_trk_obj_ids, key=lambda x: obj_first_frame_idx[x])
|
|
3690
|
+
if not reverse
|
|
3691
|
+
else max(matched_trk_obj_ids, key=lambda x: obj_first_frame_idx[x])
|
|
3692
|
+
)
|
|
3693
|
+
for obj_id in matched_trk_obj_ids:
|
|
3694
|
+
if obj_id != first_appear_obj_id:
|
|
3695
|
+
key = (first_appear_obj_id, obj_id)
|
|
3696
|
+
overlap_pair_to_frame_inds[key].append(frame_idx)
|
|
3697
|
+
|
|
3698
|
+
# b) remove a masklet if it first appears after `hotstart_diff` and it overlaps with another
|
|
3699
|
+
# masklet (that appears earlier) for more than `self.hotstart_dup_thresh` frames
|
|
3700
|
+
for (first_obj_id, obj_id), frame_indices in overlap_pair_to_frame_inds.items():
|
|
3701
|
+
if obj_id in removed_obj_ids or obj_id in obj_ids_newly_removed:
|
|
3702
|
+
continue # skip if the object is already removed
|
|
3703
|
+
if (obj_first_frame_idx[obj_id] > hotstart_diff and not reverse) or (
|
|
3704
|
+
obj_first_frame_idx[obj_id] < hotstart_diff and reverse
|
|
3705
|
+
):
|
|
3706
|
+
if len(frame_indices) >= self.hotstart_dup_thresh:
|
|
3707
|
+
obj_ids_newly_removed.add(obj_id)
|
|
3708
|
+
LOGGER.debug(
|
|
3709
|
+
f"Removing object {obj_id} at frame {frame_idx} "
|
|
3710
|
+
f"since it overlaps with another track {first_obj_id} at frames: {frame_indices}"
|
|
3711
|
+
)
|
|
3712
|
+
|
|
3713
|
+
removed_obj_ids.update(obj_ids_newly_removed)
|
|
3714
|
+
return obj_ids_newly_removed, metadata
|
|
3715
|
+
|
|
3716
|
+
def _tracker_update_memories(
|
|
3717
|
+
self, tracker_inference_states: list[Any], frame_idx: int, low_res_masks: torch.Tensor
|
|
3718
|
+
):
|
|
3719
|
+
"""Run Sam2 memory encoder, enforcing non-overlapping constraints globally."""
|
|
3720
|
+
if len(tracker_inference_states) == 0:
|
|
3721
|
+
return
|
|
3722
|
+
# NOTE: inspect this part if we observe OOMs in the demo
|
|
3723
|
+
high_res_masks = F.interpolate(
|
|
3724
|
+
low_res_masks.unsqueeze(1),
|
|
3725
|
+
size=self.interpol_size,
|
|
3726
|
+
mode="bilinear",
|
|
3727
|
+
align_corners=False,
|
|
3728
|
+
)
|
|
3729
|
+
# We first apply non-overlapping constraints before memory encoding. This may include some suppression heuristics.
|
|
3730
|
+
if not hasattr(self, "_warm_up_complete") or self._warm_up_complete:
|
|
3731
|
+
high_res_masks = self.tracker.model._suppress_object_pw_area_shrinkage(high_res_masks)
|
|
3732
|
+
# Instead of gathering the predicted object scores, we use mask areas as a proxy.
|
|
3733
|
+
object_score_logits = torch.where((high_res_masks > 0).any(dim=(-1, -2)), 10.0, -10.0)
|
|
3734
|
+
|
|
3735
|
+
# Run the memory encoder on local slices for each GPU
|
|
3736
|
+
start_idx_gpu = 0
|
|
3737
|
+
start_idx_state = start_idx_gpu
|
|
3738
|
+
for tracker_state in tracker_inference_states:
|
|
3739
|
+
num_obj_per_state = len(tracker_state["obj_ids"])
|
|
3740
|
+
if num_obj_per_state == 0:
|
|
3741
|
+
continue
|
|
3742
|
+
# Get the local high-res masks and object score logits for this inference state
|
|
3743
|
+
end_idx_state = start_idx_state + num_obj_per_state
|
|
3744
|
+
local_high_res_masks = high_res_masks[start_idx_state:end_idx_state]
|
|
3745
|
+
local_object_score_logits = object_score_logits[start_idx_state:end_idx_state]
|
|
3746
|
+
local_batch_size = local_high_res_masks.size(0)
|
|
3747
|
+
# Run Sam2 memory encoder. Note that we do not re-enforce the non-overlapping constraint as it is turned off by default
|
|
3748
|
+
|
|
3749
|
+
encoded_mem = self.tracker._run_memory_encoder(
|
|
3750
|
+
local_batch_size,
|
|
3751
|
+
local_high_res_masks,
|
|
3752
|
+
local_object_score_logits,
|
|
3753
|
+
is_mask_from_pts=False,
|
|
3754
|
+
inference_state=tracker_state,
|
|
3755
|
+
)
|
|
3756
|
+
local_maskmem_features, local_maskmem_pos_enc = encoded_mem
|
|
3757
|
+
# Store encoded memories in the local inference state
|
|
3758
|
+
output_dict = tracker_state["output_dict"]
|
|
3759
|
+
for storage_key in ["cond_frame_outputs", "non_cond_frame_outputs"]:
|
|
3760
|
+
if frame_idx not in output_dict[storage_key]:
|
|
3761
|
+
continue
|
|
3762
|
+
output_dict[storage_key][frame_idx]["maskmem_features"] = local_maskmem_features
|
|
3763
|
+
output_dict[storage_key][frame_idx]["maskmem_pos_enc"] = [pos for pos in local_maskmem_pos_enc]
|
|
3764
|
+
# for batched inference state, we also need to add per-object
|
|
3765
|
+
# memory slides to support instance interactivity
|
|
3766
|
+
self.tracker._add_output_per_object(
|
|
3767
|
+
inference_state=tracker_state,
|
|
3768
|
+
frame_idx=frame_idx,
|
|
3769
|
+
current_out=output_dict[storage_key][frame_idx],
|
|
3770
|
+
storage_key=storage_key,
|
|
3771
|
+
)
|
|
3772
|
+
start_idx_state += num_obj_per_state
|
|
3773
|
+
|
|
3774
|
+
def _tracker_add_new_objects(
|
|
3775
|
+
self,
|
|
3776
|
+
frame_idx: int,
|
|
3777
|
+
num_frames: int,
|
|
3778
|
+
new_obj_ids: list[int],
|
|
3779
|
+
new_obj_masks: torch.Tensor,
|
|
3780
|
+
tracker_states_local: list[Any],
|
|
3781
|
+
):
|
|
3782
|
+
"""Add a new object to SAM2 inference states."""
|
|
3783
|
+
prev_tracker_state = tracker_states_local[0] if len(tracker_states_local) > 0 else None
|
|
3784
|
+
|
|
3785
|
+
# prepare inference_state
|
|
3786
|
+
# batch objects that first appear on the same frame together
|
|
3787
|
+
# Clear inference state. Keep the cached image features if available.
|
|
3788
|
+
new_tracker_state = self.tracker._init_state(num_frames=num_frames)
|
|
3789
|
+
# NOTE: adding image placeholder
|
|
3790
|
+
new_tracker_state["im"] = None
|
|
3791
|
+
new_tracker_state["backbone_out"] = (
|
|
3792
|
+
prev_tracker_state.get("backbone_out", None) if prev_tracker_state is not None else None
|
|
3793
|
+
)
|
|
3794
|
+
|
|
3795
|
+
assert len(new_obj_ids) == new_obj_masks.size(0)
|
|
3796
|
+
assert new_obj_masks.is_floating_point()
|
|
3797
|
+
new_obj_masks = F.interpolate(
|
|
3798
|
+
new_obj_masks.unsqueeze(0),
|
|
3799
|
+
size=self.interpol_size,
|
|
3800
|
+
mode="bilinear",
|
|
3801
|
+
align_corners=False,
|
|
3802
|
+
).squeeze(0)
|
|
3803
|
+
new_obj_masks = new_obj_masks > 0
|
|
3804
|
+
|
|
3805
|
+
# add object one by one
|
|
3806
|
+
for new_obj_id, new_mask in zip(new_obj_ids, new_obj_masks):
|
|
3807
|
+
self.tracker.add_new_prompts(
|
|
3808
|
+
inference_state=new_tracker_state,
|
|
3809
|
+
frame_idx=frame_idx,
|
|
3810
|
+
obj_id=new_obj_id,
|
|
3811
|
+
masks=new_mask[None, None], # add bs, channel
|
|
3812
|
+
)
|
|
3813
|
+
# NOTE: we skip enforcing the non-overlapping constraint **globally** when adding new objects.
|
|
3814
|
+
self.tracker.propagate_in_video_preflight(new_tracker_state)
|
|
3815
|
+
tracker_states_local.append(new_tracker_state)
|
|
3816
|
+
return tracker_states_local
|
|
3817
|
+
|
|
3818
|
+
def _tracker_remove_objects(self, tracker_states_local: list[Any], obj_ids: list[int]):
|
|
3819
|
+
"""Remove an object from SAM2 inference states. This would remove the object from all frames in the video."""
|
|
3820
|
+
if not obj_ids:
|
|
3821
|
+
return
|
|
3822
|
+
# Filter out states that become empty after removal
|
|
3823
|
+
active_states = []
|
|
3824
|
+
for state in tracker_states_local:
|
|
3825
|
+
for obj_id in obj_ids:
|
|
3826
|
+
# we try to remove `obj_id` on every inference state with `strict=False`
|
|
3827
|
+
# it will not do anything if an inference state doesn't contain `obj_id`
|
|
3828
|
+
self.tracker.remove_object(state, obj_id, strict=False)
|
|
3829
|
+
|
|
3830
|
+
if len(state["obj_ids"]) > 0:
|
|
3831
|
+
active_states.append(state)
|
|
3832
|
+
|
|
3833
|
+
# Update the list in-place
|
|
3834
|
+
tracker_states_local[:] = active_states
|
|
3835
|
+
|
|
3836
|
+
def _initialize_metadata(self):
|
|
3837
|
+
"""Initialize metadata for the masklets."""
|
|
3838
|
+
tracker_metadata = {
|
|
3839
|
+
"obj_ids": np.array([], np.int32),
|
|
3840
|
+
"num_obj": np.zeros(1, np.int32),
|
|
3841
|
+
"max_obj_id": -1,
|
|
3842
|
+
"obj_id_to_score": {},
|
|
3843
|
+
"obj_id_to_cls": {},
|
|
3844
|
+
"obj_id_to_tracker_score_frame_wise": defaultdict(dict),
|
|
3845
|
+
"obj_id_to_last_occluded": {},
|
|
3846
|
+
}
|
|
3847
|
+
# "metadata" contains metadata that is only stored on (and accessible to) GPU 0
|
|
3848
|
+
# - obj_first_frame_idx: obj_id --> first frame index where the object was detected
|
|
3849
|
+
# - unmatched_frame_inds: obj_id --> [mismatched frame indices]
|
|
3850
|
+
# - overlap_pair_to_frame_inds: (first_appear_obj_id, obj_id) --> [overlap frame indices]
|
|
3851
|
+
# - removed_obj_ids: object IDs that are suppressed via hot-start
|
|
3852
|
+
metadata = {
|
|
3853
|
+
"obj_first_frame_idx": {},
|
|
3854
|
+
"unmatched_frame_inds": defaultdict(list),
|
|
3855
|
+
"trk_keep_alive": defaultdict(int), # This is used only for object suppression not for removal
|
|
3856
|
+
"overlap_pair_to_frame_inds": defaultdict(list),
|
|
3857
|
+
"removed_obj_ids": set(),
|
|
3858
|
+
# frame_idx --> set of objects with suppressed outputs, but still continue to be tracked
|
|
3859
|
+
"suppressed_obj_ids": defaultdict(set),
|
|
3860
|
+
}
|
|
3861
|
+
if self.masklet_confirmation_enable:
|
|
3862
|
+
# all the following are np.ndarray with the same shape as `obj_ids_all_gpu`
|
|
3863
|
+
metadata["masklet_confirmation"] = {
|
|
3864
|
+
# "status" is the confirmation status of each masklet
|
|
3865
|
+
"status": np.array([], np.int64),
|
|
3866
|
+
# "consecutive_det_num" is the number of consecutive frames where the masklet is
|
|
3867
|
+
# detected by the detector (with a matched detection)
|
|
3868
|
+
"consecutive_det_num": np.array([], np.int64),
|
|
3869
|
+
}
|
|
3870
|
+
tracker_metadata["metadata"] = metadata
|
|
3871
|
+
|
|
3872
|
+
return tracker_metadata
|
|
3873
|
+
|
|
3874
|
+
def update_masklet_confirmation_status(
|
|
3875
|
+
self,
|
|
3876
|
+
metadata: dict[str, Any],
|
|
3877
|
+
obj_ids_all_gpu_prev: np.ndarray,
|
|
3878
|
+
obj_ids_all_gpu_updated: np.ndarray,
|
|
3879
|
+
det_to_matched_trk_obj_ids: dict[int, np.ndarray],
|
|
3880
|
+
new_det_obj_ids: np.ndarray,
|
|
3881
|
+
):
|
|
3882
|
+
"""Update the confirmation status of masklets based on the current frame's detection results."""
|
|
3883
|
+
confirmation_data = metadata["masklet_confirmation"]
|
|
3884
|
+
|
|
3885
|
+
# a) first, expand "confirmation_data" to include new masklets added in this frame
|
|
3886
|
+
status_prev = confirmation_data["status"]
|
|
3887
|
+
consecutive_det_num_prev = confirmation_data["consecutive_det_num"]
|
|
3888
|
+
assert status_prev.shape == obj_ids_all_gpu_prev.shape, (
|
|
3889
|
+
f"Got {status_prev.shape} vs {obj_ids_all_gpu_prev.shape}"
|
|
3890
|
+
)
|
|
3891
|
+
|
|
3892
|
+
obj_id_to_updated_idx = {obj_id: idx for idx, obj_id in enumerate(obj_ids_all_gpu_updated)}
|
|
3893
|
+
prev_elem_is_in_updated = np.isin(obj_ids_all_gpu_prev, obj_ids_all_gpu_updated)
|
|
3894
|
+
prev_elem_obj_ids_in_updated = obj_ids_all_gpu_prev[prev_elem_is_in_updated]
|
|
3895
|
+
prev_elem_inds_in_updated = np.array(
|
|
3896
|
+
[obj_id_to_updated_idx[obj_id] for obj_id in prev_elem_obj_ids_in_updated],
|
|
3897
|
+
dtype=np.int64,
|
|
3898
|
+
)
|
|
3899
|
+
# newly added masklets are initialized to "UNCONFIRMED" status
|
|
3900
|
+
unconfirmed_val = self.UNCONFIRMED
|
|
3901
|
+
status = np.full_like(obj_ids_all_gpu_updated, fill_value=unconfirmed_val)
|
|
3902
|
+
status[prev_elem_inds_in_updated] = status_prev[prev_elem_is_in_updated]
|
|
3903
|
+
consecutive_det_num = np.zeros_like(obj_ids_all_gpu_updated)
|
|
3904
|
+
consecutive_det_num[prev_elem_inds_in_updated] = consecutive_det_num_prev[prev_elem_is_in_updated]
|
|
3905
|
+
|
|
3906
|
+
# b) update the confirmation status of all masklets based on the current frame
|
|
3907
|
+
# b.1) update "consecutive_det_num"
|
|
3908
|
+
# "is_matched": whether a masklet is matched to a detection on this frame
|
|
3909
|
+
is_matched = np.isin(obj_ids_all_gpu_updated, new_det_obj_ids)
|
|
3910
|
+
for matched_trk_obj_ids in det_to_matched_trk_obj_ids.values():
|
|
3911
|
+
is_matched |= np.isin(obj_ids_all_gpu_updated, matched_trk_obj_ids)
|
|
3912
|
+
consecutive_det_num = np.where(is_matched, consecutive_det_num + 1, 0)
|
|
3913
|
+
|
|
3914
|
+
# b.2) update "status"
|
|
3915
|
+
change_to_confirmed = consecutive_det_num >= self.masklet_confirmation_consecutive_det_thresh
|
|
3916
|
+
status[change_to_confirmed] = self.CONFIRMED
|
|
3917
|
+
|
|
3918
|
+
confirmation_data["status"] = status
|
|
3919
|
+
confirmation_data["consecutive_det_num"] = consecutive_det_num
|
|
3920
|
+
return metadata
|
|
3921
|
+
|
|
3922
|
+
def _load_checkpoint(self, ckpt_path: str, strict: bool = True):
|
|
3923
|
+
sd = torch.load(ckpt_path, map_location="cpu", weights_only=True)["model"]
|
|
3924
|
+
missing_keys, unexpected_keys = self.load_state_dict(sd, strict=strict)
|
|
3925
|
+
if len(missing_keys) > 0 or len(unexpected_keys) > 0:
|
|
3926
|
+
LOGGER.warning(f"Loaded ckpt with {missing_keys=}, {unexpected_keys=}")
|
|
3927
|
+
else:
|
|
3928
|
+
LOGGER.info("Loaded ckpt successfully without missing or unexpected keys")
|
|
3929
|
+
|
|
3930
|
+
def _encode_prompt(self, **kwargs):
|
|
3931
|
+
return self.model._encode_prompt(**kwargs)
|
|
3932
|
+
|
|
3933
|
+
def _drop_new_det_with_obj_limit(self, new_det_fa_inds, det_scores_np, num_to_keep):
|
|
3934
|
+
"""Drop a few new detections based on the maximum number of objects. We drop new objects based on their
|
|
3935
|
+
detection scores, keeping the high-scoring ones and dropping the low-scoring ones.
|
|
3936
|
+
"""
|
|
3937
|
+
assert 0 <= num_to_keep <= len(new_det_fa_inds)
|
|
3938
|
+
if num_to_keep == 0:
|
|
3939
|
+
return np.array([], np.int64) # keep none
|
|
3940
|
+
if num_to_keep == len(new_det_fa_inds):
|
|
3941
|
+
return new_det_fa_inds # keep all
|
|
3942
|
+
|
|
3943
|
+
# keep the top-scoring detections
|
|
3944
|
+
score_order = np.argsort(det_scores_np[new_det_fa_inds])[::-1]
|
|
3945
|
+
new_det_fa_inds = new_det_fa_inds[score_order[:num_to_keep]]
|
|
3946
|
+
return new_det_fa_inds
|