dgenerate-ultralytics-headless 8.3.222__py3-none-any.whl → 8.3.223__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {dgenerate_ultralytics_headless-8.3.222.dist-info → dgenerate_ultralytics_headless-8.3.223.dist-info}/METADATA +2 -2
- {dgenerate_ultralytics_headless-8.3.222.dist-info → dgenerate_ultralytics_headless-8.3.223.dist-info}/RECORD +18 -16
- ultralytics/__init__.py +1 -1
- ultralytics/cfg/datasets/ImageNet.yaml +1 -1
- ultralytics/cfg/datasets/lvis.yaml +5 -5
- ultralytics/cfg/datasets/open-images-v7.yaml +1 -1
- ultralytics/engine/exporter.py +40 -101
- ultralytics/models/rtdetr/val.py +1 -1
- ultralytics/nn/autobackend.py +1 -1
- ultralytics/nn/modules/head.py +5 -30
- ultralytics/utils/export/__init__.py +4 -239
- ultralytics/utils/export/engine.py +240 -0
- ultralytics/utils/export/tensorflow.py +221 -0
- ultralytics/utils/nms.py +4 -2
- {dgenerate_ultralytics_headless-8.3.222.dist-info → dgenerate_ultralytics_headless-8.3.223.dist-info}/WHEEL +0 -0
- {dgenerate_ultralytics_headless-8.3.222.dist-info → dgenerate_ultralytics_headless-8.3.223.dist-info}/entry_points.txt +0 -0
- {dgenerate_ultralytics_headless-8.3.222.dist-info → dgenerate_ultralytics_headless-8.3.223.dist-info}/licenses/LICENSE +0 -0
- {dgenerate_ultralytics_headless-8.3.222.dist-info → dgenerate_ultralytics_headless-8.3.223.dist-info}/top_level.txt +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: dgenerate-ultralytics-headless
|
|
3
|
-
Version: 8.3.
|
|
3
|
+
Version: 8.3.223
|
|
4
4
|
Summary: Automatically built Ultralytics package with python-opencv-headless dependency instead of python-opencv
|
|
5
5
|
Author-email: Glenn Jocher <glenn.jocher@ultralytics.com>, Jing Qiu <jing.qiu@ultralytics.com>
|
|
6
6
|
Maintainer-email: Ultralytics <hello@ultralytics.com>
|
|
@@ -44,7 +44,7 @@ Requires-Dist: torch!=2.4.0,>=1.8.0; sys_platform == "win32"
|
|
|
44
44
|
Requires-Dist: torchvision>=0.9.0
|
|
45
45
|
Requires-Dist: psutil
|
|
46
46
|
Requires-Dist: polars
|
|
47
|
-
Requires-Dist: ultralytics-thop>=2.0.
|
|
47
|
+
Requires-Dist: ultralytics-thop>=2.0.18
|
|
48
48
|
Provides-Extra: dev
|
|
49
49
|
Requires-Dist: ipython; extra == "dev"
|
|
50
50
|
Requires-Dist: pytest; extra == "dev"
|
|
@@ -1,4 +1,4 @@
|
|
|
1
|
-
dgenerate_ultralytics_headless-8.3.
|
|
1
|
+
dgenerate_ultralytics_headless-8.3.223.dist-info/licenses/LICENSE,sha256=DZak_2itbUtvHzD3E7GNUYSRK6jdOJ-GqncQ2weavLA,34523
|
|
2
2
|
tests/__init__.py,sha256=bCox_hLdGRFYGLb2kd722VdNP2zEXNYNuLLYtqZSrbw,804
|
|
3
3
|
tests/conftest.py,sha256=oaqn_-8LH7R4YQAKKOiK3iuAfjmmLQ9-pL_IPj6xq-U,2333
|
|
4
4
|
tests/test_cli.py,sha256=zygPlaksok7Nwugp3aIudDSkOlzISvmDWfKNmpY3mSA,5844
|
|
@@ -8,7 +8,7 @@ tests/test_exports.py,sha256=OMLio2uUhyqo8D8qB5xUwmk7Po2rMeAACRc8WYoxbj4,13147
|
|
|
8
8
|
tests/test_integrations.py,sha256=6QgSh9n0J04RdUYz08VeVOnKmf4S5MDEQ0chzS7jo_c,6220
|
|
9
9
|
tests/test_python.py,sha256=OChceQcDDAy07yACnmOoGfimRo_4YdyiMwukGEgozXA,27735
|
|
10
10
|
tests/test_solutions.py,sha256=j_PZZ5tMR1Y5ararY-OTXZr1hYJ7vEVr8H3w4O1tbQs,14153
|
|
11
|
-
ultralytics/__init__.py,sha256=
|
|
11
|
+
ultralytics/__init__.py,sha256=IFuXT77f7jmVOvOHnLjLEIrgQ-RfhI6Rq7ykdDC42GI,1302
|
|
12
12
|
ultralytics/py.typed,sha256=la67KBlbjXN-_-DfGNcdOcjYumVpKG_Tkw-8n5dnGB4,8
|
|
13
13
|
ultralytics/assets/bus.jpg,sha256=wCAZxJecGR63Od3ZRERe9Aja1Weayrb9Ug751DS_vGM,137419
|
|
14
14
|
ultralytics/assets/zidane.jpg,sha256=Ftc4aeMmen1O0A3o6GCDO9FlfBslLpTAw0gnetx7bts,50427
|
|
@@ -19,7 +19,7 @@ ultralytics/cfg/datasets/DOTAv1.5.yaml,sha256=VZ_KKFX0H2YvlFVJ8JHcLWYBZ2xiQ6Z-RO
|
|
|
19
19
|
ultralytics/cfg/datasets/DOTAv1.yaml,sha256=JrDuYcQ0JU9lJlCA-dCkMNko_jaj6MAVGHjsfjeZ_u0,1181
|
|
20
20
|
ultralytics/cfg/datasets/GlobalWheat2020.yaml,sha256=dnr_loeYSE6Eo_f7V1yubILsMRBMRm1ozyC5r7uT-iY,2144
|
|
21
21
|
ultralytics/cfg/datasets/HomeObjects-3K.yaml,sha256=xEtSqEad-rtfGuIrERjjhdISggmPlvaX-315ZzKz50I,934
|
|
22
|
-
ultralytics/cfg/datasets/ImageNet.yaml,sha256=
|
|
22
|
+
ultralytics/cfg/datasets/ImageNet.yaml,sha256=N9NHhIgnlNIBqZZbzQZAW3aCnz6RSXQABnopaDs5BmE,42529
|
|
23
23
|
ultralytics/cfg/datasets/Objects365.yaml,sha256=8Bl-NAm0mlMW8EfMsz39JZo-HCvmp0ejJXaMeoHTpqw,9649
|
|
24
24
|
ultralytics/cfg/datasets/SKU-110K.yaml,sha256=xvRkq3SdDOwBA91U85bln7HTXkod5MvFX6pt1PxTjJE,2609
|
|
25
25
|
ultralytics/cfg/datasets/VOC.yaml,sha256=84BaL-iwG03M_W9hNzjgEQi918dZgSHbCgf9DShjwLA,3747
|
|
@@ -42,9 +42,9 @@ ultralytics/cfg/datasets/dog-pose.yaml,sha256=BI-2S3_cSVyV2Gfzbs_3GzvivRlikT0ANj
|
|
|
42
42
|
ultralytics/cfg/datasets/dota8-multispectral.yaml,sha256=2lMBi1Q3_pc0auK00yX80oF7oUMo0bUlwjkOrp33hvs,1216
|
|
43
43
|
ultralytics/cfg/datasets/dota8.yaml,sha256=5n4h_4zdrtUSkmH5DHJ-JLPvfiATcieIkgP3NeOP5nI,1060
|
|
44
44
|
ultralytics/cfg/datasets/hand-keypoints.yaml,sha256=NglEDsfNRe0DaYnwy7n6hYUxEAjV-V2NZBUbj1qJaag,1365
|
|
45
|
-
ultralytics/cfg/datasets/lvis.yaml,sha256=
|
|
45
|
+
ultralytics/cfg/datasets/lvis.yaml,sha256=RescdwAJ8EU1o7Sm0YlxYsGbQFNU1p-LFbFKYEt5MhE,29596
|
|
46
46
|
ultralytics/cfg/datasets/medical-pills.yaml,sha256=RK7iQFpDDkUS6EsEGqlbFjoohi3cgSsUIbsk7UItyds,792
|
|
47
|
-
ultralytics/cfg/datasets/open-images-v7.yaml,sha256=
|
|
47
|
+
ultralytics/cfg/datasets/open-images-v7.yaml,sha256=2fVFmb8UEYH-LkX0z5GlYp__U0_GDqVgVqzmnfFerm8,12116
|
|
48
48
|
ultralytics/cfg/datasets/package-seg.yaml,sha256=V4uyTDWWzgft24y9HJWuELKuZ5AndAHXbanxMI6T8GU,849
|
|
49
49
|
ultralytics/cfg/datasets/signature.yaml,sha256=gBvU3715gVxVAafI_yaYczGX3kfEfA4BttbiMkgOXNk,774
|
|
50
50
|
ultralytics/cfg/datasets/tiger-pose.yaml,sha256=bJ7nBTDQwXRHtlg3xmo4C2bOpPn_r4l8-DezSWMYNcU,1196
|
|
@@ -122,7 +122,7 @@ ultralytics/data/scripts/get_coco.sh,sha256=UuJpJeo3qQpTHVINeOpmP0NYmg8PhEFE3A8J
|
|
|
122
122
|
ultralytics/data/scripts/get_coco128.sh,sha256=qmRQl_hOKrsdHrTrnyQuFIH01oDz3lfaz138OgGfLt8,650
|
|
123
123
|
ultralytics/data/scripts/get_imagenet.sh,sha256=hr42H16bM47iT27rgS7MpEo-GeOZAYUQXgr0B2cwn48,1705
|
|
124
124
|
ultralytics/engine/__init__.py,sha256=lm6MckFYCPTbqIoX7w0s_daxdjNeBeKW6DXppv1-QUM,70
|
|
125
|
-
ultralytics/engine/exporter.py,sha256=
|
|
125
|
+
ultralytics/engine/exporter.py,sha256=89hggNbcH7zFAG8QJmShoHFZMvn0SpHF_yTEJ4CMbsc,69852
|
|
126
126
|
ultralytics/engine/model.py,sha256=d7yGl8ybd7v8W4Q-ueSDAVfumDhsx0QCp4mx8OKf0Z8,53448
|
|
127
127
|
ultralytics/engine/predictor.py,sha256=ZQrx1Bz4X8aTgGjrOSdRSP7SCtQ05uqz6IitEan_Gyk,22813
|
|
128
128
|
ultralytics/engine/results.py,sha256=oHQdV_eIMvAU2qLCV7wG7iLifdfaLEgP80lDXB5ghkg,71490
|
|
@@ -148,7 +148,7 @@ ultralytics/models/rtdetr/__init__.py,sha256=F4NEQqtcVKFxj97Dh7rkn2Vu3JG4Ea_nxqr
|
|
|
148
148
|
ultralytics/models/rtdetr/model.py,sha256=Pq9QDgaZetDnjxdYSoomj2s6vOGSdpsqVfyN5j0GUmc,2292
|
|
149
149
|
ultralytics/models/rtdetr/predict.py,sha256=43-gGCHEH7UQQ6H1oXdlDlrM39esnp-YEhqCvZOwtOM,4279
|
|
150
150
|
ultralytics/models/rtdetr/train.py,sha256=SNntxGHXatbNqn1yna5_dDQiR_ciDK6o_4S7JIHU7EY,3765
|
|
151
|
-
ultralytics/models/rtdetr/val.py,sha256=
|
|
151
|
+
ultralytics/models/rtdetr/val.py,sha256=UXaoNiy81zdkv6d79x1oGyR8T7dwuV5Y4m0Gpe-LQts,8976
|
|
152
152
|
ultralytics/models/sam/__init__.py,sha256=p1BKLawQFvVxmdk7LomFVWX-67Kc-AP4PJBNPfU_Nuc,359
|
|
153
153
|
ultralytics/models/sam/amg.py,sha256=nFq4EwHf65W2N5Ipo4W69nGRhCbJEh_boYQ8SIPWBZ0,11816
|
|
154
154
|
ultralytics/models/sam/build.py,sha256=uKCgHpcYgV26OFuMq5RaGR8aXYoEtNoituT06bmnW44,12790
|
|
@@ -197,14 +197,14 @@ ultralytics/models/yolo/yoloe/train.py,sha256=qefvNNXDTOK1tO3va0kNHr8lE5QJkOlV8G
|
|
|
197
197
|
ultralytics/models/yolo/yoloe/train_seg.py,sha256=aCV7M8oQOvODFnU4piZdJh3tIrBJYAzZfRVRx1vRgxo,4956
|
|
198
198
|
ultralytics/models/yolo/yoloe/val.py,sha256=5Gd9EoFH0FmKKvWXBl4J7gBe9DVxIczN-s3ceHwdUDo,9458
|
|
199
199
|
ultralytics/nn/__init__.py,sha256=538LZPUKKvc3JCMgiQ4VLGqRN2ZAaVLFcQbeNNHFkEA,545
|
|
200
|
-
ultralytics/nn/autobackend.py,sha256=
|
|
200
|
+
ultralytics/nn/autobackend.py,sha256=gw8REfburF36l9Hyh11eYzy7UnMvuX1Dm3cjsJBA1TM,42702
|
|
201
201
|
ultralytics/nn/tasks.py,sha256=vRr6HTucM7Eg3kxzhYtyjgEAdacZ7gIDU3yPbMnyYMM,70834
|
|
202
202
|
ultralytics/nn/text_model.py,sha256=pHqnKe8UueR1MuwJcIE_IvrnYIlt68QL796xjcRJs2A,15275
|
|
203
203
|
ultralytics/nn/modules/__init__.py,sha256=5Sg_28MDfKwdu14Ty_WCaiIXZyjBSQ-xCNCwnoz_w-w,3198
|
|
204
204
|
ultralytics/nn/modules/activation.py,sha256=75JcIMH2Cu9GTC2Uf55r_5YLpxcrXQDaVoeGQ0hlUAU,2233
|
|
205
205
|
ultralytics/nn/modules/block.py,sha256=eQ8DegyvBG9k-O_QgSZe5XGmpravqwlnSCCBW6bHRXo,70622
|
|
206
206
|
ultralytics/nn/modules/conv.py,sha256=MISNAK8NzAZhNUusVKWvTHQ8IsofwM-5X0gChCagsaY,21457
|
|
207
|
-
ultralytics/nn/modules/head.py,sha256=
|
|
207
|
+
ultralytics/nn/modules/head.py,sha256=XBOLfpxgApIhNmdgnWoECep0wKhrw8LWtmd1TrWNBak,52076
|
|
208
208
|
ultralytics/nn/modules/transformer.py,sha256=9aq0Yo9V3C4y_McSje4qE1d_PTWDctTsrb98MyXxigc,31470
|
|
209
209
|
ultralytics/nn/modules/utils.py,sha256=9kLeEtvEBFLugz53TkdI4mifD-39a-upjPD-wrE8opU,6092
|
|
210
210
|
ultralytics/solutions/__init__.py,sha256=Jj7OcRiYjHH-e104H4xTgjjR5W6aPB4mBRndbaSPmgU,1209
|
|
@@ -253,7 +253,7 @@ ultralytics/utils/instance.py,sha256=_b_jMTECWJGzncCiTg7FtTDSSeXGnbiAhaJhIsqbn9k
|
|
|
253
253
|
ultralytics/utils/logger.py,sha256=hK1APBBHmlLAm0zbAFY7gf7Iaejy0PdwLWnnpboboGg,15129
|
|
254
254
|
ultralytics/utils/loss.py,sha256=wJ0F2DpRTI9-e9adxIm2io0zcXRa0RTWFTOc7WmS1-A,39827
|
|
255
255
|
ultralytics/utils/metrics.py,sha256=EWwkVWNmN_9rIsR1UOTLz3PiXOzflUE0iWFibydvXgM,68882
|
|
256
|
-
ultralytics/utils/nms.py,sha256=
|
|
256
|
+
ultralytics/utils/nms.py,sha256=SnZF0VRzY933YzI92NLzmLwuVzu56UNZ7sFT0FryCaw,14285
|
|
257
257
|
ultralytics/utils/ops.py,sha256=yb0jlahjxqUT_xb3y9wz0kXn0rx2AryUgWdtLat3yWY,27010
|
|
258
258
|
ultralytics/utils/patches.py,sha256=0-2G4jXCIPnMonlft-cPcjfFcOXQS6ODwUDNUwanfg4,6541
|
|
259
259
|
ultralytics/utils/plotting.py,sha256=l5G4MT2pB_LLMFqSgFbKb7ip5VMrnpi3i5QmZWytRRU,48369
|
|
@@ -274,10 +274,12 @@ ultralytics/utils/callbacks/platform.py,sha256=a7T_8htoBB0uX1WIc392UJnhDjxkRyQMv
|
|
|
274
274
|
ultralytics/utils/callbacks/raytune.py,sha256=S6Bq16oQDQ8BQgnZzA0zJHGN_BBr8iAM_WtGoLiEcwg,1283
|
|
275
275
|
ultralytics/utils/callbacks/tensorboard.py,sha256=_4nfGK1dDLn6ijpvphBDhc-AS8qhS3jjY2CAWB7SNF0,5283
|
|
276
276
|
ultralytics/utils/callbacks/wb.py,sha256=ngQO8EJ1kxJDF1YajScVtzBbm26jGuejA0uWeOyvf5A,7685
|
|
277
|
-
ultralytics/utils/export/__init__.py,sha256=
|
|
277
|
+
ultralytics/utils/export/__init__.py,sha256=Cfh-PwVfTF_lwPp-Ss4wiX4z8Sm1XRPklsqdFfmTZ30,333
|
|
278
|
+
ultralytics/utils/export/engine.py,sha256=V8ERERlpufTRm6k_7KOy9dUupAICC28W9TPO_7dkEJY,9979
|
|
278
279
|
ultralytics/utils/export/imx.py,sha256=DH0rVe-gris7qA7bGT-WoOJHqWxLBAmei1JXmK-W7vM,11660
|
|
279
|
-
|
|
280
|
-
dgenerate_ultralytics_headless-8.3.
|
|
281
|
-
dgenerate_ultralytics_headless-8.3.
|
|
282
|
-
dgenerate_ultralytics_headless-8.3.
|
|
283
|
-
dgenerate_ultralytics_headless-8.3.
|
|
280
|
+
ultralytics/utils/export/tensorflow.py,sha256=CxraBn-5pIDSd_-0-0vQGMz8lv75vjSl6N7DYgVS3SU,9382
|
|
281
|
+
dgenerate_ultralytics_headless-8.3.223.dist-info/METADATA,sha256=P2UOqD5tY6Tx3cfHaU_B5oXQPOsycKUo6lThBHn7G0s,38764
|
|
282
|
+
dgenerate_ultralytics_headless-8.3.223.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
|
283
|
+
dgenerate_ultralytics_headless-8.3.223.dist-info/entry_points.txt,sha256=YM_wiKyTe9yRrsEfqvYolNO5ngwfoL4-NwgKzc8_7sI,93
|
|
284
|
+
dgenerate_ultralytics_headless-8.3.223.dist-info/top_level.txt,sha256=XP49TwiMw4QGsvTLSYiJhz1xF_k7ev5mQ8jJXaXi45Q,12
|
|
285
|
+
dgenerate_ultralytics_headless-8.3.223.dist-info/RECORD,,
|
ultralytics/__init__.py
CHANGED
|
@@ -35,7 +35,7 @@ names:
|
|
|
35
35
|
17: armband
|
|
36
36
|
18: armchair
|
|
37
37
|
19: armoire
|
|
38
|
-
20: armor
|
|
38
|
+
20: armor
|
|
39
39
|
21: artichoke
|
|
40
40
|
22: trash can/garbage can/wastebin/dustbin/trash barrel/trash bin
|
|
41
41
|
23: ashtray
|
|
@@ -245,7 +245,7 @@ names:
|
|
|
245
245
|
227: CD player
|
|
246
246
|
228: celery
|
|
247
247
|
229: cellular telephone/cellular phone/cellphone/mobile phone/smart phone
|
|
248
|
-
230: chain mail/ring mail/chain armor/
|
|
248
|
+
230: chain mail/ring mail/chain armor/ring armor
|
|
249
249
|
231: chair
|
|
250
250
|
232: chaise longue/chaise/daybed
|
|
251
251
|
233: chalice
|
|
@@ -305,7 +305,7 @@ names:
|
|
|
305
305
|
287: coin
|
|
306
306
|
288: colander/cullender
|
|
307
307
|
289: coleslaw/slaw
|
|
308
|
-
290: coloring material
|
|
308
|
+
290: coloring material
|
|
309
309
|
291: combination lock
|
|
310
310
|
292: pacifier/teething ring
|
|
311
311
|
293: comic book
|
|
@@ -401,7 +401,7 @@ names:
|
|
|
401
401
|
383: domestic ass/donkey
|
|
402
402
|
384: doorknob/doorhandle
|
|
403
403
|
385: doormat/welcome mat
|
|
404
|
-
386:
|
|
404
|
+
386: donut
|
|
405
405
|
387: dove
|
|
406
406
|
388: dragonfly
|
|
407
407
|
389: drawer
|
|
@@ -1072,7 +1072,7 @@ names:
|
|
|
1072
1072
|
1054: tag
|
|
1073
1073
|
1055: taillight/rear light
|
|
1074
1074
|
1056: tambourine
|
|
1075
|
-
1057: army tank/armored combat vehicle
|
|
1075
|
+
1057: army tank/armored combat vehicle
|
|
1076
1076
|
1058: tank/tank storage vessel/storage tank
|
|
1077
1077
|
1059: tank top/tank top clothing
|
|
1078
1078
|
1060: tape/tape sticky cloth or paper
|
ultralytics/engine/exporter.py
CHANGED
|
@@ -107,9 +107,17 @@ from ultralytics.utils.checks import (
|
|
|
107
107
|
is_intel,
|
|
108
108
|
is_sudo_available,
|
|
109
109
|
)
|
|
110
|
-
from ultralytics.utils.downloads import
|
|
111
|
-
from ultralytics.utils.export import
|
|
112
|
-
|
|
110
|
+
from ultralytics.utils.downloads import get_github_assets, safe_download
|
|
111
|
+
from ultralytics.utils.export import (
|
|
112
|
+
keras2pb,
|
|
113
|
+
onnx2engine,
|
|
114
|
+
onnx2saved_model,
|
|
115
|
+
pb2tfjs,
|
|
116
|
+
tflite2edgetpu,
|
|
117
|
+
torch2imx,
|
|
118
|
+
torch2onnx,
|
|
119
|
+
)
|
|
120
|
+
from ultralytics.utils.files import file_size
|
|
113
121
|
from ultralytics.utils.metrics import batch_probiou
|
|
114
122
|
from ultralytics.utils.nms import TorchNMS
|
|
115
123
|
from ultralytics.utils.ops import Profile
|
|
@@ -206,15 +214,6 @@ def validate_args(format, passed_args, valid_args):
|
|
|
206
214
|
assert arg in valid_args, f"ERROR ❌️ argument '{arg}' is not supported for format='{format}'"
|
|
207
215
|
|
|
208
216
|
|
|
209
|
-
def gd_outputs(gd):
|
|
210
|
-
"""Return TensorFlow GraphDef model output node names."""
|
|
211
|
-
name_list, input_list = [], []
|
|
212
|
-
for node in gd.node: # tensorflow.core.framework.node_def_pb2.NodeDef
|
|
213
|
-
name_list.append(node.name)
|
|
214
|
-
input_list.extend(node.input)
|
|
215
|
-
return sorted(f"{x}:0" for x in list(set(name_list) - set(input_list)) if not x.startswith("NoOp"))
|
|
216
|
-
|
|
217
|
-
|
|
218
217
|
def try_export(inner_func):
|
|
219
218
|
"""YOLO export decorator, i.e. @try_export."""
|
|
220
219
|
inner_args = get_default_args(inner_func)
|
|
@@ -371,7 +370,7 @@ class Exporter:
|
|
|
371
370
|
LOGGER.warning("IMX export requires nms=True, setting nms=True.")
|
|
372
371
|
self.args.nms = True
|
|
373
372
|
if model.task not in {"detect", "pose", "classify"}:
|
|
374
|
-
raise ValueError("IMX export only supported for detection
|
|
373
|
+
raise ValueError("IMX export only supported for detection, pose estimation, and classification models.")
|
|
375
374
|
if not hasattr(model, "names"):
|
|
376
375
|
model.names = default_class_names()
|
|
377
376
|
model.names = check_class_names(model.names)
|
|
@@ -461,6 +460,10 @@ class Exporter:
|
|
|
461
460
|
from ultralytics.utils.export.imx import FXModel
|
|
462
461
|
|
|
463
462
|
model = FXModel(model, self.imgsz)
|
|
463
|
+
if tflite or edgetpu:
|
|
464
|
+
from ultralytics.utils.export.tensorflow import tf_wrapper
|
|
465
|
+
|
|
466
|
+
model = tf_wrapper(model)
|
|
464
467
|
for m in model.modules():
|
|
465
468
|
if isinstance(m, Classify):
|
|
466
469
|
m.export = True
|
|
@@ -642,7 +645,7 @@ class Exporter:
|
|
|
642
645
|
assert TORCH_1_13, f"'nms=True' ONNX export requires torch>=1.13 (found torch=={TORCH_VERSION})"
|
|
643
646
|
|
|
644
647
|
f = str(self.file.with_suffix(".onnx"))
|
|
645
|
-
output_names = ["output0", "output1"] if
|
|
648
|
+
output_names = ["output0", "output1"] if self.model.task == "segment" else ["output0"]
|
|
646
649
|
dynamic = self.args.dynamic
|
|
647
650
|
if dynamic:
|
|
648
651
|
dynamic = {"images": {0: "batch", 2: "height", 3: "width"}} # shape(1,3,640,640)
|
|
@@ -1053,75 +1056,43 @@ class Exporter:
|
|
|
1053
1056
|
if f.is_dir():
|
|
1054
1057
|
shutil.rmtree(f) # delete output folder
|
|
1055
1058
|
|
|
1056
|
-
#
|
|
1057
|
-
|
|
1058
|
-
if
|
|
1059
|
-
|
|
1059
|
+
# Export to TF
|
|
1060
|
+
images = None
|
|
1061
|
+
if self.args.int8 and self.args.data:
|
|
1062
|
+
images = [batch["img"] for batch in self.get_int8_calibration_dataloader(prefix)]
|
|
1063
|
+
images = (
|
|
1064
|
+
torch.nn.functional.interpolate(torch.cat(images, 0).float(), size=self.imgsz)
|
|
1065
|
+
.permute(0, 2, 3, 1)
|
|
1066
|
+
.numpy()
|
|
1067
|
+
.astype(np.float32)
|
|
1068
|
+
)
|
|
1060
1069
|
|
|
1061
1070
|
# Export to ONNX
|
|
1062
1071
|
if isinstance(self.model.model[-1], RTDETRDecoder):
|
|
1063
1072
|
self.args.opset = self.args.opset or 19
|
|
1064
1073
|
assert 16 <= self.args.opset <= 19, "RTDETR export requires opset>=16;<=19"
|
|
1065
1074
|
self.args.simplify = True
|
|
1066
|
-
f_onnx = self.export_onnx()
|
|
1067
|
-
|
|
1068
|
-
|
|
1069
|
-
|
|
1070
|
-
|
|
1071
|
-
|
|
1072
|
-
|
|
1073
|
-
|
|
1074
|
-
images = [batch["img"] for batch in self.get_int8_calibration_dataloader(prefix)]
|
|
1075
|
-
images = torch.nn.functional.interpolate(torch.cat(images, 0).float(), size=self.imgsz).permute(
|
|
1076
|
-
0, 2, 3, 1
|
|
1077
|
-
)
|
|
1078
|
-
np.save(str(tmp_file), images.numpy().astype(np.float32)) # BHWC
|
|
1079
|
-
np_data = [["images", tmp_file, [[[[0, 0, 0]]]], [[[[255, 255, 255]]]]]]
|
|
1080
|
-
|
|
1081
|
-
import onnx2tf # scoped for after ONNX export for reduced conflict during import
|
|
1082
|
-
|
|
1083
|
-
LOGGER.info(f"{prefix} starting TFLite export with onnx2tf {onnx2tf.__version__}...")
|
|
1084
|
-
keras_model = onnx2tf.convert(
|
|
1085
|
-
input_onnx_file_path=f_onnx,
|
|
1086
|
-
output_folder_path=str(f),
|
|
1087
|
-
not_use_onnxsim=True,
|
|
1088
|
-
verbosity="error", # note INT8-FP16 activation bug https://github.com/ultralytics/ultralytics/issues/15873
|
|
1089
|
-
output_integer_quantized_tflite=self.args.int8,
|
|
1090
|
-
custom_input_op_name_np_data_path=np_data,
|
|
1091
|
-
enable_batchmatmul_unfold=True and not self.args.int8, # fix lower no. of detected objects on GPU delegate
|
|
1092
|
-
output_signaturedefs=True, # fix error with Attention block group convolution
|
|
1093
|
-
disable_group_convolution=self.args.format in {"tfjs", "edgetpu"}, # fix error with group convolution
|
|
1075
|
+
f_onnx = self.export_onnx() # ensure ONNX is available
|
|
1076
|
+
keras_model = onnx2saved_model(
|
|
1077
|
+
f_onnx,
|
|
1078
|
+
f,
|
|
1079
|
+
int8=self.args.int8,
|
|
1080
|
+
images=images,
|
|
1081
|
+
disable_group_convolution=self.args.format in {"tfjs", "edgetpu"},
|
|
1082
|
+
prefix=prefix,
|
|
1094
1083
|
)
|
|
1095
1084
|
YAML.save(f / "metadata.yaml", self.metadata) # add metadata.yaml
|
|
1096
|
-
|
|
1097
|
-
# Remove/rename TFLite models
|
|
1098
|
-
if self.args.int8:
|
|
1099
|
-
tmp_file.unlink(missing_ok=True)
|
|
1100
|
-
for file in f.rglob("*_dynamic_range_quant.tflite"):
|
|
1101
|
-
file.rename(file.with_name(file.stem.replace("_dynamic_range_quant", "_int8") + file.suffix))
|
|
1102
|
-
for file in f.rglob("*_integer_quant_with_int16_act.tflite"):
|
|
1103
|
-
file.unlink() # delete extra fp16 activation TFLite files
|
|
1104
|
-
|
|
1105
1085
|
# Add TFLite metadata
|
|
1106
1086
|
for file in f.rglob("*.tflite"):
|
|
1107
|
-
|
|
1087
|
+
file.unlink() if "quant_with_int16_act.tflite" in str(file) else self._add_tflite_metadata(file)
|
|
1108
1088
|
|
|
1109
1089
|
return str(f), keras_model # or keras_model = tf.saved_model.load(f, tags=None, options=None)
|
|
1110
1090
|
|
|
1111
1091
|
@try_export
|
|
1112
1092
|
def export_pb(self, keras_model, prefix=colorstr("TensorFlow GraphDef:")):
|
|
1113
1093
|
"""Export YOLO model to TensorFlow GraphDef *.pb format https://github.com/leimao/Frozen-Graph-TensorFlow."""
|
|
1114
|
-
import tensorflow as tf
|
|
1115
|
-
from tensorflow.python.framework.convert_to_constants import convert_variables_to_constants_v2
|
|
1116
|
-
|
|
1117
|
-
LOGGER.info(f"\n{prefix} starting export with tensorflow {tf.__version__}...")
|
|
1118
1094
|
f = self.file.with_suffix(".pb")
|
|
1119
|
-
|
|
1120
|
-
m = tf.function(lambda x: keras_model(x)) # full model
|
|
1121
|
-
m = m.get_concrete_function(tf.TensorSpec(keras_model.inputs[0].shape, keras_model.inputs[0].dtype))
|
|
1122
|
-
frozen_func = convert_variables_to_constants_v2(m)
|
|
1123
|
-
frozen_func.graph.as_graph_def()
|
|
1124
|
-
tf.io.write_graph(graph_or_graph_def=frozen_func.graph, logdir=str(f.parent), name=f.name, as_text=False)
|
|
1095
|
+
keras2pb(keras_model, f, prefix)
|
|
1125
1096
|
return f
|
|
1126
1097
|
|
|
1127
1098
|
@try_export
|
|
@@ -1189,22 +1160,11 @@ class Exporter:
|
|
|
1189
1160
|
"sudo apt-get install edgetpu-compiler",
|
|
1190
1161
|
):
|
|
1191
1162
|
subprocess.run(c if is_sudo_available() else c.replace("sudo ", ""), shell=True, check=True)
|
|
1192
|
-
ver = subprocess.run(cmd, shell=True, capture_output=True, check=True).stdout.decode().rsplit(maxsplit=1)[-1]
|
|
1193
1163
|
|
|
1164
|
+
ver = subprocess.run(cmd, shell=True, capture_output=True, check=True).stdout.decode().rsplit(maxsplit=1)[-1]
|
|
1194
1165
|
LOGGER.info(f"\n{prefix} starting export with Edge TPU compiler {ver}...")
|
|
1166
|
+
tflite2edgetpu(tflite_file=tflite_model, output_dir=tflite_model.parent, prefix=prefix)
|
|
1195
1167
|
f = str(tflite_model).replace(".tflite", "_edgetpu.tflite") # Edge TPU model
|
|
1196
|
-
|
|
1197
|
-
cmd = (
|
|
1198
|
-
"edgetpu_compiler "
|
|
1199
|
-
f'--out_dir "{Path(f).parent}" '
|
|
1200
|
-
"--show_operations "
|
|
1201
|
-
"--search_delegate "
|
|
1202
|
-
"--delegate_search_step 30 "
|
|
1203
|
-
"--timeout_sec 180 "
|
|
1204
|
-
f'"{tflite_model}"'
|
|
1205
|
-
)
|
|
1206
|
-
LOGGER.info(f"{prefix} running '{cmd}'")
|
|
1207
|
-
subprocess.run(cmd, shell=True)
|
|
1208
1168
|
self._add_tflite_metadata(f)
|
|
1209
1169
|
return f
|
|
1210
1170
|
|
|
@@ -1212,31 +1172,10 @@ class Exporter:
|
|
|
1212
1172
|
def export_tfjs(self, prefix=colorstr("TensorFlow.js:")):
|
|
1213
1173
|
"""Export YOLO model to TensorFlow.js format."""
|
|
1214
1174
|
check_requirements("tensorflowjs")
|
|
1215
|
-
import tensorflow as tf
|
|
1216
|
-
import tensorflowjs as tfjs
|
|
1217
1175
|
|
|
1218
|
-
LOGGER.info(f"\n{prefix} starting export with tensorflowjs {tfjs.__version__}...")
|
|
1219
1176
|
f = str(self.file).replace(self.file.suffix, "_web_model") # js dir
|
|
1220
1177
|
f_pb = str(self.file.with_suffix(".pb")) # *.pb path
|
|
1221
|
-
|
|
1222
|
-
gd = tf.Graph().as_graph_def() # TF GraphDef
|
|
1223
|
-
with open(f_pb, "rb") as file:
|
|
1224
|
-
gd.ParseFromString(file.read())
|
|
1225
|
-
outputs = ",".join(gd_outputs(gd))
|
|
1226
|
-
LOGGER.info(f"\n{prefix} output node names: {outputs}")
|
|
1227
|
-
|
|
1228
|
-
quantization = "--quantize_float16" if self.args.half else "--quantize_uint8" if self.args.int8 else ""
|
|
1229
|
-
with spaces_in_path(f_pb) as fpb_, spaces_in_path(f) as f_: # exporter can not handle spaces in path
|
|
1230
|
-
cmd = (
|
|
1231
|
-
"tensorflowjs_converter "
|
|
1232
|
-
f'--input_format=tf_frozen_model {quantization} --output_node_names={outputs} "{fpb_}" "{f_}"'
|
|
1233
|
-
)
|
|
1234
|
-
LOGGER.info(f"{prefix} running '{cmd}'")
|
|
1235
|
-
subprocess.run(cmd, shell=True)
|
|
1236
|
-
|
|
1237
|
-
if " " in f:
|
|
1238
|
-
LOGGER.warning(f"{prefix} your model may not work correctly with spaces in path '{f}'.")
|
|
1239
|
-
|
|
1178
|
+
pb2tfjs(pb_file=f_pb, output_dir=f, half=self.args.half, int8=self.args.int8, prefix=prefix)
|
|
1240
1179
|
# Add metadata
|
|
1241
1180
|
YAML.save(Path(f) / "metadata.yaml", self.metadata) # add metadata.yaml
|
|
1242
1181
|
return f
|
ultralytics/models/rtdetr/val.py
CHANGED
|
@@ -89,7 +89,7 @@ class RTDETRDataset(YOLODataset):
|
|
|
89
89
|
transforms = v8_transforms(self, self.imgsz, hyp, stretch=True)
|
|
90
90
|
else:
|
|
91
91
|
# transforms = Compose([LetterBox(new_shape=(self.imgsz, self.imgsz), auto=False, scale_fill=True)])
|
|
92
|
-
transforms = Compose([])
|
|
92
|
+
transforms = Compose([lambda x: {**x, **{"ratio_pad": [x["ratio_pad"], [0, 0]]}}])
|
|
93
93
|
transforms.append(
|
|
94
94
|
Format(
|
|
95
95
|
bbox_format="xywh",
|
ultralytics/nn/autobackend.py
CHANGED
|
@@ -428,7 +428,7 @@ class AutoBackend(nn.Module):
|
|
|
428
428
|
LOGGER.info(f"Loading {w} for TensorFlow GraphDef inference...")
|
|
429
429
|
import tensorflow as tf
|
|
430
430
|
|
|
431
|
-
from ultralytics.
|
|
431
|
+
from ultralytics.utils.export.tensorflow import gd_outputs
|
|
432
432
|
|
|
433
433
|
def wrap_frozen_graph(gd, inputs, outputs):
|
|
434
434
|
"""Wrap frozen graphs for deployment."""
|
ultralytics/nn/modules/head.py
CHANGED
|
@@ -166,22 +166,8 @@ class Detect(nn.Module):
|
|
|
166
166
|
self.anchors, self.strides = (x.transpose(0, 1) for x in make_anchors(x, self.stride, 0.5))
|
|
167
167
|
self.shape = shape
|
|
168
168
|
|
|
169
|
-
|
|
170
|
-
|
|
171
|
-
cls = x_cat[:, self.reg_max * 4 :]
|
|
172
|
-
else:
|
|
173
|
-
box, cls = x_cat.split((self.reg_max * 4, self.nc), 1)
|
|
174
|
-
|
|
175
|
-
if self.export and self.format in {"tflite", "edgetpu"}:
|
|
176
|
-
# Precompute normalization factor to increase numerical stability
|
|
177
|
-
# See https://github.com/ultralytics/ultralytics/issues/7371
|
|
178
|
-
grid_h = shape[2]
|
|
179
|
-
grid_w = shape[3]
|
|
180
|
-
grid_size = torch.tensor([grid_w, grid_h, grid_w, grid_h], device=box.device).reshape(1, 4, 1)
|
|
181
|
-
norm = self.strides / (self.stride[0] * grid_size)
|
|
182
|
-
dbox = self.decode_bboxes(self.dfl(box) * norm, self.anchors.unsqueeze(0) * norm[:, :2])
|
|
183
|
-
else:
|
|
184
|
-
dbox = self.decode_bboxes(self.dfl(box), self.anchors.unsqueeze(0)) * self.strides
|
|
169
|
+
box, cls = x_cat.split((self.reg_max * 4, self.nc), 1)
|
|
170
|
+
dbox = self.decode_bboxes(self.dfl(box), self.anchors.unsqueeze(0)) * self.strides
|
|
185
171
|
return torch.cat((dbox, cls.sigmoid()), 1)
|
|
186
172
|
|
|
187
173
|
def bias_init(self):
|
|
@@ -391,20 +377,9 @@ class Pose(Detect):
|
|
|
391
377
|
"""Decode keypoints from predictions."""
|
|
392
378
|
ndim = self.kpt_shape[1]
|
|
393
379
|
if self.export:
|
|
394
|
-
|
|
395
|
-
|
|
396
|
-
|
|
397
|
-
}: # required for TFLite export to avoid 'PLACEHOLDER_FOR_GREATER_OP_CODES' bug
|
|
398
|
-
# Precompute normalization factor to increase numerical stability
|
|
399
|
-
y = kpts.view(bs, *self.kpt_shape, -1)
|
|
400
|
-
grid_h, grid_w = self.shape[2], self.shape[3]
|
|
401
|
-
grid_size = torch.tensor([grid_w, grid_h], device=y.device).reshape(1, 2, 1)
|
|
402
|
-
norm = self.strides / (self.stride[0] * grid_size)
|
|
403
|
-
a = (y[:, :, :2] * 2.0 + (self.anchors - 0.5)) * norm
|
|
404
|
-
else:
|
|
405
|
-
# NCNN fix
|
|
406
|
-
y = kpts.view(bs, *self.kpt_shape, -1)
|
|
407
|
-
a = (y[:, :, :2] * 2.0 + (self.anchors - 0.5)) * self.strides
|
|
380
|
+
# NCNN fix
|
|
381
|
+
y = kpts.view(bs, *self.kpt_shape, -1)
|
|
382
|
+
a = (y[:, :, :2] * 2.0 + (self.anchors - 0.5)) * self.strides
|
|
408
383
|
if ndim == 3:
|
|
409
384
|
a = torch.cat((a, y[:, :, 2:3].sigmoid()), 2)
|
|
410
385
|
return a.view(bs, self.nk, -1)
|
|
@@ -1,242 +1,7 @@
|
|
|
1
1
|
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
|
2
2
|
|
|
3
|
-
from
|
|
3
|
+
from .engine import onnx2engine, torch2onnx
|
|
4
|
+
from .imx import torch2imx
|
|
5
|
+
from .tensorflow import keras2pb, onnx2saved_model, pb2tfjs, tflite2edgetpu
|
|
4
6
|
|
|
5
|
-
|
|
6
|
-
from pathlib import Path
|
|
7
|
-
|
|
8
|
-
import torch
|
|
9
|
-
|
|
10
|
-
from ultralytics.utils import IS_JETSON, LOGGER
|
|
11
|
-
from ultralytics.utils.torch_utils import TORCH_2_4
|
|
12
|
-
|
|
13
|
-
from .imx import torch2imx # noqa
|
|
14
|
-
|
|
15
|
-
|
|
16
|
-
def torch2onnx(
|
|
17
|
-
torch_model: torch.nn.Module,
|
|
18
|
-
im: torch.Tensor,
|
|
19
|
-
onnx_file: str,
|
|
20
|
-
opset: int = 14,
|
|
21
|
-
input_names: list[str] = ["images"],
|
|
22
|
-
output_names: list[str] = ["output0"],
|
|
23
|
-
dynamic: bool | dict = False,
|
|
24
|
-
) -> None:
|
|
25
|
-
"""
|
|
26
|
-
Export a PyTorch model to ONNX format.
|
|
27
|
-
|
|
28
|
-
Args:
|
|
29
|
-
torch_model (torch.nn.Module): The PyTorch model to export.
|
|
30
|
-
im (torch.Tensor): Example input tensor for the model.
|
|
31
|
-
onnx_file (str): Path to save the exported ONNX file.
|
|
32
|
-
opset (int): ONNX opset version to use for export.
|
|
33
|
-
input_names (list[str]): List of input tensor names.
|
|
34
|
-
output_names (list[str]): List of output tensor names.
|
|
35
|
-
dynamic (bool | dict, optional): Whether to enable dynamic axes.
|
|
36
|
-
|
|
37
|
-
Notes:
|
|
38
|
-
Setting `do_constant_folding=True` may cause issues with DNN inference for torch>=1.12.
|
|
39
|
-
"""
|
|
40
|
-
kwargs = {"dynamo": False} if TORCH_2_4 else {}
|
|
41
|
-
torch.onnx.export(
|
|
42
|
-
torch_model,
|
|
43
|
-
im,
|
|
44
|
-
onnx_file,
|
|
45
|
-
verbose=False,
|
|
46
|
-
opset_version=opset,
|
|
47
|
-
do_constant_folding=True, # WARNING: DNN inference with torch>=1.12 may require do_constant_folding=False
|
|
48
|
-
input_names=input_names,
|
|
49
|
-
output_names=output_names,
|
|
50
|
-
dynamic_axes=dynamic or None,
|
|
51
|
-
**kwargs,
|
|
52
|
-
)
|
|
53
|
-
|
|
54
|
-
|
|
55
|
-
def onnx2engine(
|
|
56
|
-
onnx_file: str,
|
|
57
|
-
engine_file: str | None = None,
|
|
58
|
-
workspace: int | None = None,
|
|
59
|
-
half: bool = False,
|
|
60
|
-
int8: bool = False,
|
|
61
|
-
dynamic: bool = False,
|
|
62
|
-
shape: tuple[int, int, int, int] = (1, 3, 640, 640),
|
|
63
|
-
dla: int | None = None,
|
|
64
|
-
dataset=None,
|
|
65
|
-
metadata: dict | None = None,
|
|
66
|
-
verbose: bool = False,
|
|
67
|
-
prefix: str = "",
|
|
68
|
-
) -> None:
|
|
69
|
-
"""
|
|
70
|
-
Export a YOLO model to TensorRT engine format.
|
|
71
|
-
|
|
72
|
-
Args:
|
|
73
|
-
onnx_file (str): Path to the ONNX file to be converted.
|
|
74
|
-
engine_file (str, optional): Path to save the generated TensorRT engine file.
|
|
75
|
-
workspace (int, optional): Workspace size in GB for TensorRT.
|
|
76
|
-
half (bool, optional): Enable FP16 precision.
|
|
77
|
-
int8 (bool, optional): Enable INT8 precision.
|
|
78
|
-
dynamic (bool, optional): Enable dynamic input shapes.
|
|
79
|
-
shape (tuple[int, int, int, int], optional): Input shape (batch, channels, height, width).
|
|
80
|
-
dla (int, optional): DLA core to use (Jetson devices only).
|
|
81
|
-
dataset (ultralytics.data.build.InfiniteDataLoader, optional): Dataset for INT8 calibration.
|
|
82
|
-
metadata (dict, optional): Metadata to include in the engine file.
|
|
83
|
-
verbose (bool, optional): Enable verbose logging.
|
|
84
|
-
prefix (str, optional): Prefix for log messages.
|
|
85
|
-
|
|
86
|
-
Raises:
|
|
87
|
-
ValueError: If DLA is enabled on non-Jetson devices or required precision is not set.
|
|
88
|
-
RuntimeError: If the ONNX file cannot be parsed.
|
|
89
|
-
|
|
90
|
-
Notes:
|
|
91
|
-
TensorRT version compatibility is handled for workspace size and engine building.
|
|
92
|
-
INT8 calibration requires a dataset and generates a calibration cache.
|
|
93
|
-
Metadata is serialized and written to the engine file if provided.
|
|
94
|
-
"""
|
|
95
|
-
import tensorrt as trt
|
|
96
|
-
|
|
97
|
-
engine_file = engine_file or Path(onnx_file).with_suffix(".engine")
|
|
98
|
-
|
|
99
|
-
logger = trt.Logger(trt.Logger.INFO)
|
|
100
|
-
if verbose:
|
|
101
|
-
logger.min_severity = trt.Logger.Severity.VERBOSE
|
|
102
|
-
|
|
103
|
-
# Engine builder
|
|
104
|
-
builder = trt.Builder(logger)
|
|
105
|
-
config = builder.create_builder_config()
|
|
106
|
-
workspace_bytes = int((workspace or 0) * (1 << 30))
|
|
107
|
-
is_trt10 = int(trt.__version__.split(".", 1)[0]) >= 10 # is TensorRT >= 10
|
|
108
|
-
if is_trt10 and workspace_bytes > 0:
|
|
109
|
-
config.set_memory_pool_limit(trt.MemoryPoolType.WORKSPACE, workspace_bytes)
|
|
110
|
-
elif workspace_bytes > 0: # TensorRT versions 7, 8
|
|
111
|
-
config.max_workspace_size = workspace_bytes
|
|
112
|
-
flag = 1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)
|
|
113
|
-
network = builder.create_network(flag)
|
|
114
|
-
half = builder.platform_has_fast_fp16 and half
|
|
115
|
-
int8 = builder.platform_has_fast_int8 and int8
|
|
116
|
-
|
|
117
|
-
# Optionally switch to DLA if enabled
|
|
118
|
-
if dla is not None:
|
|
119
|
-
if not IS_JETSON:
|
|
120
|
-
raise ValueError("DLA is only available on NVIDIA Jetson devices")
|
|
121
|
-
LOGGER.info(f"{prefix} enabling DLA on core {dla}...")
|
|
122
|
-
if not half and not int8:
|
|
123
|
-
raise ValueError(
|
|
124
|
-
"DLA requires either 'half=True' (FP16) or 'int8=True' (INT8) to be enabled. Please enable one of them and try again."
|
|
125
|
-
)
|
|
126
|
-
config.default_device_type = trt.DeviceType.DLA
|
|
127
|
-
config.DLA_core = int(dla)
|
|
128
|
-
config.set_flag(trt.BuilderFlag.GPU_FALLBACK)
|
|
129
|
-
|
|
130
|
-
# Read ONNX file
|
|
131
|
-
parser = trt.OnnxParser(network, logger)
|
|
132
|
-
if not parser.parse_from_file(onnx_file):
|
|
133
|
-
raise RuntimeError(f"failed to load ONNX file: {onnx_file}")
|
|
134
|
-
|
|
135
|
-
# Network inputs
|
|
136
|
-
inputs = [network.get_input(i) for i in range(network.num_inputs)]
|
|
137
|
-
outputs = [network.get_output(i) for i in range(network.num_outputs)]
|
|
138
|
-
for inp in inputs:
|
|
139
|
-
LOGGER.info(f'{prefix} input "{inp.name}" with shape{inp.shape} {inp.dtype}')
|
|
140
|
-
for out in outputs:
|
|
141
|
-
LOGGER.info(f'{prefix} output "{out.name}" with shape{out.shape} {out.dtype}')
|
|
142
|
-
|
|
143
|
-
if dynamic:
|
|
144
|
-
profile = builder.create_optimization_profile()
|
|
145
|
-
min_shape = (1, shape[1], 32, 32) # minimum input shape
|
|
146
|
-
max_shape = (*shape[:2], *(int(max(2, workspace or 2) * d) for d in shape[2:])) # max input shape
|
|
147
|
-
for inp in inputs:
|
|
148
|
-
profile.set_shape(inp.name, min=min_shape, opt=shape, max=max_shape)
|
|
149
|
-
config.add_optimization_profile(profile)
|
|
150
|
-
if int8:
|
|
151
|
-
config.set_calibration_profile(profile)
|
|
152
|
-
|
|
153
|
-
LOGGER.info(f"{prefix} building {'INT8' if int8 else 'FP' + ('16' if half else '32')} engine as {engine_file}")
|
|
154
|
-
if int8:
|
|
155
|
-
config.set_flag(trt.BuilderFlag.INT8)
|
|
156
|
-
config.profiling_verbosity = trt.ProfilingVerbosity.DETAILED
|
|
157
|
-
|
|
158
|
-
class EngineCalibrator(trt.IInt8Calibrator):
|
|
159
|
-
"""
|
|
160
|
-
Custom INT8 calibrator for TensorRT engine optimization.
|
|
161
|
-
|
|
162
|
-
This calibrator provides the necessary interface for TensorRT to perform INT8 quantization calibration
|
|
163
|
-
using a dataset. It handles batch generation, caching, and calibration algorithm selection.
|
|
164
|
-
|
|
165
|
-
Attributes:
|
|
166
|
-
dataset: Dataset for calibration.
|
|
167
|
-
data_iter: Iterator over the calibration dataset.
|
|
168
|
-
algo (trt.CalibrationAlgoType): Calibration algorithm type.
|
|
169
|
-
batch (int): Batch size for calibration.
|
|
170
|
-
cache (Path): Path to save the calibration cache.
|
|
171
|
-
|
|
172
|
-
Methods:
|
|
173
|
-
get_algorithm: Get the calibration algorithm to use.
|
|
174
|
-
get_batch_size: Get the batch size to use for calibration.
|
|
175
|
-
get_batch: Get the next batch to use for calibration.
|
|
176
|
-
read_calibration_cache: Use existing cache instead of calibrating again.
|
|
177
|
-
write_calibration_cache: Write calibration cache to disk.
|
|
178
|
-
"""
|
|
179
|
-
|
|
180
|
-
def __init__(
|
|
181
|
-
self,
|
|
182
|
-
dataset, # ultralytics.data.build.InfiniteDataLoader
|
|
183
|
-
cache: str = "",
|
|
184
|
-
) -> None:
|
|
185
|
-
"""Initialize the INT8 calibrator with dataset and cache path."""
|
|
186
|
-
trt.IInt8Calibrator.__init__(self)
|
|
187
|
-
self.dataset = dataset
|
|
188
|
-
self.data_iter = iter(dataset)
|
|
189
|
-
self.algo = (
|
|
190
|
-
trt.CalibrationAlgoType.ENTROPY_CALIBRATION_2 # DLA quantization needs ENTROPY_CALIBRATION_2
|
|
191
|
-
if dla is not None
|
|
192
|
-
else trt.CalibrationAlgoType.MINMAX_CALIBRATION
|
|
193
|
-
)
|
|
194
|
-
self.batch = dataset.batch_size
|
|
195
|
-
self.cache = Path(cache)
|
|
196
|
-
|
|
197
|
-
def get_algorithm(self) -> trt.CalibrationAlgoType:
|
|
198
|
-
"""Get the calibration algorithm to use."""
|
|
199
|
-
return self.algo
|
|
200
|
-
|
|
201
|
-
def get_batch_size(self) -> int:
|
|
202
|
-
"""Get the batch size to use for calibration."""
|
|
203
|
-
return self.batch or 1
|
|
204
|
-
|
|
205
|
-
def get_batch(self, names) -> list[int] | None:
|
|
206
|
-
"""Get the next batch to use for calibration, as a list of device memory pointers."""
|
|
207
|
-
try:
|
|
208
|
-
im0s = next(self.data_iter)["img"] / 255.0
|
|
209
|
-
im0s = im0s.to("cuda") if im0s.device.type == "cpu" else im0s
|
|
210
|
-
return [int(im0s.data_ptr())]
|
|
211
|
-
except StopIteration:
|
|
212
|
-
# Return None to signal to TensorRT there is no calibration data remaining
|
|
213
|
-
return None
|
|
214
|
-
|
|
215
|
-
def read_calibration_cache(self) -> bytes | None:
|
|
216
|
-
"""Use existing cache instead of calibrating again, otherwise, implicitly return None."""
|
|
217
|
-
if self.cache.exists() and self.cache.suffix == ".cache":
|
|
218
|
-
return self.cache.read_bytes()
|
|
219
|
-
|
|
220
|
-
def write_calibration_cache(self, cache: bytes) -> None:
|
|
221
|
-
"""Write calibration cache to disk."""
|
|
222
|
-
_ = self.cache.write_bytes(cache)
|
|
223
|
-
|
|
224
|
-
# Load dataset w/ builder (for batching) and calibrate
|
|
225
|
-
config.int8_calibrator = EngineCalibrator(
|
|
226
|
-
dataset=dataset,
|
|
227
|
-
cache=str(Path(onnx_file).with_suffix(".cache")),
|
|
228
|
-
)
|
|
229
|
-
|
|
230
|
-
elif half:
|
|
231
|
-
config.set_flag(trt.BuilderFlag.FP16)
|
|
232
|
-
|
|
233
|
-
# Write file
|
|
234
|
-
build = builder.build_serialized_network if is_trt10 else builder.build_engine
|
|
235
|
-
with build(network, config) as engine, open(engine_file, "wb") as t:
|
|
236
|
-
# Metadata
|
|
237
|
-
if metadata is not None:
|
|
238
|
-
meta = json.dumps(metadata)
|
|
239
|
-
t.write(len(meta).to_bytes(4, byteorder="little", signed=True))
|
|
240
|
-
t.write(meta.encode())
|
|
241
|
-
# Model
|
|
242
|
-
t.write(engine if is_trt10 else engine.serialize())
|
|
7
|
+
__all__ = ["keras2pb", "onnx2engine", "onnx2saved_model", "pb2tfjs", "tflite2edgetpu", "torch2imx", "torch2onnx"]
|
|
@@ -0,0 +1,240 @@
|
|
|
1
|
+
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
|
2
|
+
|
|
3
|
+
from __future__ import annotations
|
|
4
|
+
|
|
5
|
+
import json
|
|
6
|
+
from pathlib import Path
|
|
7
|
+
|
|
8
|
+
import torch
|
|
9
|
+
|
|
10
|
+
from ultralytics.utils import IS_JETSON, LOGGER
|
|
11
|
+
from ultralytics.utils.torch_utils import TORCH_2_4
|
|
12
|
+
|
|
13
|
+
|
|
14
|
+
def torch2onnx(
|
|
15
|
+
torch_model: torch.nn.Module,
|
|
16
|
+
im: torch.Tensor,
|
|
17
|
+
onnx_file: str,
|
|
18
|
+
opset: int = 14,
|
|
19
|
+
input_names: list[str] = ["images"],
|
|
20
|
+
output_names: list[str] = ["output0"],
|
|
21
|
+
dynamic: bool | dict = False,
|
|
22
|
+
) -> None:
|
|
23
|
+
"""
|
|
24
|
+
Export a PyTorch model to ONNX format.
|
|
25
|
+
|
|
26
|
+
Args:
|
|
27
|
+
torch_model (torch.nn.Module): The PyTorch model to export.
|
|
28
|
+
im (torch.Tensor): Example input tensor for the model.
|
|
29
|
+
onnx_file (str): Path to save the exported ONNX file.
|
|
30
|
+
opset (int): ONNX opset version to use for export.
|
|
31
|
+
input_names (list[str]): List of input tensor names.
|
|
32
|
+
output_names (list[str]): List of output tensor names.
|
|
33
|
+
dynamic (bool | dict, optional): Whether to enable dynamic axes.
|
|
34
|
+
|
|
35
|
+
Notes:
|
|
36
|
+
Setting `do_constant_folding=True` may cause issues with DNN inference for torch>=1.12.
|
|
37
|
+
"""
|
|
38
|
+
kwargs = {"dynamo": False} if TORCH_2_4 else {}
|
|
39
|
+
torch.onnx.export(
|
|
40
|
+
torch_model,
|
|
41
|
+
im,
|
|
42
|
+
onnx_file,
|
|
43
|
+
verbose=False,
|
|
44
|
+
opset_version=opset,
|
|
45
|
+
do_constant_folding=True, # WARNING: DNN inference with torch>=1.12 may require do_constant_folding=False
|
|
46
|
+
input_names=input_names,
|
|
47
|
+
output_names=output_names,
|
|
48
|
+
dynamic_axes=dynamic or None,
|
|
49
|
+
**kwargs,
|
|
50
|
+
)
|
|
51
|
+
|
|
52
|
+
|
|
53
|
+
def onnx2engine(
|
|
54
|
+
onnx_file: str,
|
|
55
|
+
engine_file: str | None = None,
|
|
56
|
+
workspace: int | None = None,
|
|
57
|
+
half: bool = False,
|
|
58
|
+
int8: bool = False,
|
|
59
|
+
dynamic: bool = False,
|
|
60
|
+
shape: tuple[int, int, int, int] = (1, 3, 640, 640),
|
|
61
|
+
dla: int | None = None,
|
|
62
|
+
dataset=None,
|
|
63
|
+
metadata: dict | None = None,
|
|
64
|
+
verbose: bool = False,
|
|
65
|
+
prefix: str = "",
|
|
66
|
+
) -> None:
|
|
67
|
+
"""
|
|
68
|
+
Export a YOLO model to TensorRT engine format.
|
|
69
|
+
|
|
70
|
+
Args:
|
|
71
|
+
onnx_file (str): Path to the ONNX file to be converted.
|
|
72
|
+
engine_file (str, optional): Path to save the generated TensorRT engine file.
|
|
73
|
+
workspace (int, optional): Workspace size in GB for TensorRT.
|
|
74
|
+
half (bool, optional): Enable FP16 precision.
|
|
75
|
+
int8 (bool, optional): Enable INT8 precision.
|
|
76
|
+
dynamic (bool, optional): Enable dynamic input shapes.
|
|
77
|
+
shape (tuple[int, int, int, int], optional): Input shape (batch, channels, height, width).
|
|
78
|
+
dla (int, optional): DLA core to use (Jetson devices only).
|
|
79
|
+
dataset (ultralytics.data.build.InfiniteDataLoader, optional): Dataset for INT8 calibration.
|
|
80
|
+
metadata (dict, optional): Metadata to include in the engine file.
|
|
81
|
+
verbose (bool, optional): Enable verbose logging.
|
|
82
|
+
prefix (str, optional): Prefix for log messages.
|
|
83
|
+
|
|
84
|
+
Raises:
|
|
85
|
+
ValueError: If DLA is enabled on non-Jetson devices or required precision is not set.
|
|
86
|
+
RuntimeError: If the ONNX file cannot be parsed.
|
|
87
|
+
|
|
88
|
+
Notes:
|
|
89
|
+
TensorRT version compatibility is handled for workspace size and engine building.
|
|
90
|
+
INT8 calibration requires a dataset and generates a calibration cache.
|
|
91
|
+
Metadata is serialized and written to the engine file if provided.
|
|
92
|
+
"""
|
|
93
|
+
import tensorrt as trt
|
|
94
|
+
|
|
95
|
+
engine_file = engine_file or Path(onnx_file).with_suffix(".engine")
|
|
96
|
+
|
|
97
|
+
logger = trt.Logger(trt.Logger.INFO)
|
|
98
|
+
if verbose:
|
|
99
|
+
logger.min_severity = trt.Logger.Severity.VERBOSE
|
|
100
|
+
|
|
101
|
+
# Engine builder
|
|
102
|
+
builder = trt.Builder(logger)
|
|
103
|
+
config = builder.create_builder_config()
|
|
104
|
+
workspace_bytes = int((workspace or 0) * (1 << 30))
|
|
105
|
+
is_trt10 = int(trt.__version__.split(".", 1)[0]) >= 10 # is TensorRT >= 10
|
|
106
|
+
if is_trt10 and workspace_bytes > 0:
|
|
107
|
+
config.set_memory_pool_limit(trt.MemoryPoolType.WORKSPACE, workspace_bytes)
|
|
108
|
+
elif workspace_bytes > 0: # TensorRT versions 7, 8
|
|
109
|
+
config.max_workspace_size = workspace_bytes
|
|
110
|
+
flag = 1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)
|
|
111
|
+
network = builder.create_network(flag)
|
|
112
|
+
half = builder.platform_has_fast_fp16 and half
|
|
113
|
+
int8 = builder.platform_has_fast_int8 and int8
|
|
114
|
+
|
|
115
|
+
# Optionally switch to DLA if enabled
|
|
116
|
+
if dla is not None:
|
|
117
|
+
if not IS_JETSON:
|
|
118
|
+
raise ValueError("DLA is only available on NVIDIA Jetson devices")
|
|
119
|
+
LOGGER.info(f"{prefix} enabling DLA on core {dla}...")
|
|
120
|
+
if not half and not int8:
|
|
121
|
+
raise ValueError(
|
|
122
|
+
"DLA requires either 'half=True' (FP16) or 'int8=True' (INT8) to be enabled. Please enable one of them and try again."
|
|
123
|
+
)
|
|
124
|
+
config.default_device_type = trt.DeviceType.DLA
|
|
125
|
+
config.DLA_core = int(dla)
|
|
126
|
+
config.set_flag(trt.BuilderFlag.GPU_FALLBACK)
|
|
127
|
+
|
|
128
|
+
# Read ONNX file
|
|
129
|
+
parser = trt.OnnxParser(network, logger)
|
|
130
|
+
if not parser.parse_from_file(onnx_file):
|
|
131
|
+
raise RuntimeError(f"failed to load ONNX file: {onnx_file}")
|
|
132
|
+
|
|
133
|
+
# Network inputs
|
|
134
|
+
inputs = [network.get_input(i) for i in range(network.num_inputs)]
|
|
135
|
+
outputs = [network.get_output(i) for i in range(network.num_outputs)]
|
|
136
|
+
for inp in inputs:
|
|
137
|
+
LOGGER.info(f'{prefix} input "{inp.name}" with shape{inp.shape} {inp.dtype}')
|
|
138
|
+
for out in outputs:
|
|
139
|
+
LOGGER.info(f'{prefix} output "{out.name}" with shape{out.shape} {out.dtype}')
|
|
140
|
+
|
|
141
|
+
if dynamic:
|
|
142
|
+
profile = builder.create_optimization_profile()
|
|
143
|
+
min_shape = (1, shape[1], 32, 32) # minimum input shape
|
|
144
|
+
max_shape = (*shape[:2], *(int(max(2, workspace or 2) * d) for d in shape[2:])) # max input shape
|
|
145
|
+
for inp in inputs:
|
|
146
|
+
profile.set_shape(inp.name, min=min_shape, opt=shape, max=max_shape)
|
|
147
|
+
config.add_optimization_profile(profile)
|
|
148
|
+
if int8:
|
|
149
|
+
config.set_calibration_profile(profile)
|
|
150
|
+
|
|
151
|
+
LOGGER.info(f"{prefix} building {'INT8' if int8 else 'FP' + ('16' if half else '32')} engine as {engine_file}")
|
|
152
|
+
if int8:
|
|
153
|
+
config.set_flag(trt.BuilderFlag.INT8)
|
|
154
|
+
config.profiling_verbosity = trt.ProfilingVerbosity.DETAILED
|
|
155
|
+
|
|
156
|
+
class EngineCalibrator(trt.IInt8Calibrator):
|
|
157
|
+
"""
|
|
158
|
+
Custom INT8 calibrator for TensorRT engine optimization.
|
|
159
|
+
|
|
160
|
+
This calibrator provides the necessary interface for TensorRT to perform INT8 quantization calibration
|
|
161
|
+
using a dataset. It handles batch generation, caching, and calibration algorithm selection.
|
|
162
|
+
|
|
163
|
+
Attributes:
|
|
164
|
+
dataset: Dataset for calibration.
|
|
165
|
+
data_iter: Iterator over the calibration dataset.
|
|
166
|
+
algo (trt.CalibrationAlgoType): Calibration algorithm type.
|
|
167
|
+
batch (int): Batch size for calibration.
|
|
168
|
+
cache (Path): Path to save the calibration cache.
|
|
169
|
+
|
|
170
|
+
Methods:
|
|
171
|
+
get_algorithm: Get the calibration algorithm to use.
|
|
172
|
+
get_batch_size: Get the batch size to use for calibration.
|
|
173
|
+
get_batch: Get the next batch to use for calibration.
|
|
174
|
+
read_calibration_cache: Use existing cache instead of calibrating again.
|
|
175
|
+
write_calibration_cache: Write calibration cache to disk.
|
|
176
|
+
"""
|
|
177
|
+
|
|
178
|
+
def __init__(
|
|
179
|
+
self,
|
|
180
|
+
dataset, # ultralytics.data.build.InfiniteDataLoader
|
|
181
|
+
cache: str = "",
|
|
182
|
+
) -> None:
|
|
183
|
+
"""Initialize the INT8 calibrator with dataset and cache path."""
|
|
184
|
+
trt.IInt8Calibrator.__init__(self)
|
|
185
|
+
self.dataset = dataset
|
|
186
|
+
self.data_iter = iter(dataset)
|
|
187
|
+
self.algo = (
|
|
188
|
+
trt.CalibrationAlgoType.ENTROPY_CALIBRATION_2 # DLA quantization needs ENTROPY_CALIBRATION_2
|
|
189
|
+
if dla is not None
|
|
190
|
+
else trt.CalibrationAlgoType.MINMAX_CALIBRATION
|
|
191
|
+
)
|
|
192
|
+
self.batch = dataset.batch_size
|
|
193
|
+
self.cache = Path(cache)
|
|
194
|
+
|
|
195
|
+
def get_algorithm(self) -> trt.CalibrationAlgoType:
|
|
196
|
+
"""Get the calibration algorithm to use."""
|
|
197
|
+
return self.algo
|
|
198
|
+
|
|
199
|
+
def get_batch_size(self) -> int:
|
|
200
|
+
"""Get the batch size to use for calibration."""
|
|
201
|
+
return self.batch or 1
|
|
202
|
+
|
|
203
|
+
def get_batch(self, names) -> list[int] | None:
|
|
204
|
+
"""Get the next batch to use for calibration, as a list of device memory pointers."""
|
|
205
|
+
try:
|
|
206
|
+
im0s = next(self.data_iter)["img"] / 255.0
|
|
207
|
+
im0s = im0s.to("cuda") if im0s.device.type == "cpu" else im0s
|
|
208
|
+
return [int(im0s.data_ptr())]
|
|
209
|
+
except StopIteration:
|
|
210
|
+
# Return None to signal to TensorRT there is no calibration data remaining
|
|
211
|
+
return None
|
|
212
|
+
|
|
213
|
+
def read_calibration_cache(self) -> bytes | None:
|
|
214
|
+
"""Use existing cache instead of calibrating again, otherwise, implicitly return None."""
|
|
215
|
+
if self.cache.exists() and self.cache.suffix == ".cache":
|
|
216
|
+
return self.cache.read_bytes()
|
|
217
|
+
|
|
218
|
+
def write_calibration_cache(self, cache: bytes) -> None:
|
|
219
|
+
"""Write calibration cache to disk."""
|
|
220
|
+
_ = self.cache.write_bytes(cache)
|
|
221
|
+
|
|
222
|
+
# Load dataset w/ builder (for batching) and calibrate
|
|
223
|
+
config.int8_calibrator = EngineCalibrator(
|
|
224
|
+
dataset=dataset,
|
|
225
|
+
cache=str(Path(onnx_file).with_suffix(".cache")),
|
|
226
|
+
)
|
|
227
|
+
|
|
228
|
+
elif half:
|
|
229
|
+
config.set_flag(trt.BuilderFlag.FP16)
|
|
230
|
+
|
|
231
|
+
# Write file
|
|
232
|
+
build = builder.build_serialized_network if is_trt10 else builder.build_engine
|
|
233
|
+
with build(network, config) as engine, open(engine_file, "wb") as t:
|
|
234
|
+
# Metadata
|
|
235
|
+
if metadata is not None:
|
|
236
|
+
meta = json.dumps(metadata)
|
|
237
|
+
t.write(len(meta).to_bytes(4, byteorder="little", signed=True))
|
|
238
|
+
t.write(meta.encode())
|
|
239
|
+
# Model
|
|
240
|
+
t.write(engine if is_trt10 else engine.serialize())
|
|
@@ -0,0 +1,221 @@
|
|
|
1
|
+
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
|
2
|
+
|
|
3
|
+
from __future__ import annotations
|
|
4
|
+
|
|
5
|
+
from pathlib import Path
|
|
6
|
+
|
|
7
|
+
import numpy as np
|
|
8
|
+
import torch
|
|
9
|
+
|
|
10
|
+
from ultralytics.nn.modules import Detect, Pose
|
|
11
|
+
from ultralytics.utils import LOGGER
|
|
12
|
+
from ultralytics.utils.downloads import attempt_download_asset
|
|
13
|
+
from ultralytics.utils.files import spaces_in_path
|
|
14
|
+
from ultralytics.utils.tal import make_anchors
|
|
15
|
+
|
|
16
|
+
|
|
17
|
+
def tf_wrapper(model: torch.nn.Module) -> torch.nn.Module:
|
|
18
|
+
"""A wrapper to add TensorFlow compatible inference methods to Detect and Pose layers."""
|
|
19
|
+
for m in model.modules():
|
|
20
|
+
if not isinstance(m, Detect):
|
|
21
|
+
continue
|
|
22
|
+
import types
|
|
23
|
+
|
|
24
|
+
m._inference = types.MethodType(_tf_inference, m)
|
|
25
|
+
if type(m) is Pose:
|
|
26
|
+
m.kpts_decode = types.MethodType(tf_kpts_decode, m)
|
|
27
|
+
return model
|
|
28
|
+
|
|
29
|
+
|
|
30
|
+
def _tf_inference(self, x: list[torch.Tensor]) -> tuple[torch.Tensor]:
|
|
31
|
+
"""Decode boxes and cls scores for tf object detection."""
|
|
32
|
+
shape = x[0].shape # BCHW
|
|
33
|
+
x_cat = torch.cat([xi.view(x[0].shape[0], self.no, -1) for xi in x], 2)
|
|
34
|
+
box, cls = x_cat.split((self.reg_max * 4, self.nc), 1)
|
|
35
|
+
if self.dynamic or self.shape != shape:
|
|
36
|
+
self.anchors, self.strides = (x.transpose(0, 1) for x in make_anchors(x, self.stride, 0.5))
|
|
37
|
+
self.shape = shape
|
|
38
|
+
grid_h, grid_w = shape[2], shape[3]
|
|
39
|
+
grid_size = torch.tensor([grid_w, grid_h, grid_w, grid_h], device=box.device).reshape(1, 4, 1)
|
|
40
|
+
norm = self.strides / (self.stride[0] * grid_size)
|
|
41
|
+
dbox = self.decode_bboxes(self.dfl(box) * norm, self.anchors.unsqueeze(0) * norm[:, :2])
|
|
42
|
+
return torch.cat((dbox, cls.sigmoid()), 1)
|
|
43
|
+
|
|
44
|
+
|
|
45
|
+
def tf_kpts_decode(self, bs: int, kpts: torch.Tensor) -> torch.Tensor:
|
|
46
|
+
"""Decode keypoints for tf pose estimation."""
|
|
47
|
+
ndim = self.kpt_shape[1]
|
|
48
|
+
# required for TFLite export to avoid 'PLACEHOLDER_FOR_GREATER_OP_CODES' bug
|
|
49
|
+
# Precompute normalization factor to increase numerical stability
|
|
50
|
+
y = kpts.view(bs, *self.kpt_shape, -1)
|
|
51
|
+
grid_h, grid_w = self.shape[2], self.shape[3]
|
|
52
|
+
grid_size = torch.tensor([grid_w, grid_h], device=y.device).reshape(1, 2, 1)
|
|
53
|
+
norm = self.strides / (self.stride[0] * grid_size)
|
|
54
|
+
a = (y[:, :, :2] * 2.0 + (self.anchors - 0.5)) * norm
|
|
55
|
+
if ndim == 3:
|
|
56
|
+
a = torch.cat((a, y[:, :, 2:3].sigmoid()), 2)
|
|
57
|
+
return a.view(bs, self.nk, -1)
|
|
58
|
+
|
|
59
|
+
|
|
60
|
+
def onnx2saved_model(
|
|
61
|
+
onnx_file: str,
|
|
62
|
+
output_dir: Path,
|
|
63
|
+
int8: bool = False,
|
|
64
|
+
images: np.ndarray = None,
|
|
65
|
+
disable_group_convolution: bool = False,
|
|
66
|
+
prefix="",
|
|
67
|
+
):
|
|
68
|
+
"""
|
|
69
|
+
Convert a ONNX model to TensorFlow SavedModel format via ONNX.
|
|
70
|
+
|
|
71
|
+
Args:
|
|
72
|
+
onnx_file (str): ONNX file path.
|
|
73
|
+
output_dir (Path): Output directory path for the SavedModel.
|
|
74
|
+
int8 (bool, optional): Enable INT8 quantization. Defaults to False.
|
|
75
|
+
images (np.ndarray, optional): Calibration images for INT8 quantization in BHWC format.
|
|
76
|
+
disable_group_convolution (bool, optional): Disable group convolution optimization. Defaults to False.
|
|
77
|
+
prefix (str, optional): Logging prefix. Defaults to "".
|
|
78
|
+
|
|
79
|
+
Returns:
|
|
80
|
+
(keras.Model): Converted Keras model.
|
|
81
|
+
|
|
82
|
+
Note:
|
|
83
|
+
Requires onnx2tf package. Downloads calibration data if INT8 quantization is enabled.
|
|
84
|
+
Removes temporary files and renames quantized models after conversion.
|
|
85
|
+
"""
|
|
86
|
+
# Pre-download calibration file to fix https://github.com/PINTO0309/onnx2tf/issues/545
|
|
87
|
+
onnx2tf_file = Path("calibration_image_sample_data_20x128x128x3_float32.npy")
|
|
88
|
+
if not onnx2tf_file.exists():
|
|
89
|
+
attempt_download_asset(f"{onnx2tf_file}.zip", unzip=True, delete=True)
|
|
90
|
+
np_data = None
|
|
91
|
+
if int8:
|
|
92
|
+
tmp_file = output_dir / "tmp_tflite_int8_calibration_images.npy" # int8 calibration images file
|
|
93
|
+
if images is not None:
|
|
94
|
+
output_dir.mkdir()
|
|
95
|
+
np.save(str(tmp_file), images) # BHWC
|
|
96
|
+
np_data = [["images", tmp_file, [[[[0, 0, 0]]]], [[[[255, 255, 255]]]]]]
|
|
97
|
+
|
|
98
|
+
import onnx2tf # scoped for after ONNX export for reduced conflict during import
|
|
99
|
+
|
|
100
|
+
LOGGER.info(f"{prefix} starting TFLite export with onnx2tf {onnx2tf.__version__}...")
|
|
101
|
+
keras_model = onnx2tf.convert(
|
|
102
|
+
input_onnx_file_path=onnx_file,
|
|
103
|
+
output_folder_path=str(output_dir),
|
|
104
|
+
not_use_onnxsim=True,
|
|
105
|
+
verbosity="error", # note INT8-FP16 activation bug https://github.com/ultralytics/ultralytics/issues/15873
|
|
106
|
+
output_integer_quantized_tflite=int8,
|
|
107
|
+
custom_input_op_name_np_data_path=np_data,
|
|
108
|
+
enable_batchmatmul_unfold=True and not int8, # fix lower no. of detected objects on GPU delegate
|
|
109
|
+
output_signaturedefs=True, # fix error with Attention block group convolution
|
|
110
|
+
disable_group_convolution=disable_group_convolution, # fix error with group convolution
|
|
111
|
+
)
|
|
112
|
+
|
|
113
|
+
# Remove/rename TFLite models
|
|
114
|
+
if int8:
|
|
115
|
+
tmp_file.unlink(missing_ok=True)
|
|
116
|
+
for file in output_dir.rglob("*_dynamic_range_quant.tflite"):
|
|
117
|
+
file.rename(file.with_name(file.stem.replace("_dynamic_range_quant", "_int8") + file.suffix))
|
|
118
|
+
for file in output_dir.rglob("*_integer_quant_with_int16_act.tflite"):
|
|
119
|
+
file.unlink() # delete extra fp16 activation TFLite files
|
|
120
|
+
return keras_model
|
|
121
|
+
|
|
122
|
+
|
|
123
|
+
def keras2pb(keras_model, file: Path, prefix=""):
|
|
124
|
+
"""
|
|
125
|
+
Convert a Keras model to TensorFlow GraphDef (.pb) format.
|
|
126
|
+
|
|
127
|
+
Args:
|
|
128
|
+
keras_model(tf_keras): Keras model to convert to frozen graph format.
|
|
129
|
+
file (Path): Output file path (suffix will be changed to .pb).
|
|
130
|
+
prefix (str, optional): Logging prefix. Defaults to "".
|
|
131
|
+
|
|
132
|
+
Note:
|
|
133
|
+
Creates a frozen graph by converting variables to constants for inference optimization.
|
|
134
|
+
"""
|
|
135
|
+
import tensorflow as tf
|
|
136
|
+
from tensorflow.python.framework.convert_to_constants import convert_variables_to_constants_v2
|
|
137
|
+
|
|
138
|
+
LOGGER.info(f"\n{prefix} starting export with tensorflow {tf.__version__}...")
|
|
139
|
+
m = tf.function(lambda x: keras_model(x)) # full model
|
|
140
|
+
m = m.get_concrete_function(tf.TensorSpec(keras_model.inputs[0].shape, keras_model.inputs[0].dtype))
|
|
141
|
+
frozen_func = convert_variables_to_constants_v2(m)
|
|
142
|
+
frozen_func.graph.as_graph_def()
|
|
143
|
+
tf.io.write_graph(graph_or_graph_def=frozen_func.graph, logdir=str(file.parent), name=file.name, as_text=False)
|
|
144
|
+
|
|
145
|
+
|
|
146
|
+
def tflite2edgetpu(tflite_file: str | Path, output_dir: str | Path, prefix: str = ""):
|
|
147
|
+
"""
|
|
148
|
+
Convert a TensorFlow Lite model to Edge TPU format using the Edge TPU compiler.
|
|
149
|
+
|
|
150
|
+
Args:
|
|
151
|
+
tflite_file (str | Path): Path to the input TensorFlow Lite (.tflite) model file.
|
|
152
|
+
output_dir (str | Path): Output directory path for the compiled Edge TPU model.
|
|
153
|
+
prefix (str, optional): Logging prefix. Defaults to "".
|
|
154
|
+
|
|
155
|
+
Note:
|
|
156
|
+
Requires the Edge TPU compiler to be installed. The function compiles the TFLite model
|
|
157
|
+
for optimal performance on Google's Edge TPU hardware accelerator.
|
|
158
|
+
"""
|
|
159
|
+
import subprocess
|
|
160
|
+
|
|
161
|
+
cmd = (
|
|
162
|
+
"edgetpu_compiler "
|
|
163
|
+
f'--out_dir "{output_dir}" '
|
|
164
|
+
"--show_operations "
|
|
165
|
+
"--search_delegate "
|
|
166
|
+
"--delegate_search_step 30 "
|
|
167
|
+
"--timeout_sec 180 "
|
|
168
|
+
f'"{tflite_file}"'
|
|
169
|
+
)
|
|
170
|
+
LOGGER.info(f"{prefix} running '{cmd}'")
|
|
171
|
+
subprocess.run(cmd, shell=True)
|
|
172
|
+
|
|
173
|
+
|
|
174
|
+
def pb2tfjs(pb_file: str, output_dir: str, half: bool = False, int8: bool = False, prefix: str = ""):
|
|
175
|
+
"""
|
|
176
|
+
Convert a TensorFlow GraphDef (.pb) model to TensorFlow.js format.
|
|
177
|
+
|
|
178
|
+
Args:
|
|
179
|
+
pb_file (str): Path to the input TensorFlow GraphDef (.pb) model file.
|
|
180
|
+
output_dir (str): Output directory path for the converted TensorFlow.js model.
|
|
181
|
+
half (bool, optional): Enable FP16 quantization. Defaults to False.
|
|
182
|
+
int8 (bool, optional): Enable INT8 quantization. Defaults to False.
|
|
183
|
+
prefix (str, optional): Logging prefix. Defaults to "".
|
|
184
|
+
|
|
185
|
+
Note:
|
|
186
|
+
Requires tensorflowjs package. Uses tensorflowjs_converter command-line tool for conversion.
|
|
187
|
+
Handles spaces in file paths and warns if output directory contains spaces.
|
|
188
|
+
"""
|
|
189
|
+
import subprocess
|
|
190
|
+
|
|
191
|
+
import tensorflow as tf
|
|
192
|
+
import tensorflowjs as tfjs
|
|
193
|
+
|
|
194
|
+
LOGGER.info(f"\n{prefix} starting export with tensorflowjs {tfjs.__version__}...")
|
|
195
|
+
|
|
196
|
+
gd = tf.Graph().as_graph_def() # TF GraphDef
|
|
197
|
+
with open(pb_file, "rb") as file:
|
|
198
|
+
gd.ParseFromString(file.read())
|
|
199
|
+
outputs = ",".join(gd_outputs(gd))
|
|
200
|
+
LOGGER.info(f"\n{prefix} output node names: {outputs}")
|
|
201
|
+
|
|
202
|
+
quantization = "--quantize_float16" if half else "--quantize_uint8" if int8 else ""
|
|
203
|
+
with spaces_in_path(pb_file) as fpb_, spaces_in_path(output_dir) as f_: # exporter can not handle spaces in path
|
|
204
|
+
cmd = (
|
|
205
|
+
"tensorflowjs_converter "
|
|
206
|
+
f'--input_format=tf_frozen_model {quantization} --output_node_names={outputs} "{fpb_}" "{f_}"'
|
|
207
|
+
)
|
|
208
|
+
LOGGER.info(f"{prefix} running '{cmd}'")
|
|
209
|
+
subprocess.run(cmd, shell=True)
|
|
210
|
+
|
|
211
|
+
if " " in output_dir:
|
|
212
|
+
LOGGER.warning(f"{prefix} your model may not work correctly with spaces in path '{output_dir}'.")
|
|
213
|
+
|
|
214
|
+
|
|
215
|
+
def gd_outputs(gd):
|
|
216
|
+
"""Return TensorFlow GraphDef model output node names."""
|
|
217
|
+
name_list, input_list = [], []
|
|
218
|
+
for node in gd.node: # tensorflow.core.framework.node_def_pb2.NodeDef
|
|
219
|
+
name_list.append(node.name)
|
|
220
|
+
input_list.extend(node.input)
|
|
221
|
+
return sorted(f"{x}:0" for x in list(set(name_list) - set(input_list)) if not x.startswith("NoOp"))
|
ultralytics/utils/nms.py
CHANGED
|
@@ -231,9 +231,11 @@ class TorchNMS:
|
|
|
231
231
|
upper_mask = row_idx < col_idx
|
|
232
232
|
ious = ious * upper_mask
|
|
233
233
|
# Zeroing these scores ensures the additional indices would not affect the final results
|
|
234
|
-
scores[
|
|
234
|
+
scores_ = scores[sorted_idx]
|
|
235
|
+
scores_[~((ious >= iou_threshold).sum(0) <= 0)] = 0
|
|
236
|
+
scores[sorted_idx] = scores_ # update original tensor for NMSModel
|
|
235
237
|
# NOTE: return indices with fixed length to avoid TFLite reshape error
|
|
236
|
-
pick = torch.topk(
|
|
238
|
+
pick = torch.topk(scores_, scores_.shape[0]).indices
|
|
237
239
|
return sorted_idx[pick]
|
|
238
240
|
|
|
239
241
|
@staticmethod
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|