dgenerate-ultralytics-headless 8.3.196__py3-none-any.whl → 8.3.198__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (46) hide show
  1. {dgenerate_ultralytics_headless-8.3.196.dist-info → dgenerate_ultralytics_headless-8.3.198.dist-info}/METADATA +1 -1
  2. {dgenerate_ultralytics_headless-8.3.196.dist-info → dgenerate_ultralytics_headless-8.3.198.dist-info}/RECORD +46 -45
  3. tests/test_engine.py +9 -1
  4. ultralytics/__init__.py +1 -1
  5. ultralytics/cfg/__init__.py +0 -1
  6. ultralytics/cfg/datasets/construction-ppe.yaml +32 -0
  7. ultralytics/cfg/default.yaml +96 -94
  8. ultralytics/cfg/trackers/botsort.yaml +16 -17
  9. ultralytics/cfg/trackers/bytetrack.yaml +9 -11
  10. ultralytics/data/augment.py +1 -1
  11. ultralytics/data/dataset.py +1 -1
  12. ultralytics/engine/exporter.py +36 -35
  13. ultralytics/engine/model.py +1 -2
  14. ultralytics/engine/predictor.py +1 -2
  15. ultralytics/engine/results.py +1 -1
  16. ultralytics/engine/trainer.py +8 -10
  17. ultralytics/engine/tuner.py +54 -32
  18. ultralytics/models/sam/modules/decoders.py +3 -3
  19. ultralytics/models/sam/modules/sam.py +5 -5
  20. ultralytics/models/sam/predict.py +11 -11
  21. ultralytics/models/yolo/classify/train.py +2 -7
  22. ultralytics/models/yolo/classify/val.py +2 -2
  23. ultralytics/models/yolo/detect/predict.py +1 -1
  24. ultralytics/models/yolo/detect/train.py +1 -11
  25. ultralytics/models/yolo/detect/val.py +4 -4
  26. ultralytics/models/yolo/obb/val.py +3 -3
  27. ultralytics/models/yolo/pose/predict.py +1 -1
  28. ultralytics/models/yolo/pose/train.py +0 -7
  29. ultralytics/models/yolo/pose/val.py +2 -2
  30. ultralytics/models/yolo/segment/predict.py +2 -2
  31. ultralytics/models/yolo/segment/train.py +0 -6
  32. ultralytics/models/yolo/segment/val.py +13 -11
  33. ultralytics/models/yolo/yoloe/val.py +1 -1
  34. ultralytics/nn/modules/block.py +1 -1
  35. ultralytics/nn/modules/head.py +1 -2
  36. ultralytics/nn/tasks.py +2 -2
  37. ultralytics/utils/checks.py +1 -1
  38. ultralytics/utils/loss.py +1 -2
  39. ultralytics/utils/metrics.py +6 -6
  40. ultralytics/utils/nms.py +8 -14
  41. ultralytics/utils/plotting.py +22 -36
  42. ultralytics/utils/torch_utils.py +9 -27
  43. {dgenerate_ultralytics_headless-8.3.196.dist-info → dgenerate_ultralytics_headless-8.3.198.dist-info}/WHEEL +0 -0
  44. {dgenerate_ultralytics_headless-8.3.196.dist-info → dgenerate_ultralytics_headless-8.3.198.dist-info}/entry_points.txt +0 -0
  45. {dgenerate_ultralytics_headless-8.3.196.dist-info → dgenerate_ultralytics_headless-8.3.198.dist-info}/licenses/LICENSE +0 -0
  46. {dgenerate_ultralytics_headless-8.3.196.dist-info → dgenerate_ultralytics_headless-8.3.198.dist-info}/top_level.txt +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: dgenerate-ultralytics-headless
3
- Version: 8.3.196
3
+ Version: 8.3.198
4
4
  Summary: Automatically built Ultralytics package with python-opencv-headless dependency instead of python-opencv
5
5
  Author-email: Glenn Jocher <glenn.jocher@ultralytics.com>, Jing Qiu <jing.qiu@ultralytics.com>
6
6
  Maintainer-email: Ultralytics <hello@ultralytics.com>
@@ -1,19 +1,19 @@
1
- dgenerate_ultralytics_headless-8.3.196.dist-info/licenses/LICENSE,sha256=DZak_2itbUtvHzD3E7GNUYSRK6jdOJ-GqncQ2weavLA,34523
1
+ dgenerate_ultralytics_headless-8.3.198.dist-info/licenses/LICENSE,sha256=DZak_2itbUtvHzD3E7GNUYSRK6jdOJ-GqncQ2weavLA,34523
2
2
  tests/__init__.py,sha256=b4KP5_q-2IO8Br8YHOSLYnn7IwZS81l_vfEF2YPa2lM,894
3
3
  tests/conftest.py,sha256=LXtQJcFNWPGuzauTGkiXgsvVC3llJKfg22WcmhRzuQc,2593
4
4
  tests/test_cli.py,sha256=EMf5gTAopOnIz8VvzaM-Qb044o7D0flnUHYQ-2ffOM4,5670
5
5
  tests/test_cuda.py,sha256=Z-MX1aIBQyt_fAAgKxBEznE0Mj7caSwrctW9z__NGzU,8240
6
- tests/test_engine.py,sha256=Jpt2KVrltrEgh2-3Ykouz-2Z_2fza0eymL5ectRXadM,4922
6
+ tests/test_engine.py,sha256=8W4_D48ZBUp-DsUlRYxHTXzougycY8yggvpbVwQDLPg,5025
7
7
  tests/test_exports.py,sha256=dWuroSyqXnrc0lE-RNTf7pZoXXXEkOs31u7nhOiEHS0,10994
8
8
  tests/test_integrations.py,sha256=kl_AKmE_Qs1GB0_91iVwbzNxofm_hFTt0zzU6JF-pg4,6323
9
9
  tests/test_python.py,sha256=2V23f2-JQsO-K4p1kj0IkCRxHykGwgd0edKJzRsBgdI,27911
10
10
  tests/test_solutions.py,sha256=6wJ9-lhyWSAm7zaR4D9L_DrUA3iJU1NgqmbQO6PIuvo,13211
11
- ultralytics/__init__.py,sha256=APj9NfEx0ZIorMTCYwzpAWb-sLPKJBI99dE1cPUC-ms,730
11
+ ultralytics/__init__.py,sha256=CJCtY5CCo6PMK1UGpJetRmcryk-2hqIbQI0Qy7O723Q,730
12
12
  ultralytics/py.typed,sha256=la67KBlbjXN-_-DfGNcdOcjYumVpKG_Tkw-8n5dnGB4,8
13
13
  ultralytics/assets/bus.jpg,sha256=wCAZxJecGR63Od3ZRERe9Aja1Weayrb9Ug751DS_vGM,137419
14
14
  ultralytics/assets/zidane.jpg,sha256=Ftc4aeMmen1O0A3o6GCDO9FlfBslLpTAw0gnetx7bts,50427
15
- ultralytics/cfg/__init__.py,sha256=oR-uubaBOEIetwoKr9C9WeXP7fLwVygDE_Cppoe2ho0,39974
16
- ultralytics/cfg/default.yaml,sha256=jnt-5OmGalqd_SSEa1cf4HkBaJy0IswpoW5gdkoF5Vc,8429
15
+ ultralytics/cfg/__init__.py,sha256=xX7qUxdcDgcjCKoQFEVQgzrwZodeKTF88CTKZe05d0Y,39955
16
+ ultralytics/cfg/default.yaml,sha256=awOQl-PS3Rb6prD0IjbFh0lOhKSjqEvroOmJB3W0AS0,8887
17
17
  ultralytics/cfg/datasets/Argoverse.yaml,sha256=J4ItoUlE_EiYTmp1DFKYHfbqHkj8j4wUtRJQhaMIlBM,3275
18
18
  ultralytics/cfg/datasets/DOTAv1.5.yaml,sha256=VZ_KKFX0H2YvlFVJ8JHcLWYBZ2xiQ6Z-ROSTiKWpS7c,1211
19
19
  ultralytics/cfg/datasets/DOTAv1.yaml,sha256=JrDuYcQ0JU9lJlCA-dCkMNko_jaj6MAVGHjsfjeZ_u0,1181
@@ -36,6 +36,7 @@ ultralytics/cfg/datasets/coco8-multispectral.yaml,sha256=nlU4W0d8rl1cVChthOk0NIm
36
36
  ultralytics/cfg/datasets/coco8-pose.yaml,sha256=GfSONSl-Oh4QErto91E_ws3im9ZTEYmDMaPOaSLLdV8,1009
37
37
  ultralytics/cfg/datasets/coco8-seg.yaml,sha256=Ez42ZE6xHlj8lcjtMBJJP2Y460q2BuiwRfk090XnBgE,1913
38
38
  ultralytics/cfg/datasets/coco8.yaml,sha256=tzrDY1KW82AHsgpCxte_yPkgMIIpNY6Pb4F46TDPxkk,1888
39
+ ultralytics/cfg/datasets/construction-ppe.yaml,sha256=pSU9yaAXV369EYQJymNtFQbS_XH4V369gPKKjDrb4ho,1008
39
40
  ultralytics/cfg/datasets/crack-seg.yaml,sha256=fqvSIq1fRXO55V_g2T92hcYAVoKBHZsSZQR7CokoPUI,837
40
41
  ultralytics/cfg/datasets/dog-pose.yaml,sha256=sRU1JDtEC4nLVf2vkn7lxbp4ILWNcgE-ok96rxZv2lc,908
41
42
  ultralytics/cfg/datasets/dota8-multispectral.yaml,sha256=2lMBi1Q3_pc0auK00yX80oF7oUMo0bUlwjkOrp33hvs,1216
@@ -103,15 +104,15 @@ ultralytics/cfg/models/v9/yolov9e.yaml,sha256=Olr2PlADpkD6N1TiVyAJEMzkrA7SbNul1n
103
104
  ultralytics/cfg/models/v9/yolov9m.yaml,sha256=WcKQ3xRsC1JMgA42Hx4xzr4FZmtE6B3wKvqhlQxkqw8,1411
104
105
  ultralytics/cfg/models/v9/yolov9s.yaml,sha256=j_v3JWaPtiuM8aKJt15Z_4HPRCoHWn_G6Z07t8CZyjk,1391
105
106
  ultralytics/cfg/models/v9/yolov9t.yaml,sha256=Q8GpSXE7fumhuJiQg4a2SkuS_UmnXqp-eoZxW_C0vEo,1375
106
- ultralytics/cfg/trackers/botsort.yaml,sha256=TpRaK5kH_-QbjCQ7ekM4s_7j8I8ti3q8Hs7WDz4rEwA,1215
107
- ultralytics/cfg/trackers/bytetrack.yaml,sha256=6u-tiZlk16EqEwkNXaMrza6PAQmWj_ypgv26LGCtPDg,886
107
+ ultralytics/cfg/trackers/botsort.yaml,sha256=tRxC-qT4Wz0mLn5x7ZEwrqgGKrmTDVY7gMge-mhpe7U,1431
108
+ ultralytics/cfg/trackers/bytetrack.yaml,sha256=7LS1ObP5u7BUFcmeY6L2m3bRuPUktnpJspFKd_ElVWc,908
108
109
  ultralytics/data/__init__.py,sha256=nAXaL1puCc7z_NjzQNlJnhbVhT9Fla2u7Dsqo7q1dAc,644
109
110
  ultralytics/data/annotator.py,sha256=f15TCDEM8SuuzHiFB8oyhTy9vfywKmPTLSPAgsZQP9I,2990
110
- ultralytics/data/augment.py,sha256=3ArOOP1dSnCfQRHIQ6og-XFsaLnSqrXYtx-tpbE4Kag,132893
111
+ ultralytics/data/augment.py,sha256=7NsRCYu_uM6KkpU0F03NC9Ra_GQVGp2dRO1RksrrU38,132897
111
112
  ultralytics/data/base.py,sha256=gWoGFifyNe1TCwtGdGp5jzKOQ9sh4b-XrfyN0PPvRaY,19661
112
113
  ultralytics/data/build.py,sha256=Bhu8E-FNSkTbz6YpNXeUBmQtN91ZtZxOCUiKYXgzV-c,11778
113
114
  ultralytics/data/converter.py,sha256=N1YFD0mG7uwL12wMcuVtF2zbISBIzTsGiy1QioDTDGs,32049
114
- ultralytics/data/dataset.py,sha256=AfWOLsLKjTDHRtSqODKk5OsD3ViETZTKxY4PKP2Jo5Q,36751
115
+ ultralytics/data/dataset.py,sha256=GL6J_fvluaF2Ck1in3W5q3Xm7lRcUd6Amgd_uu6r_FM,36772
115
116
  ultralytics/data/loaders.py,sha256=sfQ0C86uBg9QQbN3aU0W8FIjGQmMdJTQAMK4DA1bjk8,31748
116
117
  ultralytics/data/split.py,sha256=5ubnL_wsEutFQOj4I4K01L9UpZrrO_vO3HrydSLJyIY,5107
117
118
  ultralytics/data/split_dota.py,sha256=Lz04qVufTvHn4cTyo3VkqoIM93rb-Ymr8uOIXeSsaJI,12910
@@ -121,12 +122,12 @@ ultralytics/data/scripts/get_coco.sh,sha256=UuJpJeo3qQpTHVINeOpmP0NYmg8PhEFE3A8J
121
122
  ultralytics/data/scripts/get_coco128.sh,sha256=qmRQl_hOKrsdHrTrnyQuFIH01oDz3lfaz138OgGfLt8,650
122
123
  ultralytics/data/scripts/get_imagenet.sh,sha256=hr42H16bM47iT27rgS7MpEo-GeOZAYUQXgr0B2cwn48,1705
123
124
  ultralytics/engine/__init__.py,sha256=lm6MckFYCPTbqIoX7w0s_daxdjNeBeKW6DXppv1-QUM,70
124
- ultralytics/engine/exporter.py,sha256=d_2ADzklNXhVpwfAmJlp6PVuT0sLXf7O2SP486jpBy4,74966
125
- ultralytics/engine/model.py,sha256=1n5oqCDJYzRWPU0-79hc6txCIGpXmZVTnB-ae9nahRc,53488
126
- ultralytics/engine/predictor.py,sha256=510VPYcYmEYPJmBiApQLGaFFAL4gd79rVzPCwisH7LE,22745
127
- ultralytics/engine/results.py,sha256=BmhePCaaTBfYrJT12t6bywZuZ_7h3tIc4IsRFuyNTdk,71499
128
- ultralytics/engine/trainer.py,sha256=XeXZ8BAvH5ZtU7zW44Jsf7SOxtkAG8RL9NO_nhpfkZo,40898
129
- ultralytics/engine/tuner.py,sha256=XuqcjyGpD79pUVn-PXlJJGKXgH1yblPdYBH_R2kHWSU,20586
125
+ ultralytics/engine/exporter.py,sha256=rz0CAzezUXdQuL1UUhgSIl4-TUu5eVuB6CBA4wh7HTc,74836
126
+ ultralytics/engine/model.py,sha256=iwwaL2NR5NSwQ7R3juHzS3ds9W-CfhC_CjUcwMvcgsk,53426
127
+ ultralytics/engine/predictor.py,sha256=4lfw2RbBDE7939011FcSCuznscrcnMuabZtc8GXaKO4,22735
128
+ ultralytics/engine/results.py,sha256=uQ_tgvdxKAg28pRgb5WCHiqx9Ktu7wYiVbwZy_IJ5bo,71499
129
+ ultralytics/engine/trainer.py,sha256=aFGnBYH9xgS2qgZc-QdgRaiMxGOeeu27dWc31hsOAvo,41030
130
+ ultralytics/engine/tuner.py,sha256=__OaI1oS3J37iqwruojxcnCYi6L7bgXmZ3bzNvinZk4,21409
130
131
  ultralytics/engine/validator.py,sha256=7tADPOXRZz0Yi7F-Z5SxcUnwytaa2MfbtuSdO8pp_l4,16966
131
132
  ultralytics/hub/__init__.py,sha256=xCF02lzlPKbdmGfO3NxLuXl5Kb0MaBZp_-fAWDHZ8zw,6698
132
133
  ultralytics/hub/auth.py,sha256=RIwZDWfW6vS2yGpZKR0xVl0-38itJYEFtmqY_M70bl8,6304
@@ -152,13 +153,13 @@ ultralytics/models/sam/__init__.py,sha256=4VtjxrbrSsqBvteaD_CwA4Nj3DdSUG1MknymtW
152
153
  ultralytics/models/sam/amg.py,sha256=sNSBMacS5VKx4NnzdYwBPKJniMNuhpi8VzOMjitGwvo,11821
153
154
  ultralytics/models/sam/build.py,sha256=JEGNXDtBtzp7VIcaYyup7Rwqf1ETSEcX1E1mqBmbMgU,12629
154
155
  ultralytics/models/sam/model.py,sha256=qV8tlHQA1AHUqGkWbwtI7cLw0Rgy3a4X9S2c_wu5fh4,7237
155
- ultralytics/models/sam/predict.py,sha256=6jIgK__mXpBW_wvdVZYNqpjQTbYZeXVCq0KQ4aBGpoE,104963
156
+ ultralytics/models/sam/predict.py,sha256=jjAIrwEUsNZoQyZwDCRcCwNoPTbfi1FXEkw7HP-eK40,105001
156
157
  ultralytics/models/sam/modules/__init__.py,sha256=lm6MckFYCPTbqIoX7w0s_daxdjNeBeKW6DXppv1-QUM,70
157
158
  ultralytics/models/sam/modules/blocks.py,sha256=KATWIut_HO4E_8dGdvv5gt1_r8yUVXw1jkyN_bvRAYQ,46055
158
- ultralytics/models/sam/modules/decoders.py,sha256=jFw8iZ-esHWvgAzTaBwG9MJabi6qX5gUeBUI9kftm64,25620
159
+ ultralytics/models/sam/modules/decoders.py,sha256=PGNNpy1ttAy6xV_ERW1Ld3Kf9LGDG3mibOss0SeHAis,25623
159
160
  ultralytics/models/sam/modules/encoders.py,sha256=VOgwSDFep_zqssESz8mNDPDdJfQmP97kHVN-MrExGnk,37326
160
161
  ultralytics/models/sam/modules/memory_attention.py,sha256=BOkV6ULHc0Iiw_tHcNYosYrZ1tAXyC0DG46ktQzR91E,13638
161
- ultralytics/models/sam/modules/sam.py,sha256=wkVmAGyopIYKKMEEr4vGWKWxokVH1cY8Teifmhpjh0A,55618
162
+ ultralytics/models/sam/modules/sam.py,sha256=Ys9sSfRIhP3sxgZolGynpJQhJQgU6ydEW8Wb07HneYg,55624
162
163
  ultralytics/models/sam/modules/tiny_encoder.py,sha256=fSxTByC7OSmHYg93KylsFayh6nPdlidRk1BORh6X-p0,42199
163
164
  ultralytics/models/sam/modules/transformer.py,sha256=UdZdhGQYYPTU6R4A4Yyy-hElQLCG7nX726iTKaV977A,14958
164
165
  ultralytics/models/sam/modules/utils.py,sha256=XReheR5K0jbTKYy5k_iSC1vocUndi8aBkesz-n6Pl9g,16045
@@ -169,24 +170,24 @@ ultralytics/models/yolo/__init__.py,sha256=or0j5xvcM0usMlsFTYhNAOcQUri7reD0cD9JR
169
170
  ultralytics/models/yolo/model.py,sha256=b_F1AeBUgiSssRxZ-rGQVdB0a37rDG92h_03o0N29B8,18761
170
171
  ultralytics/models/yolo/classify/__init__.py,sha256=9--HVaNOfI1K7rn_rRqclL8FUAnpfeBrRqEQIaQw2xM,383
171
172
  ultralytics/models/yolo/classify/predict.py,sha256=o7pDE8xwjkHUUIIOph7ZVQZyGZyob24dYDQ460v_7R0,4149
172
- ultralytics/models/yolo/classify/train.py,sha256=CXi8ZrVqYtqlzRbg3UP5kOyMYXAM4Wex8Ii0fDyv-iA,9840
173
- ultralytics/models/yolo/classify/val.py,sha256=6_-pbnb0skASJCqsar6_i3FyvfKNJwZ7Y8AK7wzySIU,10039
173
+ ultralytics/models/yolo/classify/train.py,sha256=BpzPNBJ3F_cg4VqnIiDZVwdUslTTZB9FoDAywhGqbXg,9612
174
+ ultralytics/models/yolo/classify/val.py,sha256=SslmUSnOAgw1vvFQ4hFbdxuOq8dgfAgGd4D6mpZphZA,10047
174
175
  ultralytics/models/yolo/detect/__init__.py,sha256=GIRsLYR-kT4JJx7lh4ZZAFGBZj0aebokuU0A7JbjDVA,257
175
- ultralytics/models/yolo/detect/predict.py,sha256=v4u3azp2zQxJKJ4L198gGIgkL7CN-6qGg1B7ypBxxbM,5390
176
- ultralytics/models/yolo/detect/train.py,sha256=y6qVw9az7hOMo5eXQ4a9i29wIvvwnpVfzZJJC7V7YC8,10947
177
- ultralytics/models/yolo/detect/val.py,sha256=OG38-x3LyCAeH3UY9jOG4axK7mfnVnTwaKpjMzQi07I,21309
176
+ ultralytics/models/yolo/detect/predict.py,sha256=Vtpqb2gHI7hv9TaBBXsnoScQ8HrSnj0PPOkEu07MwLc,5394
177
+ ultralytics/models/yolo/detect/train.py,sha256=QT_ItVx1ss6Iui8LIV4n0rY9QZKIKYTnQnFkTRo5cLo,10532
178
+ ultralytics/models/yolo/detect/val.py,sha256=xjfkgeiTRG_m-0hlAZrIyklxB6-ApCBLaC-R_Te8fP8,21329
178
179
  ultralytics/models/yolo/obb/__init__.py,sha256=tQmpG8wVHsajWkZdmD6cjGohJ4ki64iSXQT8JY_dydo,221
179
180
  ultralytics/models/yolo/obb/predict.py,sha256=4r1eSld6TNJlk9JG56e-DX6oPL8uBBqiuztyBpxWlHE,2888
180
181
  ultralytics/models/yolo/obb/train.py,sha256=BbehrsKP0lHRV3v7rrw8wAeiDdc-szbhHAmDy0OdhoM,3461
181
- ultralytics/models/yolo/obb/val.py,sha256=ZNjdI5dF-igZCqJadAUb5VPTevI5i47G-bPTG8wV-CY,14171
182
+ ultralytics/models/yolo/obb/val.py,sha256=9jMnBRIqPkCzY21CSiuP3LL4qpBEY-pnEgKQSi4bEJ0,14187
182
183
  ultralytics/models/yolo/pose/__init__.py,sha256=63xmuHZLNzV8I76HhVXAq4f2W0KTk8Oi9eL-Y204LyQ,227
183
- ultralytics/models/yolo/pose/predict.py,sha256=M0C7ZfVXx4QXgv-szjnaXYEPas76ZLGAgDNNh1GG0vI,3743
184
- ultralytics/models/yolo/pose/train.py,sha256=laAn8ej3nihl119agEr0P8TxP8c8itI8E0I0lov4VE0,5079
185
- ultralytics/models/yolo/pose/val.py,sha256=U4tMWbHpCjspJ6i5DbNUav05RFCvwvfD1mjejqJIJ1c,12638
184
+ ultralytics/models/yolo/pose/predict.py,sha256=3fgu4EKcVRKlP7fySDVsngl4ufk2f71P8SLbfRU2KgE,3747
185
+ ultralytics/models/yolo/pose/train.py,sha256=AstxnvJcoF5qnDEZSs45U2cGdMdSltX1HuSVwCZqMHQ,4712
186
+ ultralytics/models/yolo/pose/val.py,sha256=MK-GueXmXrl7eZ5WHYjJMghE4AYJTEut7AuS-G5D1gw,12650
186
187
  ultralytics/models/yolo/segment/__init__.py,sha256=3IThhZ1wlkY9FvmWm9cE-5-ZyE6F1FgzAtQ6jOOFzzw,275
187
- ultralytics/models/yolo/segment/predict.py,sha256=zxMc1QvsQoJxm6VSbbZQ3pChvq1VbYSf7p8RX3RbPNg,5377
188
- ultralytics/models/yolo/segment/train.py,sha256=MWnJ593xaEhlV0EirEMZtlz0Zj6wz6EGUFfH2dHcBIA,3324
189
- ultralytics/models/yolo/segment/val.py,sha256=LnRCVa1uQTmDN5qLWHpVwBL2ieF_d7ly9hSkQ7k3GwE,11112
188
+ ultralytics/models/yolo/segment/predict.py,sha256=HePes5rQ9v3iTCpn3vrIee0SsAsJuJm-X7tHA8Tixc8,5384
189
+ ultralytics/models/yolo/segment/train.py,sha256=5aPK5FDHLzbXb3R5TCpsAr1O6-8rtupOIoDokY8bSDs,3032
190
+ ultralytics/models/yolo/segment/val.py,sha256=fJLDJpK1RZgeMvmtf47BjHhZ9lzX_4QfUuBzGXZqIhA,11289
190
191
  ultralytics/models/yolo/world/__init__.py,sha256=nlh8I6t8hMGz_vZg8QSlsUW1R-2eKvn9CGUoPPQEGhA,131
191
192
  ultralytics/models/yolo/world/train.py,sha256=zVPtVoBedberGkth3tPuIH665HjGNJvTMLw_wLZQM84,7870
192
193
  ultralytics/models/yolo/world/train_world.py,sha256=9p9YIckrATaJjGOrpmuC8MbZX9qdoCPCEV9EGZ0sExg,9553
@@ -194,16 +195,16 @@ ultralytics/models/yolo/yoloe/__init__.py,sha256=6SLytdJtwu37qewf7CobG7C7Wl1m-xt
194
195
  ultralytics/models/yolo/yoloe/predict.py,sha256=pcbAUbosr1Xc436MfQi6ah3MQ6kkPzjOcltmdA3VMDE,7124
195
196
  ultralytics/models/yolo/yoloe/train.py,sha256=jcXqGm8CReOCVMFLk-1bNe0Aw5PWaaQa8xBWxtrt5TY,13571
196
197
  ultralytics/models/yolo/yoloe/train_seg.py,sha256=aCV7M8oQOvODFnU4piZdJh3tIrBJYAzZfRVRx1vRgxo,4956
197
- ultralytics/models/yolo/yoloe/val.py,sha256=Dn6CKpfcopDVxr-WY13ATDVb_RIzQ-wsXSxxy_mpndA,9454
198
+ ultralytics/models/yolo/yoloe/val.py,sha256=5Gd9EoFH0FmKKvWXBl4J7gBe9DVxIczN-s3ceHwdUDo,9458
198
199
  ultralytics/nn/__init__.py,sha256=PJgOn2phQTTBR2P3s_JWvGeGXQpvw1znsumKow4tCuE,545
199
200
  ultralytics/nn/autobackend.py,sha256=WWHIFvCI47Wpe3NCDkoUg3esjOTJ0XGEzG3luA_uG-8,41063
200
- ultralytics/nn/tasks.py,sha256=2MnuL8plr4oE_gpSIeSbCYrbkdMXdludQWWj_liWsv8,70404
201
+ ultralytics/nn/tasks.py,sha256=M8l92qxDEi_-PqX2xbIrvMBi_5cSwr8wPod0BxJIZ4I,70416
201
202
  ultralytics/nn/text_model.py,sha256=pHqnKe8UueR1MuwJcIE_IvrnYIlt68QL796xjcRJs2A,15275
202
203
  ultralytics/nn/modules/__init__.py,sha256=BPMbEm1daI7Tuds3zph2_afAX7Gq1uAqK8BfiCfKTZs,3198
203
204
  ultralytics/nn/modules/activation.py,sha256=75JcIMH2Cu9GTC2Uf55r_5YLpxcrXQDaVoeGQ0hlUAU,2233
204
- ultralytics/nn/modules/block.py,sha256=nIIOTEuikiVWELuOt2VyfXPpvof9p4qNSdaQzq5WlCg,70618
205
+ ultralytics/nn/modules/block.py,sha256=-5RfsA_ljekL8_bQPGupSn9dVcZ8V_lVsOGlhzIW1kg,70622
205
206
  ultralytics/nn/modules/conv.py,sha256=U6P1ZuzQmIf09noKwp7syuWn-M98Tly2wMWOsDT3kOI,21457
206
- ultralytics/nn/modules/head.py,sha256=NNSrnYBDMlKssyePyK5T-WWaadfELCD_Fdn_IIbtIXs,53592
207
+ ultralytics/nn/modules/head.py,sha256=7-WuatR32jpuqR5IhwHuheAwAn_izX7e7cPOHEg7MmI,53556
207
208
  ultralytics/nn/modules/transformer.py,sha256=l6NuuFF7j_bogcNULHBBdj5l6sf7MwiVEGz8XcRyTUM,31366
208
209
  ultralytics/nn/modules/utils.py,sha256=rn8yTObZGkQoqVzjbZWLaHiytppG4ffjMME4Lw60glM,6092
209
210
  ultralytics/solutions/__init__.py,sha256=ZoeAQavTLp8aClnhZ9tbl6lxy86GxofyGvZWTx2aWkI,1209
@@ -240,7 +241,7 @@ ultralytics/utils/__init__.py,sha256=whSIuj-0lV0SAp4YjOeBJZ2emP1Qa8pqLnrhRiwl2Qs
240
241
  ultralytics/utils/autobatch.py,sha256=i6KYLLSItKP1Q2IUlTPHrZhjcxl7UOjs0Seb8bF8pvM,5124
241
242
  ultralytics/utils/autodevice.py,sha256=d9yq6eEn05fdfzfpxeSECd0YEO61er5f7T-0kjLdofg,8843
242
243
  ultralytics/utils/benchmarks.py,sha256=lcIr--oKK0TCjUVbvrm-NtYrnszrEMuHJC9__ziM7y8,31458
243
- ultralytics/utils/checks.py,sha256=Jw5pwREBnlyrq3zbiHEwiQXir2-f7dGpXeqY_PgoNpw,34518
244
+ ultralytics/utils/checks.py,sha256=Uigc10tev2z9pLjjdYwCYkQ4BrjKmurOX2nYd6liqvU,34510
244
245
  ultralytics/utils/cpu.py,sha256=OPlVxROWhQp-kEa9EkeNRKRQ-jz0KwySu5a-h91JZjk,3634
245
246
  ultralytics/utils/dist.py,sha256=g7OKPrSgjIB2wgcncSFYtFuR-uW6J0-Y1z76k4gDSz0,4170
246
247
  ultralytics/utils/downloads.py,sha256=JIlHfUg-qna5aOHRJupH7d5zob2qGZtRrs86Cp3zOJs,23029
@@ -251,14 +252,14 @@ ultralytics/utils/files.py,sha256=kxE2rkBuZL288nSN7jxLljmDnBgc16rekEXeRjhbUoo,82
251
252
  ultralytics/utils/git.py,sha256=DcaxKNQfCiG3cxdzuw7M6l_VXgaSVqkERQt_vl8UyXM,5512
252
253
  ultralytics/utils/instance.py,sha256=_b_jMTECWJGzncCiTg7FtTDSSeXGnbiAhaJhIsqbn9k,19043
253
254
  ultralytics/utils/logger.py,sha256=o_vH4CCgQat6_Sbmwm1sUAJ4muAgVcsUed-WqpGNQZw,15129
254
- ultralytics/utils/loss.py,sha256=S1mzVkIPjoNUxSQjZHfTdzuMEuYvdRmwfZoMg_fMMeE,39906
255
- ultralytics/utils/metrics.py,sha256=xFlSqx_su96LAUpxfGP7ShEG50Qo5p5OtwR3hx4_Llc,68809
256
- ultralytics/utils/nms.py,sha256=pcAaKIMssVGX3jlFmEEm6P_SL9PrXsTgu0rpx-_TDi8,14199
255
+ ultralytics/utils/loss.py,sha256=wJ0F2DpRTI9-e9adxIm2io0zcXRa0RTWFTOc7WmS1-A,39827
256
+ ultralytics/utils/metrics.py,sha256=42zu-qeSvtL4JtvFDQy-7_5OJLwU4M8b5V8uRHBPFUQ,68829
257
+ ultralytics/utils/nms.py,sha256=AVOmPuUTEJqmq2J6rvjq-nHNxYIyabgzHdc41siyA0w,14161
257
258
  ultralytics/utils/ops.py,sha256=PW3fgw1d18CA2ZNQZVJqUy054cJ_9tIcxd1XnA0FPgU,26905
258
259
  ultralytics/utils/patches.py,sha256=0-2G4jXCIPnMonlft-cPcjfFcOXQS6ODwUDNUwanfg4,6541
259
- ultralytics/utils/plotting.py,sha256=rumZLvfLX1bE9xQS7Gk13kVM7AmIxQOmQ5CAmhsdxCE,47531
260
+ ultralytics/utils/plotting.py,sha256=7nnd6Idd8h5c-IUYBQkd-ESy0v_MEME5-s_nom60geU,46931
260
261
  ultralytics/utils/tal.py,sha256=LrziY_ZHz4wln3oOnqAzgyPaXKoup17Sa103BpuaQFU,20935
261
- ultralytics/utils/torch_utils.py,sha256=i_IgmGhb5UuNlFgg4TZJrm2NSjAe_YfhGIY7Sn7cSSk,43472
262
+ ultralytics/utils/torch_utils.py,sha256=sJe55d23vjnqte9nRipaJu6I9hdWRHdQqoUz8axEWOA,43072
262
263
  ultralytics/utils/tqdm.py,sha256=ny5RIg2OTkWQ7gdaXfYaoIgR0Xn2_hNGB6tUpO2Unns,16137
263
264
  ultralytics/utils/triton.py,sha256=fbMfTAUyoGiyslWtySzLZw53XmZJa7rF31CYFot0Wjs,5422
264
265
  ultralytics/utils/tuner.py,sha256=9D4dSIvwwxcNSJcH2QJ92qiIVi9zu-1L7_PBZ8okDyE,6816
@@ -274,8 +275,8 @@ ultralytics/utils/callbacks/platform.py,sha256=a7T_8htoBB0uX1WIc392UJnhDjxkRyQMv
274
275
  ultralytics/utils/callbacks/raytune.py,sha256=S6Bq16oQDQ8BQgnZzA0zJHGN_BBr8iAM_WtGoLiEcwg,1283
275
276
  ultralytics/utils/callbacks/tensorboard.py,sha256=_4nfGK1dDLn6ijpvphBDhc-AS8qhS3jjY2CAWB7SNF0,5283
276
277
  ultralytics/utils/callbacks/wb.py,sha256=ngQO8EJ1kxJDF1YajScVtzBbm26jGuejA0uWeOyvf5A,7685
277
- dgenerate_ultralytics_headless-8.3.196.dist-info/METADATA,sha256=0Xg7Q2H_cc7K3jsWRZNaEaABPS2IUXrXCtvn1f9XTVo,38763
278
- dgenerate_ultralytics_headless-8.3.196.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
279
- dgenerate_ultralytics_headless-8.3.196.dist-info/entry_points.txt,sha256=YM_wiKyTe9yRrsEfqvYolNO5ngwfoL4-NwgKzc8_7sI,93
280
- dgenerate_ultralytics_headless-8.3.196.dist-info/top_level.txt,sha256=XP49TwiMw4QGsvTLSYiJhz1xF_k7ev5mQ8jJXaXi45Q,12
281
- dgenerate_ultralytics_headless-8.3.196.dist-info/RECORD,,
278
+ dgenerate_ultralytics_headless-8.3.198.dist-info/METADATA,sha256=Ah2RPt1W9VVSvT_SmmMYgjpNLJwqQzgA98Ofzn7OYpY,38763
279
+ dgenerate_ultralytics_headless-8.3.198.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
280
+ dgenerate_ultralytics_headless-8.3.198.dist-info/entry_points.txt,sha256=YM_wiKyTe9yRrsEfqvYolNO5ngwfoL4-NwgKzc8_7sI,93
281
+ dgenerate_ultralytics_headless-8.3.198.dist-info/top_level.txt,sha256=XP49TwiMw4QGsvTLSYiJhz1xF_k7ev5mQ8jJXaXi45Q,12
282
+ dgenerate_ultralytics_headless-8.3.198.dist-info/RECORD,,
tests/test_engine.py CHANGED
@@ -67,7 +67,15 @@ def test_detect():
67
67
 
68
68
  def test_segment():
69
69
  """Test image segmentation training, validation, and prediction pipelines using YOLO models."""
70
- overrides = {"data": "coco8-seg.yaml", "model": "yolo11n-seg.yaml", "imgsz": 32, "epochs": 1, "save": False}
70
+ overrides = {
71
+ "data": "coco8-seg.yaml",
72
+ "model": "yolo11n-seg.yaml",
73
+ "imgsz": 32,
74
+ "epochs": 1,
75
+ "save": False,
76
+ "mask_ratio": 1,
77
+ "overlap_mask": False,
78
+ }
71
79
  cfg = get_cfg(DEFAULT_CFG)
72
80
  cfg.data = "coco8-seg.yaml"
73
81
  cfg.imgsz = 32
ultralytics/__init__.py CHANGED
@@ -1,6 +1,6 @@
1
1
  # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
2
 
3
- __version__ = "8.3.196"
3
+ __version__ = "8.3.198"
4
4
 
5
5
  import os
6
6
 
@@ -237,7 +237,6 @@ CFG_BOOL_KEYS = frozenset(
237
237
  "nms",
238
238
  "profile",
239
239
  "multi_scale",
240
- "compile",
241
240
  }
242
241
  )
243
242
 
@@ -0,0 +1,32 @@
1
+ # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
+
3
+ # Construction-PPE dataset by Ultralytics
4
+ # Documentation: https://docs.ultralytics.com/datasets/detect/construction-ppe/
5
+ # Example usage: yolo train data=construction-ppe.yaml
6
+ # parent
7
+ # ├── ultralytics
8
+ # └── datasets
9
+ # └── construction-ppe ← downloads here (178.4 MB)
10
+
11
+ # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
+ path: construction-ppe # dataset root dir
13
+ train: images/train # train images (relative to 'path') 1132 images
14
+ val: images/val # val images (relative to 'path') 143 images
15
+ test: images/test # test images (relative to 'path') 141 images
16
+
17
+ # Classes
18
+ names:
19
+ 0: helmet
20
+ 1: gloves
21
+ 2: vest
22
+ 3: boots
23
+ 4: goggles
24
+ 5: none
25
+ 6: Person
26
+ 7: no_helmet
27
+ 8: no_goggle
28
+ 9: no_gloves
29
+ 10: no_boots
30
+
31
+ # Download script/URL (optional)
32
+ download: https://github.com/ultralytics/assets/releases/download/v0.0.0/construction-ppe.zip
@@ -7,122 +7,124 @@ task: detect # (str) YOLO task, i.e. detect, segment, classify, pose, obb
7
7
  mode: train # (str) YOLO mode, i.e. train, val, predict, export, track, benchmark
8
8
 
9
9
  # Train settings -------------------------------------------------------------------------------------------------------
10
- model: # (str, optional) path to model file, i.e. yolov8n.pt, yolov8n.yaml
10
+ model: # (str, optional) path to model file, i.e. yolov8n.pt or yolov8n.yaml
11
11
  data: # (str, optional) path to data file, i.e. coco8.yaml
12
12
  epochs: 100 # (int) number of epochs to train for
13
- time: # (float, optional) number of hours to train for, overrides epochs if supplied
14
- patience: 100 # (int) epochs to wait for no observable improvement for early stopping of training
15
- batch: 16 # (int) number of images per batch (-1 for AutoBatch)
16
- imgsz: 640 # (int | list) input images size as int for train and val modes, or list[h,w] for predict and export modes
13
+ time: # (float, optional) max hours to train; overrides epochs if set
14
+ patience: 100 # (int) early stop after N epochs without val improvement
15
+ batch: 16 # (int) batch size; use -1 for AutoBatch
16
+ imgsz: 640 # (int | list) train/val use int (square); predict/export may use [h,w]
17
17
  save: True # (bool) save train checkpoints and predict results
18
- save_period: -1 # (int) Save checkpoint every x epochs (disabled if < 1)
19
- cache: False # (bool) True/ram, disk or False. Use cache for data loading
20
- device: # (int | str | list) device: CUDA device=0 or [0,1,2,3] or "cpu/mps" or -1 or [-1,-1] to auto-select idle GPUs
21
- workers: 8 # (int) number of worker threads for data loading (per RANK if DDP)
22
- project: # (str, optional) project name
23
- name: # (str, optional) experiment name, results saved to 'project/name' directory
24
- exist_ok: False # (bool) whether to overwrite existing experiment
25
- pretrained: True # (bool | str) whether to use a pretrained model (bool) or a model to load weights from (str)
26
- optimizer: auto # (str) optimizer to use, choices=[SGD, Adam, Adamax, AdamW, NAdam, RAdam, RMSProp, auto]
27
- verbose: True # (bool) whether to print verbose output
18
+ save_period: -1 # (int) save checkpoint every N epochs; disabled if < 1
19
+ cache: False # (bool | str) cache images in RAM (True/'ram') or on 'disk' to speed dataloading; False disables
20
+ device: # (int | str | list) device: 0 or [0,1,2,3] for CUDA, 'cpu'/'mps', or -1/[-1,-1] to auto-select idle GPUs
21
+ workers: 8 # (int) dataloader workers (per RANK if DDP)
22
+ project: # (str, optional) project name for results root
23
+ name: # (str, optional) experiment name; results in 'project/name'
24
+ exist_ok: False # (bool) overwrite existing 'project/name' if True
25
+ pretrained: True # (bool | str) use pretrained weights (bool) or load weights from path (str)
26
+ optimizer: auto # (str) optimizer: SGD, Adam, Adamax, AdamW, NAdam, RAdam, RMSProp, or auto
27
+ verbose: True # (bool) print verbose logs during training/val
28
28
  seed: 0 # (int) random seed for reproducibility
29
- deterministic: True # (bool) whether to enable deterministic mode
30
- single_cls: False # (bool) train multi-class data as single-class
31
- rect: False # (bool) rectangular training if mode='train' or rectangular validation if mode='val'
32
- cos_lr: False # (bool) use cosine learning rate scheduler
33
- close_mosaic: 10 # (int) disable mosaic augmentation for final epochs (0 to disable)
34
- resume: False # (bool) resume training from last checkpoint
35
- amp: True # (bool) Automatic Mixed Precision (AMP) training, choices=[True, False], True runs AMP check
36
- fraction: 1.0 # (float) dataset fraction to train on (default is 1.0, all images in train set)
37
- profile: False # (bool) profile ONNX and TensorRT speeds during training for loggers
38
- freeze: # (int | list, optional) freeze first n layers, or freeze list of layer indices during training
39
- multi_scale: False # (bool) Whether to use multiscale during training
40
- compile: False # (bool) Run torch.compile() on the model before train/val/predict
29
+ deterministic: True # (bool) enable deterministic ops; reproducible but may be slower
30
+ single_cls: False # (bool) treat all classes as a single class
31
+ rect: False # (bool) rectangular batches for train; rectangular batching for val when mode='val'
32
+ cos_lr: False # (bool) cosine learning rate scheduler
33
+ close_mosaic: 10 # (int) disable mosaic augmentation for final N epochs (0 to keep enabled)
34
+ resume: False # (bool) resume training from last checkpoint in the run dir
35
+ amp: True # (bool) Automatic Mixed Precision (AMP) training; True runs AMP capability check
36
+ fraction: 1.0 # (float) fraction of training dataset to use (1.0 = all)
37
+ profile: False # (bool) profile ONNX/TensorRT speeds during training for loggers
38
+ freeze: # (int | list, optional) freeze first N layers (int) or specific layer indices (list)
39
+ multi_scale: False # (bool) multiscale training by varying image size
40
+ compile: False # (bool | str) enable torch.compile() backend='inductor'; True="default", False=off, or "default|reduce-overhead|max-autotune"
41
+
41
42
  # Segmentation
42
- overlap_mask: True # (bool) merge object masks into a single image mask during training (segment train only)
43
- mask_ratio: 4 # (int) mask downsample ratio (segment train only)
43
+ overlap_mask: True # (bool) merge instance masks into one mask during training (segment only)
44
+ mask_ratio: 4 # (int) mask downsample ratio (segment only)
45
+
44
46
  # Classification
45
- dropout: 0.0 # (float) use dropout regularization (classify train only)
47
+ dropout: 0.0 # (float) dropout for classification head (classify only)
46
48
 
47
49
  # Val/Test settings ----------------------------------------------------------------------------------------------------
48
- val: True # (bool) validate/test during training
49
- split: val # (str) dataset split to use for validation, i.e. 'val', 'test' or 'train'
50
- save_json: False # (bool) save results to JSON file
51
- conf: # (float, optional) object confidence threshold for detection (default 0.25 predict, 0.001 val)
52
- iou: 0.7 # (float) intersection over union (IoU) threshold for NMS
50
+ val: True # (bool) run validation/testing during training
51
+ split: val # (str) dataset split to evaluate: 'val', 'test' or 'train'
52
+ save_json: False # (bool) save results to COCO JSON for external evaluation
53
+ conf: # (float, optional) confidence threshold; defaults: predict=0.25, val=0.001
54
+ iou: 0.7 # (float) IoU threshold used for NMS
53
55
  max_det: 300 # (int) maximum number of detections per image
54
- half: False # (bool) use half precision (FP16)
56
+ half: False # (bool) use half precision (FP16) if supported
55
57
  dnn: False # (bool) use OpenCV DNN for ONNX inference
56
58
  plots: True # (bool) save plots and images during train/val
57
59
 
58
60
  # Predict settings -----------------------------------------------------------------------------------------------------
59
- source: # (str, optional) source directory for images or videos
60
- vid_stride: 1 # (int) video frame-rate stride
61
- stream_buffer: False # (bool) buffer all streaming frames (True) or return the most recent frame (False)
62
- visualize: False # (bool) visualize model features (predict) or visualize TP, FP, FN (val)
63
- augment: False # (bool) apply image augmentation to prediction sources
61
+ source: # (str, optional) path/dir/URL/stream for images or videos; e.g. 'ultralytics/assets' or '0' for webcam
62
+ vid_stride: 1 # (int) read every Nth frame for video sources
63
+ stream_buffer: False # (bool) True buffers all frames; False keeps the most recent frame for low-latency streams
64
+ visualize: False # (bool) visualize model features (predict) or TP/FP/FN confusion (val)
65
+ augment: False # (bool) apply test-time augmentation during prediction
64
66
  agnostic_nms: False # (bool) class-agnostic NMS
65
- classes: # (int | list[int], optional) filter results by class, i.e. classes=0, or classes=[0,2,3]
66
- retina_masks: False # (bool) use high-resolution segmentation masks
67
- embed: # (list[int], optional) return feature vectors/embeddings from given layers
67
+ classes: # (int | list[int], optional) filter by class id(s), e.g. 0 or [0,2,3]
68
+ retina_masks: False # (bool) use high-resolution segmentation masks (segment)
69
+ embed: # (list[int], optional) return feature embeddings from given layer indices
68
70
 
69
71
  # Visualize settings ---------------------------------------------------------------------------------------------------
70
- show: False # (bool) show predicted images and videos if environment allows
71
- save_frames: False # (bool) save predicted individual video frames
72
- save_txt: False # (bool) save results as .txt file
73
- save_conf: False # (bool) save results with confidence scores
74
- save_crop: False # (bool) save cropped images with results
75
- show_labels: True # (bool) show prediction labels, i.e. 'person'
76
- show_conf: True # (bool) show prediction confidence, i.e. '0.99'
77
- show_boxes: True # (bool) show prediction boxes
78
- line_width: # (int, optional) line width of the bounding boxes. Scaled to image size if None.
72
+ show: False # (bool) show images/videos in a window if supported
73
+ save_frames: False # (bool) save individual frames from video predictions
74
+ save_txt: False # (bool) save results as .txt files (xywh format)
75
+ save_conf: False # (bool) save confidence scores with results
76
+ save_crop: False # (bool) save cropped prediction regions to files
77
+ show_labels: True # (bool) draw class labels on images, e.g. 'person'
78
+ show_conf: True # (bool) draw confidence values on images, e.g. '0.99'
79
+ show_boxes: True # (bool) draw bounding boxes on images
80
+ line_width: # (int, optional) line width of boxes; auto-scales with image size if not set
79
81
 
80
82
  # Export settings ------------------------------------------------------------------------------------------------------
81
- format: torchscript # (str) format to export to, choices at https://docs.ultralytics.com/modes/export/#export-formats
82
- keras: False # (bool) use Kera=s
83
- optimize: False # (bool) TorchScript: optimize for mobile
84
- int8: False # (bool) CoreML/TF INT8 quantization
85
- dynamic: False # (bool) ONNX/TF/TensorRT: dynamic axes
86
- simplify: True # (bool) ONNX: simplify model using `onnxslim`
87
- opset: # (int, optional) ONNX: opset version
88
- workspace: # (float, optional) TensorRT: workspace size (GiB), `None` will let TensorRT auto-allocate memory
89
- nms: False # (bool) CoreML: add NMS
83
+ format: torchscript # (str) target format, e.g. torchscript|onnx|openvino|engine|coreml|saved_model|pb|tflite|edgetpu|tfjs|paddle|mnn|ncnn|imx|rknn
84
+ keras: False # (bool) TF SavedModel only (format=saved_model); enable Keras layers during export
85
+ optimize: False # (bool) TorchScript only; apply mobile optimizations to the scripted model
86
+ int8: False # (bool) INT8/PTQ where supported (openvino, tflite, tfjs, engine, imx); needs calibration data/fraction
87
+ dynamic: False # (bool) dynamic shapes for torchscript, onnx, openvino, engine; enable variable image sizes
88
+ simplify: True # (bool) ONNX/engine only; run graph simplifier for cleaner ONNX before runtime conversion
89
+ opset: # (int, optional) ONNX/engine only; opset version for export; leave unset to use a tested default
90
+ workspace: # (float, optional) engine (TensorRT) only; workspace size in GiB, e.g. 4
91
+ nms: False # (bool) fuse NMS into exported model when backend supports; if True, conf/iou apply (agnostic_nms except coreml)
90
92
 
91
93
  # Hyperparameters ------------------------------------------------------------------------------------------------------
92
- lr0: 0.01 # (float) initial learning rate (i.e. SGD=1E-2, Adam=1E-3)
93
- lrf: 0.01 # (float) final learning rate (lr0 * lrf)
94
- momentum: 0.937 # (float) SGD momentum/Adam beta1
95
- weight_decay: 0.0005 # (float) optimizer weight decay 5e-4
96
- warmup_epochs: 3.0 # (float) warmup epochs (fractions ok)
97
- warmup_momentum: 0.8 # (float) warmup initial momentum
98
- warmup_bias_lr: 0.1 # (float) warmup initial bias lr
94
+ lr0: 0.01 # (float) initial learning rate (SGD=1e-2, Adam/AdamW=1e-3)
95
+ lrf: 0.01 # (float) final LR fraction; final LR = lr0 * lrf
96
+ momentum: 0.937 # (float) SGD momentum or Adam beta1
97
+ weight_decay: 0.0005 # (float) weight decay (L2 regularization)
98
+ warmup_epochs: 3.0 # (float) warmup epochs (fractions allowed)
99
+ warmup_momentum: 0.8 # (float) initial momentum during warmup
100
+ warmup_bias_lr: 0.1 # (float) bias learning rate during warmup
99
101
  box: 7.5 # (float) box loss gain
100
- cls: 0.5 # (float) cls loss gain (scale with pixels)
101
- dfl: 1.5 # (float) dfl loss gain
102
- pose: 12.0 # (float) pose loss gain
103
- kobj: 1.0 # (float) keypoint obj loss gain
104
- nbs: 64 # (int) nominal batch size
105
- hsv_h: 0.015 # (float) image HSV-Hue augmentation (fraction)
106
- hsv_s: 0.7 # (float) image HSV-Saturation augmentation (fraction)
107
- hsv_v: 0.4 # (float) image HSV-Value augmentation (fraction)
108
- degrees: 0.0 # (float) image rotation (+/- deg)
109
- translate: 0.1 # (float) image translation (+/- fraction)
110
- scale: 0.5 # (float) image scale (+/- gain)
111
- shear: 0.0 # (float) image shear (+/- deg)
112
- perspective: 0.0 # (float) image perspective (+/- fraction), range 0-0.001
113
- flipud: 0.0 # (float) image flip up-down (probability)
114
- fliplr: 0.5 # (float) image flip left-right (probability)
115
- bgr: 0.0 # (float) image channel BGR (probability)
116
- mosaic: 1.0 # (float) image mosaic (probability)
117
- mixup: 0.0 # (float) image mixup (probability)
118
- cutmix: 0.0 # (float) image cutmix (probability)
119
- copy_paste: 0.0 # (float) segment copy-paste (probability)
120
- copy_paste_mode: "flip" # (str) the method to do copy_paste augmentation (flip, mixup)
121
- auto_augment: randaugment # (str) auto augmentation policy for classification (randaugment, autoaugment, augmix)
122
- erasing: 0.4 # (float) probability of random erasing during classification training (0-0.9), 0 means no erasing, must be less than 1.0.
102
+ cls: 0.5 # (float) classification loss gain
103
+ dfl: 1.5 # (float) distribution focal loss gain
104
+ pose: 12.0 # (float) pose loss gain (pose tasks)
105
+ kobj: 1.0 # (float) keypoint objectness loss gain (pose tasks)
106
+ nbs: 64 # (int) nominal batch size used for loss normalization
107
+ hsv_h: 0.015 # (float) HSV hue augmentation fraction
108
+ hsv_s: 0.7 # (float) HSV saturation augmentation fraction
109
+ hsv_v: 0.4 # (float) HSV value (brightness) augmentation fraction
110
+ degrees: 0.0 # (float) rotation degrees (+/-)
111
+ translate: 0.1 # (float) translation fraction (+/-)
112
+ scale: 0.5 # (float) scale gain (+/-)
113
+ shear: 0.0 # (float) shear degrees (+/-)
114
+ perspective: 0.0 # (float) perspective fraction (00.001 typical)
115
+ flipud: 0.0 # (float) vertical flip probability
116
+ fliplr: 0.5 # (float) horizontal flip probability
117
+ bgr: 0.0 # (float) RGB↔BGR channel swap probability
118
+ mosaic: 1.0 # (float) mosaic augmentation probability
119
+ mixup: 0.0 # (float) MixUp augmentation probability
120
+ cutmix: 0.0 # (float) CutMix augmentation probability
121
+ copy_paste: 0.0 # (float) segmentation copy-paste probability
122
+ copy_paste_mode: flip # (str) copy-paste strategy for segmentation: flip or mixup
123
+ auto_augment: randaugment # (str) classification auto augmentation policy: randaugment, autoaugment, augmix
124
+ erasing: 0.4 # (float) random erasing probability for classification (00.9), <1.0
123
125
 
124
126
  # Custom config.yaml ---------------------------------------------------------------------------------------------------
125
- cfg: # (str, optional) for overriding defaults.yaml
127
+ cfg: # (str, optional) path to a config.yaml that overrides defaults
126
128
 
127
129
  # Tracker settings ------------------------------------------------------------------------------------------------------
128
- tracker: botsort.yaml # (str) tracker type, choices=[botsort.yaml, bytetrack.yaml]
130
+ tracker: botsort.yaml # (str) tracker config file: botsort.yaml or bytetrack.yaml
@@ -1,22 +1,21 @@
1
1
  # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
2
 
3
- # Default Ultralytics settings for BoT-SORT tracker when using mode="track"
4
- # For documentation and examples see https://docs.ultralytics.com/modes/track/
5
- # For BoT-SORT source code see https://github.com/NirAharon/BoT-SORT
3
+ # BoT-SORT tracker defaults for mode="track"
4
+ # Docs: https://docs.ultralytics.com/modes/track/
6
5
 
7
- tracker_type: botsort # tracker type, ['botsort', 'bytetrack']
8
- track_high_thresh: 0.25 # threshold for the first association
9
- track_low_thresh: 0.1 # threshold for the second association
10
- new_track_thresh: 0.25 # threshold for init new track if the detection does not match any tracks
11
- track_buffer: 30 # buffer to calculate the time when to remove tracks
12
- match_thresh: 0.8 # threshold for matching tracks
13
- fuse_score: True # Whether to fuse confidence scores with the iou distances before matching
14
- # min_box_area: 10 # threshold for min box areas(for tracker evaluation, not used for now)
6
+ tracker_type: botsort # (str) Tracker backend: botsort|bytetrack; choose botsort to enable BoT-SORT features
7
+ track_high_thresh: 0.25 # (float) First-stage match threshold; raise for cleaner tracks, lower to keep more
8
+ track_low_thresh: 0.1 # (float) Second-stage threshold for low-score matches; balances recovery vs drift
9
+ new_track_thresh: 0.25 # (float) Start a new track if no match this; higher reduces false tracks
10
+ track_buffer: 30 # (int) Frames to keep lost tracks alive; higher handles occlusion, increases ID switches risk
11
+ match_thresh: 0.8 # (float) Association similarity threshold (IoU/cost); tune with detector quality
12
+ fuse_score: True # (bool) Fuse detection score with motion/IoU for matching; stabilizes weak detections
13
+
14
+ # BoT-SORT specifics
15
+ gmc_method: sparseOptFlow # (str) Global motion compensation: sparseOptFlow|orb|none; helps moving camera scenes
15
16
 
16
- # BoT-SORT settings
17
- gmc_method: sparseOptFlow # method of global motion compensation
18
17
  # ReID model related thresh
19
- proximity_thresh: 0.5 # minimum IoU for valid match with ReID
20
- appearance_thresh: 0.8 # minimum appearance similarity for ReID
21
- with_reid: False
22
- model: auto # uses native features if detector is YOLO else yolo11n-cls.pt
18
+ proximity_thresh: 0.5 # (float) Min IoU to consider tracks proximate for ReID; higher is stricter
19
+ appearance_thresh: 0.8 # (float) Min appearance similarity for ReID; raise to avoid identity swaps
20
+ with_reid: False # (bool) Enable ReID model use; needs extra model and compute
21
+ model: auto # (str) ReID model name/path; "auto" uses detector features if available
@@ -1,14 +1,12 @@
1
1
  # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
2
 
3
- # Default Ultralytics settings for ByteTrack tracker when using mode="track"
4
- # For documentation and examples see https://docs.ultralytics.com/modes/track/
5
- # For ByteTrack source code see https://github.com/ifzhang/ByteTrack
3
+ # ByteTrack tracker defaults for mode="track"
4
+ # Docs: https://docs.ultralytics.com/modes/track/
6
5
 
7
- tracker_type: bytetrack # tracker type, ['botsort', 'bytetrack']
8
- track_high_thresh: 0.25 # threshold for the first association
9
- track_low_thresh: 0.1 # threshold for the second association
10
- new_track_thresh: 0.25 # threshold for init new track if the detection does not match any tracks
11
- track_buffer: 30 # buffer to calculate the time when to remove tracks
12
- match_thresh: 0.8 # threshold for matching tracks
13
- fuse_score: True # Whether to fuse confidence scores with the iou distances before matching
14
- # min_box_area: 10 # threshold for min box areas(for tracker evaluation, not used for now)
6
+ tracker_type: bytetrack # (str) Tracker backend: botsort|bytetrack; choose bytetrack for the classic baseline
7
+ track_high_thresh: 0.25 # (float) First-stage match threshold; raise for cleaner tracks, lower to keep more
8
+ track_low_thresh: 0.1 # (float) Second-stage threshold for low-score matches; balances recovery vs drift
9
+ new_track_thresh: 0.25 # (float) Start a new track if no match this; higher reduces false tracks
10
+ track_buffer: 30 # (int) Frames to keep lost tracks alive; higher handles occlusion, increases ID switches risk
11
+ match_thresh: 0.8 # (float) Association similarity threshold (IoU/cost); tune with detector quality
12
+ fuse_score: True # (bool) Fuse detection score with motion/IoU for matching; stabilizes weak detections
@@ -2382,7 +2382,7 @@ class LoadVisualPrompt:
2382
2382
  # assert len(cls_unique) == cls_unique[-1] + 1, (
2383
2383
  # f"Expected a continuous range of class indices, but got {cls_unique}"
2384
2384
  # )
2385
- visuals = torch.zeros(len(cls_unique), *masksz)
2385
+ visuals = torch.zeros(cls_unique.shape[0], *masksz)
2386
2386
  for idx, mask in zip(inverse_indices, masks):
2387
2387
  visuals[idx] = torch.logical_or(visuals[idx], mask)
2388
2388
  return visuals
@@ -172,7 +172,7 @@ class YOLODataset(BaseDataset):
172
172
  cache, exists = load_dataset_cache_file(cache_path), True # attempt to load a *.cache file
173
173
  assert cache["version"] == DATASET_CACHE_VERSION # matches current version
174
174
  assert cache["hash"] == get_hash(self.label_files + self.im_files) # identical hash
175
- except (FileNotFoundError, AssertionError, AttributeError):
175
+ except (FileNotFoundError, AssertionError, AttributeError, ModuleNotFoundError):
176
176
  cache, exists = self.cache_labels(cache_path), False # run cache ops
177
177
 
178
178
  # Display cache