dgenerate-ultralytics-headless 8.3.194__py3-none-any.whl → 8.3.195__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (97) hide show
  1. {dgenerate_ultralytics_headless-8.3.194.dist-info → dgenerate_ultralytics_headless-8.3.195.dist-info}/METADATA +1 -2
  2. {dgenerate_ultralytics_headless-8.3.194.dist-info → dgenerate_ultralytics_headless-8.3.195.dist-info}/RECORD +97 -96
  3. tests/test_python.py +1 -1
  4. ultralytics/__init__.py +1 -1
  5. ultralytics/cfg/__init__.py +8 -8
  6. ultralytics/data/annotator.py +1 -1
  7. ultralytics/data/augment.py +75 -75
  8. ultralytics/data/base.py +12 -12
  9. ultralytics/data/converter.py +4 -4
  10. ultralytics/data/dataset.py +7 -7
  11. ultralytics/data/loaders.py +15 -15
  12. ultralytics/data/split_dota.py +10 -10
  13. ultralytics/data/utils.py +12 -12
  14. ultralytics/engine/model.py +13 -13
  15. ultralytics/engine/predictor.py +13 -13
  16. ultralytics/engine/results.py +21 -21
  17. ultralytics/hub/google/__init__.py +2 -2
  18. ultralytics/hub/session.py +7 -7
  19. ultralytics/models/fastsam/model.py +5 -5
  20. ultralytics/models/fastsam/predict.py +11 -11
  21. ultralytics/models/nas/model.py +1 -1
  22. ultralytics/models/rtdetr/predict.py +2 -2
  23. ultralytics/models/rtdetr/val.py +4 -4
  24. ultralytics/models/sam/amg.py +6 -6
  25. ultralytics/models/sam/build.py +9 -9
  26. ultralytics/models/sam/model.py +7 -7
  27. ultralytics/models/sam/modules/blocks.py +6 -6
  28. ultralytics/models/sam/modules/decoders.py +1 -1
  29. ultralytics/models/sam/modules/encoders.py +27 -27
  30. ultralytics/models/sam/modules/sam.py +4 -4
  31. ultralytics/models/sam/modules/tiny_encoder.py +18 -18
  32. ultralytics/models/sam/modules/utils.py +8 -8
  33. ultralytics/models/sam/predict.py +63 -63
  34. ultralytics/models/utils/loss.py +22 -22
  35. ultralytics/models/utils/ops.py +8 -8
  36. ultralytics/models/yolo/classify/predict.py +2 -2
  37. ultralytics/models/yolo/classify/train.py +8 -8
  38. ultralytics/models/yolo/classify/val.py +4 -4
  39. ultralytics/models/yolo/detect/predict.py +3 -3
  40. ultralytics/models/yolo/detect/train.py +6 -6
  41. ultralytics/models/yolo/detect/val.py +32 -32
  42. ultralytics/models/yolo/model.py +6 -6
  43. ultralytics/models/yolo/obb/train.py +1 -1
  44. ultralytics/models/yolo/obb/val.py +13 -13
  45. ultralytics/models/yolo/pose/val.py +11 -11
  46. ultralytics/models/yolo/segment/predict.py +4 -4
  47. ultralytics/models/yolo/segment/train.py +1 -1
  48. ultralytics/models/yolo/segment/val.py +14 -14
  49. ultralytics/models/yolo/world/train.py +9 -9
  50. ultralytics/models/yolo/world/train_world.py +1 -1
  51. ultralytics/models/yolo/yoloe/predict.py +4 -4
  52. ultralytics/models/yolo/yoloe/train.py +4 -4
  53. ultralytics/nn/autobackend.py +2 -2
  54. ultralytics/nn/modules/block.py +6 -6
  55. ultralytics/nn/modules/conv.py +2 -2
  56. ultralytics/nn/modules/head.py +4 -4
  57. ultralytics/nn/tasks.py +13 -13
  58. ultralytics/nn/text_model.py +3 -3
  59. ultralytics/solutions/ai_gym.py +2 -2
  60. ultralytics/solutions/analytics.py +3 -3
  61. ultralytics/solutions/config.py +5 -5
  62. ultralytics/solutions/distance_calculation.py +2 -2
  63. ultralytics/solutions/heatmap.py +1 -1
  64. ultralytics/solutions/instance_segmentation.py +4 -4
  65. ultralytics/solutions/object_counter.py +4 -4
  66. ultralytics/solutions/parking_management.py +7 -7
  67. ultralytics/solutions/queue_management.py +3 -3
  68. ultralytics/solutions/region_counter.py +4 -4
  69. ultralytics/solutions/similarity_search.py +2 -2
  70. ultralytics/solutions/solutions.py +48 -48
  71. ultralytics/solutions/streamlit_inference.py +1 -1
  72. ultralytics/solutions/trackzone.py +4 -4
  73. ultralytics/solutions/vision_eye.py +1 -1
  74. ultralytics/trackers/byte_tracker.py +11 -11
  75. ultralytics/trackers/utils/gmc.py +3 -3
  76. ultralytics/trackers/utils/matching.py +5 -5
  77. ultralytics/utils/autodevice.py +2 -2
  78. ultralytics/utils/benchmarks.py +10 -10
  79. ultralytics/utils/callbacks/clearml.py +1 -1
  80. ultralytics/utils/callbacks/comet.py +5 -5
  81. ultralytics/utils/checks.py +5 -5
  82. ultralytics/utils/cpu.py +90 -0
  83. ultralytics/utils/dist.py +1 -1
  84. ultralytics/utils/downloads.py +2 -2
  85. ultralytics/utils/export.py +5 -5
  86. ultralytics/utils/instance.py +2 -2
  87. ultralytics/utils/metrics.py +35 -35
  88. ultralytics/utils/nms.py +4 -4
  89. ultralytics/utils/ops.py +1 -1
  90. ultralytics/utils/patches.py +2 -2
  91. ultralytics/utils/plotting.py +9 -9
  92. ultralytics/utils/torch_utils.py +2 -6
  93. ultralytics/utils/triton.py +5 -5
  94. {dgenerate_ultralytics_headless-8.3.194.dist-info → dgenerate_ultralytics_headless-8.3.195.dist-info}/WHEEL +0 -0
  95. {dgenerate_ultralytics_headless-8.3.194.dist-info → dgenerate_ultralytics_headless-8.3.195.dist-info}/entry_points.txt +0 -0
  96. {dgenerate_ultralytics_headless-8.3.194.dist-info → dgenerate_ultralytics_headless-8.3.195.dist-info}/licenses/LICENSE +0 -0
  97. {dgenerate_ultralytics_headless-8.3.194.dist-info → dgenerate_ultralytics_headless-8.3.195.dist-info}/top_level.txt +0 -0
@@ -164,7 +164,7 @@ class YOLODataset(BaseDataset):
164
164
  This method loads labels from disk or cache, verifies their integrity, and prepares them for training.
165
165
 
166
166
  Returns:
167
- (List[dict]): List of label dictionaries, each containing information about an image and its annotations.
167
+ (list[dict]): List of label dictionaries, each containing information about an image and its annotations.
168
168
  """
169
169
  self.label_files = img2label_paths(self.im_files)
170
170
  cache_path = Path(self.label_files[0]).parent.with_suffix(".cache")
@@ -291,7 +291,7 @@ class YOLODataset(BaseDataset):
291
291
  Collate data samples into batches.
292
292
 
293
293
  Args:
294
- batch (List[dict]): List of dictionaries containing sample data.
294
+ batch (list[dict]): List of dictionaries containing sample data.
295
295
 
296
296
  Returns:
297
297
  (dict): Collated batch with stacked tensors.
@@ -392,7 +392,7 @@ class YOLOMultiModalDataset(YOLODataset):
392
392
  Return category names for the dataset.
393
393
 
394
394
  Returns:
395
- (Set[str]): List of class names.
395
+ (set[str]): List of class names.
396
396
  """
397
397
  names = self.data["names"].values()
398
398
  return {n.strip() for name in names for n in name.split("/")} # category names
@@ -474,7 +474,7 @@ class GroundingDataset(YOLODataset):
474
474
  against a predefined set of datasets with known instance counts.
475
475
 
476
476
  Args:
477
- labels (List[Dict[str, Any]]): List of label dictionaries, where each dictionary
477
+ labels (list[dict[str, Any]]): List of label dictionaries, where each dictionary
478
478
  contains dataset annotations. Each label dict must have a 'bboxes' key with
479
479
  a numpy array or tensor containing bounding box coordinates.
480
480
 
@@ -508,7 +508,7 @@ class GroundingDataset(YOLODataset):
508
508
  path (Path): Path where to save the cache file.
509
509
 
510
510
  Returns:
511
- (Dict[str, Any]): Dictionary containing cached labels and related information.
511
+ (dict[str, Any]): Dictionary containing cached labels and related information.
512
512
  """
513
513
  x = {"labels": []}
514
514
  LOGGER.info("Loading annotation file...")
@@ -596,7 +596,7 @@ class GroundingDataset(YOLODataset):
596
596
  Load labels from cache or generate them from JSON file.
597
597
 
598
598
  Returns:
599
- (List[dict]): List of label dictionaries, each containing information about an image and its annotations.
599
+ (list[dict]): List of label dictionaries, each containing information about an image and its annotations.
600
600
  """
601
601
  cache_path = Path(self.json_file).with_suffix(".cache")
602
602
  try:
@@ -682,7 +682,7 @@ class YOLOConcatDataset(ConcatDataset):
682
682
  Collate data samples into batches.
683
683
 
684
684
  Args:
685
- batch (List[dict]): List of dictionaries containing sample data.
685
+ batch (list[dict]): List of dictionaries containing sample data.
686
686
 
687
687
  Returns:
688
688
  (dict): Collated batch with stacked tensors.
@@ -59,17 +59,17 @@ class LoadStreams:
59
59
  streams simultaneously, making it suitable for real-time video analysis tasks.
60
60
 
61
61
  Attributes:
62
- sources (List[str]): The source input paths or URLs for the video streams.
62
+ sources (list[str]): The source input paths or URLs for the video streams.
63
63
  vid_stride (int): Video frame-rate stride.
64
64
  buffer (bool): Whether to buffer input streams.
65
65
  running (bool): Flag to indicate if the streaming thread is running.
66
66
  mode (str): Set to 'stream' indicating real-time capture.
67
- imgs (List[List[np.ndarray]]): List of image frames for each stream.
68
- fps (List[float]): List of FPS for each stream.
69
- frames (List[int]): List of total frames for each stream.
70
- threads (List[Thread]): List of threads for each stream.
71
- shape (List[Tuple[int, int, int]]): List of shapes for each stream.
72
- caps (List[cv2.VideoCapture]): List of cv2.VideoCapture objects for each stream.
67
+ imgs (list[list[np.ndarray]]): List of image frames for each stream.
68
+ fps (list[float]): List of FPS for each stream.
69
+ frames (list[int]): List of total frames for each stream.
70
+ threads (list[Thread]): List of threads for each stream.
71
+ shape (list[tuple[int, int, int]]): List of shapes for each stream.
72
+ caps (list[cv2.VideoCapture]): List of cv2.VideoCapture objects for each stream.
73
73
  bs (int): Batch size for processing.
74
74
  cv2_flag (int): OpenCV flag for image reading (grayscale or RGB).
75
75
 
@@ -245,7 +245,7 @@ class LoadScreenshots:
245
245
  sct (mss.mss): Screen capture object from `mss` library.
246
246
  bs (int): Batch size, set to 1.
247
247
  fps (int): Frames per second, set to 30.
248
- monitor (Dict[str, int]): Monitor configuration details.
248
+ monitor (dict[str, int]): Monitor configuration details.
249
249
  cv2_flag (int): OpenCV flag for image reading (grayscale or RGB).
250
250
 
251
251
  Methods:
@@ -314,9 +314,9 @@ class LoadImagesAndVideos:
314
314
  single image files, video files, and lists of image and video paths.
315
315
 
316
316
  Attributes:
317
- files (List[str]): List of image and video file paths.
317
+ files (list[str]): List of image and video file paths.
318
318
  nf (int): Total number of files (images and videos).
319
- video_flag (List[bool]): Flags indicating whether a file is a video (True) or an image (False).
319
+ video_flag (list[bool]): Flags indicating whether a file is a video (True) or an image (False).
320
320
  mode (str): Current mode, 'image' or 'video'.
321
321
  vid_stride (int): Stride for video frame-rate.
322
322
  bs (int): Batch size.
@@ -351,7 +351,7 @@ class LoadImagesAndVideos:
351
351
  Initialize dataloader for images and videos, supporting various input formats.
352
352
 
353
353
  Args:
354
- path (str | Path | List): Path to images/videos, directory, or list of paths.
354
+ path (str | Path | list): Path to images/videos, directory, or list of paths.
355
355
  batch (int): Batch size for processing.
356
356
  vid_stride (int): Video frame-rate stride.
357
357
  channels (int): Number of image channels (1 for grayscale, 3 for RGB).
@@ -497,8 +497,8 @@ class LoadPilAndNumpy:
497
497
  validation and format conversion to ensure that the images are in the required format for downstream processing.
498
498
 
499
499
  Attributes:
500
- paths (List[str]): List of image paths or autogenerated filenames.
501
- im0 (List[np.ndarray]): List of images stored as Numpy arrays.
500
+ paths (list[str]): List of image paths or autogenerated filenames.
501
+ im0 (list[np.ndarray]): List of images stored as Numpy arrays.
502
502
  mode (str): Type of data being processed, set to 'image'.
503
503
  bs (int): Batch size, equivalent to the length of `im0`.
504
504
 
@@ -521,7 +521,7 @@ class LoadPilAndNumpy:
521
521
  Initialize a loader for PIL and Numpy images, converting inputs to a standardized format.
522
522
 
523
523
  Args:
524
- im0 (PIL.Image.Image | np.ndarray | List): Single image or list of images in PIL or numpy format.
524
+ im0 (PIL.Image.Image | np.ndarray | list): Single image or list of images in PIL or numpy format.
525
525
  channels (int): Number of image channels (1 for grayscale, 3 for RGB).
526
526
  """
527
527
  if not isinstance(im0, list):
@@ -574,7 +574,7 @@ class LoadTensor:
574
574
  im0 (torch.Tensor): The input tensor containing the image(s) with shape (B, C, H, W).
575
575
  bs (int): Batch size, inferred from the shape of `im0`.
576
576
  mode (str): Current processing mode, set to 'image'.
577
- paths (List[str]): List of image paths or auto-generated filenames.
577
+ paths (list[str]): List of image paths or auto-generated filenames.
578
578
 
579
579
  Methods:
580
580
  _single_check: Validates and formats an input tensor.
@@ -73,7 +73,7 @@ def load_yolo_dota(data_root: str, split: str = "train") -> list[dict[str, Any]]
73
73
  split (str, optional): The split data set, could be 'train' or 'val'.
74
74
 
75
75
  Returns:
76
- (List[Dict[str, Any]]): List of annotation dictionaries containing image information.
76
+ (list[dict[str, Any]]): List of annotation dictionaries containing image information.
77
77
 
78
78
  Notes:
79
79
  The directory structure assumed for the DOTA dataset:
@@ -111,9 +111,9 @@ def get_windows(
111
111
  Get the coordinates of sliding windows for image cropping.
112
112
 
113
113
  Args:
114
- im_size (Tuple[int, int]): Original image size, (H, W).
115
- crop_sizes (Tuple[int, ...], optional): Crop size of windows.
116
- gaps (Tuple[int, ...], optional): Gap between crops.
114
+ im_size (tuple[int, int]): Original image size, (H, W).
115
+ crop_sizes (tuple[int, ...], optional): Crop size of windows.
116
+ gaps (tuple[int, ...], optional): Gap between crops.
117
117
  im_rate_thr (float, optional): Threshold of windows areas divided by image areas.
118
118
  eps (float, optional): Epsilon value for math operations.
119
119
 
@@ -179,9 +179,9 @@ def crop_and_save(
179
179
  Crop images and save new labels for each window.
180
180
 
181
181
  Args:
182
- anno (Dict[str, Any]): Annotation dict, including 'filepath', 'label', 'ori_size' as its keys.
182
+ anno (dict[str, Any]): Annotation dict, including 'filepath', 'label', 'ori_size' as its keys.
183
183
  windows (np.ndarray): Array of windows coordinates with shape (N, 4).
184
- window_objs (List[np.ndarray]): A list of labels inside each window.
184
+ window_objs (list[np.ndarray]): A list of labels inside each window.
185
185
  im_dir (str): The output directory path of images.
186
186
  lb_dir (str): The output directory path of labels.
187
187
  allow_background_images (bool, optional): Whether to include background images without labels.
@@ -233,8 +233,8 @@ def split_images_and_labels(
233
233
  data_root (str): Root directory of the dataset.
234
234
  save_dir (str): Directory to save the split dataset.
235
235
  split (str, optional): The split data set, could be 'train' or 'val'.
236
- crop_sizes (Tuple[int, ...], optional): Tuple of crop sizes.
237
- gaps (Tuple[int, ...], optional): Tuple of gaps between crops.
236
+ crop_sizes (tuple[int, ...], optional): Tuple of crop sizes.
237
+ gaps (tuple[int, ...], optional): Tuple of gaps between crops.
238
238
 
239
239
  Notes:
240
240
  The directory structure assumed for the DOTA dataset:
@@ -273,7 +273,7 @@ def split_trainval(
273
273
  save_dir (str): Directory to save the split dataset.
274
274
  crop_size (int, optional): Base crop size.
275
275
  gap (int, optional): Base gap between crops.
276
- rates (Tuple[float, ...], optional): Scaling rates for crop_size and gap.
276
+ rates (tuple[float, ...], optional): Scaling rates for crop_size and gap.
277
277
 
278
278
  Notes:
279
279
  The directory structure assumed for the DOTA dataset:
@@ -312,7 +312,7 @@ def split_test(
312
312
  save_dir (str): Directory to save the split dataset.
313
313
  crop_size (int, optional): Base crop size.
314
314
  gap (int, optional): Base gap between crops.
315
- rates (Tuple[float, ...], optional): Scaling rates for crop_size and gap.
315
+ rates (tuple[float, ...], optional): Scaling rates for crop_size and gap.
316
316
 
317
317
  Notes:
318
318
  The directory structure assumed for the DOTA dataset:
ultralytics/data/utils.py CHANGED
@@ -57,7 +57,7 @@ def check_file_speeds(
57
57
  It samples up to 5 files from the provided list and warns if access times exceed the threshold.
58
58
 
59
59
  Args:
60
- files (List[str]): List of file paths to check for access speed.
60
+ files (list[str]): List of file paths to check for access speed.
61
61
  threshold_ms (float, optional): Threshold in milliseconds for ping time warnings.
62
62
  threshold_mb (float, optional): Threshold in megabytes per second for read speed warnings.
63
63
  max_files (int, optional): The maximum number of files to check.
@@ -235,7 +235,7 @@ def verify_image_label(args: tuple) -> list:
235
235
  lb = np.zeros((0, (5 + nkpt * ndim) if keypoint else 5), dtype=np.float32)
236
236
  else:
237
237
  nm = 1 # label missing
238
- lb = np.zeros((0, (5 + nkpt * ndim) if keypoints else 5), dtype=np.float32)
238
+ lb = np.zeros((0, (5 + nkpt * ndim) if keypoint else 5), dtype=np.float32)
239
239
  if keypoint:
240
240
  keypoints = lb[:, 5:].reshape(-1, nkpt, ndim)
241
241
  if ndim == 2:
@@ -261,7 +261,7 @@ def visualize_image_annotations(image_path: str, txt_path: str, label_map: dict[
261
261
  Args:
262
262
  image_path (str): The path to the image file to annotate, and it can be in formats supported by PIL.
263
263
  txt_path (str): The path to the annotation file in YOLO format, that should contain one line per object.
264
- label_map (Dict[int, str]): A dictionary that maps class IDs (integers) to class labels (strings).
264
+ label_map (dict[int, str]): A dictionary that maps class IDs (integers) to class labels (strings).
265
265
 
266
266
  Examples:
267
267
  >>> label_map = {0: "cat", 1: "dog", 2: "bird"} # It should include all annotated classes details
@@ -300,8 +300,8 @@ def polygon2mask(
300
300
  Convert a list of polygons to a binary mask of the specified image size.
301
301
 
302
302
  Args:
303
- imgsz (Tuple[int, int]): The size of the image as (height, width).
304
- polygons (List[np.ndarray]): A list of polygons. Each polygon is an array with shape (N, M), where
303
+ imgsz (tuple[int, int]): The size of the image as (height, width).
304
+ polygons (list[np.ndarray]): A list of polygons. Each polygon is an array with shape (N, M), where
305
305
  N is the number of polygons, and M is the number of points such that M % 2 = 0.
306
306
  color (int, optional): The color value to fill in the polygons on the mask.
307
307
  downsample_ratio (int, optional): Factor by which to downsample the mask.
@@ -325,8 +325,8 @@ def polygons2masks(
325
325
  Convert a list of polygons to a set of binary masks of the specified image size.
326
326
 
327
327
  Args:
328
- imgsz (Tuple[int, int]): The size of the image as (height, width).
329
- polygons (List[np.ndarray]): A list of polygons. Each polygon is an array with shape (N, M), where
328
+ imgsz (tuple[int, int]): The size of the image as (height, width).
329
+ polygons (list[np.ndarray]): A list of polygons. Each polygon is an array with shape (N, M), where
330
330
  N is the number of polygons, and M is the number of points such that M % 2 = 0.
331
331
  color (int): The color value to fill in the polygons on the masks.
332
332
  downsample_ratio (int, optional): Factor by which to downsample each mask.
@@ -400,7 +400,7 @@ def check_det_dataset(dataset: str, autodownload: bool = True) -> dict[str, Any]
400
400
  autodownload (bool, optional): Whether to automatically download the dataset if not found.
401
401
 
402
402
  Returns:
403
- (Dict[str, Any]): Parsed dataset information and paths.
403
+ (dict[str, Any]): Parsed dataset information and paths.
404
404
  """
405
405
  file = check_file(dataset)
406
406
 
@@ -494,13 +494,13 @@ def check_cls_dataset(dataset: str | Path, split: str = "") -> dict[str, Any]:
494
494
  split (str, optional): The split of the dataset. Either 'val', 'test', or ''.
495
495
 
496
496
  Returns:
497
- (Dict[str, Any]): A dictionary containing the following keys:
497
+ (dict[str, Any]): A dictionary containing the following keys:
498
498
 
499
499
  - 'train' (Path): The directory path containing the training set of the dataset.
500
500
  - 'val' (Path): The directory path containing the validation set of the dataset.
501
501
  - 'test' (Path): The directory path containing the test set of the dataset.
502
502
  - 'nc' (int): The number of classes in the dataset.
503
- - 'names' (Dict[int, str]): A dictionary of class names in the dataset.
503
+ - 'names' (dict[int, str]): A dictionary of class names in the dataset.
504
504
  """
505
505
  # Download (optional if dataset=https://file.zip is passed directly)
506
506
  if str(dataset).startswith(("http:/", "https:/")):
@@ -588,8 +588,8 @@ class HUBDatasetStats:
588
588
  task (str): Dataset task type.
589
589
  hub_dir (Path): Directory path for HUB dataset files.
590
590
  im_dir (Path): Directory path for compressed images.
591
- stats (Dict): Statistics dictionary containing dataset information.
592
- data (Dict): Dataset configuration data.
591
+ stats (dict): Statistics dictionary containing dataset information.
592
+ data (dict): Dataset configuration data.
593
593
 
594
594
  Methods:
595
595
  get_json: Return dataset JSON for Ultralytics HUB.
@@ -168,14 +168,14 @@ class Model(torch.nn.Module):
168
168
  directly with the required arguments.
169
169
 
170
170
  Args:
171
- source (str | Path | int | PIL.Image | np.ndarray | torch.Tensor | List | Tuple): The source of
171
+ source (str | Path | int | PIL.Image | np.ndarray | torch.Tensor | list | tuple): The source of
172
172
  the image(s) to make predictions on. Can be a file path, URL, PIL image, numpy array, PyTorch
173
173
  tensor, or a list/tuple of these.
174
174
  stream (bool): If True, treat the input source as a continuous stream for predictions.
175
175
  **kwargs (Any): Additional keyword arguments to configure the prediction process.
176
176
 
177
177
  Returns:
178
- (List[ultralytics.engine.results.Results]): A list of prediction results, each encapsulated in a
178
+ (list[ultralytics.engine.results.Results]): A list of prediction results, each encapsulated in a
179
179
  Results object.
180
180
 
181
181
  Examples:
@@ -433,7 +433,7 @@ class Model(torch.nn.Module):
433
433
  verbose (bool): If True, prints the information. If False, returns the information as a list.
434
434
 
435
435
  Returns:
436
- (List[str]): A list of strings containing various types of information about the model, including
436
+ (list[str]): A list of strings containing various types of information about the model, including
437
437
  model summary, layer details, and parameter counts. Empty if verbose is True.
438
438
 
439
439
  Examples:
@@ -477,13 +477,13 @@ class Model(torch.nn.Module):
477
477
  source. It allows customization of the embedding process through various keyword arguments.
478
478
 
479
479
  Args:
480
- source (str | Path | int | List | Tuple | np.ndarray | torch.Tensor): The source of the image for
480
+ source (str | Path | int | list | tuple | np.ndarray | torch.Tensor): The source of the image for
481
481
  generating embeddings. Can be a file path, URL, PIL image, numpy array, etc.
482
482
  stream (bool): If True, predictions are streamed.
483
483
  **kwargs (Any): Additional keyword arguments for configuring the embedding process.
484
484
 
485
485
  Returns:
486
- (List[torch.Tensor]): A list containing the image embeddings.
486
+ (list[torch.Tensor]): A list containing the image embeddings.
487
487
 
488
488
  Examples:
489
489
  >>> model = YOLO("yolo11n.pt")
@@ -510,7 +510,7 @@ class Model(torch.nn.Module):
510
510
  types of image sources and can operate in a streaming mode.
511
511
 
512
512
  Args:
513
- source (str | Path | int | PIL.Image | np.ndarray | torch.Tensor | List | Tuple): The source
513
+ source (str | Path | int | PIL.Image | np.ndarray | torch.Tensor | list | tuple): The source
514
514
  of the image(s) to make predictions on. Accepts various types including file paths, URLs, PIL
515
515
  images, numpy arrays, and torch tensors.
516
516
  stream (bool): If True, treats the input source as a continuous stream for predictions.
@@ -519,7 +519,7 @@ class Model(torch.nn.Module):
519
519
  **kwargs (Any): Additional keyword arguments for configuring the prediction process.
520
520
 
521
521
  Returns:
522
- (List[ultralytics.engine.results.Results]): A list of prediction results, each encapsulated in a
522
+ (list[ultralytics.engine.results.Results]): A list of prediction results, each encapsulated in a
523
523
  Results object.
524
524
 
525
525
  Examples:
@@ -571,14 +571,14 @@ class Model(torch.nn.Module):
571
571
  The method registers trackers if not already present and can persist them between calls.
572
572
 
573
573
  Args:
574
- source (str | Path | int | List | Tuple | np.ndarray | torch.Tensor, optional): Input source for object
574
+ source (str | Path | int | list | tuple | np.ndarray | torch.Tensor, optional): Input source for object
575
575
  tracking. Can be a file path, URL, or video stream.
576
576
  stream (bool): If True, treats the input source as a continuous video stream.
577
577
  persist (bool): If True, persists trackers between different calls to this method.
578
578
  **kwargs (Any): Additional keyword arguments for configuring the tracking process.
579
579
 
580
580
  Returns:
581
- (List[ultralytics.engine.results.Results]): A list of tracking results, each a Results object.
581
+ (list[ultralytics.engine.results.Results]): A list of tracking results, each a Results object.
582
582
 
583
583
  Examples:
584
584
  >>> model = YOLO("yolo11n.pt")
@@ -650,7 +650,7 @@ class Model(torch.nn.Module):
650
650
  verbose (bool): Whether to print detailed benchmark information.
651
651
  format (str): Export format name for specific benchmarking.
652
652
  **kwargs (Any): Arbitrary keyword arguments to customize the benchmarking process. Common options include:
653
- - imgsz (int | List[int]): Image size for benchmarking.
653
+ - imgsz (int | list[int]): Image size for benchmarking.
654
654
  - half (bool): Whether to use half-precision (FP16) mode.
655
655
  - int8 (bool): Whether to use int8 precision mode.
656
656
  - device (str): Device to run the benchmark on (e.g., 'cpu', 'cuda').
@@ -765,7 +765,7 @@ class Model(torch.nn.Module):
765
765
  patience (int): Epochs to wait for no observable improvement for early stopping of training.
766
766
 
767
767
  Returns:
768
- (Dict | None): Training metrics if available and training is successful; otherwise, None.
768
+ (dict | None): Training metrics if available and training is successful; otherwise, None.
769
769
 
770
770
  Examples:
771
771
  >>> model = YOLO("yolo11n.pt")
@@ -893,7 +893,7 @@ class Model(torch.nn.Module):
893
893
  initialized, it sets it up before retrieving the names.
894
894
 
895
895
  Returns:
896
- (Dict[int, str]): A dictionary of class names associated with the model, where keys are class indices and
896
+ (dict[int, str]): A dictionary of class names associated with the model, where keys are class indices and
897
897
  values are the corresponding class names.
898
898
 
899
899
  Raises:
@@ -1109,7 +1109,7 @@ class Model(torch.nn.Module):
1109
1109
  various tasks and modes within the Ultralytics framework.
1110
1110
 
1111
1111
  Returns:
1112
- (Dict[str, Dict[str, Any]]): A dictionary mapping task names to nested dictionaries. Each nested dictionary
1112
+ (dict[str, dict[str, Any]]): A dictionary mapping task names to nested dictionaries. Each nested dictionary
1113
1113
  contains mappings for 'model', 'trainer', 'validator', and 'predictor' keys to their respective class
1114
1114
  implementations for that task.
1115
1115
 
@@ -81,15 +81,15 @@ class BasePredictor:
81
81
  data (dict): Data configuration.
82
82
  device (torch.device): Device used for prediction.
83
83
  dataset (Dataset): Dataset used for prediction.
84
- vid_writer (Dict[str, cv2.VideoWriter]): Dictionary of {save_path: video_writer} for saving video output.
84
+ vid_writer (dict[str, cv2.VideoWriter]): Dictionary of {save_path: video_writer} for saving video output.
85
85
  plotted_img (np.ndarray): Last plotted image.
86
86
  source_type (SimpleNamespace): Type of input source.
87
87
  seen (int): Number of images processed.
88
- windows (List[str]): List of window names for visualization.
88
+ windows (list[str]): List of window names for visualization.
89
89
  batch (tuple): Current batch data.
90
- results (List[Any]): Current batch results.
90
+ results (list[Any]): Current batch results.
91
91
  transforms (callable): Image transforms for classification.
92
- callbacks (Dict[str, List[callable]]): Callback functions for different events.
92
+ callbacks (dict[str, list[callable]]): Callback functions for different events.
93
93
  txt_path (Path): Path to save text results.
94
94
  _lock (threading.Lock): Lock for thread-safe inference.
95
95
 
@@ -154,7 +154,7 @@ class BasePredictor:
154
154
  Prepare input image before inference.
155
155
 
156
156
  Args:
157
- im (torch.Tensor | List[np.ndarray]): Images of shape (N, 3, H, W) for tensor, [(H, W, 3) x N] for list.
157
+ im (torch.Tensor | list[np.ndarray]): Images of shape (N, 3, H, W) for tensor, [(H, W, 3) x N] for list.
158
158
 
159
159
  Returns:
160
160
  (torch.Tensor): Preprocessed image tensor of shape (N, 3, H, W).
@@ -188,10 +188,10 @@ class BasePredictor:
188
188
  Pre-transform input image before inference.
189
189
 
190
190
  Args:
191
- im (List[np.ndarray]): List of images with shape [(H, W, 3) x N].
191
+ im (list[np.ndarray]): List of images with shape [(H, W, 3) x N].
192
192
 
193
193
  Returns:
194
- (List[np.ndarray]): List of transformed images.
194
+ (list[np.ndarray]): List of transformed images.
195
195
  """
196
196
  same_shapes = len({x.shape for x in im}) == 1
197
197
  letterbox = LetterBox(
@@ -212,7 +212,7 @@ class BasePredictor:
212
212
  Perform inference on an image or stream.
213
213
 
214
214
  Args:
215
- source (str | Path | List[str] | List[Path] | List[np.ndarray] | np.ndarray | torch.Tensor, optional):
215
+ source (str | Path | list[str] | list[Path] | list[np.ndarray] | np.ndarray | torch.Tensor, optional):
216
216
  Source for inference.
217
217
  model (str | Path | torch.nn.Module, optional): Model for inference.
218
218
  stream (bool): Whether to stream the inference results. If True, returns a generator.
@@ -220,7 +220,7 @@ class BasePredictor:
220
220
  **kwargs (Any): Additional keyword arguments for the inference method.
221
221
 
222
222
  Returns:
223
- (List[ultralytics.engine.results.Results] | generator): Results objects or generator of Results objects.
223
+ (list[ultralytics.engine.results.Results] | generator): Results objects or generator of Results objects.
224
224
  """
225
225
  self.stream = stream
226
226
  if stream:
@@ -237,7 +237,7 @@ class BasePredictor:
237
237
  generator without storing results.
238
238
 
239
239
  Args:
240
- source (str | Path | List[str] | List[Path] | List[np.ndarray] | np.ndarray | torch.Tensor, optional):
240
+ source (str | Path | list[str] | list[Path] | list[np.ndarray] | np.ndarray | torch.Tensor, optional):
241
241
  Source for inference.
242
242
  model (str | Path | torch.nn.Module, optional): Model for inference.
243
243
 
@@ -254,7 +254,7 @@ class BasePredictor:
254
254
  Set up source and inference mode.
255
255
 
256
256
  Args:
257
- source (str | Path | List[str] | List[Path] | List[np.ndarray] | np.ndarray | torch.Tensor):
257
+ source (str | Path | list[str] | list[Path] | list[np.ndarray] | np.ndarray | torch.Tensor):
258
258
  Source for inference.
259
259
  """
260
260
  self.imgsz = check_imgsz(self.args.imgsz, stride=self.model.stride, min_dim=2) # check image size
@@ -285,7 +285,7 @@ class BasePredictor:
285
285
  Stream real-time inference on camera feed and save results to file.
286
286
 
287
287
  Args:
288
- source (str | Path | List[str] | List[Path] | List[np.ndarray] | np.ndarray | torch.Tensor, optional):
288
+ source (str | Path | list[str] | list[Path] | list[np.ndarray] | np.ndarray | torch.Tensor, optional):
289
289
  Source for inference.
290
290
  model (str | Path | torch.nn.Module, optional): Model for inference.
291
291
  *args (Any): Additional arguments for the inference method.
@@ -418,7 +418,7 @@ class BasePredictor:
418
418
  i (int): Index of the current image in the batch.
419
419
  p (Path): Path to the current image.
420
420
  im (torch.Tensor): Preprocessed image tensor.
421
- s (List[str]): List of result strings.
421
+ s (list[str]): List of result strings.
422
422
 
423
423
  Returns:
424
424
  (str): String with result information.