dgenerate-ultralytics-headless 8.3.192__py3-none-any.whl → 8.3.193__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {dgenerate_ultralytics_headless-8.3.192.dist-info → dgenerate_ultralytics_headless-8.3.193.dist-info}/METADATA +1 -1
- {dgenerate_ultralytics_headless-8.3.192.dist-info → dgenerate_ultralytics_headless-8.3.193.dist-info}/RECORD +25 -25
- ultralytics/__init__.py +1 -1
- ultralytics/cfg/__init__.py +7 -5
- ultralytics/cfg/datasets/xView.yaml +1 -1
- ultralytics/data/utils.py +1 -1
- ultralytics/engine/exporter.py +5 -4
- ultralytics/engine/model.py +4 -4
- ultralytics/engine/predictor.py +7 -3
- ultralytics/engine/trainer.py +4 -4
- ultralytics/models/yolo/segment/val.py +13 -13
- ultralytics/models/yolo/yoloe/val.py +2 -2
- ultralytics/nn/__init__.py +2 -4
- ultralytics/nn/autobackend.py +2 -2
- ultralytics/nn/tasks.py +2 -51
- ultralytics/utils/__init__.py +5 -1
- ultralytics/utils/checks.py +2 -1
- ultralytics/utils/tal.py +2 -2
- ultralytics/utils/torch_utils.py +7 -6
- ultralytics/utils/tqdm.py +49 -74
- ultralytics/utils/tuner.py +1 -1
- {dgenerate_ultralytics_headless-8.3.192.dist-info → dgenerate_ultralytics_headless-8.3.193.dist-info}/WHEEL +0 -0
- {dgenerate_ultralytics_headless-8.3.192.dist-info → dgenerate_ultralytics_headless-8.3.193.dist-info}/entry_points.txt +0 -0
- {dgenerate_ultralytics_headless-8.3.192.dist-info → dgenerate_ultralytics_headless-8.3.193.dist-info}/licenses/LICENSE +0 -0
- {dgenerate_ultralytics_headless-8.3.192.dist-info → dgenerate_ultralytics_headless-8.3.193.dist-info}/top_level.txt +0 -0
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.4
|
2
2
|
Name: dgenerate-ultralytics-headless
|
3
|
-
Version: 8.3.
|
3
|
+
Version: 8.3.193
|
4
4
|
Summary: Automatically built Ultralytics package with python-opencv-headless dependency instead of python-opencv
|
5
5
|
Author-email: Glenn Jocher <glenn.jocher@ultralytics.com>, Jing Qiu <jing.qiu@ultralytics.com>
|
6
6
|
Maintainer-email: Ultralytics <hello@ultralytics.com>
|
@@ -1,4 +1,4 @@
|
|
1
|
-
dgenerate_ultralytics_headless-8.3.
|
1
|
+
dgenerate_ultralytics_headless-8.3.193.dist-info/licenses/LICENSE,sha256=DZak_2itbUtvHzD3E7GNUYSRK6jdOJ-GqncQ2weavLA,34523
|
2
2
|
tests/__init__.py,sha256=b4KP5_q-2IO8Br8YHOSLYnn7IwZS81l_vfEF2YPa2lM,894
|
3
3
|
tests/conftest.py,sha256=LXtQJcFNWPGuzauTGkiXgsvVC3llJKfg22WcmhRzuQc,2593
|
4
4
|
tests/test_cli.py,sha256=EMf5gTAopOnIz8VvzaM-Qb044o7D0flnUHYQ-2ffOM4,5670
|
@@ -8,11 +8,11 @@ tests/test_exports.py,sha256=jBMAWADCqBsPaZuhZKU7JgQVA0gfYHHFwOI6kx84bqo,10885
|
|
8
8
|
tests/test_integrations.py,sha256=kl_AKmE_Qs1GB0_91iVwbzNxofm_hFTt0zzU6JF-pg4,6323
|
9
9
|
tests/test_python.py,sha256=IpjqS2wKSfZaukSdW7QtXeyijXxZ1uXiJLEdlkK_0jQ,27908
|
10
10
|
tests/test_solutions.py,sha256=6wJ9-lhyWSAm7zaR4D9L_DrUA3iJU1NgqmbQO6PIuvo,13211
|
11
|
-
ultralytics/__init__.py,sha256=
|
11
|
+
ultralytics/__init__.py,sha256=xBsGMQjlH8FxjOGSLqnh06Xs9hcGM2u-QrR-OLhkHJk,730
|
12
12
|
ultralytics/py.typed,sha256=la67KBlbjXN-_-DfGNcdOcjYumVpKG_Tkw-8n5dnGB4,8
|
13
13
|
ultralytics/assets/bus.jpg,sha256=wCAZxJecGR63Od3ZRERe9Aja1Weayrb9Ug751DS_vGM,137419
|
14
14
|
ultralytics/assets/zidane.jpg,sha256=Ftc4aeMmen1O0A3o6GCDO9FlfBslLpTAw0gnetx7bts,50427
|
15
|
-
ultralytics/cfg/__init__.py,sha256=
|
15
|
+
ultralytics/cfg/__init__.py,sha256=oi3unUYklhdf-uF_0v9dSBOj5EyPRKQbgVVKHrztKns,39955
|
16
16
|
ultralytics/cfg/default.yaml,sha256=1SspGAK_K_DT7DBfEScJh4jsJUTOxahehZYj92xmj7o,8347
|
17
17
|
ultralytics/cfg/datasets/Argoverse.yaml,sha256=J4ItoUlE_EiYTmp1DFKYHfbqHkj8j4wUtRJQhaMIlBM,3275
|
18
18
|
ultralytics/cfg/datasets/DOTAv1.5.yaml,sha256=VZ_KKFX0H2YvlFVJ8JHcLWYBZ2xiQ6Z-ROSTiKWpS7c,1211
|
@@ -47,7 +47,7 @@ ultralytics/cfg/datasets/open-images-v7.yaml,sha256=wK9v3OAGdHORkFdqoBi0hS0fa1b7
|
|
47
47
|
ultralytics/cfg/datasets/package-seg.yaml,sha256=V4uyTDWWzgft24y9HJWuELKuZ5AndAHXbanxMI6T8GU,849
|
48
48
|
ultralytics/cfg/datasets/signature.yaml,sha256=gBvU3715gVxVAafI_yaYczGX3kfEfA4BttbiMkgOXNk,774
|
49
49
|
ultralytics/cfg/datasets/tiger-pose.yaml,sha256=Y_8htA4--6hmpqHTW-Ix4t9SdaWenSSyl_FUtI2A7n8,926
|
50
|
-
ultralytics/cfg/datasets/xView.yaml,sha256=
|
50
|
+
ultralytics/cfg/datasets/xView.yaml,sha256=eaQ7bYDRrOMRdaxN_wzlH_fN0wdIlT_GQDtPzrHS2-s,5353
|
51
51
|
ultralytics/cfg/models/11/yolo11-cls-resnet18.yaml,sha256=1Ycp9qMrwpb8rq7cqht3Q-1gMN0R87U35nm2j_isdro,524
|
52
52
|
ultralytics/cfg/models/11/yolo11-cls.yaml,sha256=17l5GdN-Vst4LvafsK2-q6Li9VX9UlUcT5ClCtikweE,1412
|
53
53
|
ultralytics/cfg/models/11/yolo11-obb.yaml,sha256=3M_c06B-y8da4tunHVxQQ-iFUNLKUfofqCZTpnH5FEU,2034
|
@@ -115,17 +115,17 @@ ultralytics/data/dataset.py,sha256=JC3sHsKva65sSptdAJHfh90yyag8WrqGXcXNpD9C-f0,3
|
|
115
115
|
ultralytics/data/loaders.py,sha256=Mt6ogS2SUq8SE6oJajX7xSyzIxvwjKUhxFbIynhBlGk,31748
|
116
116
|
ultralytics/data/split.py,sha256=5ubnL_wsEutFQOj4I4K01L9UpZrrO_vO3HrydSLJyIY,5107
|
117
117
|
ultralytics/data/split_dota.py,sha256=gSGHRWZFQOofMkb8GcTtkUb5gV5jtOV7bzVMovTW0ak,12910
|
118
|
-
ultralytics/data/utils.py,sha256=
|
118
|
+
ultralytics/data/utils.py,sha256=1YF_-v-laBG41WGmnLo4xsfOhCNNN1og8b2yo11FJos,36716
|
119
119
|
ultralytics/data/scripts/download_weights.sh,sha256=0y8XtZxOru7dVThXDFUXLHBuICgOIqZNUwpyL4Rh6lg,595
|
120
120
|
ultralytics/data/scripts/get_coco.sh,sha256=UuJpJeo3qQpTHVINeOpmP0NYmg8PhEFE3A8J3jKrnPw,1768
|
121
121
|
ultralytics/data/scripts/get_coco128.sh,sha256=qmRQl_hOKrsdHrTrnyQuFIH01oDz3lfaz138OgGfLt8,650
|
122
122
|
ultralytics/data/scripts/get_imagenet.sh,sha256=hr42H16bM47iT27rgS7MpEo-GeOZAYUQXgr0B2cwn48,1705
|
123
123
|
ultralytics/engine/__init__.py,sha256=lm6MckFYCPTbqIoX7w0s_daxdjNeBeKW6DXppv1-QUM,70
|
124
|
-
ultralytics/engine/exporter.py,sha256=
|
125
|
-
ultralytics/engine/model.py,sha256=
|
126
|
-
ultralytics/engine/predictor.py,sha256=
|
124
|
+
ultralytics/engine/exporter.py,sha256=kPX10s0YhRlSLlCSP9MigAO8yjzZ1Azi2apOWktSTjA,75411
|
125
|
+
ultralytics/engine/model.py,sha256=q3rj1QmJoR4uYXb6dvn2dVRheEY8TzJhm9KznD_VDso,53488
|
126
|
+
ultralytics/engine/predictor.py,sha256=EzFcRzihNTYgdayviLwEk7pUOotNoEVbQtVFI18jNpM,22625
|
127
127
|
ultralytics/engine/results.py,sha256=115lVbiqzyho1fXm-YpqQBtKiv-Wo2FPNhz6ExYHtCk,71499
|
128
|
-
ultralytics/engine/trainer.py,sha256=
|
128
|
+
ultralytics/engine/trainer.py,sha256=_mTG-z6xnOdFUmB6uOF8HQkFb_uMwP0MrJHlt7X3zVw,40457
|
129
129
|
ultralytics/engine/tuner.py,sha256=XuqcjyGpD79pUVn-PXlJJGKXgH1yblPdYBH_R2kHWSU,20586
|
130
130
|
ultralytics/engine/validator.py,sha256=8ky0lcMCYDY7RGYRUowDAKxEMfsPBLpT7LlgfHA-IsY,16681
|
131
131
|
ultralytics/hub/__init__.py,sha256=RmrZw24uyFF109SLVba1s-ItjllfzRKlCgQ_U0RVRUo,6720
|
@@ -186,7 +186,7 @@ ultralytics/models/yolo/pose/val.py,sha256=A4Cvzmqyu0oW5UC9mqNL731ngAwqQBic6tdMc
|
|
186
186
|
ultralytics/models/yolo/segment/__init__.py,sha256=3IThhZ1wlkY9FvmWm9cE-5-ZyE6F1FgzAtQ6jOOFzzw,275
|
187
187
|
ultralytics/models/yolo/segment/predict.py,sha256=qlprQCZn4_bpjpI08U0MU9Q9_1gpHrw_7MXwtXE1l1Y,5377
|
188
188
|
ultralytics/models/yolo/segment/train.py,sha256=bBEnEUHqN3QlbreD5Fy-h1X5Ps-dONH2r9EnoLc72x4,3762
|
189
|
-
ultralytics/models/yolo/segment/val.py,sha256=
|
189
|
+
ultralytics/models/yolo/segment/val.py,sha256=Xy2T-Y4IjjuR5GqWGJjHmCLGL9FxEWfMXDoCoP_ZBBM,11147
|
190
190
|
ultralytics/models/yolo/world/__init__.py,sha256=nlh8I6t8hMGz_vZg8QSlsUW1R-2eKvn9CGUoPPQEGhA,131
|
191
191
|
ultralytics/models/yolo/world/train.py,sha256=9tSDba3X9VA2y-2oJJUMdXUBi-IdgRmqLW18UqfukvI,7866
|
192
192
|
ultralytics/models/yolo/world/train_world.py,sha256=lk9z_INGPSTP_W7Rjh3qrWSmjHaxOJtGngonh1cj2SM,9551
|
@@ -194,10 +194,10 @@ ultralytics/models/yolo/yoloe/__init__.py,sha256=6SLytdJtwu37qewf7CobG7C7Wl1m-xt
|
|
194
194
|
ultralytics/models/yolo/yoloe/predict.py,sha256=GmQxCQe7sLomAujde53jQzquzryNn6fEjS4Oalf3mPs,7124
|
195
195
|
ultralytics/models/yolo/yoloe/train.py,sha256=lAb-5TgYA_Z6rwEYCMdPcfjJmCGYQqXE5I40n25CTRk,14067
|
196
196
|
ultralytics/models/yolo/yoloe/train_seg.py,sha256=aCV7M8oQOvODFnU4piZdJh3tIrBJYAzZfRVRx1vRgxo,4956
|
197
|
-
ultralytics/models/yolo/yoloe/val.py,sha256=
|
198
|
-
ultralytics/nn/__init__.py,sha256=
|
199
|
-
ultralytics/nn/autobackend.py,sha256=
|
200
|
-
ultralytics/nn/tasks.py,sha256=
|
197
|
+
ultralytics/models/yolo/yoloe/val.py,sha256=MnS2YwhRxdqXPRlExHt-9HRp8KKIHuFdmiNH1z6LedI,9795
|
198
|
+
ultralytics/nn/__init__.py,sha256=PJgOn2phQTTBR2P3s_JWvGeGXQpvw1znsumKow4tCuE,545
|
199
|
+
ultralytics/nn/autobackend.py,sha256=yv_-p5F3BhOrZCXUdRZY9K9D6-5hSUUuq23Jm9FKAhk,41360
|
200
|
+
ultralytics/nn/tasks.py,sha256=tvoVVqVoMZuylLmUJNDs9eX4bdFbDibQKd3lJed5fYY,70470
|
201
201
|
ultralytics/nn/text_model.py,sha256=lserJWlXNzP31jB4xA-7gkbhB0VsMBGiE9G8wYpztvE,15275
|
202
202
|
ultralytics/nn/modules/__init__.py,sha256=BPMbEm1daI7Tuds3zph2_afAX7Gq1uAqK8BfiCfKTZs,3198
|
203
203
|
ultralytics/nn/modules/activation.py,sha256=75JcIMH2Cu9GTC2Uf55r_5YLpxcrXQDaVoeGQ0hlUAU,2233
|
@@ -236,11 +236,11 @@ ultralytics/trackers/utils/__init__.py,sha256=lm6MckFYCPTbqIoX7w0s_daxdjNeBeKW6D
|
|
236
236
|
ultralytics/trackers/utils/gmc.py,sha256=a4WuIh976_GYogvlQEPKTNE59JNNtSNlT_IPrz4wmrM,14028
|
237
237
|
ultralytics/trackers/utils/kalman_filter.py,sha256=PPmM0lwBMdT_hGojvfLoUsBUFMBBMNRAxKbMcQa3wJ0,21619
|
238
238
|
ultralytics/trackers/utils/matching.py,sha256=uSYtywqi1lE_uNN1FwuBFPyISfDQXHMu8K5KH69nrRI,7160
|
239
|
-
ultralytics/utils/__init__.py,sha256=
|
239
|
+
ultralytics/utils/__init__.py,sha256=qn-3RTwLSQ25d23glCtX39ZH4gQyXi1PQkjk5VZa7Vw,53256
|
240
240
|
ultralytics/utils/autobatch.py,sha256=i6KYLLSItKP1Q2IUlTPHrZhjcxl7UOjs0Seb8bF8pvM,5124
|
241
241
|
ultralytics/utils/autodevice.py,sha256=Od9SGx6xAQoX-3L62PS7I6xOxbbqjYLR4Wipgn5WoDc,8843
|
242
242
|
ultralytics/utils/benchmarks.py,sha256=zKI-DxEqaVmqlE2pg9p6j1kI7Efo1OyM1NnKubYpDU8,31458
|
243
|
-
ultralytics/utils/checks.py,sha256=
|
243
|
+
ultralytics/utils/checks.py,sha256=WBuJKFiXGqf-5n0S_QNwRet3ZxVIFMdG0VPZSoOJwYM,34468
|
244
244
|
ultralytics/utils/dist.py,sha256=A9lDGtGefTjSVvVS38w86GOdbtLzNBDZuDGK0MT4PRI,4170
|
245
245
|
ultralytics/utils/downloads.py,sha256=mLOLonKQsePC15sLVZJzGyLmD_TZPkL1T_qd0gUb4lA,23029
|
246
246
|
ultralytics/utils/errors.py,sha256=XT9Ru7ivoBgofK6PlnyigGoa7Fmf5nEhyHtnD-8TRXI,1584
|
@@ -255,11 +255,11 @@ ultralytics/utils/nms.py,sha256=wCRQ7O7shv5ccEWHgtF9Ky_vUeyumxFLWBFEj1h0U54,1419
|
|
255
255
|
ultralytics/utils/ops.py,sha256=z6feVEbs57eN18Nl4IEdhgUiChGAZrq4bQjDkp-0MxA,26630
|
256
256
|
ultralytics/utils/patches.py,sha256=j0fXwX3YqKrON7yrmSVkXsn__tsvs4qVuysH-hzcxOE,6541
|
257
257
|
ultralytics/utils/plotting.py,sha256=6iPtxQJ7JFTv2vWpSzP90plkksXhvql1EVQaKomkuiQ,47515
|
258
|
-
ultralytics/utils/tal.py,sha256=
|
259
|
-
ultralytics/utils/torch_utils.py,sha256=
|
260
|
-
ultralytics/utils/tqdm.py,sha256=
|
258
|
+
ultralytics/utils/tal.py,sha256=LrziY_ZHz4wln3oOnqAzgyPaXKoup17Sa103BpuaQFU,20935
|
259
|
+
ultralytics/utils/torch_utils.py,sha256=SKgOEaa2_7k7tGI4VfNWcQV4wvjLWVUusJreEc4bPmI,39488
|
260
|
+
ultralytics/utils/tqdm.py,sha256=ny5RIg2OTkWQ7gdaXfYaoIgR0Xn2_hNGB6tUpO2Unns,16137
|
261
261
|
ultralytics/utils/triton.py,sha256=-qG-ZP5uotcD8FZyaAcEGHX7Cv9_yBG8UHvmmXpYZkM,5422
|
262
|
-
ultralytics/utils/tuner.py,sha256=
|
262
|
+
ultralytics/utils/tuner.py,sha256=9D4dSIvwwxcNSJcH2QJ92qiIVi9zu-1L7_PBZ8okDyE,6816
|
263
263
|
ultralytics/utils/callbacks/__init__.py,sha256=hzL63Rce6VkZhP4Lcim9LKjadixaQG86nKqPhk7IkS0,242
|
264
264
|
ultralytics/utils/callbacks/base.py,sha256=dGir0vkJY4jjprW63e23Qy4kHUT5dOINPii6HnwJuPg,6893
|
265
265
|
ultralytics/utils/callbacks/clearml.py,sha256=xr5mZT_cY6AY_drbdCXFt-Dp2fOjRELxLDhDoRhNPg8,6067
|
@@ -272,8 +272,8 @@ ultralytics/utils/callbacks/platform.py,sha256=a7T_8htoBB0uX1WIc392UJnhDjxkRyQMv
|
|
272
272
|
ultralytics/utils/callbacks/raytune.py,sha256=S6Bq16oQDQ8BQgnZzA0zJHGN_BBr8iAM_WtGoLiEcwg,1283
|
273
273
|
ultralytics/utils/callbacks/tensorboard.py,sha256=MDPBW7aDes-66OE6YqKXXvqA_EocjzEMHWGM-8z9vUQ,5281
|
274
274
|
ultralytics/utils/callbacks/wb.py,sha256=ngQO8EJ1kxJDF1YajScVtzBbm26jGuejA0uWeOyvf5A,7685
|
275
|
-
dgenerate_ultralytics_headless-8.3.
|
276
|
-
dgenerate_ultralytics_headless-8.3.
|
277
|
-
dgenerate_ultralytics_headless-8.3.
|
278
|
-
dgenerate_ultralytics_headless-8.3.
|
279
|
-
dgenerate_ultralytics_headless-8.3.
|
275
|
+
dgenerate_ultralytics_headless-8.3.193.dist-info/METADATA,sha256=1wXryxIUWSf18KfYeyQmgtB1c56Ka8AThXX78xrxqIY,38789
|
276
|
+
dgenerate_ultralytics_headless-8.3.193.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
277
|
+
dgenerate_ultralytics_headless-8.3.193.dist-info/entry_points.txt,sha256=YM_wiKyTe9yRrsEfqvYolNO5ngwfoL4-NwgKzc8_7sI,93
|
278
|
+
dgenerate_ultralytics_headless-8.3.193.dist-info/top_level.txt,sha256=XP49TwiMw4QGsvTLSYiJhz1xF_k7ev5mQ8jJXaXi45Q,12
|
279
|
+
dgenerate_ultralytics_headless-8.3.193.dist-info/RECORD,,
|
ultralytics/__init__.py
CHANGED
ultralytics/cfg/__init__.py
CHANGED
@@ -15,6 +15,7 @@ from ultralytics.utils import (
|
|
15
15
|
DEFAULT_CFG,
|
16
16
|
DEFAULT_CFG_DICT,
|
17
17
|
DEFAULT_CFG_PATH,
|
18
|
+
FLOAT_OR_INT,
|
18
19
|
IS_VSCODE,
|
19
20
|
LOGGER,
|
20
21
|
RANK,
|
@@ -22,6 +23,7 @@ from ultralytics.utils import (
|
|
22
23
|
RUNS_DIR,
|
23
24
|
SETTINGS,
|
24
25
|
SETTINGS_FILE,
|
26
|
+
STR_OR_PATH,
|
25
27
|
TESTS_RUNNING,
|
26
28
|
YAML,
|
27
29
|
IterableSimpleNamespace,
|
@@ -267,7 +269,7 @@ def cfg2dict(cfg: str | Path | dict | SimpleNamespace) -> dict:
|
|
267
269
|
- If cfg is a SimpleNamespace object, it's converted to a dictionary using vars().
|
268
270
|
- If cfg is already a dictionary, it's returned unchanged.
|
269
271
|
"""
|
270
|
-
if isinstance(cfg,
|
272
|
+
if isinstance(cfg, STR_OR_PATH):
|
271
273
|
cfg = YAML.load(cfg) # load dict
|
272
274
|
elif isinstance(cfg, SimpleNamespace):
|
273
275
|
cfg = vars(cfg) # convert to dict
|
@@ -309,7 +311,7 @@ def get_cfg(cfg: str | Path | dict | SimpleNamespace = DEFAULT_CFG_DICT, overrid
|
|
309
311
|
|
310
312
|
# Special handling for numeric project/name
|
311
313
|
for k in "project", "name":
|
312
|
-
if k in cfg and isinstance(cfg[k],
|
314
|
+
if k in cfg and isinstance(cfg[k], FLOAT_OR_INT):
|
313
315
|
cfg[k] = str(cfg[k])
|
314
316
|
if cfg.get("name") == "model": # assign model to 'name' arg
|
315
317
|
cfg["name"] = str(cfg.get("model", "")).partition(".")[0]
|
@@ -352,7 +354,7 @@ def check_cfg(cfg: dict, hard: bool = True) -> None:
|
|
352
354
|
"""
|
353
355
|
for k, v in cfg.items():
|
354
356
|
if v is not None: # None values may be from optional args
|
355
|
-
if k in CFG_FLOAT_KEYS and not isinstance(v,
|
357
|
+
if k in CFG_FLOAT_KEYS and not isinstance(v, FLOAT_OR_INT):
|
356
358
|
if hard:
|
357
359
|
raise TypeError(
|
358
360
|
f"'{k}={v}' is of invalid type {type(v).__name__}. "
|
@@ -360,7 +362,7 @@ def check_cfg(cfg: dict, hard: bool = True) -> None:
|
|
360
362
|
)
|
361
363
|
cfg[k] = float(v)
|
362
364
|
elif k in CFG_FRACTION_KEYS:
|
363
|
-
if not isinstance(v,
|
365
|
+
if not isinstance(v, FLOAT_OR_INT):
|
364
366
|
if hard:
|
365
367
|
raise TypeError(
|
366
368
|
f"'{k}={v}' is of invalid type {type(v).__name__}. "
|
@@ -413,7 +415,7 @@ def get_save_dir(args: SimpleNamespace, name: str = None) -> Path:
|
|
413
415
|
name = name or args.name or f"{args.mode}"
|
414
416
|
save_dir = increment_path(Path(project) / name, exist_ok=args.exist_ok if RANK in {-1, 0} else True)
|
415
417
|
|
416
|
-
return Path(save_dir)
|
418
|
+
return Path(save_dir).resolve() # resolve to display full path in console
|
417
419
|
|
418
420
|
|
419
421
|
def _handle_deprecation(custom: dict) -> dict:
|
ultralytics/data/utils.py
CHANGED
@@ -216,7 +216,7 @@ def verify_image_label(args: tuple) -> list:
|
|
216
216
|
points = lb[:, 1:]
|
217
217
|
# Coordinate points check with 1% tolerance
|
218
218
|
assert points.max() <= 1.01, f"non-normalized or out of bounds coordinates {points[points > 1.01]}"
|
219
|
-
assert lb.min() >= -0.01, f"negative class labels {lb[lb < -0.01]}"
|
219
|
+
assert lb.min() >= -0.01, f"negative class labels or coordinate {lb[lb < -0.01]}"
|
220
220
|
|
221
221
|
# All labels
|
222
222
|
max_cls = 0 if single_cls else lb[:, 0].max() # max label count
|
ultralytics/engine/exporter.py
CHANGED
@@ -90,6 +90,7 @@ from ultralytics.utils import (
|
|
90
90
|
RKNN_CHIPS,
|
91
91
|
ROOT,
|
92
92
|
SETTINGS,
|
93
|
+
TORCH_VERSION,
|
93
94
|
WINDOWS,
|
94
95
|
YAML,
|
95
96
|
callbacks,
|
@@ -567,7 +568,7 @@ class Exporter:
|
|
567
568
|
@try_export
|
568
569
|
def export_torchscript(self, prefix=colorstr("TorchScript:")):
|
569
570
|
"""Export YOLO model to TorchScript format."""
|
570
|
-
LOGGER.info(f"\n{prefix} starting export with torch {
|
571
|
+
LOGGER.info(f"\n{prefix} starting export with torch {TORCH_VERSION}...")
|
571
572
|
f = self.file.with_suffix(".torchscript")
|
572
573
|
|
573
574
|
ts = torch.jit.trace(NMSModel(self.model, self.args) if self.args.nms else self.model, self.im, strict=False)
|
@@ -586,7 +587,7 @@ class Exporter:
|
|
586
587
|
"""Export YOLO model to ONNX format."""
|
587
588
|
requirements = ["onnx>=1.12.0"]
|
588
589
|
if self.args.simplify:
|
589
|
-
requirements += ["onnxslim
|
590
|
+
requirements += ["onnxslim==0.1.65", "onnxruntime" + ("-gpu" if torch.cuda.is_available() else "")]
|
590
591
|
check_requirements(requirements)
|
591
592
|
import onnx # noqa
|
592
593
|
|
@@ -648,7 +649,7 @@ class Exporter:
|
|
648
649
|
import openvino as ov
|
649
650
|
|
650
651
|
LOGGER.info(f"\n{prefix} starting export with openvino {ov.__version__}...")
|
651
|
-
assert TORCH_1_13, f"OpenVINO export requires torch>=1.13.0 but torch=={
|
652
|
+
assert TORCH_1_13, f"OpenVINO export requires torch>=1.13.0 but torch=={TORCH_VERSION} is installed"
|
652
653
|
ov_model = ov.convert_model(
|
653
654
|
NMSModel(self.model, self.args) if self.args.nms else self.model,
|
654
655
|
input=None if self.args.dynamic else [self.im.shape],
|
@@ -964,7 +965,7 @@ class Exporter:
|
|
964
965
|
"ai-edge-litert>=1.2.0,<1.4.0", # required by 'onnx2tf' package
|
965
966
|
"onnx>=1.12.0",
|
966
967
|
"onnx2tf>=1.26.3",
|
967
|
-
"onnxslim
|
968
|
+
"onnxslim==0.1.65",
|
968
969
|
"onnxruntime-gpu" if cuda else "onnxruntime",
|
969
970
|
"protobuf>=5",
|
970
971
|
),
|
ultralytics/engine/model.py
CHANGED
@@ -12,7 +12,7 @@ from PIL import Image
|
|
12
12
|
|
13
13
|
from ultralytics.cfg import TASK2DATA, get_cfg, get_save_dir
|
14
14
|
from ultralytics.engine.results import Results
|
15
|
-
from ultralytics.nn.tasks import
|
15
|
+
from ultralytics.nn.tasks import guess_model_task, load_checkpoint, yaml_model_load
|
16
16
|
from ultralytics.utils import (
|
17
17
|
ARGV,
|
18
18
|
ASSETS,
|
@@ -294,7 +294,7 @@ class Model(torch.nn.Module):
|
|
294
294
|
weights = checks.check_model_file_from_stem(weights) # add suffix, i.e. yolo11n -> yolo11n.pt
|
295
295
|
|
296
296
|
if str(weights).rpartition(".")[-1] == "pt":
|
297
|
-
self.model, self.ckpt =
|
297
|
+
self.model, self.ckpt = load_checkpoint(weights)
|
298
298
|
self.task = self.model.task
|
299
299
|
self.overrides = self.model.args = self._reset_ckpt_args(self.model.args)
|
300
300
|
self.ckpt_path = self.model.pt_path
|
@@ -385,7 +385,7 @@ class Model(torch.nn.Module):
|
|
385
385
|
self._check_is_pytorch_model()
|
386
386
|
if isinstance(weights, (str, Path)):
|
387
387
|
self.overrides["pretrained"] = weights # remember the weights for DDP training
|
388
|
-
weights, self.ckpt =
|
388
|
+
weights, self.ckpt = load_checkpoint(weights)
|
389
389
|
self.model.load(weights)
|
390
390
|
return self
|
391
391
|
|
@@ -802,7 +802,7 @@ class Model(torch.nn.Module):
|
|
802
802
|
# Update model and cfg after training
|
803
803
|
if RANK in {-1, 0}:
|
804
804
|
ckpt = self.trainer.best if self.trainer.best.exists() else self.trainer.last
|
805
|
-
self.model, self.ckpt =
|
805
|
+
self.model, self.ckpt = load_checkpoint(ckpt)
|
806
806
|
self.overrides = self.model.args
|
807
807
|
self.metrics = getattr(self.trainer.validator, "metrics", None) # TODO: no metrics returned by DDP
|
808
808
|
return self.metrics
|
ultralytics/engine/predictor.py
CHANGED
@@ -266,13 +266,17 @@ class BasePredictor:
|
|
266
266
|
channels=getattr(self.model, "ch", 3),
|
267
267
|
)
|
268
268
|
self.source_type = self.dataset.source_type
|
269
|
-
|
269
|
+
long_sequence = (
|
270
270
|
self.source_type.stream
|
271
271
|
or self.source_type.screenshot
|
272
272
|
or len(self.dataset) > 1000 # many images
|
273
273
|
or any(getattr(self.dataset, "video_flag", [False]))
|
274
|
-
)
|
275
|
-
|
274
|
+
)
|
275
|
+
if long_sequence:
|
276
|
+
import torchvision # noqa (import here triggers torchvision NMS use in nms.py)
|
277
|
+
|
278
|
+
if not getattr(self, "stream", True): # videos
|
279
|
+
LOGGER.warning(STREAM_WARNING)
|
276
280
|
self.vid_writer = {}
|
277
281
|
|
278
282
|
@smart_inference_mode()
|
ultralytics/engine/trainer.py
CHANGED
@@ -24,7 +24,7 @@ from torch import nn, optim
|
|
24
24
|
from ultralytics import __version__
|
25
25
|
from ultralytics.cfg import get_cfg, get_save_dir
|
26
26
|
from ultralytics.data.utils import check_cls_dataset, check_det_dataset
|
27
|
-
from ultralytics.nn.tasks import
|
27
|
+
from ultralytics.nn.tasks import load_checkpoint
|
28
28
|
from ultralytics.utils import (
|
29
29
|
DEFAULT_CFG,
|
30
30
|
GIT,
|
@@ -644,10 +644,10 @@ class BaseTrainer:
|
|
644
644
|
cfg, weights = self.model, None
|
645
645
|
ckpt = None
|
646
646
|
if str(self.model).endswith(".pt"):
|
647
|
-
weights, ckpt =
|
647
|
+
weights, ckpt = load_checkpoint(self.model)
|
648
648
|
cfg = weights.yaml
|
649
649
|
elif isinstance(self.args.pretrained, (str, Path)):
|
650
|
-
weights, _ =
|
650
|
+
weights, _ = load_checkpoint(self.args.pretrained)
|
651
651
|
self.model = self.get_model(cfg=cfg, weights=weights, verbose=RANK == -1) # calls Model(cfg, weights)
|
652
652
|
return ckpt
|
653
653
|
|
@@ -768,7 +768,7 @@ class BaseTrainer:
|
|
768
768
|
last = Path(check_file(resume) if exists else get_latest_run())
|
769
769
|
|
770
770
|
# Check that resume data YAML exists, otherwise strip to force re-download of dataset
|
771
|
-
ckpt_args =
|
771
|
+
ckpt_args = load_checkpoint(last)[0].args
|
772
772
|
if not isinstance(ckpt_args["data"], dict) and not Path(ckpt_args["data"]).exists():
|
773
773
|
ckpt_args["data"] = self.args.data
|
774
774
|
|
@@ -133,8 +133,17 @@ class SegmentationValidator(DetectionValidator):
|
|
133
133
|
(Dict[str, Any]): Prepared batch with processed annotations.
|
134
134
|
"""
|
135
135
|
prepared_batch = super()._prepare_batch(si, batch)
|
136
|
-
|
137
|
-
|
136
|
+
nl = len(prepared_batch["cls"])
|
137
|
+
if self.args.overlap_mask:
|
138
|
+
masks = batch["masks"][si]
|
139
|
+
index = torch.arange(1, nl + 1, device=masks.device).view(nl, 1, 1)
|
140
|
+
masks = (masks == index).float()
|
141
|
+
else:
|
142
|
+
masks = batch["masks"][batch["batch_idx"] == si]
|
143
|
+
if nl and self.process is ops.process_mask_native:
|
144
|
+
masks = F.interpolate(masks[None], prepared_batch["imgsz"], mode="bilinear", align_corners=False)[0]
|
145
|
+
masks = masks.gt_(0.5)
|
146
|
+
prepared_batch["masks"] = masks
|
138
147
|
return prepared_batch
|
139
148
|
|
140
149
|
def _process_batch(self, preds: dict[str, torch.Tensor], batch: dict[str, Any]) -> dict[str, np.ndarray]:
|
@@ -158,20 +167,11 @@ class SegmentationValidator(DetectionValidator):
|
|
158
167
|
>>> correct_preds = validator._process_batch(preds, batch)
|
159
168
|
"""
|
160
169
|
tp = super()._process_batch(preds, batch)
|
161
|
-
gt_cls
|
170
|
+
gt_cls = batch["cls"]
|
162
171
|
if len(gt_cls) == 0 or len(preds["cls"]) == 0:
|
163
172
|
tp_m = np.zeros((len(preds["cls"]), self.niou), dtype=bool)
|
164
173
|
else:
|
165
|
-
|
166
|
-
if self.args.overlap_mask:
|
167
|
-
nl = len(gt_cls)
|
168
|
-
index = torch.arange(nl, device=gt_masks.device).view(nl, 1, 1) + 1
|
169
|
-
gt_masks = gt_masks.repeat(nl, 1, 1) # shape(1,640,640) -> (n,640,640)
|
170
|
-
gt_masks = torch.where(gt_masks == index, 1.0, 0.0)
|
171
|
-
if gt_masks.shape[1:] != pred_masks.shape[1:]:
|
172
|
-
gt_masks = F.interpolate(gt_masks[None], pred_masks.shape[1:], mode="bilinear", align_corners=False)[0]
|
173
|
-
gt_masks = gt_masks.gt_(0.5)
|
174
|
-
iou = mask_iou(gt_masks.view(gt_masks.shape[0], -1), pred_masks.view(pred_masks.shape[0], -1))
|
174
|
+
iou = mask_iou(batch["masks"].flatten(1), preds["masks"].flatten(1))
|
175
175
|
tp_m = self.match_predictions(preds["cls"], gt_cls, iou).cpu().numpy()
|
176
176
|
tp.update({"tp_m": tp_m}) # update tp with mask IoU
|
177
177
|
return tp
|
@@ -186,9 +186,9 @@ class YOLOEDetectValidator(DetectionValidator):
|
|
186
186
|
self.device = select_device(self.args.device, verbose=False)
|
187
187
|
|
188
188
|
if isinstance(model, (str, Path)):
|
189
|
-
from ultralytics.nn.tasks import
|
189
|
+
from ultralytics.nn.tasks import load_checkpoint
|
190
190
|
|
191
|
-
model =
|
191
|
+
model, _ = load_checkpoint(model, device=self.device) # model, ckpt
|
192
192
|
model.eval().to(self.device)
|
193
193
|
data = check_det_dataset(refer_data or self.args.data)
|
194
194
|
names = [name.split("/", 1)[0] for name in list(data["names"].values())]
|
ultralytics/nn/__init__.py
CHANGED
@@ -5,18 +5,16 @@ from .tasks import (
|
|
5
5
|
ClassificationModel,
|
6
6
|
DetectionModel,
|
7
7
|
SegmentationModel,
|
8
|
-
attempt_load_one_weight,
|
9
|
-
attempt_load_weights,
|
10
8
|
guess_model_scale,
|
11
9
|
guess_model_task,
|
10
|
+
load_checkpoint,
|
12
11
|
parse_model,
|
13
12
|
torch_safe_load,
|
14
13
|
yaml_model_load,
|
15
14
|
)
|
16
15
|
|
17
16
|
__all__ = (
|
18
|
-
"
|
19
|
-
"attempt_load_weights",
|
17
|
+
"load_checkpoint",
|
20
18
|
"parse_model",
|
21
19
|
"yaml_model_load",
|
22
20
|
"guess_model_task",
|
ultralytics/nn/autobackend.py
CHANGED
@@ -203,9 +203,9 @@ class AutoBackend(nn.Module):
|
|
203
203
|
model = model.fuse(verbose=verbose)
|
204
204
|
model = model.to(device)
|
205
205
|
else: # pt file
|
206
|
-
from ultralytics.nn.tasks import
|
206
|
+
from ultralytics.nn.tasks import load_checkpoint
|
207
207
|
|
208
|
-
model, _ =
|
208
|
+
model, _ = load_checkpoint(model, device=device, fuse=fuse) # load model, ckpt
|
209
209
|
|
210
210
|
# Common PyTorch model processing
|
211
211
|
if hasattr(model, "kpt_shape"):
|
ultralytics/nn/tasks.py
CHANGED
@@ -1483,61 +1483,12 @@ def torch_safe_load(weight, safe_only=False):
|
|
1483
1483
|
return ckpt, file
|
1484
1484
|
|
1485
1485
|
|
1486
|
-
def
|
1487
|
-
"""
|
1488
|
-
Load an ensemble of models weights=[a,b,c] or a single model weights=[a] or weights=a.
|
1489
|
-
|
1490
|
-
Args:
|
1491
|
-
weights (str | List[str]): Model weights path(s).
|
1492
|
-
device (torch.device, optional): Device to load model to.
|
1493
|
-
inplace (bool): Whether to do inplace operations.
|
1494
|
-
fuse (bool): Whether to fuse model.
|
1495
|
-
|
1496
|
-
Returns:
|
1497
|
-
(torch.nn.Module): Loaded model.
|
1498
|
-
"""
|
1499
|
-
ensemble = Ensemble()
|
1500
|
-
for w in weights if isinstance(weights, list) else [weights]:
|
1501
|
-
ckpt, w = torch_safe_load(w) # load ckpt
|
1502
|
-
args = {**DEFAULT_CFG_DICT, **ckpt["train_args"]} if "train_args" in ckpt else None # combined args
|
1503
|
-
model = (ckpt.get("ema") or ckpt["model"]).float() # FP32 model
|
1504
|
-
|
1505
|
-
# Model compatibility updates
|
1506
|
-
model.args = args # attach args to model
|
1507
|
-
model.pt_path = w # attach *.pt file path to model
|
1508
|
-
model.task = getattr(model, "task", guess_model_task(model))
|
1509
|
-
if not hasattr(model, "stride"):
|
1510
|
-
model.stride = torch.tensor([32.0])
|
1511
|
-
|
1512
|
-
# Append
|
1513
|
-
ensemble.append((model.fuse().eval() if fuse and hasattr(model, "fuse") else model.eval()).to(device))
|
1514
|
-
|
1515
|
-
# Module updates
|
1516
|
-
for m in ensemble.modules():
|
1517
|
-
if hasattr(m, "inplace"):
|
1518
|
-
m.inplace = inplace
|
1519
|
-
elif isinstance(m, torch.nn.Upsample) and not hasattr(m, "recompute_scale_factor"):
|
1520
|
-
m.recompute_scale_factor = None # torch 1.11.0 compatibility
|
1521
|
-
|
1522
|
-
# Return model
|
1523
|
-
if len(ensemble) == 1:
|
1524
|
-
return ensemble[-1]
|
1525
|
-
|
1526
|
-
# Return ensemble
|
1527
|
-
LOGGER.info(f"Ensemble created with {weights}\n")
|
1528
|
-
for k in "names", "nc", "yaml":
|
1529
|
-
setattr(ensemble, k, getattr(ensemble[0], k))
|
1530
|
-
ensemble.stride = ensemble[int(torch.argmax(torch.tensor([m.stride.max() for m in ensemble])))].stride
|
1531
|
-
assert all(ensemble[0].nc == m.nc for m in ensemble), f"Models differ in class counts {[m.nc for m in ensemble]}"
|
1532
|
-
return ensemble
|
1533
|
-
|
1534
|
-
|
1535
|
-
def attempt_load_one_weight(weight, device=None, inplace=True, fuse=False):
|
1486
|
+
def load_checkpoint(weight, device=None, inplace=True, fuse=False):
|
1536
1487
|
"""
|
1537
1488
|
Load a single model weights.
|
1538
1489
|
|
1539
1490
|
Args:
|
1540
|
-
weight (str): Model weight path.
|
1491
|
+
weight (str | Path): Model weight path.
|
1541
1492
|
device (torch.device, optional): Device to load model to.
|
1542
1493
|
inplace (bool): Whether to do inplace operations.
|
1543
1494
|
fuse (bool): Whether to fuse model.
|
ultralytics/utils/__init__.py
CHANGED
@@ -49,7 +49,7 @@ MACOS_VERSION = platform.mac_ver()[0] if MACOS else None
|
|
49
49
|
NOT_MACOS14 = not (MACOS and MACOS_VERSION.startswith("14."))
|
50
50
|
ARM64 = platform.machine() in {"arm64", "aarch64"} # ARM64 booleans
|
51
51
|
PYTHON_VERSION = platform.python_version()
|
52
|
-
TORCH_VERSION = torch.__version__
|
52
|
+
TORCH_VERSION = str(torch.__version__) # Normalize torch.__version__ (PyTorch>1.9 returns TorchVersion objects)
|
53
53
|
TORCHVISION_VERSION = importlib.metadata.version("torchvision") # faster than importing torchvision
|
54
54
|
IS_VSCODE = os.environ.get("TERM_PROGRAM", False) == "vscode"
|
55
55
|
RKNN_CHIPS = frozenset(
|
@@ -132,6 +132,10 @@ os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3" # suppress verbose TF compiler warning
|
|
132
132
|
os.environ["TORCH_CPP_LOG_LEVEL"] = "ERROR" # suppress "NNPACK.cpp could not initialize NNPACK" warnings
|
133
133
|
os.environ["KINETO_LOG_LEVEL"] = "5" # suppress verbose PyTorch profiler output when computing FLOPs
|
134
134
|
|
135
|
+
# Precompiled type tuples for faster isinstance() checks
|
136
|
+
FLOAT_OR_INT = (float, int)
|
137
|
+
STR_OR_PATH = (str, Path)
|
138
|
+
|
135
139
|
|
136
140
|
class DataExportMixin:
|
137
141
|
"""
|
ultralytics/utils/checks.py
CHANGED
@@ -36,6 +36,7 @@ from ultralytics.utils import (
|
|
36
36
|
PYTHON_VERSION,
|
37
37
|
RKNN_CHIPS,
|
38
38
|
ROOT,
|
39
|
+
TORCH_VERSION,
|
39
40
|
TORCHVISION_VERSION,
|
40
41
|
USER_CONFIG_DIR,
|
41
42
|
WINDOWS,
|
@@ -464,7 +465,7 @@ def check_torchvision():
|
|
464
465
|
}
|
465
466
|
|
466
467
|
# Check major and minor versions
|
467
|
-
v_torch = ".".join(
|
468
|
+
v_torch = ".".join(TORCH_VERSION.split("+", 1)[0].split(".")[:2])
|
468
469
|
if v_torch in compatibility_table:
|
469
470
|
compatible_versions = compatibility_table[v_torch]
|
470
471
|
v_torchvision = ".".join(TORCHVISION_VERSION.split("+", 1)[0].split(".")[:2])
|
ultralytics/utils/tal.py
CHANGED
@@ -3,12 +3,12 @@
|
|
3
3
|
import torch
|
4
4
|
import torch.nn as nn
|
5
5
|
|
6
|
-
from . import LOGGER
|
6
|
+
from . import LOGGER, TORCH_VERSION
|
7
7
|
from .checks import check_version
|
8
8
|
from .metrics import bbox_iou, probiou
|
9
9
|
from .ops import xywhr2xyxyxyxy
|
10
10
|
|
11
|
-
TORCH_1_10 = check_version(
|
11
|
+
TORCH_1_10 = check_version(TORCH_VERSION, "1.10.0")
|
12
12
|
|
13
13
|
|
14
14
|
class TaskAlignedAssigner(nn.Module):
|
ultralytics/utils/torch_utils.py
CHANGED
@@ -27,6 +27,7 @@ from ultralytics.utils import (
|
|
27
27
|
LOGGER,
|
28
28
|
NUM_THREADS,
|
29
29
|
PYTHON_VERSION,
|
30
|
+
TORCH_VERSION,
|
30
31
|
TORCHVISION_VERSION,
|
31
32
|
WINDOWS,
|
32
33
|
colorstr,
|
@@ -35,15 +36,15 @@ from ultralytics.utils.checks import check_version
|
|
35
36
|
from ultralytics.utils.patches import torch_load
|
36
37
|
|
37
38
|
# Version checks (all default to version>=min_version)
|
38
|
-
TORCH_1_9 = check_version(
|
39
|
-
TORCH_1_13 = check_version(
|
40
|
-
TORCH_2_0 = check_version(
|
41
|
-
TORCH_2_4 = check_version(
|
39
|
+
TORCH_1_9 = check_version(TORCH_VERSION, "1.9.0")
|
40
|
+
TORCH_1_13 = check_version(TORCH_VERSION, "1.13.0")
|
41
|
+
TORCH_2_0 = check_version(TORCH_VERSION, "2.0.0")
|
42
|
+
TORCH_2_4 = check_version(TORCH_VERSION, "2.4.0")
|
42
43
|
TORCHVISION_0_10 = check_version(TORCHVISION_VERSION, "0.10.0")
|
43
44
|
TORCHVISION_0_11 = check_version(TORCHVISION_VERSION, "0.11.0")
|
44
45
|
TORCHVISION_0_13 = check_version(TORCHVISION_VERSION, "0.13.0")
|
45
46
|
TORCHVISION_0_18 = check_version(TORCHVISION_VERSION, "0.18.0")
|
46
|
-
if WINDOWS and check_version(
|
47
|
+
if WINDOWS and check_version(TORCH_VERSION, "==2.4.0"): # reject version 2.4.0 on Windows
|
47
48
|
LOGGER.warning(
|
48
49
|
"Known issue with torch==2.4.0 on Windows with CPU, recommend upgrading to torch>=2.4.1 to resolve "
|
49
50
|
"https://github.com/ultralytics/ultralytics/issues/15049"
|
@@ -165,7 +166,7 @@ def select_device(device="", batch=0, newline=False, verbose=True):
|
|
165
166
|
if isinstance(device, torch.device) or str(device).startswith(("tpu", "intel")):
|
166
167
|
return device
|
167
168
|
|
168
|
-
s = f"Ultralytics {__version__} 🚀 Python-{PYTHON_VERSION} torch-{
|
169
|
+
s = f"Ultralytics {__version__} 🚀 Python-{PYTHON_VERSION} torch-{TORCH_VERSION} "
|
169
170
|
device = str(device).lower()
|
170
171
|
for remove in "cuda:", "none", "(", ")", "[", "]", "'", " ":
|
171
172
|
device = device.replace(remove, "") # to string, 'cuda:0' -> '0' and '(0, 1)' -> '0,1'
|
ultralytics/utils/tqdm.py
CHANGED
@@ -88,11 +88,11 @@ class TQDM:
|
|
88
88
|
mininterval: float = 0.1,
|
89
89
|
disable: bool | None = None,
|
90
90
|
unit: str = "it",
|
91
|
-
unit_scale: bool =
|
91
|
+
unit_scale: bool = True,
|
92
92
|
unit_divisor: int = 1000,
|
93
|
-
bar_format: str | None = None,
|
93
|
+
bar_format: str | None = None, # kept for API compatibility; not used for formatting
|
94
94
|
initial: int = 0,
|
95
|
-
**kwargs,
|
95
|
+
**kwargs,
|
96
96
|
) -> None:
|
97
97
|
"""
|
98
98
|
Initialize the TQDM progress bar with specified configuration options.
|
@@ -138,11 +138,8 @@ class TQDM:
|
|
138
138
|
self.mininterval = max(mininterval, self.NONINTERACTIVE_MIN_INTERVAL) if self.noninteractive else mininterval
|
139
139
|
self.initial = initial
|
140
140
|
|
141
|
-
#
|
142
|
-
|
143
|
-
self.bar_format = bar_format or "{desc}: {percent:.0f}% {bar} {n}/{total} {rate} {elapsed}<{remaining}"
|
144
|
-
else:
|
145
|
-
self.bar_format = bar_format or "{desc}: {bar} {n} {rate} {elapsed}"
|
141
|
+
# Kept for API compatibility (unused for f-string formatting)
|
142
|
+
self.bar_format = bar_format
|
146
143
|
|
147
144
|
self.file = file or sys.stdout
|
148
145
|
|
@@ -151,48 +148,31 @@ class TQDM:
|
|
151
148
|
self.last_print_n = self.initial
|
152
149
|
self.last_print_t = time.time()
|
153
150
|
self.start_t = time.time()
|
154
|
-
self.last_rate = 0
|
151
|
+
self.last_rate = 0.0
|
155
152
|
self.closed = False
|
153
|
+
self.is_bytes = unit_scale and unit in ("B", "bytes")
|
154
|
+
self.scales = (
|
155
|
+
[(1073741824, "GB/s"), (1048576, "MB/s"), (1024, "KB/s")]
|
156
|
+
if self.is_bytes
|
157
|
+
else [(1e9, f"G{self.unit}/s"), (1e6, f"M{self.unit}/s"), (1e3, f"K{self.unit}/s")]
|
158
|
+
)
|
156
159
|
|
157
|
-
# Display initial bar if we have total and not disabled
|
158
160
|
if not self.disable and self.total and not self.noninteractive:
|
159
161
|
self._display()
|
160
162
|
|
161
163
|
def _format_rate(self, rate: float) -> str:
|
162
|
-
"""Format rate with
|
164
|
+
"""Format rate with units."""
|
163
165
|
if rate <= 0:
|
164
166
|
return ""
|
167
|
+
fallback = f"{rate:.1f}B/s" if self.is_bytes else f"{rate:.1f}{self.unit}/s"
|
168
|
+
return next((f"{rate / t:.1f}{u}" for t, u in self.scales if rate >= t), fallback)
|
165
169
|
|
166
|
-
|
167
|
-
if self.unit in ("B", "bytes") and self.unit_scale:
|
168
|
-
return next(
|
169
|
-
(
|
170
|
-
f"{rate / threshold:.1f}{unit}"
|
171
|
-
for threshold, unit in [
|
172
|
-
(1073741824, "GB/s"),
|
173
|
-
(1048576, "MB/s"),
|
174
|
-
(1024, "KB/s"),
|
175
|
-
]
|
176
|
-
if rate >= threshold
|
177
|
-
),
|
178
|
-
f"{rate:.1f}B/s",
|
179
|
-
)
|
180
|
-
# For other scalable units, use decimal units
|
181
|
-
if self.unit_scale and self.unit in ("it", "items", ""):
|
182
|
-
for threshold, prefix in [(1000000, "M"), (1000, "K")]:
|
183
|
-
if rate >= threshold:
|
184
|
-
return f"{rate / threshold:.1f}{prefix}{self.unit}/s"
|
185
|
-
|
186
|
-
# Default formatting
|
187
|
-
precision = ".1f" if rate >= 1 else ".2f"
|
188
|
-
return f"{rate:{precision}}{self.unit}/s"
|
189
|
-
|
190
|
-
def _format_num(self, num: int) -> str:
|
170
|
+
def _format_num(self, num: int | float) -> str:
|
191
171
|
"""Format number with optional unit scaling."""
|
192
|
-
if not self.unit_scale or self.
|
172
|
+
if not self.unit_scale or not self.is_bytes:
|
193
173
|
return str(num)
|
194
174
|
|
195
|
-
for unit in
|
175
|
+
for unit in ("", "K", "M", "G", "T"):
|
196
176
|
if abs(num) < self.unit_divisor:
|
197
177
|
return f"{num:3.1f}{unit}B" if unit else f"{num:.0f}B"
|
198
178
|
num /= self.unit_divisor
|
@@ -224,8 +204,7 @@ class TQDM:
|
|
224
204
|
"""Check if display should update."""
|
225
205
|
if self.noninteractive:
|
226
206
|
return False
|
227
|
-
|
228
|
-
return True if self.total and self.n >= self.total else dt >= self.mininterval
|
207
|
+
return (self.total is not None and self.n >= self.total) or (dt >= self.mininterval)
|
229
208
|
|
230
209
|
def _display(self, final: bool = False) -> None:
|
231
210
|
"""Display progress bar."""
|
@@ -240,8 +219,8 @@ class TQDM:
|
|
240
219
|
return
|
241
220
|
|
242
221
|
# Calculate rate (avoid crazy numbers)
|
243
|
-
if dt > self.MIN_RATE_CALC_INTERVAL:
|
244
|
-
rate = dn / dt
|
222
|
+
if dt > self.MIN_RATE_CALC_INTERVAL:
|
223
|
+
rate = dn / dt if dt else 0.0
|
245
224
|
# Smooth rate for reasonable values, use raw rate for very high values
|
246
225
|
if rate < self.MAX_SMOOTHED_RATE:
|
247
226
|
self.last_rate = self.RATE_SMOOTHING_FACTOR * rate + (1 - self.RATE_SMOOTHING_FACTOR) * self.last_rate
|
@@ -249,8 +228,8 @@ class TQDM:
|
|
249
228
|
else:
|
250
229
|
rate = self.last_rate
|
251
230
|
|
252
|
-
# At completion, use
|
253
|
-
if self.
|
231
|
+
# At completion, use overall rate
|
232
|
+
if self.total and self.n >= self.total:
|
254
233
|
overall_elapsed = current_time - self.start_t
|
255
234
|
if overall_elapsed > 0:
|
256
235
|
rate = self.n / overall_elapsed
|
@@ -260,45 +239,41 @@ class TQDM:
|
|
260
239
|
self.last_print_t = current_time
|
261
240
|
elapsed = current_time - self.start_t
|
262
241
|
|
263
|
-
#
|
242
|
+
# Remaining time
|
264
243
|
remaining_str = ""
|
265
244
|
if self.total and 0 < self.n < self.total and elapsed > 0:
|
266
|
-
est_rate = rate or self.n / elapsed
|
267
|
-
remaining_str = self._format_time((self.total - self.n) / est_rate)
|
245
|
+
est_rate = rate or (self.n / elapsed)
|
246
|
+
remaining_str = f"<{self._format_time((self.total - self.n) / est_rate)}"
|
268
247
|
|
269
|
-
#
|
248
|
+
# Numbers and percent
|
270
249
|
if self.total:
|
271
250
|
percent = (self.n / self.total) * 100
|
272
|
-
|
273
|
-
|
274
|
-
|
275
|
-
|
276
|
-
|
251
|
+
n_str = self._format_num(self.n)
|
252
|
+
t_str = self._format_num(self.total)
|
253
|
+
if self.is_bytes:
|
254
|
+
# Collapse suffix only when identical (e.g. "5.4/5.4MB")
|
255
|
+
if n_str[-2] == t_str[-2]:
|
256
|
+
n_str = n_str.rstrip("KMGTPB") # Remove unit suffix from current if different than total
|
277
257
|
else:
|
278
|
-
percent = 0
|
279
|
-
|
280
|
-
total = "?"
|
258
|
+
percent = 0.0
|
259
|
+
n_str, t_str = self._format_num(self.n), "?"
|
281
260
|
|
282
261
|
elapsed_str = self._format_time(elapsed)
|
262
|
+
rate_str = self._format_rate(rate) or (self._format_rate(self.n / elapsed) if elapsed > 0 else "")
|
283
263
|
|
284
|
-
|
285
|
-
|
286
|
-
|
264
|
+
bar = self._generate_bar()
|
265
|
+
|
266
|
+
# Compose progress line via f-strings (two shapes: with/without total)
|
267
|
+
if self.total:
|
268
|
+
if self.is_bytes and self.n >= self.total:
|
269
|
+
# Completed bytes: show only final size
|
270
|
+
progress_str = f"{self.desc}: {percent:.0f}% {bar} {t_str} {rate_str} {elapsed_str}"
|
271
|
+
else:
|
272
|
+
progress_str = (
|
273
|
+
f"{self.desc}: {percent:.0f}% {bar} {n_str}/{t_str} {rate_str} {elapsed_str}{remaining_str}"
|
274
|
+
)
|
287
275
|
else:
|
288
|
-
|
289
|
-
|
290
|
-
# Format progress string
|
291
|
-
progress_str = format_str.format(
|
292
|
-
desc=self.desc,
|
293
|
-
percent=percent,
|
294
|
-
bar=self._generate_bar(),
|
295
|
-
n=n,
|
296
|
-
total=total,
|
297
|
-
rate=self._format_rate(rate) or (self._format_rate(self.n / elapsed) if elapsed > 0 else ""),
|
298
|
-
remaining=remaining_str,
|
299
|
-
elapsed=elapsed_str,
|
300
|
-
unit=self.unit,
|
301
|
-
)
|
276
|
+
progress_str = f"{self.desc}: {bar} {n_str} {rate_str} {elapsed_str}"
|
302
277
|
|
303
278
|
# Write to output
|
304
279
|
try:
|
@@ -336,7 +311,7 @@ class TQDM:
|
|
336
311
|
if self.closed:
|
337
312
|
return
|
338
313
|
|
339
|
-
self.closed = True
|
314
|
+
self.closed = True
|
340
315
|
|
341
316
|
if not self.disable:
|
342
317
|
# Final display
|
ultralytics/utils/tuner.py
CHANGED
@@ -129,7 +129,7 @@ def run_ray_tune(
|
|
129
129
|
{**train_args, **{"exist_ok": train_args.pop("resume", False)}}, # resume w/ same tune_dir
|
130
130
|
),
|
131
131
|
name=train_args.pop("name", "tune"), # runs/{task}/{tune_dir}
|
132
|
-
)
|
132
|
+
) # must be absolute dir
|
133
133
|
tune_dir.mkdir(parents=True, exist_ok=True)
|
134
134
|
if tune.Tuner.can_restore(tune_dir):
|
135
135
|
LOGGER.info(f"{colorstr('Tuner: ')} Resuming tuning run {tune_dir}...")
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|