dgenerate-ultralytics-headless 8.3.189__py3-none-any.whl → 8.3.190__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {dgenerate_ultralytics_headless-8.3.189.dist-info → dgenerate_ultralytics_headless-8.3.190.dist-info}/METADATA +1 -1
- {dgenerate_ultralytics_headless-8.3.189.dist-info → dgenerate_ultralytics_headless-8.3.190.dist-info}/RECORD +33 -32
- ultralytics/__init__.py +1 -1
- ultralytics/data/utils.py +2 -2
- ultralytics/engine/exporter.py +5 -2
- ultralytics/engine/predictor.py +1 -1
- ultralytics/engine/results.py +5 -5
- ultralytics/engine/trainer.py +2 -0
- ultralytics/engine/validator.py +3 -1
- ultralytics/hub/__init__.py +6 -2
- ultralytics/hub/auth.py +2 -2
- ultralytics/hub/google/__init__.py +2 -2
- ultralytics/hub/session.py +3 -5
- ultralytics/hub/utils.py +5 -5
- ultralytics/models/yolo/detect/predict.py +2 -2
- ultralytics/models/yolo/detect/val.py +2 -2
- ultralytics/models/yolo/obb/val.py +2 -1
- ultralytics/nn/autobackend.py +28 -38
- ultralytics/nn/modules/__init__.py +3 -3
- ultralytics/nn/modules/head.py +5 -1
- ultralytics/utils/__init__.py +34 -12
- ultralytics/utils/callbacks/platform.py +2 -1
- ultralytics/utils/checks.py +3 -3
- ultralytics/utils/downloads.py +2 -2
- ultralytics/utils/logger.py +7 -6
- ultralytics/utils/nms.py +346 -0
- ultralytics/utils/ops.py +80 -249
- ultralytics/utils/tal.py +1 -1
- ultralytics/utils/tqdm.py +34 -23
- {dgenerate_ultralytics_headless-8.3.189.dist-info → dgenerate_ultralytics_headless-8.3.190.dist-info}/WHEEL +0 -0
- {dgenerate_ultralytics_headless-8.3.189.dist-info → dgenerate_ultralytics_headless-8.3.190.dist-info}/entry_points.txt +0 -0
- {dgenerate_ultralytics_headless-8.3.189.dist-info → dgenerate_ultralytics_headless-8.3.190.dist-info}/licenses/LICENSE +0 -0
- {dgenerate_ultralytics_headless-8.3.189.dist-info → dgenerate_ultralytics_headless-8.3.190.dist-info}/top_level.txt +0 -0
ultralytics/nn/modules/head.py
CHANGED
@@ -10,6 +10,7 @@ import torch.nn as nn
|
|
10
10
|
import torch.nn.functional as F
|
11
11
|
from torch.nn.init import constant_, xavier_uniform_
|
12
12
|
|
13
|
+
from ultralytics.utils import NOT_MACOS14
|
13
14
|
from ultralytics.utils.tal import TORCH_1_10, dist2bbox, dist2rbox, make_anchors
|
14
15
|
from ultralytics.utils.torch_utils import fuse_conv_and_bn, smart_inference_mode
|
15
16
|
|
@@ -408,7 +409,10 @@ class Pose(Detect):
|
|
408
409
|
else:
|
409
410
|
y = kpts.clone()
|
410
411
|
if ndim == 3:
|
411
|
-
|
412
|
+
if NOT_MACOS14:
|
413
|
+
y[:, 2::ndim].sigmoid_()
|
414
|
+
else: # Apple macOS14 MPS bug https://github.com/ultralytics/ultralytics/pull/21878
|
415
|
+
y[:, 2::ndim] = y[:, 2::ndim].sigmoid()
|
412
416
|
y[:, 0::ndim] = (y[:, 0::ndim] * 2.0 + (self.anchors[0] - 0.5)) * self.strides
|
413
417
|
y[:, 1::ndim] = (y[:, 1::ndim] * 2.0 + (self.anchors[1] - 0.5)) * self.strides
|
414
418
|
return y
|
ultralytics/utils/__init__.py
CHANGED
@@ -8,6 +8,7 @@ import logging
|
|
8
8
|
import os
|
9
9
|
import platform
|
10
10
|
import re
|
11
|
+
import socket
|
11
12
|
import subprocess
|
12
13
|
import sys
|
13
14
|
import threading
|
@@ -44,6 +45,7 @@ VERBOSE = str(os.getenv("YOLO_VERBOSE", True)).lower() == "true" # global verbo
|
|
44
45
|
LOGGING_NAME = "ultralytics"
|
45
46
|
MACOS, LINUX, WINDOWS = (platform.system() == x for x in ["Darwin", "Linux", "Windows"]) # environment booleans
|
46
47
|
MACOS_VERSION = platform.mac_ver()[0] if MACOS else None
|
48
|
+
NOT_MACOS14 = not (MACOS and MACOS_VERSION.startswith("14."))
|
47
49
|
ARM64 = platform.machine() in {"arm64", "aarch64"} # ARM64 booleans
|
48
50
|
PYTHON_VERSION = platform.python_version()
|
49
51
|
TORCH_VERSION = torch.__version__
|
@@ -752,20 +754,21 @@ def is_jetson(jetpack=None) -> bool:
|
|
752
754
|
|
753
755
|
def is_online() -> bool:
|
754
756
|
"""
|
755
|
-
|
757
|
+
Fast online check using DNS (v4/v6) resolution (Cloudflare + Google).
|
756
758
|
|
757
759
|
Returns:
|
758
760
|
(bool): True if connection is successful, False otherwise.
|
759
761
|
"""
|
760
|
-
|
761
|
-
|
762
|
-
import socket
|
762
|
+
if str(os.getenv("YOLO_OFFLINE", "")).lower() == "true":
|
763
|
+
return False
|
763
764
|
|
764
|
-
|
765
|
-
|
765
|
+
for host in ("one.one.one.one", "dns.google"):
|
766
|
+
try:
|
767
|
+
socket.getaddrinfo(host, 0, socket.AF_UNSPEC, 0, 0, socket.AI_ADDRCONFIG)
|
766
768
|
return True
|
767
|
-
|
768
|
-
|
769
|
+
except OSError:
|
770
|
+
continue
|
771
|
+
return False
|
769
772
|
|
770
773
|
|
771
774
|
def is_pip_package(filepath: str = __name__) -> bool:
|
@@ -842,6 +845,7 @@ def is_git_dir():
|
|
842
845
|
return GIT_DIR is not None
|
843
846
|
|
844
847
|
|
848
|
+
@lru_cache(maxsize=1)
|
845
849
|
def get_git_origin_url():
|
846
850
|
"""
|
847
851
|
Retrieve the origin URL of a git repository.
|
@@ -851,12 +855,14 @@ def get_git_origin_url():
|
|
851
855
|
"""
|
852
856
|
if IS_GIT_DIR:
|
853
857
|
try:
|
854
|
-
|
855
|
-
|
858
|
+
return subprocess.check_output(
|
859
|
+
["git", "config", "--get", "remote.origin.url"], stderr=subprocess.DEVNULL, text=True
|
860
|
+
).strip()
|
856
861
|
except subprocess.CalledProcessError:
|
857
862
|
return None
|
858
863
|
|
859
864
|
|
865
|
+
@lru_cache(maxsize=1)
|
860
866
|
def get_git_branch():
|
861
867
|
"""
|
862
868
|
Return the current git branch name. If not in a git repository, return None.
|
@@ -866,8 +872,24 @@ def get_git_branch():
|
|
866
872
|
"""
|
867
873
|
if IS_GIT_DIR:
|
868
874
|
try:
|
869
|
-
|
870
|
-
|
875
|
+
return subprocess.check_output(
|
876
|
+
["git", "rev-parse", "--abbrev-ref", "HEAD"], stderr=subprocess.DEVNULL, text=True
|
877
|
+
).strip()
|
878
|
+
except subprocess.CalledProcessError:
|
879
|
+
return None
|
880
|
+
|
881
|
+
|
882
|
+
@lru_cache(maxsize=1)
|
883
|
+
def get_git_commit():
|
884
|
+
"""
|
885
|
+
Return the current git commit hash. If not in a git repository, return None.
|
886
|
+
|
887
|
+
Returns:
|
888
|
+
(str | None): The current git commit hash or None if not a git directory.
|
889
|
+
"""
|
890
|
+
if IS_GIT_DIR:
|
891
|
+
try:
|
892
|
+
return subprocess.check_output(["git", "rev-parse", "HEAD"], stderr=subprocess.DEVNULL, text=True).strip()
|
871
893
|
except subprocess.CalledProcessError:
|
872
894
|
return None
|
873
895
|
|
@@ -1,12 +1,13 @@
|
|
1
1
|
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
2
2
|
|
3
3
|
from ultralytics.utils import RANK, SETTINGS
|
4
|
-
from ultralytics.utils.logger import DEFAULT_LOG_PATH, ConsoleLogger, SystemLogger
|
5
4
|
|
6
5
|
|
7
6
|
def on_pretrain_routine_start(trainer):
|
8
7
|
"""Initialize and start console logging immediately at the very beginning."""
|
9
8
|
if RANK in {-1, 0}:
|
9
|
+
from ultralytics.utils.logger import DEFAULT_LOG_PATH, ConsoleLogger, SystemLogger
|
10
|
+
|
10
11
|
trainer.system_logger = SystemLogger()
|
11
12
|
trainer.console_logger = ConsoleLogger(DEFAULT_LOG_PATH)
|
12
13
|
trainer.console_logger.start_capture()
|
ultralytics/utils/checks.py
CHANGED
@@ -274,7 +274,7 @@ def check_latest_pypi_version(package_name="ultralytics"):
|
|
274
274
|
Returns:
|
275
275
|
(str): The latest version of the package.
|
276
276
|
"""
|
277
|
-
import requests # slow import
|
277
|
+
import requests # scoped as slow import
|
278
278
|
|
279
279
|
try:
|
280
280
|
requests.packages.urllib3.disable_warnings() # Disable the InsecureRequestWarning
|
@@ -637,7 +637,7 @@ def check_yolo(verbose=True, device=""):
|
|
637
637
|
verbose (bool): Whether to print verbose information.
|
638
638
|
device (str | torch.device): Device to use for YOLO.
|
639
639
|
"""
|
640
|
-
import psutil
|
640
|
+
import psutil # scoped as slow import
|
641
641
|
|
642
642
|
from ultralytics.utils.torch_utils import select_device
|
643
643
|
|
@@ -670,7 +670,7 @@ def collect_system_info():
|
|
670
670
|
Returns:
|
671
671
|
(dict): Dictionary containing system information.
|
672
672
|
"""
|
673
|
-
import psutil
|
673
|
+
import psutil # scoped as slow import
|
674
674
|
|
675
675
|
from ultralytics.utils import ENVIRONMENT # scope to avoid circular import
|
676
676
|
from ultralytics.utils.torch_utils import get_cpu_info, get_gpu_info
|
ultralytics/utils/downloads.py
CHANGED
@@ -252,7 +252,7 @@ def get_google_drive_file_info(link: str) -> tuple[str, str | None]:
|
|
252
252
|
>>> link = "https://drive.google.com/file/d/1cqT-cJgANNrhIHCrEufUYhQ4RqiWG_lJ/view?usp=drive_link"
|
253
253
|
>>> url, filename = get_google_drive_file_info(link)
|
254
254
|
"""
|
255
|
-
import requests # slow import
|
255
|
+
import requests # scoped as slow import
|
256
256
|
|
257
257
|
file_id = link.split("/d/")[1].split("/view", 1)[0]
|
258
258
|
drive_url = f"https://drive.google.com/uc?export=download&id={file_id}"
|
@@ -416,7 +416,7 @@ def get_github_assets(
|
|
416
416
|
Examples:
|
417
417
|
>>> tag, assets = get_github_assets(repo="ultralytics/assets", version="latest")
|
418
418
|
"""
|
419
|
-
import requests # slow import
|
419
|
+
import requests # scoped as slow import
|
420
420
|
|
421
421
|
if version != "latest":
|
422
422
|
version = f"tags/{version}" # i.e. tags/v6.2
|
ultralytics/utils/logger.py
CHANGED
@@ -9,9 +9,6 @@ import time
|
|
9
9
|
from datetime import datetime
|
10
10
|
from pathlib import Path
|
11
11
|
|
12
|
-
import psutil
|
13
|
-
import requests
|
14
|
-
|
15
12
|
from ultralytics.utils import MACOS, RANK
|
16
13
|
from ultralytics.utils.checks import check_requirements
|
17
14
|
|
@@ -189,8 +186,10 @@ class ConsoleLogger:
|
|
189
186
|
"""Write log to API endpoint or local file destination."""
|
190
187
|
try:
|
191
188
|
if self.is_api:
|
189
|
+
import requests # scoped as slow import
|
190
|
+
|
192
191
|
payload = {"timestamp": datetime.now().isoformat(), "message": text.strip()}
|
193
|
-
requests.post(self.destination, json=payload, timeout=5)
|
192
|
+
requests.post(str(self.destination), json=payload, timeout=5)
|
194
193
|
else:
|
195
194
|
self.destination.parent.mkdir(parents=True, exist_ok=True)
|
196
195
|
with self.destination.open("a", encoding="utf-8") as f:
|
@@ -237,7 +236,6 @@ class SystemLogger:
|
|
237
236
|
Attributes:
|
238
237
|
pynvml: NVIDIA pynvml module instance if successfully imported, None otherwise.
|
239
238
|
nvidia_initialized (bool): Whether NVIDIA GPU monitoring is available and initialized.
|
240
|
-
process (psutil.Process): Current psutil.Process instance for process-specific metrics.
|
241
239
|
net_start: Initial network I/O counters for calculating cumulative usage.
|
242
240
|
disk_start: Initial disk I/O counters for calculating cumulative usage.
|
243
241
|
|
@@ -260,9 +258,10 @@ class SystemLogger:
|
|
260
258
|
|
261
259
|
def __init__(self):
|
262
260
|
"""Initialize the system logger."""
|
261
|
+
import psutil # scoped as slow import
|
262
|
+
|
263
263
|
self.pynvml = None
|
264
264
|
self.nvidia_initialized = self._init_nvidia()
|
265
|
-
self.process = psutil.Process()
|
266
265
|
self.net_start = psutil.net_io_counters()
|
267
266
|
self.disk_start = psutil.disk_io_counters()
|
268
267
|
|
@@ -315,6 +314,8 @@ class SystemLogger:
|
|
315
314
|
Returns:
|
316
315
|
metrics (dict): System metrics containing 'cpu', 'ram', 'disk', 'network', 'gpus' with respective usage data.
|
317
316
|
"""
|
317
|
+
import psutil # scoped as slow import
|
318
|
+
|
318
319
|
net = psutil.net_io_counters()
|
319
320
|
disk = psutil.disk_io_counters()
|
320
321
|
memory = psutil.virtual_memory()
|
ultralytics/utils/nms.py
ADDED
@@ -0,0 +1,346 @@
|
|
1
|
+
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
2
|
+
|
3
|
+
import sys
|
4
|
+
import time
|
5
|
+
|
6
|
+
import torch
|
7
|
+
|
8
|
+
from ultralytics.utils import LOGGER
|
9
|
+
from ultralytics.utils.metrics import batch_probiou, box_iou
|
10
|
+
from ultralytics.utils.ops import xywh2xyxy
|
11
|
+
|
12
|
+
|
13
|
+
def non_max_suppression(
|
14
|
+
prediction,
|
15
|
+
conf_thres: float = 0.25,
|
16
|
+
iou_thres: float = 0.45,
|
17
|
+
classes=None,
|
18
|
+
agnostic: bool = False,
|
19
|
+
multi_label: bool = False,
|
20
|
+
labels=(),
|
21
|
+
max_det: int = 300,
|
22
|
+
nc: int = 0, # number of classes (optional)
|
23
|
+
max_time_img: float = 0.05,
|
24
|
+
max_nms: int = 30000,
|
25
|
+
max_wh: int = 7680,
|
26
|
+
rotated: bool = False,
|
27
|
+
end2end: bool = False,
|
28
|
+
return_idxs: bool = False,
|
29
|
+
):
|
30
|
+
"""
|
31
|
+
Perform non-maximum suppression (NMS) on prediction results.
|
32
|
+
|
33
|
+
Applies NMS to filter overlapping bounding boxes based on confidence and IoU thresholds. Supports multiple
|
34
|
+
detection formats including standard boxes, rotated boxes, and masks.
|
35
|
+
|
36
|
+
Args:
|
37
|
+
prediction (torch.Tensor): Predictions with shape (batch_size, num_classes + 4 + num_masks, num_boxes)
|
38
|
+
containing boxes, classes, and optional masks.
|
39
|
+
conf_thres (float): Confidence threshold for filtering detections. Valid values are between 0.0 and 1.0.
|
40
|
+
iou_thres (float): IoU threshold for NMS filtering. Valid values are between 0.0 and 1.0.
|
41
|
+
classes (List[int], optional): List of class indices to consider. If None, all classes are considered.
|
42
|
+
agnostic (bool): Whether to perform class-agnostic NMS.
|
43
|
+
multi_label (bool): Whether each box can have multiple labels.
|
44
|
+
labels (List[List[Union[int, float, torch.Tensor]]]): A priori labels for each image.
|
45
|
+
max_det (int): Maximum number of detections to keep per image.
|
46
|
+
nc (int): Number of classes. Indices after this are considered masks.
|
47
|
+
max_time_img (float): Maximum time in seconds for processing one image.
|
48
|
+
max_nms (int): Maximum number of boxes for NMS.
|
49
|
+
max_wh (int): Maximum box width and height in pixels.
|
50
|
+
rotated (bool): Whether to handle Oriented Bounding Boxes (OBB).
|
51
|
+
end2end (bool): Whether the model is end-to-end and doesn't require NMS.
|
52
|
+
return_idxs (bool): Whether to return the indices of kept detections.
|
53
|
+
|
54
|
+
Returns:
|
55
|
+
output (List[torch.Tensor]): List of detections per image with shape (num_boxes, 6 + num_masks)
|
56
|
+
containing (x1, y1, x2, y2, confidence, class, mask1, mask2, ...).
|
57
|
+
keepi (List[torch.Tensor]): Indices of kept detections if return_idxs=True.
|
58
|
+
"""
|
59
|
+
# Checks
|
60
|
+
assert 0 <= conf_thres <= 1, f"Invalid Confidence threshold {conf_thres}, valid values are between 0.0 and 1.0"
|
61
|
+
assert 0 <= iou_thres <= 1, f"Invalid IoU {iou_thres}, valid values are between 0.0 and 1.0"
|
62
|
+
if isinstance(prediction, (list, tuple)): # YOLOv8 model in validation model, output = (inference_out, loss_out)
|
63
|
+
prediction = prediction[0] # select only inference output
|
64
|
+
if classes is not None:
|
65
|
+
classes = torch.tensor(classes, device=prediction.device)
|
66
|
+
|
67
|
+
if prediction.shape[-1] == 6 or end2end: # end-to-end model (BNC, i.e. 1,300,6)
|
68
|
+
output = [pred[pred[:, 4] > conf_thres][:max_det] for pred in prediction]
|
69
|
+
if classes is not None:
|
70
|
+
output = [pred[(pred[:, 5:6] == classes).any(1)] for pred in output]
|
71
|
+
return output
|
72
|
+
|
73
|
+
bs = prediction.shape[0] # batch size (BCN, i.e. 1,84,6300)
|
74
|
+
nc = nc or (prediction.shape[1] - 4) # number of classes
|
75
|
+
extra = prediction.shape[1] - nc - 4 # number of extra info
|
76
|
+
mi = 4 + nc # mask start index
|
77
|
+
xc = prediction[:, 4:mi].amax(1) > conf_thres # candidates
|
78
|
+
xinds = torch.arange(prediction.shape[-1], device=prediction.device).expand(bs, -1)[..., None] # to track idxs
|
79
|
+
|
80
|
+
# Settings
|
81
|
+
# min_wh = 2 # (pixels) minimum box width and height
|
82
|
+
time_limit = 2.0 + max_time_img * bs # seconds to quit after
|
83
|
+
multi_label &= nc > 1 # multiple labels per box (adds 0.5ms/img)
|
84
|
+
|
85
|
+
prediction = prediction.transpose(-1, -2) # shape(1,84,6300) to shape(1,6300,84)
|
86
|
+
if not rotated:
|
87
|
+
prediction[..., :4] = xywh2xyxy(prediction[..., :4]) # xywh to xyxy
|
88
|
+
|
89
|
+
t = time.time()
|
90
|
+
output = [torch.zeros((0, 6 + extra), device=prediction.device)] * bs
|
91
|
+
keepi = [torch.zeros((0, 1), device=prediction.device)] * bs # to store the kept idxs
|
92
|
+
for xi, (x, xk) in enumerate(zip(prediction, xinds)): # image index, (preds, preds indices)
|
93
|
+
# Apply constraints
|
94
|
+
# x[((x[:, 2:4] < min_wh) | (x[:, 2:4] > max_wh)).any(1), 4] = 0 # width-height
|
95
|
+
filt = xc[xi] # confidence
|
96
|
+
x = x[filt]
|
97
|
+
if return_idxs:
|
98
|
+
xk = xk[filt]
|
99
|
+
|
100
|
+
# Cat apriori labels if autolabelling
|
101
|
+
if labels and len(labels[xi]) and not rotated:
|
102
|
+
lb = labels[xi]
|
103
|
+
v = torch.zeros((len(lb), nc + extra + 4), device=x.device)
|
104
|
+
v[:, :4] = xywh2xyxy(lb[:, 1:5]) # box
|
105
|
+
v[range(len(lb)), lb[:, 0].long() + 4] = 1.0 # cls
|
106
|
+
x = torch.cat((x, v), 0)
|
107
|
+
|
108
|
+
# If none remain process next image
|
109
|
+
if not x.shape[0]:
|
110
|
+
continue
|
111
|
+
|
112
|
+
# Detections matrix nx6 (xyxy, conf, cls)
|
113
|
+
box, cls, mask = x.split((4, nc, extra), 1)
|
114
|
+
|
115
|
+
if multi_label:
|
116
|
+
i, j = torch.where(cls > conf_thres)
|
117
|
+
x = torch.cat((box[i], x[i, 4 + j, None], j[:, None].float(), mask[i]), 1)
|
118
|
+
if return_idxs:
|
119
|
+
xk = xk[i]
|
120
|
+
else: # best class only
|
121
|
+
conf, j = cls.max(1, keepdim=True)
|
122
|
+
filt = conf.view(-1) > conf_thres
|
123
|
+
x = torch.cat((box, conf, j.float(), mask), 1)[filt]
|
124
|
+
if return_idxs:
|
125
|
+
xk = xk[filt]
|
126
|
+
|
127
|
+
# Filter by class
|
128
|
+
if classes is not None:
|
129
|
+
filt = (x[:, 5:6] == classes).any(1)
|
130
|
+
x = x[filt]
|
131
|
+
if return_idxs:
|
132
|
+
xk = xk[filt]
|
133
|
+
|
134
|
+
# Check shape
|
135
|
+
n = x.shape[0] # number of boxes
|
136
|
+
if not n: # no boxes
|
137
|
+
continue
|
138
|
+
if n > max_nms: # excess boxes
|
139
|
+
filt = x[:, 4].argsort(descending=True)[:max_nms] # sort by confidence and remove excess boxes
|
140
|
+
x = x[filt]
|
141
|
+
if return_idxs:
|
142
|
+
xk = xk[filt]
|
143
|
+
|
144
|
+
c = x[:, 5:6] * (0 if agnostic else max_wh) # classes
|
145
|
+
scores = x[:, 4] # scores
|
146
|
+
if rotated:
|
147
|
+
boxes = torch.cat((x[:, :2] + c, x[:, 2:4], x[:, -1:]), dim=-1) # xywhr
|
148
|
+
i = TorchNMS.fast_nms(boxes, scores, iou_thres, iou_func=batch_probiou)
|
149
|
+
else:
|
150
|
+
boxes = x[:, :4] + c # boxes (offset by class)
|
151
|
+
# Speed strategy: torchvision for val or already loaded (faster), TorchNMS for predict (lower latency)
|
152
|
+
if "torchvision" in sys.modules:
|
153
|
+
import torchvision # scope as slow import
|
154
|
+
|
155
|
+
i = torchvision.ops.nms(boxes, scores, iou_thres)
|
156
|
+
else:
|
157
|
+
i = TorchNMS.nms(boxes, scores, iou_thres)
|
158
|
+
i = i[:max_det] # limit detections
|
159
|
+
|
160
|
+
output[xi] = x[i]
|
161
|
+
if return_idxs:
|
162
|
+
keepi[xi] = xk[i].view(-1)
|
163
|
+
if (time.time() - t) > time_limit:
|
164
|
+
LOGGER.warning(f"NMS time limit {time_limit:.3f}s exceeded")
|
165
|
+
break # time limit exceeded
|
166
|
+
|
167
|
+
return (output, keepi) if return_idxs else output
|
168
|
+
|
169
|
+
|
170
|
+
class TorchNMS:
|
171
|
+
"""
|
172
|
+
Ultralytics custom NMS implementation optimized for YOLO.
|
173
|
+
|
174
|
+
This class provides static methods for performing non-maximum suppression (NMS) operations on bounding boxes,
|
175
|
+
including both standard NMS and batched NMS for multi-class scenarios.
|
176
|
+
|
177
|
+
Methods:
|
178
|
+
nms: Optimized NMS with early termination that matches torchvision behavior exactly.
|
179
|
+
batched_nms: Batched NMS for class-aware suppression.
|
180
|
+
|
181
|
+
Examples:
|
182
|
+
Perform standard NMS on boxes and scores
|
183
|
+
>>> boxes = torch.tensor([[0, 0, 10, 10], [5, 5, 15, 15]])
|
184
|
+
>>> scores = torch.tensor([0.9, 0.8])
|
185
|
+
>>> keep = TorchNMS.nms(boxes, scores, 0.5)
|
186
|
+
"""
|
187
|
+
|
188
|
+
@staticmethod
|
189
|
+
def fast_nms(
|
190
|
+
boxes: torch.Tensor,
|
191
|
+
scores: torch.Tensor,
|
192
|
+
iou_threshold: float,
|
193
|
+
use_triu: bool = True,
|
194
|
+
iou_func=box_iou,
|
195
|
+
) -> torch.Tensor:
|
196
|
+
"""
|
197
|
+
Fast-NMS implementation from https://arxiv.org/pdf/1904.02689 using upper triangular matrix operations.
|
198
|
+
|
199
|
+
Args:
|
200
|
+
boxes (torch.Tensor): Bounding boxes with shape (N, 4) in xyxy format.
|
201
|
+
scores (torch.Tensor): Confidence scores with shape (N,).
|
202
|
+
iou_threshold (float): IoU threshold for suppression.
|
203
|
+
use_triu (bool): Whether to use torch.triu operator for upper triangular matrix operations.
|
204
|
+
iou_func (callable): Function to compute IoU between boxes.
|
205
|
+
|
206
|
+
Returns:
|
207
|
+
(torch.Tensor): Indices of boxes to keep after NMS.
|
208
|
+
|
209
|
+
Examples:
|
210
|
+
Apply NMS to a set of boxes
|
211
|
+
>>> boxes = torch.tensor([[0, 0, 10, 10], [5, 5, 15, 15]])
|
212
|
+
>>> scores = torch.tensor([0.9, 0.8])
|
213
|
+
>>> keep = TorchNMS.nms(boxes, scores, 0.5)
|
214
|
+
"""
|
215
|
+
if boxes.numel() == 0:
|
216
|
+
return torch.empty((0,), dtype=torch.int64, device=boxes.device)
|
217
|
+
|
218
|
+
sorted_idx = torch.argsort(scores, descending=True)
|
219
|
+
boxes = boxes[sorted_idx]
|
220
|
+
ious = iou_func(boxes, boxes)
|
221
|
+
if use_triu:
|
222
|
+
ious = ious.triu_(diagonal=1)
|
223
|
+
# NOTE: handle the case when len(boxes) hence exportable by eliminating if-else condition
|
224
|
+
pick = torch.nonzero((ious >= iou_threshold).sum(0) <= 0).squeeze_(-1)
|
225
|
+
else:
|
226
|
+
n = boxes.shape[0]
|
227
|
+
row_idx = torch.arange(n, device=boxes.device).view(-1, 1).expand(-1, n)
|
228
|
+
col_idx = torch.arange(n, device=boxes.device).view(1, -1).expand(n, -1)
|
229
|
+
upper_mask = row_idx < col_idx
|
230
|
+
ious = ious * upper_mask
|
231
|
+
# Zeroing these scores ensures the additional indices would not affect the final results
|
232
|
+
scores[~((ious >= iou_threshold).sum(0) <= 0)] = 0
|
233
|
+
# NOTE: return indices with fixed length to avoid TFLite reshape error
|
234
|
+
pick = torch.topk(scores, scores.shape[0]).indices
|
235
|
+
return sorted_idx[pick]
|
236
|
+
|
237
|
+
@staticmethod
|
238
|
+
def nms(boxes: torch.Tensor, scores: torch.Tensor, iou_threshold: float) -> torch.Tensor:
|
239
|
+
"""
|
240
|
+
Optimized NMS with early termination that matches torchvision behavior exactly.
|
241
|
+
|
242
|
+
Args:
|
243
|
+
boxes (torch.Tensor): Bounding boxes with shape (N, 4) in xyxy format.
|
244
|
+
scores (torch.Tensor): Confidence scores with shape (N,).
|
245
|
+
iou_threshold (float): IoU threshold for suppression.
|
246
|
+
|
247
|
+
Returns:
|
248
|
+
(torch.Tensor): Indices of boxes to keep after NMS.
|
249
|
+
|
250
|
+
Examples:
|
251
|
+
Apply NMS to a set of boxes
|
252
|
+
>>> boxes = torch.tensor([[0, 0, 10, 10], [5, 5, 15, 15]])
|
253
|
+
>>> scores = torch.tensor([0.9, 0.8])
|
254
|
+
>>> keep = TorchNMS.nms(boxes, scores, 0.5)
|
255
|
+
"""
|
256
|
+
if boxes.numel() == 0:
|
257
|
+
return torch.empty((0,), dtype=torch.int64, device=boxes.device)
|
258
|
+
|
259
|
+
# Pre-allocate and extract coordinates once
|
260
|
+
x1, y1, x2, y2 = boxes.unbind(1)
|
261
|
+
areas = (x2 - x1) * (y2 - y1)
|
262
|
+
|
263
|
+
# Sort by scores descending
|
264
|
+
_, order = scores.sort(0, descending=True)
|
265
|
+
|
266
|
+
# Pre-allocate keep list with maximum possible size
|
267
|
+
keep = torch.zeros(order.numel(), dtype=torch.int64, device=boxes.device)
|
268
|
+
keep_idx = 0
|
269
|
+
|
270
|
+
while order.numel() > 0:
|
271
|
+
i = order[0]
|
272
|
+
keep[keep_idx] = i
|
273
|
+
keep_idx += 1
|
274
|
+
|
275
|
+
if order.numel() == 1:
|
276
|
+
break
|
277
|
+
|
278
|
+
# Vectorized IoU calculation for remaining boxes
|
279
|
+
rest = order[1:]
|
280
|
+
xx1 = torch.maximum(x1[i], x1[rest])
|
281
|
+
yy1 = torch.maximum(y1[i], y1[rest])
|
282
|
+
xx2 = torch.minimum(x2[i], x2[rest])
|
283
|
+
yy2 = torch.minimum(y2[i], y2[rest])
|
284
|
+
|
285
|
+
# Fast intersection and IoU
|
286
|
+
w = (xx2 - xx1).clamp_(min=0)
|
287
|
+
h = (yy2 - yy1).clamp_(min=0)
|
288
|
+
inter = w * h
|
289
|
+
|
290
|
+
# Early termination: skip IoU calculation if no intersection
|
291
|
+
if inter.sum() == 0:
|
292
|
+
# No overlaps with current box, keep all remaining boxes
|
293
|
+
remaining_count = rest.numel()
|
294
|
+
keep[keep_idx : keep_idx + remaining_count] = rest
|
295
|
+
keep_idx += remaining_count
|
296
|
+
break
|
297
|
+
|
298
|
+
iou = inter / (areas[i] + areas[rest] - inter)
|
299
|
+
|
300
|
+
# Keep boxes with IoU <= threshold
|
301
|
+
mask = iou <= iou_threshold
|
302
|
+
order = rest[mask]
|
303
|
+
|
304
|
+
return keep[:keep_idx]
|
305
|
+
|
306
|
+
@staticmethod
|
307
|
+
def batched_nms(
|
308
|
+
boxes: torch.Tensor,
|
309
|
+
scores: torch.Tensor,
|
310
|
+
idxs: torch.Tensor,
|
311
|
+
iou_threshold: float,
|
312
|
+
use_fast_nms: bool = False,
|
313
|
+
) -> torch.Tensor:
|
314
|
+
"""
|
315
|
+
Batched NMS for class-aware suppression.
|
316
|
+
|
317
|
+
Args:
|
318
|
+
boxes (torch.Tensor): Bounding boxes with shape (N, 4) in xyxy format.
|
319
|
+
scores (torch.Tensor): Confidence scores with shape (N,).
|
320
|
+
idxs (torch.Tensor): Class indices with shape (N,).
|
321
|
+
iou_threshold (float): IoU threshold for suppression.
|
322
|
+
use_fast_nms (bool): Whether to use the Fast-NMS implementation.
|
323
|
+
|
324
|
+
Returns:
|
325
|
+
(torch.Tensor): Indices of boxes to keep after NMS.
|
326
|
+
|
327
|
+
Examples:
|
328
|
+
Apply batched NMS across multiple classes
|
329
|
+
>>> boxes = torch.tensor([[0, 0, 10, 10], [5, 5, 15, 15]])
|
330
|
+
>>> scores = torch.tensor([0.9, 0.8])
|
331
|
+
>>> idxs = torch.tensor([0, 1])
|
332
|
+
>>> keep = TorchNMS.batched_nms(boxes, scores, idxs, 0.5)
|
333
|
+
"""
|
334
|
+
if boxes.numel() == 0:
|
335
|
+
return torch.empty((0,), dtype=torch.int64, device=boxes.device)
|
336
|
+
|
337
|
+
# Strategy: offset boxes by class index to prevent cross-class suppression
|
338
|
+
max_coordinate = boxes.max()
|
339
|
+
offsets = idxs.to(boxes) * (max_coordinate + 1)
|
340
|
+
boxes_for_nms = boxes + offsets[:, None]
|
341
|
+
|
342
|
+
return (
|
343
|
+
TorchNMS.fast_nms(boxes_for_nms, scores, iou_threshold)
|
344
|
+
if use_fast_nms
|
345
|
+
else TorchNMS.nms(boxes_for_nms, scores, iou_threshold)
|
346
|
+
)
|