dgenerate-ultralytics-headless 8.3.182__py3-none-any.whl → 8.3.184__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {dgenerate_ultralytics_headless-8.3.182.dist-info → dgenerate_ultralytics_headless-8.3.184.dist-info}/METADATA +1 -1
- {dgenerate_ultralytics_headless-8.3.182.dist-info → dgenerate_ultralytics_headless-8.3.184.dist-info}/RECORD +18 -16
- tests/test_cuda.py +2 -2
- tests/test_python.py +9 -0
- ultralytics/__init__.py +1 -1
- ultralytics/data/converter.py +113 -1
- ultralytics/engine/trainer.py +11 -2
- ultralytics/models/yolo/yoloe/val.py +1 -1
- ultralytics/utils/__init__.py +3 -0
- ultralytics/utils/callbacks/base.py +3 -2
- ultralytics/utils/callbacks/hub.py +1 -1
- ultralytics/utils/callbacks/platform.py +72 -0
- ultralytics/utils/logger.py +408 -0
- ultralytics/utils/metrics.py +3 -1
- {dgenerate_ultralytics_headless-8.3.182.dist-info → dgenerate_ultralytics_headless-8.3.184.dist-info}/WHEEL +0 -0
- {dgenerate_ultralytics_headless-8.3.182.dist-info → dgenerate_ultralytics_headless-8.3.184.dist-info}/entry_points.txt +0 -0
- {dgenerate_ultralytics_headless-8.3.182.dist-info → dgenerate_ultralytics_headless-8.3.184.dist-info}/licenses/LICENSE +0 -0
- {dgenerate_ultralytics_headless-8.3.182.dist-info → dgenerate_ultralytics_headless-8.3.184.dist-info}/top_level.txt +0 -0
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.4
|
2
2
|
Name: dgenerate-ultralytics-headless
|
3
|
-
Version: 8.3.
|
3
|
+
Version: 8.3.184
|
4
4
|
Summary: Automatically built Ultralytics package with python-opencv-headless dependency instead of python-opencv
|
5
5
|
Author-email: Glenn Jocher <glenn.jocher@ultralytics.com>, Jing Qiu <jing.qiu@ultralytics.com>
|
6
6
|
Maintainer-email: Ultralytics <hello@ultralytics.com>
|
@@ -1,14 +1,14 @@
|
|
1
|
-
dgenerate_ultralytics_headless-8.3.
|
1
|
+
dgenerate_ultralytics_headless-8.3.184.dist-info/licenses/LICENSE,sha256=DZak_2itbUtvHzD3E7GNUYSRK6jdOJ-GqncQ2weavLA,34523
|
2
2
|
tests/__init__.py,sha256=b4KP5_q-2IO8Br8YHOSLYnn7IwZS81l_vfEF2YPa2lM,894
|
3
3
|
tests/conftest.py,sha256=LXtQJcFNWPGuzauTGkiXgsvVC3llJKfg22WcmhRzuQc,2593
|
4
4
|
tests/test_cli.py,sha256=EMf5gTAopOnIz8VvzaM-Qb044o7D0flnUHYQ-2ffOM4,5670
|
5
|
-
tests/test_cuda.py,sha256
|
5
|
+
tests/test_cuda.py,sha256=7RAMC1DoXpsRvH0Jfyo9cqHkaJZWcWeqniCW5BW87hY,8228
|
6
6
|
tests/test_engine.py,sha256=Jpt2KVrltrEgh2-3Ykouz-2Z_2fza0eymL5ectRXadM,4922
|
7
7
|
tests/test_exports.py,sha256=CY-4xVZlVM16vdyIC0mSR3Ix59aiZm1qjFGIhSNmB20,11007
|
8
8
|
tests/test_integrations.py,sha256=kl_AKmE_Qs1GB0_91iVwbzNxofm_hFTt0zzU6JF-pg4,6323
|
9
|
-
tests/test_python.py,sha256
|
9
|
+
tests/test_python.py,sha256=JbOB6pbTkoQtPCjkl_idagV0_W2QLWGbsh2IvGmru0M,28274
|
10
10
|
tests/test_solutions.py,sha256=tuf6n_fsI8KvSdJrnc-cqP2qYdiYqCWuVrx0z9dOz3Q,13213
|
11
|
-
ultralytics/__init__.py,sha256=
|
11
|
+
ultralytics/__init__.py,sha256=kmDSXeMJ22pJg_A2qaxP4Tfo1tvv2GgD4p-GFyVa2iI,730
|
12
12
|
ultralytics/py.typed,sha256=la67KBlbjXN-_-DfGNcdOcjYumVpKG_Tkw-8n5dnGB4,8
|
13
13
|
ultralytics/assets/bus.jpg,sha256=wCAZxJecGR63Od3ZRERe9Aja1Weayrb9Ug751DS_vGM,137419
|
14
14
|
ultralytics/assets/zidane.jpg,sha256=Ftc4aeMmen1O0A3o6GCDO9FlfBslLpTAw0gnetx7bts,50427
|
@@ -110,7 +110,7 @@ ultralytics/data/annotator.py,sha256=uAgd7K-yudxiwdNqHz0ubfFg5JsfNlae4cgxdvCMyuY
|
|
110
110
|
ultralytics/data/augment.py,sha256=Ps1s-ug_oXdyAz4Jyur6OmxzRlyzwP3VP-3hDalSxj8,132959
|
111
111
|
ultralytics/data/base.py,sha256=mRcuehK1thNuuzQGL6D1AaZkod71oHRdYTod_zdQZQg,19688
|
112
112
|
ultralytics/data/build.py,sha256=TfMLSPMbE2hGZVMLl178NTFrihC1-50jNOt1ex9elxw,11480
|
113
|
-
ultralytics/data/converter.py,sha256=
|
113
|
+
ultralytics/data/converter.py,sha256=G5IDSk9kJAERNeJC2G3FwV_CGZ6EKV9oyuf-uKbAmzA,32084
|
114
114
|
ultralytics/data/dataset.py,sha256=GhoFzBiuGvTr_5-3pzgWu6D_3aQVwW-hcS7kCo8XscM,36752
|
115
115
|
ultralytics/data/loaders.py,sha256=u9sExTGPy1iiqVd_p29zVoEkQ3C36g2rE0FEbYPET0A,31767
|
116
116
|
ultralytics/data/split.py,sha256=F6O73bAbESj70FQZzqkydXQeXgPXGHGiC06b5MkLHjQ,5109
|
@@ -125,7 +125,7 @@ ultralytics/engine/exporter.py,sha256=Vr7K8Yf3wyf91ZvDpRosAohwa_W0oe4qW-JvqigCPf
|
|
125
125
|
ultralytics/engine/model.py,sha256=877u2n0ISz2COOYtEMUqQe0E-HHB4Atb2DuH1XCE98k,53530
|
126
126
|
ultralytics/engine/predictor.py,sha256=iXnUB-tvBHtVpKbB-5EKs1wSREBIerdUxWx39MaFYuk,22485
|
127
127
|
ultralytics/engine/results.py,sha256=QcHcbPVlLBiy_APwABr-T5K65HR8Bl1rRzxawjjP76E,71873
|
128
|
-
ultralytics/engine/trainer.py,sha256=
|
128
|
+
ultralytics/engine/trainer.py,sha256=JtYRZ9vIB07VM2_Saqn7Jeu9s1W_hqG_um2EwjNckSU,40255
|
129
129
|
ultralytics/engine/tuner.py,sha256=sfQ8_yzgLNcGlKyz9b2vAzyggGZXiQzdZ5tKstyqjHM,12825
|
130
130
|
ultralytics/engine/validator.py,sha256=g0StH6WOn95zBN-hULDAR5Uug1pU2YkaeNH3zzq3SVg,16573
|
131
131
|
ultralytics/hub/__init__.py,sha256=ulPtceI3hqud03mvqoXccBaa1e4nveYwC9cddyuBUlo,6599
|
@@ -194,7 +194,7 @@ ultralytics/models/yolo/yoloe/__init__.py,sha256=6SLytdJtwu37qewf7CobG7C7Wl1m-xt
|
|
194
194
|
ultralytics/models/yolo/yoloe/predict.py,sha256=GmQxCQe7sLomAujde53jQzquzryNn6fEjS4Oalf3mPs,7124
|
195
195
|
ultralytics/models/yolo/yoloe/train.py,sha256=XYpQYSnSD8vi_9VSj_S5oIsNUEqm3e66vPT8rNFI_HY,14086
|
196
196
|
ultralytics/models/yolo/yoloe/train_seg.py,sha256=aCV7M8oQOvODFnU4piZdJh3tIrBJYAzZfRVRx1vRgxo,4956
|
197
|
-
ultralytics/models/yolo/yoloe/val.py,sha256=
|
197
|
+
ultralytics/models/yolo/yoloe/val.py,sha256=2NuERI3B3WeED658Cat1xL2SVpORUHlCHCWI3L8pJJc,9784
|
198
198
|
ultralytics/nn/__init__.py,sha256=rjociYD9lo_K-d-1s6TbdWklPLjTcEHk7OIlRDJstIE,615
|
199
199
|
ultralytics/nn/autobackend.py,sha256=UM9ObXeLB0lgak1Q5oSi2IA-R_Owr6NdJNBAsA3mSbo,41790
|
200
200
|
ultralytics/nn/tasks.py,sha256=vw_TNacAv-RN24rusFzKuYL6qRBD7cve8EpB7gOlU_8,72505
|
@@ -236,7 +236,7 @@ ultralytics/trackers/utils/__init__.py,sha256=lm6MckFYCPTbqIoX7w0s_daxdjNeBeKW6D
|
|
236
236
|
ultralytics/trackers/utils/gmc.py,sha256=9IvCf5MhBYY9ppVHykN02_oBWHmE98R8EaYFKaykdV0,14032
|
237
237
|
ultralytics/trackers/utils/kalman_filter.py,sha256=PPmM0lwBMdT_hGojvfLoUsBUFMBBMNRAxKbMcQa3wJ0,21619
|
238
238
|
ultralytics/trackers/utils/matching.py,sha256=uSYtywqi1lE_uNN1FwuBFPyISfDQXHMu8K5KH69nrRI,7160
|
239
|
-
ultralytics/utils/__init__.py,sha256=
|
239
|
+
ultralytics/utils/__init__.py,sha256=aplfwLydgiAC4DQt3AO4gNh2U58z16ss5UTQkRd5Jz0,59643
|
240
240
|
ultralytics/utils/autobatch.py,sha256=33m8YgggLIhltDqMXZ5OE-FGs2QiHrl2-LfgY1mI4cw,5119
|
241
241
|
ultralytics/utils/autodevice.py,sha256=AvgXFt8c1Cg4icKh0Hbhhz8UmVQ2Wjyfdfkeb2C8zck,8855
|
242
242
|
ultralytics/utils/benchmarks.py,sha256=btsi_B0mfLPfhE8GrsBpi79vl7SRam0YYngNFAsY8Ak,31035
|
@@ -247,8 +247,9 @@ ultralytics/utils/errors.py,sha256=XT9Ru7ivoBgofK6PlnyigGoa7Fmf5nEhyHtnD-8TRXI,1
|
|
247
247
|
ultralytics/utils/export.py,sha256=LK-wlTlyb_zIKtSvOmfmvR70RcUU9Ct9UBDt5wn9_rY,9880
|
248
248
|
ultralytics/utils/files.py,sha256=ZCbLGleiF0f-PqYfaxMFAWop88w7U1hpreHXl8b2ko0,8238
|
249
249
|
ultralytics/utils/instance.py,sha256=dC83rHvQXciAED3rOiScFs3BOX9OI06Ey1mj9sjUKvs,19070
|
250
|
+
ultralytics/utils/logger.py,sha256=wt1IWdfJGa6nZDLj54UBlupRJvcHW3QnkN7017avXf8,15142
|
250
251
|
ultralytics/utils/loss.py,sha256=fbOWc3Iu0QOJiWbi-mXWA9-1otTYlehtmUsI7os7ydM,39799
|
251
|
-
ultralytics/utils/metrics.py,sha256=
|
252
|
+
ultralytics/utils/metrics.py,sha256=Q0cD4J1_7WRElv_En6YUM94l4SjE7XTF9LdZUMvrGys,68853
|
252
253
|
ultralytics/utils/ops.py,sha256=8d60fbpntrexK3gPoLUS6mWAYGrtrQaQCOYyRJsCjuI,34521
|
253
254
|
ultralytics/utils/patches.py,sha256=PPWiKzwGbCvuawLzDKVR8tWOQAlZbJBi8g_-A6eTCYA,6536
|
254
255
|
ultralytics/utils/plotting.py,sha256=4TG_J8rz9VVPrOXbdjRHPJZVgJrFYVmEYE0BcVDdolc,47745
|
@@ -257,18 +258,19 @@ ultralytics/utils/torch_utils.py,sha256=D76Pvmw5OKh-vd4aJkOMO0dSLbM5WzGr7Hmds54h
|
|
257
258
|
ultralytics/utils/triton.py,sha256=M7qe4RztiADBJQEWQKaIQsp94ERFJ_8_DUHDR6TXEOM,5410
|
258
259
|
ultralytics/utils/tuner.py,sha256=bHr09Fz-0-t0ei55gX5wJh-obyiAQoicP7HUVM2I8qA,6826
|
259
260
|
ultralytics/utils/callbacks/__init__.py,sha256=hzL63Rce6VkZhP4Lcim9LKjadixaQG86nKqPhk7IkS0,242
|
260
|
-
ultralytics/utils/callbacks/base.py,sha256=
|
261
|
+
ultralytics/utils/callbacks/base.py,sha256=dGir0vkJY4jjprW63e23Qy4kHUT5dOINPii6HnwJuPg,6893
|
261
262
|
ultralytics/utils/callbacks/clearml.py,sha256=xr5mZT_cY6AY_drbdCXFt-Dp2fOjRELxLDhDoRhNPg8,6067
|
262
263
|
ultralytics/utils/callbacks/comet.py,sha256=Ytv-dalpMBH36qsYIpU_VruREa9BVwFJzYDacZslEQU,25394
|
263
264
|
ultralytics/utils/callbacks/dvc.py,sha256=NV0DXMQ1B5Sk5fmh60QFUGkifrAz-vwit5qhdfsyqXc,7511
|
264
|
-
ultralytics/utils/callbacks/hub.py,sha256=
|
265
|
+
ultralytics/utils/callbacks/hub.py,sha256=IZ8lldLfxI0SvMnG9aWGWj59JFSks_x11L2is26ajd0,4123
|
265
266
|
ultralytics/utils/callbacks/mlflow.py,sha256=6K8I5zij1yq3TUW9c5BBQNqdzz3IXugQjwKoBOvV6ag,5344
|
266
267
|
ultralytics/utils/callbacks/neptune.py,sha256=j8pecmlcsM8FGzLKWoBw5xUsi5t8E5HuxY7TR5Um_O8,4612
|
268
|
+
ultralytics/utils/callbacks/platform.py,sha256=gdbEuedXEs1VjdU0IiedjPFwttZJUiI0dJoImU3G_Gc,1999
|
267
269
|
ultralytics/utils/callbacks/raytune.py,sha256=S6Bq16oQDQ8BQgnZzA0zJHGN_BBr8iAM_WtGoLiEcwg,1283
|
268
270
|
ultralytics/utils/callbacks/tensorboard.py,sha256=MDPBW7aDes-66OE6YqKXXvqA_EocjzEMHWGM-8z9vUQ,5281
|
269
271
|
ultralytics/utils/callbacks/wb.py,sha256=Tm_-aRr2CN32MJkY9tylpMBJkb007-MSRNSQ7rDJ5QU,7521
|
270
|
-
dgenerate_ultralytics_headless-8.3.
|
271
|
-
dgenerate_ultralytics_headless-8.3.
|
272
|
-
dgenerate_ultralytics_headless-8.3.
|
273
|
-
dgenerate_ultralytics_headless-8.3.
|
274
|
-
dgenerate_ultralytics_headless-8.3.
|
272
|
+
dgenerate_ultralytics_headless-8.3.184.dist-info/METADATA,sha256=s5PJHuylLREG_7dPoVmmgQTYS3b9dpzn5UkOtI6eaTw,38727
|
273
|
+
dgenerate_ultralytics_headless-8.3.184.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
274
|
+
dgenerate_ultralytics_headless-8.3.184.dist-info/entry_points.txt,sha256=YM_wiKyTe9yRrsEfqvYolNO5ngwfoL4-NwgKzc8_7sI,93
|
275
|
+
dgenerate_ultralytics_headless-8.3.184.dist-info/top_level.txt,sha256=XP49TwiMw4QGsvTLSYiJhz1xF_k7ev5mQ8jJXaXi45Q,12
|
276
|
+
dgenerate_ultralytics_headless-8.3.184.dist-info/RECORD,,
|
tests/test_cuda.py
CHANGED
@@ -67,7 +67,7 @@ def test_export_onnx_matrix(task, dynamic, int8, half, batch, simplify, nms):
|
|
67
67
|
half=half,
|
68
68
|
batch=batch,
|
69
69
|
simplify=simplify,
|
70
|
-
nms=nms,
|
70
|
+
nms=nms and task != "obb", # disable NMS for OBB task for now on T4 instance
|
71
71
|
device=DEVICES[0],
|
72
72
|
)
|
73
73
|
YOLO(file)([SOURCE] * batch, imgsz=64 if dynamic else 32, device=DEVICES[0]) # exported model inference
|
@@ -163,7 +163,7 @@ def test_autobatch():
|
|
163
163
|
|
164
164
|
|
165
165
|
@pytest.mark.slow
|
166
|
-
@pytest.mark.skipif(
|
166
|
+
@pytest.mark.skipif(True, reason="Skip for now since T4 instance does not support TensorRT > 10.0")
|
167
167
|
def test_utils_benchmarks():
|
168
168
|
"""Profile YOLO models for performance benchmarks."""
|
169
169
|
from ultralytics.utils.benchmarks import ProfileModels
|
tests/test_python.py
CHANGED
@@ -228,6 +228,15 @@ def test_train_scratch():
|
|
228
228
|
model(SOURCE)
|
229
229
|
|
230
230
|
|
231
|
+
@pytest.mark.skipif(not ONLINE, reason="environment is offline")
|
232
|
+
def test_train_ndjson():
|
233
|
+
"""Test training the YOLO model using NDJSON format dataset."""
|
234
|
+
model = YOLO(WEIGHTS_DIR / "yolo11n.pt")
|
235
|
+
model.train(
|
236
|
+
data="https://github.com/ultralytics/assets/releases/download/v0.0.0/coco8-ndjson.ndjson", epochs=1, imgsz=32
|
237
|
+
)
|
238
|
+
|
239
|
+
|
231
240
|
@pytest.mark.parametrize("scls", [False, True])
|
232
241
|
def test_train_pretrained(scls):
|
233
242
|
"""Test training of the YOLO model starting from a pre-trained checkpoint."""
|
ultralytics/__init__.py
CHANGED
ultralytics/data/converter.py
CHANGED
@@ -1,5 +1,6 @@
|
|
1
1
|
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
2
2
|
|
3
|
+
import asyncio
|
3
4
|
import json
|
4
5
|
import random
|
5
6
|
import shutil
|
@@ -12,7 +13,8 @@ import cv2
|
|
12
13
|
import numpy as np
|
13
14
|
from PIL import Image
|
14
15
|
|
15
|
-
from ultralytics.utils import DATASETS_DIR, LOGGER, NUM_THREADS, TQDM
|
16
|
+
from ultralytics.utils import DATASETS_DIR, LOGGER, NUM_THREADS, TQDM, YAML
|
17
|
+
from ultralytics.utils.checks import check_file, check_requirements
|
16
18
|
from ultralytics.utils.downloads import download, zip_directory
|
17
19
|
from ultralytics.utils.files import increment_path
|
18
20
|
|
@@ -754,3 +756,113 @@ def convert_to_multispectral(path: Union[str, Path], n_channels: int = 10, repla
|
|
754
756
|
multispectral = f(target_wavelengths)
|
755
757
|
cv2.imwritemulti(str(output_path), np.clip(multispectral, 0, 255).astype(np.uint8).transpose(2, 0, 1))
|
756
758
|
LOGGER.info(f"Converted {output_path}")
|
759
|
+
|
760
|
+
|
761
|
+
async def convert_ndjson_to_yolo(ndjson_path: Union[str, Path], output_path: Optional[Union[str, Path]] = None) -> Path:
|
762
|
+
"""
|
763
|
+
Convert NDJSON dataset format to Ultralytics YOLO11 dataset structure.
|
764
|
+
|
765
|
+
This function converts datasets stored in NDJSON (Newline Delimited JSON) format to the standard YOLO
|
766
|
+
format with separate directories for images and labels. It supports parallel processing for efficient
|
767
|
+
conversion of large datasets and can download images from URLs if they don't exist locally.
|
768
|
+
|
769
|
+
The NDJSON format consists of:
|
770
|
+
- First line: Dataset metadata with class names and configuration
|
771
|
+
- Subsequent lines: Individual image records with annotations and optional URLs
|
772
|
+
|
773
|
+
Args:
|
774
|
+
ndjson_path (Union[str, Path]): Path to the input NDJSON file containing dataset information.
|
775
|
+
output_path (Optional[Union[str, Path]], optional): Directory where the converted YOLO dataset
|
776
|
+
will be saved. If None, uses the parent directory of the NDJSON file. Defaults to None.
|
777
|
+
|
778
|
+
Returns:
|
779
|
+
(Path): Path to the generated data.yaml file that can be used for YOLO training.
|
780
|
+
|
781
|
+
Examples:
|
782
|
+
Convert a local NDJSON file:
|
783
|
+
>>> yaml_path = convert_ndjson_to_yolo("dataset.ndjson")
|
784
|
+
>>> print(f"Dataset converted to: {yaml_path}")
|
785
|
+
|
786
|
+
Convert with custom output directory:
|
787
|
+
>>> yaml_path = convert_ndjson_to_yolo("dataset.ndjson", output_path="./converted_datasets")
|
788
|
+
|
789
|
+
Use with YOLO training
|
790
|
+
>>> from ultralytics import YOLO
|
791
|
+
>>> model = YOLO("yolo11n.pt")
|
792
|
+
>>> model.train(data="https://github.com/ultralytics/assets/releases/download/v0.0.0/coco8-ndjson.ndjson")
|
793
|
+
"""
|
794
|
+
check_requirements("aiohttp")
|
795
|
+
import aiohttp
|
796
|
+
|
797
|
+
ndjson_path = Path(check_file(ndjson_path))
|
798
|
+
output_path = Path(output_path or DATASETS_DIR)
|
799
|
+
with open(ndjson_path) as f:
|
800
|
+
lines = [json.loads(line.strip()) for line in f if line.strip()]
|
801
|
+
|
802
|
+
dataset_record, image_records = lines[0], lines[1:]
|
803
|
+
dataset_dir = output_path / ndjson_path.stem
|
804
|
+
splits = {record["split"] for record in image_records}
|
805
|
+
|
806
|
+
# Create directories and prepare YAML structure
|
807
|
+
dataset_dir.mkdir(parents=True, exist_ok=True)
|
808
|
+
data_yaml = dict(dataset_record)
|
809
|
+
data_yaml["names"] = {int(k): v for k, v in dataset_record.get("class_names", {}).items()}
|
810
|
+
data_yaml.pop("class_names")
|
811
|
+
|
812
|
+
for split in sorted(splits):
|
813
|
+
(dataset_dir / "images" / split).mkdir(parents=True, exist_ok=True)
|
814
|
+
(dataset_dir / "labels" / split).mkdir(parents=True, exist_ok=True)
|
815
|
+
data_yaml[split] = f"images/{split}"
|
816
|
+
|
817
|
+
async def process_record(session, semaphore, record):
|
818
|
+
"""Process single image record with async session."""
|
819
|
+
async with semaphore:
|
820
|
+
split, original_name = record["split"], record["file"]
|
821
|
+
label_path = dataset_dir / "labels" / split / f"{Path(original_name).stem}.txt"
|
822
|
+
image_path = dataset_dir / "images" / split / original_name
|
823
|
+
|
824
|
+
annotations = record.get("annotations", {})
|
825
|
+
lines_to_write = []
|
826
|
+
for key in annotations.keys():
|
827
|
+
lines_to_write = [" ".join(map(str, item)) for item in annotations[key]]
|
828
|
+
break
|
829
|
+
if "classification" in annotations:
|
830
|
+
lines_to_write = [str(cls) for cls in annotations["classification"]]
|
831
|
+
|
832
|
+
label_path.write_text("\n".join(lines_to_write) + "\n" if lines_to_write else "")
|
833
|
+
|
834
|
+
if http_url := record.get("url"):
|
835
|
+
if not image_path.exists():
|
836
|
+
try:
|
837
|
+
async with session.get(http_url, timeout=aiohttp.ClientTimeout(total=30)) as response:
|
838
|
+
response.raise_for_status()
|
839
|
+
with open(image_path, "wb") as f:
|
840
|
+
async for chunk in response.content.iter_chunked(8192):
|
841
|
+
f.write(chunk)
|
842
|
+
return True
|
843
|
+
except Exception as e:
|
844
|
+
LOGGER.warning(f"Failed to download {http_url}: {e}")
|
845
|
+
return False
|
846
|
+
return True
|
847
|
+
|
848
|
+
# Process all images with async downloads
|
849
|
+
semaphore = asyncio.Semaphore(64)
|
850
|
+
async with aiohttp.ClientSession() as session:
|
851
|
+
pbar = TQDM(
|
852
|
+
total=len(image_records),
|
853
|
+
desc=f"Converting {ndjson_path.name} → {dataset_dir} ({len(image_records)} images)",
|
854
|
+
)
|
855
|
+
|
856
|
+
async def tracked_process(record):
|
857
|
+
result = await process_record(session, semaphore, record)
|
858
|
+
pbar.update(1)
|
859
|
+
return result
|
860
|
+
|
861
|
+
await asyncio.gather(*[tracked_process(record) for record in image_records])
|
862
|
+
pbar.close()
|
863
|
+
|
864
|
+
# Write data.yaml
|
865
|
+
yaml_path = dataset_dir / "data.yaml"
|
866
|
+
YAML.save(yaml_path, data_yaml)
|
867
|
+
|
868
|
+
return yaml_path
|
ultralytics/engine/trainer.py
CHANGED
@@ -174,6 +174,8 @@ class BaseTrainer:
|
|
174
174
|
self.callbacks = _callbacks or callbacks.get_default_callbacks()
|
175
175
|
if RANK in {-1, 0}:
|
176
176
|
callbacks.add_integration_callbacks(self)
|
177
|
+
# Start console logging immediately at trainer initialization
|
178
|
+
self.run_callbacks("on_pretrain_routine_start")
|
177
179
|
|
178
180
|
def add_callback(self, event: str, callback):
|
179
181
|
"""Append the given callback to the event's callback list."""
|
@@ -249,8 +251,6 @@ class BaseTrainer:
|
|
249
251
|
|
250
252
|
def _setup_train(self, world_size):
|
251
253
|
"""Build dataloaders and optimizer on correct rank process."""
|
252
|
-
# Model
|
253
|
-
self.run_callbacks("on_pretrain_routine_start")
|
254
254
|
ckpt = self.setup_model()
|
255
255
|
self.model = self.model.to(self.device)
|
256
256
|
self.set_model_attributes()
|
@@ -598,6 +598,15 @@ class BaseTrainer:
|
|
598
598
|
try:
|
599
599
|
if self.args.task == "classify":
|
600
600
|
data = check_cls_dataset(self.args.data)
|
601
|
+
elif self.args.data.rsplit(".", 1)[-1] == "ndjson":
|
602
|
+
# Convert NDJSON to YOLO format
|
603
|
+
import asyncio
|
604
|
+
|
605
|
+
from ultralytics.data.converter import convert_ndjson_to_yolo
|
606
|
+
|
607
|
+
yaml_path = asyncio.run(convert_ndjson_to_yolo(self.args.data))
|
608
|
+
self.args.data = str(yaml_path)
|
609
|
+
data = check_det_dataset(self.args.data)
|
601
610
|
elif self.args.data.rsplit(".", 1)[-1] in {"yaml", "yml"} or self.args.task in {
|
602
611
|
"detect",
|
603
612
|
"segment",
|
@@ -181,7 +181,7 @@ class YOLOEDetectValidator(DetectionValidator):
|
|
181
181
|
else:
|
182
182
|
if refer_data is not None:
|
183
183
|
assert load_vp, "Refer data is only used for visual prompt validation."
|
184
|
-
self.device = select_device(self.args.device)
|
184
|
+
self.device = select_device(self.args.device, verbose=False)
|
185
185
|
|
186
186
|
if isinstance(model, (str, Path)):
|
187
187
|
from ultralytics.nn.tasks import attempt_load_weights
|
ultralytics/utils/__init__.py
CHANGED
@@ -170,6 +170,7 @@ class TQDM(rich.tqdm if TQDM_RICH else tqdm.tqdm):
|
|
170
170
|
Notes:
|
171
171
|
- The progress bar is disabled if VERBOSE is False or if 'disable' is explicitly set to True in kwargs.
|
172
172
|
- The default bar format is set to TQDM_BAR_FORMAT unless overridden in kwargs.
|
173
|
+
- In GitHub Actions, progress bars only update at completion to keep CI logs clean.
|
173
174
|
|
174
175
|
Examples:
|
175
176
|
>>> from ultralytics.utils import TQDM
|
@@ -178,6 +179,8 @@ class TQDM(rich.tqdm if TQDM_RICH else tqdm.tqdm):
|
|
178
179
|
... pass
|
179
180
|
"""
|
180
181
|
warnings.filterwarnings("ignore", category=tqdm.TqdmExperimentalWarning) # suppress tqdm.rich warning
|
182
|
+
if is_github_action_running():
|
183
|
+
kwargs["mininterval"] = 60 # only update every 60 seconds
|
181
184
|
kwargs["disable"] = not VERBOSE or kwargs.get("disable", False) or LOGGER.getEffectiveLevel() > 20
|
182
185
|
kwargs.setdefault("bar_format", TQDM_BAR_FORMAT) # override default value if passed
|
183
186
|
super().__init__(*args, **kwargs)
|
@@ -209,10 +209,11 @@ def add_integration_callbacks(instance):
|
|
209
209
|
>>> trainer = BaseTrainer()
|
210
210
|
>>> add_integration_callbacks(trainer)
|
211
211
|
"""
|
212
|
-
# Load HUB callbacks
|
213
212
|
from .hub import callbacks as hub_cb
|
213
|
+
from .platform import callbacks as platform_cb
|
214
214
|
|
215
|
-
|
215
|
+
# Load Ultralytics callbacks
|
216
|
+
callbacks_list = [hub_cb, platform_cb]
|
216
217
|
|
217
218
|
# Load training callbacks
|
218
219
|
if "Trainer" in instance.__class__.__name__:
|
@@ -0,0 +1,72 @@
|
|
1
|
+
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
2
|
+
|
3
|
+
from ultralytics.utils import RANK, SETTINGS
|
4
|
+
from ultralytics.utils.logger import DEFAULT_LOG_PATH, ConsoleLogger, SystemLogger
|
5
|
+
|
6
|
+
|
7
|
+
def on_pretrain_routine_start(trainer):
|
8
|
+
"""Initialize and start console logging immediately at the very beginning."""
|
9
|
+
if RANK in {-1, 0}:
|
10
|
+
trainer.system_logger = SystemLogger()
|
11
|
+
trainer.console_logger = ConsoleLogger(DEFAULT_LOG_PATH)
|
12
|
+
trainer.console_logger.start_capture()
|
13
|
+
|
14
|
+
|
15
|
+
def on_pretrain_routine_end(trainer):
|
16
|
+
"""Handle pre-training routine completion event."""
|
17
|
+
pass
|
18
|
+
|
19
|
+
|
20
|
+
def on_fit_epoch_end(trainer):
|
21
|
+
"""Handle end of training epoch event and collect system metrics."""
|
22
|
+
if RANK in {-1, 0} and hasattr(trainer, "system_logger"):
|
23
|
+
system_metrics = trainer.system_logger.get_metrics()
|
24
|
+
print(system_metrics) # for debug
|
25
|
+
|
26
|
+
|
27
|
+
def on_model_save(trainer):
|
28
|
+
"""Handle model checkpoint save event."""
|
29
|
+
pass
|
30
|
+
|
31
|
+
|
32
|
+
def on_train_end(trainer):
|
33
|
+
"""Stop console capture and finalize logs."""
|
34
|
+
if logger := getattr(trainer, "console_logger", None):
|
35
|
+
logger.stop_capture()
|
36
|
+
|
37
|
+
|
38
|
+
def on_train_start(trainer):
|
39
|
+
"""Handle training start event."""
|
40
|
+
pass
|
41
|
+
|
42
|
+
|
43
|
+
def on_val_start(validator):
|
44
|
+
"""Handle validation start event."""
|
45
|
+
pass
|
46
|
+
|
47
|
+
|
48
|
+
def on_predict_start(predictor):
|
49
|
+
"""Handle prediction start event."""
|
50
|
+
pass
|
51
|
+
|
52
|
+
|
53
|
+
def on_export_start(exporter):
|
54
|
+
"""Handle model export start event."""
|
55
|
+
pass
|
56
|
+
|
57
|
+
|
58
|
+
callbacks = (
|
59
|
+
{
|
60
|
+
"on_pretrain_routine_start": on_pretrain_routine_start,
|
61
|
+
"on_pretrain_routine_end": on_pretrain_routine_end,
|
62
|
+
"on_fit_epoch_end": on_fit_epoch_end,
|
63
|
+
"on_model_save": on_model_save,
|
64
|
+
"on_train_end": on_train_end,
|
65
|
+
"on_train_start": on_train_start,
|
66
|
+
"on_val_start": on_val_start,
|
67
|
+
"on_predict_start": on_predict_start,
|
68
|
+
"on_export_start": on_export_start,
|
69
|
+
}
|
70
|
+
if SETTINGS.get("platform", False) is True # disabled for debugging
|
71
|
+
else {}
|
72
|
+
)
|
@@ -0,0 +1,408 @@
|
|
1
|
+
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
2
|
+
|
3
|
+
import logging
|
4
|
+
import queue
|
5
|
+
import shutil
|
6
|
+
import sys
|
7
|
+
import threading
|
8
|
+
import time
|
9
|
+
from datetime import datetime
|
10
|
+
from pathlib import Path
|
11
|
+
|
12
|
+
import psutil
|
13
|
+
import requests
|
14
|
+
|
15
|
+
from ultralytics.utils import MACOS, RANK
|
16
|
+
from ultralytics.utils.checks import check_requirements
|
17
|
+
|
18
|
+
# Initialize default log file
|
19
|
+
DEFAULT_LOG_PATH = Path("train.log")
|
20
|
+
if RANK in {-1, 0} and DEFAULT_LOG_PATH.exists():
|
21
|
+
DEFAULT_LOG_PATH.unlink(missing_ok=True)
|
22
|
+
|
23
|
+
|
24
|
+
class ConsoleLogger:
|
25
|
+
"""
|
26
|
+
Console output capture with API/file streaming and deduplication.
|
27
|
+
|
28
|
+
Captures stdout/stderr output and streams it to either an API endpoint or local file, with intelligent
|
29
|
+
deduplication to reduce noise from repetitive console output.
|
30
|
+
|
31
|
+
Attributes:
|
32
|
+
destination (str | Path): Target destination for streaming (URL or Path object).
|
33
|
+
is_api (bool): Whether destination is an API endpoint (True) or local file (False).
|
34
|
+
original_stdout: Reference to original sys.stdout for restoration.
|
35
|
+
original_stderr: Reference to original sys.stderr for restoration.
|
36
|
+
log_queue (queue.Queue): Thread-safe queue for buffering log messages.
|
37
|
+
active (bool): Whether console capture is currently active.
|
38
|
+
worker_thread (threading.Thread): Background thread for processing log queue.
|
39
|
+
last_line (str): Last processed line for deduplication.
|
40
|
+
last_time (float): Timestamp of last processed line.
|
41
|
+
last_progress_line (str): Last progress bar line for progress deduplication.
|
42
|
+
last_was_progress (bool): Whether the last line was a progress bar.
|
43
|
+
|
44
|
+
Examples:
|
45
|
+
Basic file logging:
|
46
|
+
>>> logger = ConsoleLogger("training.log")
|
47
|
+
>>> logger.start_capture()
|
48
|
+
>>> print("This will be logged")
|
49
|
+
>>> logger.stop_capture()
|
50
|
+
|
51
|
+
API streaming:
|
52
|
+
>>> logger = ConsoleLogger("https://api.example.com/logs")
|
53
|
+
>>> logger.start_capture()
|
54
|
+
>>> # All output streams to API
|
55
|
+
>>> logger.stop_capture()
|
56
|
+
"""
|
57
|
+
|
58
|
+
def __init__(self, destination):
|
59
|
+
"""
|
60
|
+
Initialize with API endpoint or local file path.
|
61
|
+
|
62
|
+
Args:
|
63
|
+
destination (str | Path): API endpoint URL (http/https) or local file path for streaming output.
|
64
|
+
"""
|
65
|
+
self.destination = destination
|
66
|
+
self.is_api = isinstance(destination, str) and destination.startswith(("http://", "https://"))
|
67
|
+
if not self.is_api:
|
68
|
+
self.destination = Path(destination)
|
69
|
+
|
70
|
+
# Console capture
|
71
|
+
self.original_stdout = sys.stdout
|
72
|
+
self.original_stderr = sys.stderr
|
73
|
+
self.log_queue = queue.Queue(maxsize=1000)
|
74
|
+
self.active = False
|
75
|
+
self.worker_thread = None
|
76
|
+
|
77
|
+
# State tracking
|
78
|
+
self.last_line = ""
|
79
|
+
self.last_time = 0.0
|
80
|
+
self.last_progress_line = "" # Track 100% progress lines separately
|
81
|
+
self.last_was_progress = False # Track if last line was a progress bar
|
82
|
+
|
83
|
+
def start_capture(self):
|
84
|
+
"""Start capturing console output and redirect stdout/stderr to custom capture objects."""
|
85
|
+
if self.active:
|
86
|
+
return
|
87
|
+
|
88
|
+
self.active = True
|
89
|
+
sys.stdout = self._ConsoleCapture(self.original_stdout, self._queue_log)
|
90
|
+
sys.stderr = self._ConsoleCapture(self.original_stderr, self._queue_log)
|
91
|
+
|
92
|
+
# Hook Ultralytics logger
|
93
|
+
try:
|
94
|
+
handler = self._LogHandler(self._queue_log)
|
95
|
+
logging.getLogger("ultralytics").addHandler(handler)
|
96
|
+
except Exception:
|
97
|
+
pass
|
98
|
+
|
99
|
+
self.worker_thread = threading.Thread(target=self._stream_worker, daemon=True)
|
100
|
+
self.worker_thread.start()
|
101
|
+
|
102
|
+
def stop_capture(self):
|
103
|
+
"""Stop capturing console output and restore original stdout/stderr."""
|
104
|
+
if not self.active:
|
105
|
+
return
|
106
|
+
|
107
|
+
self.active = False
|
108
|
+
sys.stdout = self.original_stdout
|
109
|
+
sys.stderr = self.original_stderr
|
110
|
+
self.log_queue.put(None)
|
111
|
+
|
112
|
+
def _queue_log(self, text):
|
113
|
+
"""Queue console text with deduplication and timestamp processing."""
|
114
|
+
if not self.active:
|
115
|
+
return
|
116
|
+
|
117
|
+
current_time = time.time()
|
118
|
+
|
119
|
+
# Handle carriage returns and process lines
|
120
|
+
if "\r" in text:
|
121
|
+
text = text.split("\r")[-1]
|
122
|
+
|
123
|
+
lines = text.split("\n")
|
124
|
+
if lines and lines[-1] == "":
|
125
|
+
lines.pop()
|
126
|
+
|
127
|
+
for line in lines:
|
128
|
+
line = line.rstrip()
|
129
|
+
|
130
|
+
# Handle progress bars - only show 100% completions
|
131
|
+
if ("it/s" in line and ("%|" in line or "━" in line)) or (
|
132
|
+
"100%" in line and ("it/s" in line or "[" in line)
|
133
|
+
):
|
134
|
+
if "100%" not in line:
|
135
|
+
continue
|
136
|
+
# Dedupe 100% lines by core content (strip timing)
|
137
|
+
progress_core = line.split("[")[0].split("]")[0].strip()
|
138
|
+
if progress_core == self.last_progress_line:
|
139
|
+
continue
|
140
|
+
self.last_progress_line = progress_core
|
141
|
+
self.last_was_progress = True
|
142
|
+
else:
|
143
|
+
# Skip empty line after progress bar
|
144
|
+
if not line and self.last_was_progress:
|
145
|
+
self.last_was_progress = False
|
146
|
+
continue
|
147
|
+
self.last_was_progress = False
|
148
|
+
|
149
|
+
# General deduplication
|
150
|
+
if line == self.last_line and current_time - self.last_time < 0.1:
|
151
|
+
continue
|
152
|
+
|
153
|
+
self.last_line = line
|
154
|
+
self.last_time = current_time
|
155
|
+
|
156
|
+
# Add timestamp if needed
|
157
|
+
if not line.startswith("[20"):
|
158
|
+
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
159
|
+
line = f"[{timestamp}] {line}"
|
160
|
+
|
161
|
+
# Queue with overflow protection
|
162
|
+
if not self._safe_put(f"{line}\n"):
|
163
|
+
continue # Skip if queue handling fails
|
164
|
+
|
165
|
+
def _safe_put(self, item):
|
166
|
+
"""Safely put item in queue with overflow handling."""
|
167
|
+
try:
|
168
|
+
self.log_queue.put_nowait(item)
|
169
|
+
return True
|
170
|
+
except queue.Full:
|
171
|
+
try:
|
172
|
+
self.log_queue.get_nowait() # Drop oldest
|
173
|
+
self.log_queue.put_nowait(item)
|
174
|
+
return True
|
175
|
+
except queue.Empty:
|
176
|
+
return False
|
177
|
+
|
178
|
+
def _stream_worker(self):
|
179
|
+
"""Background worker for streaming logs to destination."""
|
180
|
+
while self.active:
|
181
|
+
try:
|
182
|
+
log_text = self.log_queue.get(timeout=1)
|
183
|
+
if log_text is None:
|
184
|
+
break
|
185
|
+
self._write_log(log_text)
|
186
|
+
except queue.Empty:
|
187
|
+
continue
|
188
|
+
|
189
|
+
def _write_log(self, text):
|
190
|
+
"""Write log to API endpoint or local file destination."""
|
191
|
+
try:
|
192
|
+
if self.is_api:
|
193
|
+
payload = {"timestamp": datetime.now().isoformat(), "message": text.strip()}
|
194
|
+
requests.post(self.destination, json=payload, timeout=5)
|
195
|
+
else:
|
196
|
+
self.destination.parent.mkdir(parents=True, exist_ok=True)
|
197
|
+
with self.destination.open("a", encoding="utf-8") as f:
|
198
|
+
f.write(text)
|
199
|
+
except Exception as e:
|
200
|
+
print(f"Platform logging error: {e}", file=self.original_stderr)
|
201
|
+
|
202
|
+
class _ConsoleCapture:
|
203
|
+
"""Lightweight stdout/stderr capture."""
|
204
|
+
|
205
|
+
__slots__ = ("original", "callback")
|
206
|
+
|
207
|
+
def __init__(self, original, callback):
|
208
|
+
self.original = original
|
209
|
+
self.callback = callback
|
210
|
+
|
211
|
+
def write(self, text):
|
212
|
+
self.original.write(text)
|
213
|
+
self.callback(text)
|
214
|
+
|
215
|
+
def flush(self):
|
216
|
+
self.original.flush()
|
217
|
+
|
218
|
+
class _LogHandler(logging.Handler):
|
219
|
+
"""Lightweight logging handler."""
|
220
|
+
|
221
|
+
__slots__ = ("callback",)
|
222
|
+
|
223
|
+
def __init__(self, callback):
|
224
|
+
super().__init__()
|
225
|
+
self.callback = callback
|
226
|
+
|
227
|
+
def emit(self, record):
|
228
|
+
self.callback(self.format(record) + "\n")
|
229
|
+
|
230
|
+
|
231
|
+
class SystemLogger:
|
232
|
+
"""
|
233
|
+
Log dynamic system metrics for training monitoring.
|
234
|
+
|
235
|
+
Captures real-time system metrics including CPU, RAM, disk I/O, network I/O, and NVIDIA GPU statistics for
|
236
|
+
training performance monitoring and analysis.
|
237
|
+
|
238
|
+
Attributes:
|
239
|
+
pynvml: NVIDIA pynvml module instance if successfully imported, None otherwise.
|
240
|
+
nvidia_initialized (bool): Whether NVIDIA GPU monitoring is available and initialized.
|
241
|
+
process (psutil.Process): Current psutil.Process instance for process-specific metrics.
|
242
|
+
net_start: Initial network I/O counters for calculating cumulative usage.
|
243
|
+
disk_start: Initial disk I/O counters for calculating cumulative usage.
|
244
|
+
|
245
|
+
Examples:
|
246
|
+
Basic usage:
|
247
|
+
>>> logger = SystemLogger()
|
248
|
+
>>> metrics = logger.get_metrics()
|
249
|
+
>>> print(f"CPU: {metrics['cpu']}%, RAM: {metrics['ram']}%")
|
250
|
+
>>> if metrics["gpus"]:
|
251
|
+
... gpu0 = metrics["gpus"]["0"]
|
252
|
+
... print(f"GPU0: {gpu0['usage']}% usage, {gpu0['temp']}°C")
|
253
|
+
|
254
|
+
Training loop integration:
|
255
|
+
>>> system_logger = SystemLogger()
|
256
|
+
>>> for epoch in range(epochs):
|
257
|
+
... # Training code here
|
258
|
+
... metrics = system_logger.get_metrics()
|
259
|
+
... # Log to database/file
|
260
|
+
"""
|
261
|
+
|
262
|
+
def __init__(self):
|
263
|
+
"""Initialize the system logger."""
|
264
|
+
self.pynvml = None
|
265
|
+
self.nvidia_initialized = self._init_nvidia()
|
266
|
+
self.process = psutil.Process()
|
267
|
+
self.net_start = psutil.net_io_counters()
|
268
|
+
self.disk_start = psutil.disk_io_counters()
|
269
|
+
|
270
|
+
def _init_nvidia(self):
|
271
|
+
"""Initialize NVIDIA GPU monitoring with pynvml."""
|
272
|
+
try:
|
273
|
+
assert not MACOS
|
274
|
+
check_requirements("pynvml>=12.0.0")
|
275
|
+
self.pynvml = __import__("pynvml")
|
276
|
+
self.pynvml.nvmlInit()
|
277
|
+
return True
|
278
|
+
except Exception:
|
279
|
+
return False
|
280
|
+
|
281
|
+
def get_metrics(self):
|
282
|
+
"""
|
283
|
+
Get current system metrics.
|
284
|
+
|
285
|
+
Collects comprehensive system metrics including CPU usage, RAM usage, disk I/O statistics,
|
286
|
+
network I/O statistics, and GPU metrics (if available). Example output:
|
287
|
+
|
288
|
+
```json
|
289
|
+
{
|
290
|
+
'cpu': 45.2,
|
291
|
+
'ram': 78.9,
|
292
|
+
'disk': {'read_mb': 156.7, 'write_mb': 89.3, 'used_gb': 256.8},
|
293
|
+
'network': {'recv_mb': 157.2, 'sent_mb': 89.1},
|
294
|
+
'gpus': {
|
295
|
+
0: {'usage': 95.6, 'memory': 85.4, 'temp': 72, 'power': 285},
|
296
|
+
1: {'usage': 94.1, 'memory': 82.7, 'temp': 70, 'power': 278}
|
297
|
+
}
|
298
|
+
}
|
299
|
+
```
|
300
|
+
|
301
|
+
- cpu (float): CPU usage percentage (0-100%)
|
302
|
+
- ram (float): RAM usage percentage (0-100%)
|
303
|
+
- disk (dict):
|
304
|
+
- read_mb (float): Cumulative disk read in MB since initialization
|
305
|
+
- write_mb (float): Cumulative disk write in MB since initialization
|
306
|
+
- used_gb (float): Total disk space used in GB
|
307
|
+
- network (dict):
|
308
|
+
- recv_mb (float): Cumulative network received in MB since initialization
|
309
|
+
- sent_mb (float): Cumulative network sent in MB since initialization
|
310
|
+
- gpus (dict): GPU metrics by device index (e.g., 0, 1) containing:
|
311
|
+
- usage (int): GPU utilization percentage (0-100%)
|
312
|
+
- memory (float): CUDA memory usage percentage (0-100%)
|
313
|
+
- temp (int): GPU temperature in degrees Celsius
|
314
|
+
- power (int): GPU power consumption in watts
|
315
|
+
|
316
|
+
Returns:
|
317
|
+
(dict): System metrics containing 'cpu', 'ram', 'disk', 'network', 'gpus' with respective usage data.
|
318
|
+
"""
|
319
|
+
net = psutil.net_io_counters()
|
320
|
+
disk = psutil.disk_io_counters()
|
321
|
+
memory = psutil.virtual_memory()
|
322
|
+
disk_usage = shutil.disk_usage("/")
|
323
|
+
|
324
|
+
metrics = {
|
325
|
+
"cpu": round(psutil.cpu_percent(), 3),
|
326
|
+
"ram": round(memory.percent, 3),
|
327
|
+
"disk": {
|
328
|
+
"read_mb": round((disk.read_bytes - self.disk_start.read_bytes) / (1 << 20), 3),
|
329
|
+
"write_mb": round((disk.write_bytes - self.disk_start.write_bytes) / (1 << 20), 3),
|
330
|
+
"used_gb": round(disk_usage.used / (1 << 30), 3),
|
331
|
+
},
|
332
|
+
"network": {
|
333
|
+
"recv_mb": round((net.bytes_recv - self.net_start.bytes_recv) / (1 << 20), 3),
|
334
|
+
"sent_mb": round((net.bytes_sent - self.net_start.bytes_sent) / (1 << 20), 3),
|
335
|
+
},
|
336
|
+
"gpus": {},
|
337
|
+
}
|
338
|
+
|
339
|
+
# Add GPU metrics (NVIDIA only)
|
340
|
+
if self.nvidia_initialized:
|
341
|
+
metrics["gpus"].update(self._get_nvidia_metrics())
|
342
|
+
|
343
|
+
return metrics
|
344
|
+
|
345
|
+
def _get_nvidia_metrics(self):
|
346
|
+
"""Get NVIDIA GPU metrics including utilization, memory, temperature, and power."""
|
347
|
+
gpus = {}
|
348
|
+
if not self.nvidia_initialized or not self.pynvml:
|
349
|
+
return gpus
|
350
|
+
try:
|
351
|
+
device_count = self.pynvml.nvmlDeviceGetCount()
|
352
|
+
for i in range(device_count):
|
353
|
+
handle = self.pynvml.nvmlDeviceGetHandleByIndex(i)
|
354
|
+
util = self.pynvml.nvmlDeviceGetUtilizationRates(handle)
|
355
|
+
memory = self.pynvml.nvmlDeviceGetMemoryInfo(handle)
|
356
|
+
temp = self.pynvml.nvmlDeviceGetTemperature(handle, self.pynvml.NVML_TEMPERATURE_GPU)
|
357
|
+
power = self.pynvml.nvmlDeviceGetPowerUsage(handle) // 1000
|
358
|
+
|
359
|
+
gpus[str(i)] = {
|
360
|
+
"usage": round(util.gpu, 3),
|
361
|
+
"memory": round((memory.used / memory.total) * 100, 3),
|
362
|
+
"temp": temp,
|
363
|
+
"power": power,
|
364
|
+
}
|
365
|
+
except Exception:
|
366
|
+
pass
|
367
|
+
return gpus
|
368
|
+
|
369
|
+
|
370
|
+
if __name__ == "__main__":
|
371
|
+
print("SystemLogger Real-time Metrics Monitor")
|
372
|
+
print("Press Ctrl+C to stop\n")
|
373
|
+
|
374
|
+
logger = SystemLogger()
|
375
|
+
|
376
|
+
try:
|
377
|
+
while True:
|
378
|
+
metrics = logger.get_metrics()
|
379
|
+
|
380
|
+
# Clear screen (works on most terminals)
|
381
|
+
print("\033[H\033[J", end="")
|
382
|
+
|
383
|
+
# Display system metrics
|
384
|
+
print(f"CPU: {metrics['cpu']:5.1f}%")
|
385
|
+
print(f"RAM: {metrics['ram']:5.1f}%")
|
386
|
+
print(f"Disk Read: {metrics['disk']['read_mb']:8.1f} MB")
|
387
|
+
print(f"Disk Write: {metrics['disk']['write_mb']:7.1f} MB")
|
388
|
+
print(f"Disk Used: {metrics['disk']['used_gb']:8.1f} GB")
|
389
|
+
print(f"Net Recv: {metrics['network']['recv_mb']:9.1f} MB")
|
390
|
+
print(f"Net Sent: {metrics['network']['sent_mb']:9.1f} MB")
|
391
|
+
|
392
|
+
# Display GPU metrics if available
|
393
|
+
if metrics["gpus"]:
|
394
|
+
print("\nGPU Metrics:")
|
395
|
+
for gpu_id, gpu_data in metrics["gpus"].items():
|
396
|
+
print(
|
397
|
+
f" GPU {gpu_id}: {gpu_data['usage']:3}% | "
|
398
|
+
f"Mem: {gpu_data['memory']:5.1f}% | "
|
399
|
+
f"Temp: {gpu_data['temp']:2}°C | "
|
400
|
+
f"Power: {gpu_data['power']:3}W"
|
401
|
+
)
|
402
|
+
else:
|
403
|
+
print("\nGPU: No NVIDIA GPUs detected")
|
404
|
+
|
405
|
+
time.sleep(1)
|
406
|
+
|
407
|
+
except KeyboardInterrupt:
|
408
|
+
print("\n\nStopped monitoring.")
|
ultralytics/utils/metrics.py
CHANGED
@@ -1152,7 +1152,9 @@ class DetMetrics(SimpleClass, DataExportMixin):
|
|
1152
1152
|
@property
|
1153
1153
|
def results_dict(self) -> Dict[str, float]:
|
1154
1154
|
"""Return dictionary of computed performance metrics and statistics."""
|
1155
|
-
|
1155
|
+
keys = self.keys + ["fitness"]
|
1156
|
+
values = ((float(x) if hasattr(x, "item") else x) for x in (self.mean_results() + [self.fitness]))
|
1157
|
+
return dict(zip(keys, values))
|
1156
1158
|
|
1157
1159
|
@property
|
1158
1160
|
def curves(self) -> List[str]:
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|