dgenerate-ultralytics-headless 8.3.182__py3-none-any.whl → 8.3.183__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {dgenerate_ultralytics_headless-8.3.182.dist-info → dgenerate_ultralytics_headless-8.3.183.dist-info}/METADATA +1 -1
- {dgenerate_ultralytics_headless-8.3.182.dist-info → dgenerate_ultralytics_headless-8.3.183.dist-info}/RECORD +12 -12
- tests/test_cuda.py +2 -2
- tests/test_python.py +9 -0
- ultralytics/__init__.py +1 -1
- ultralytics/data/converter.py +112 -1
- ultralytics/engine/trainer.py +9 -0
- ultralytics/models/yolo/yoloe/val.py +1 -1
- {dgenerate_ultralytics_headless-8.3.182.dist-info → dgenerate_ultralytics_headless-8.3.183.dist-info}/WHEEL +0 -0
- {dgenerate_ultralytics_headless-8.3.182.dist-info → dgenerate_ultralytics_headless-8.3.183.dist-info}/entry_points.txt +0 -0
- {dgenerate_ultralytics_headless-8.3.182.dist-info → dgenerate_ultralytics_headless-8.3.183.dist-info}/licenses/LICENSE +0 -0
- {dgenerate_ultralytics_headless-8.3.182.dist-info → dgenerate_ultralytics_headless-8.3.183.dist-info}/top_level.txt +0 -0
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.4
|
2
2
|
Name: dgenerate-ultralytics-headless
|
3
|
-
Version: 8.3.
|
3
|
+
Version: 8.3.183
|
4
4
|
Summary: Automatically built Ultralytics package with python-opencv-headless dependency instead of python-opencv
|
5
5
|
Author-email: Glenn Jocher <glenn.jocher@ultralytics.com>, Jing Qiu <jing.qiu@ultralytics.com>
|
6
6
|
Maintainer-email: Ultralytics <hello@ultralytics.com>
|
@@ -1,14 +1,14 @@
|
|
1
|
-
dgenerate_ultralytics_headless-8.3.
|
1
|
+
dgenerate_ultralytics_headless-8.3.183.dist-info/licenses/LICENSE,sha256=DZak_2itbUtvHzD3E7GNUYSRK6jdOJ-GqncQ2weavLA,34523
|
2
2
|
tests/__init__.py,sha256=b4KP5_q-2IO8Br8YHOSLYnn7IwZS81l_vfEF2YPa2lM,894
|
3
3
|
tests/conftest.py,sha256=LXtQJcFNWPGuzauTGkiXgsvVC3llJKfg22WcmhRzuQc,2593
|
4
4
|
tests/test_cli.py,sha256=EMf5gTAopOnIz8VvzaM-Qb044o7D0flnUHYQ-2ffOM4,5670
|
5
|
-
tests/test_cuda.py,sha256
|
5
|
+
tests/test_cuda.py,sha256=7RAMC1DoXpsRvH0Jfyo9cqHkaJZWcWeqniCW5BW87hY,8228
|
6
6
|
tests/test_engine.py,sha256=Jpt2KVrltrEgh2-3Ykouz-2Z_2fza0eymL5ectRXadM,4922
|
7
7
|
tests/test_exports.py,sha256=CY-4xVZlVM16vdyIC0mSR3Ix59aiZm1qjFGIhSNmB20,11007
|
8
8
|
tests/test_integrations.py,sha256=kl_AKmE_Qs1GB0_91iVwbzNxofm_hFTt0zzU6JF-pg4,6323
|
9
|
-
tests/test_python.py,sha256
|
9
|
+
tests/test_python.py,sha256=JbOB6pbTkoQtPCjkl_idagV0_W2QLWGbsh2IvGmru0M,28274
|
10
10
|
tests/test_solutions.py,sha256=tuf6n_fsI8KvSdJrnc-cqP2qYdiYqCWuVrx0z9dOz3Q,13213
|
11
|
-
ultralytics/__init__.py,sha256=
|
11
|
+
ultralytics/__init__.py,sha256=hpM4gHWSSIAjKjCF3tuvHLzoZadJLeOZVINd-nMfpm8,730
|
12
12
|
ultralytics/py.typed,sha256=la67KBlbjXN-_-DfGNcdOcjYumVpKG_Tkw-8n5dnGB4,8
|
13
13
|
ultralytics/assets/bus.jpg,sha256=wCAZxJecGR63Od3ZRERe9Aja1Weayrb9Ug751DS_vGM,137419
|
14
14
|
ultralytics/assets/zidane.jpg,sha256=Ftc4aeMmen1O0A3o6GCDO9FlfBslLpTAw0gnetx7bts,50427
|
@@ -110,7 +110,7 @@ ultralytics/data/annotator.py,sha256=uAgd7K-yudxiwdNqHz0ubfFg5JsfNlae4cgxdvCMyuY
|
|
110
110
|
ultralytics/data/augment.py,sha256=Ps1s-ug_oXdyAz4Jyur6OmxzRlyzwP3VP-3hDalSxj8,132959
|
111
111
|
ultralytics/data/base.py,sha256=mRcuehK1thNuuzQGL6D1AaZkod71oHRdYTod_zdQZQg,19688
|
112
112
|
ultralytics/data/build.py,sha256=TfMLSPMbE2hGZVMLl178NTFrihC1-50jNOt1ex9elxw,11480
|
113
|
-
ultralytics/data/converter.py,sha256=
|
113
|
+
ultralytics/data/converter.py,sha256=1YJNJcOyzdnc-LmJw4oFbeJemHOWwx9z8m0V2QA_lzc,32053
|
114
114
|
ultralytics/data/dataset.py,sha256=GhoFzBiuGvTr_5-3pzgWu6D_3aQVwW-hcS7kCo8XscM,36752
|
115
115
|
ultralytics/data/loaders.py,sha256=u9sExTGPy1iiqVd_p29zVoEkQ3C36g2rE0FEbYPET0A,31767
|
116
116
|
ultralytics/data/split.py,sha256=F6O73bAbESj70FQZzqkydXQeXgPXGHGiC06b5MkLHjQ,5109
|
@@ -125,7 +125,7 @@ ultralytics/engine/exporter.py,sha256=Vr7K8Yf3wyf91ZvDpRosAohwa_W0oe4qW-JvqigCPf
|
|
125
125
|
ultralytics/engine/model.py,sha256=877u2n0ISz2COOYtEMUqQe0E-HHB4Atb2DuH1XCE98k,53530
|
126
126
|
ultralytics/engine/predictor.py,sha256=iXnUB-tvBHtVpKbB-5EKs1wSREBIerdUxWx39MaFYuk,22485
|
127
127
|
ultralytics/engine/results.py,sha256=QcHcbPVlLBiy_APwABr-T5K65HR8Bl1rRzxawjjP76E,71873
|
128
|
-
ultralytics/engine/trainer.py,sha256=
|
128
|
+
ultralytics/engine/trainer.py,sha256=rOzMFt7b5PzVJZ3cOl80wxQAKUTP7XhnMHfXSaVRbOE,40193
|
129
129
|
ultralytics/engine/tuner.py,sha256=sfQ8_yzgLNcGlKyz9b2vAzyggGZXiQzdZ5tKstyqjHM,12825
|
130
130
|
ultralytics/engine/validator.py,sha256=g0StH6WOn95zBN-hULDAR5Uug1pU2YkaeNH3zzq3SVg,16573
|
131
131
|
ultralytics/hub/__init__.py,sha256=ulPtceI3hqud03mvqoXccBaa1e4nveYwC9cddyuBUlo,6599
|
@@ -194,7 +194,7 @@ ultralytics/models/yolo/yoloe/__init__.py,sha256=6SLytdJtwu37qewf7CobG7C7Wl1m-xt
|
|
194
194
|
ultralytics/models/yolo/yoloe/predict.py,sha256=GmQxCQe7sLomAujde53jQzquzryNn6fEjS4Oalf3mPs,7124
|
195
195
|
ultralytics/models/yolo/yoloe/train.py,sha256=XYpQYSnSD8vi_9VSj_S5oIsNUEqm3e66vPT8rNFI_HY,14086
|
196
196
|
ultralytics/models/yolo/yoloe/train_seg.py,sha256=aCV7M8oQOvODFnU4piZdJh3tIrBJYAzZfRVRx1vRgxo,4956
|
197
|
-
ultralytics/models/yolo/yoloe/val.py,sha256=
|
197
|
+
ultralytics/models/yolo/yoloe/val.py,sha256=2NuERI3B3WeED658Cat1xL2SVpORUHlCHCWI3L8pJJc,9784
|
198
198
|
ultralytics/nn/__init__.py,sha256=rjociYD9lo_K-d-1s6TbdWklPLjTcEHk7OIlRDJstIE,615
|
199
199
|
ultralytics/nn/autobackend.py,sha256=UM9ObXeLB0lgak1Q5oSi2IA-R_Owr6NdJNBAsA3mSbo,41790
|
200
200
|
ultralytics/nn/tasks.py,sha256=vw_TNacAv-RN24rusFzKuYL6qRBD7cve8EpB7gOlU_8,72505
|
@@ -267,8 +267,8 @@ ultralytics/utils/callbacks/neptune.py,sha256=j8pecmlcsM8FGzLKWoBw5xUsi5t8E5HuxY
|
|
267
267
|
ultralytics/utils/callbacks/raytune.py,sha256=S6Bq16oQDQ8BQgnZzA0zJHGN_BBr8iAM_WtGoLiEcwg,1283
|
268
268
|
ultralytics/utils/callbacks/tensorboard.py,sha256=MDPBW7aDes-66OE6YqKXXvqA_EocjzEMHWGM-8z9vUQ,5281
|
269
269
|
ultralytics/utils/callbacks/wb.py,sha256=Tm_-aRr2CN32MJkY9tylpMBJkb007-MSRNSQ7rDJ5QU,7521
|
270
|
-
dgenerate_ultralytics_headless-8.3.
|
271
|
-
dgenerate_ultralytics_headless-8.3.
|
272
|
-
dgenerate_ultralytics_headless-8.3.
|
273
|
-
dgenerate_ultralytics_headless-8.3.
|
274
|
-
dgenerate_ultralytics_headless-8.3.
|
270
|
+
dgenerate_ultralytics_headless-8.3.183.dist-info/METADATA,sha256=u9Pxkr9kFuSZDzhiV3hvbkFV8Br-rfRoWSABCSUcQ1E,38727
|
271
|
+
dgenerate_ultralytics_headless-8.3.183.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
272
|
+
dgenerate_ultralytics_headless-8.3.183.dist-info/entry_points.txt,sha256=YM_wiKyTe9yRrsEfqvYolNO5ngwfoL4-NwgKzc8_7sI,93
|
273
|
+
dgenerate_ultralytics_headless-8.3.183.dist-info/top_level.txt,sha256=XP49TwiMw4QGsvTLSYiJhz1xF_k7ev5mQ8jJXaXi45Q,12
|
274
|
+
dgenerate_ultralytics_headless-8.3.183.dist-info/RECORD,,
|
tests/test_cuda.py
CHANGED
@@ -67,7 +67,7 @@ def test_export_onnx_matrix(task, dynamic, int8, half, batch, simplify, nms):
|
|
67
67
|
half=half,
|
68
68
|
batch=batch,
|
69
69
|
simplify=simplify,
|
70
|
-
nms=nms,
|
70
|
+
nms=nms and task != "obb", # disable NMS for OBB task for now on T4 instance
|
71
71
|
device=DEVICES[0],
|
72
72
|
)
|
73
73
|
YOLO(file)([SOURCE] * batch, imgsz=64 if dynamic else 32, device=DEVICES[0]) # exported model inference
|
@@ -163,7 +163,7 @@ def test_autobatch():
|
|
163
163
|
|
164
164
|
|
165
165
|
@pytest.mark.slow
|
166
|
-
@pytest.mark.skipif(
|
166
|
+
@pytest.mark.skipif(True, reason="Skip for now since T4 instance does not support TensorRT > 10.0")
|
167
167
|
def test_utils_benchmarks():
|
168
168
|
"""Profile YOLO models for performance benchmarks."""
|
169
169
|
from ultralytics.utils.benchmarks import ProfileModels
|
tests/test_python.py
CHANGED
@@ -228,6 +228,15 @@ def test_train_scratch():
|
|
228
228
|
model(SOURCE)
|
229
229
|
|
230
230
|
|
231
|
+
@pytest.mark.skipif(not ONLINE, reason="environment is offline")
|
232
|
+
def test_train_ndjson():
|
233
|
+
"""Test training the YOLO model using NDJSON format dataset."""
|
234
|
+
model = YOLO(WEIGHTS_DIR / "yolo11n.pt")
|
235
|
+
model.train(
|
236
|
+
data="https://github.com/ultralytics/assets/releases/download/v0.0.0/coco8-ndjson.ndjson", epochs=1, imgsz=32
|
237
|
+
)
|
238
|
+
|
239
|
+
|
231
240
|
@pytest.mark.parametrize("scls", [False, True])
|
232
241
|
def test_train_pretrained(scls):
|
233
242
|
"""Test training of the YOLO model starting from a pre-trained checkpoint."""
|
ultralytics/__init__.py
CHANGED
ultralytics/data/converter.py
CHANGED
@@ -1,5 +1,6 @@
|
|
1
1
|
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
2
2
|
|
3
|
+
import asyncio
|
3
4
|
import json
|
4
5
|
import random
|
5
6
|
import shutil
|
@@ -12,7 +13,8 @@ import cv2
|
|
12
13
|
import numpy as np
|
13
14
|
from PIL import Image
|
14
15
|
|
15
|
-
from ultralytics.utils import DATASETS_DIR, LOGGER, NUM_THREADS, TQDM
|
16
|
+
from ultralytics.utils import DATASETS_DIR, LOGGER, NUM_THREADS, TQDM, YAML
|
17
|
+
from ultralytics.utils.checks import check_file, check_requirements
|
16
18
|
from ultralytics.utils.downloads import download, zip_directory
|
17
19
|
from ultralytics.utils.files import increment_path
|
18
20
|
|
@@ -754,3 +756,112 @@ def convert_to_multispectral(path: Union[str, Path], n_channels: int = 10, repla
|
|
754
756
|
multispectral = f(target_wavelengths)
|
755
757
|
cv2.imwritemulti(str(output_path), np.clip(multispectral, 0, 255).astype(np.uint8).transpose(2, 0, 1))
|
756
758
|
LOGGER.info(f"Converted {output_path}")
|
759
|
+
|
760
|
+
|
761
|
+
async def convert_ndjson_to_yolo(ndjson_path: Union[str, Path], output_path: Optional[Union[str, Path]] = None) -> Path:
|
762
|
+
"""
|
763
|
+
Convert NDJSON dataset format to Ultralytics YOLO11 dataset structure.
|
764
|
+
|
765
|
+
This function converts datasets stored in NDJSON (Newline Delimited JSON) format to the standard YOLO
|
766
|
+
format with separate directories for images and labels. It supports parallel processing for efficient
|
767
|
+
conversion of large datasets and can download images from URLs if they don't exist locally.
|
768
|
+
|
769
|
+
The NDJSON format consists of:
|
770
|
+
- First line: Dataset metadata with class names and configuration
|
771
|
+
- Subsequent lines: Individual image records with annotations and optional URLs
|
772
|
+
|
773
|
+
Args:
|
774
|
+
ndjson_path (Union[str, Path]): Path to the input NDJSON file containing dataset information.
|
775
|
+
output_path (Optional[Union[str, Path]], optional): Directory where the converted YOLO dataset
|
776
|
+
will be saved. If None, uses the parent directory of the NDJSON file. Defaults to None.
|
777
|
+
|
778
|
+
Returns:
|
779
|
+
(Path): Path to the generated data.yaml file that can be used for YOLO training.
|
780
|
+
|
781
|
+
Examples:
|
782
|
+
Convert a local NDJSON file:
|
783
|
+
>>> yaml_path = convert_ndjson_to_yolo("dataset.ndjson")
|
784
|
+
>>> print(f"Dataset converted to: {yaml_path}")
|
785
|
+
|
786
|
+
Convert with custom output directory:
|
787
|
+
>>> yaml_path = convert_ndjson_to_yolo("dataset.ndjson", output_path="./converted_datasets")
|
788
|
+
|
789
|
+
# Use with YOLO training
|
790
|
+
>>> from ultralytics import YOLO
|
791
|
+
>>> model = YOLO("yolo11n.pt")
|
792
|
+
>>> model.train(data="https://github.com/ultralytics/assets/releases/download/v0.0.0/coco8-ndjson.ndjson")
|
793
|
+
"""
|
794
|
+
check_requirements("aiohttp")
|
795
|
+
import aiohttp
|
796
|
+
|
797
|
+
ndjson_path = Path(check_file(ndjson_path))
|
798
|
+
output_path = Path(output_path or DATASETS_DIR)
|
799
|
+
with open(ndjson_path) as f:
|
800
|
+
lines = [json.loads(line.strip()) for line in f if line.strip()]
|
801
|
+
|
802
|
+
dataset_record, image_records = lines[0], lines[1:]
|
803
|
+
dataset_dir = output_path / ndjson_path.stem
|
804
|
+
splits = {record["split"] for record in image_records}
|
805
|
+
|
806
|
+
# Create directories and prepare YAML structure
|
807
|
+
dataset_dir.mkdir(parents=True, exist_ok=True)
|
808
|
+
data_yaml = dict(dataset_record)
|
809
|
+
data_yaml["names"] = {int(k): v for k, v in dataset_record.get("class_names", {}).items()}
|
810
|
+
|
811
|
+
for split in sorted(splits):
|
812
|
+
(dataset_dir / "images" / split).mkdir(parents=True, exist_ok=True)
|
813
|
+
(dataset_dir / "labels" / split).mkdir(parents=True, exist_ok=True)
|
814
|
+
data_yaml[split] = f"images/{split}"
|
815
|
+
|
816
|
+
async def process_record(session, semaphore, record):
|
817
|
+
"""Process single image record with async session."""
|
818
|
+
async with semaphore:
|
819
|
+
split, original_name = record["split"], record["file"]
|
820
|
+
label_path = dataset_dir / "labels" / split / f"{Path(original_name).stem}.txt"
|
821
|
+
image_path = dataset_dir / "images" / split / original_name
|
822
|
+
|
823
|
+
annotations = record.get("annotations", {})
|
824
|
+
lines_to_write = []
|
825
|
+
for key in annotations.keys():
|
826
|
+
lines_to_write = [" ".join(map(str, item)) for item in annotations[key]]
|
827
|
+
break
|
828
|
+
if "classification" in annotations:
|
829
|
+
lines_to_write = [str(cls) for cls in annotations["classification"]]
|
830
|
+
|
831
|
+
label_path.write_text("\n".join(lines_to_write) + "\n" if lines_to_write else "")
|
832
|
+
|
833
|
+
if http_url := record.get("url"):
|
834
|
+
if not image_path.exists():
|
835
|
+
try:
|
836
|
+
async with session.get(http_url, timeout=aiohttp.ClientTimeout(total=30)) as response:
|
837
|
+
response.raise_for_status()
|
838
|
+
with open(image_path, "wb") as f:
|
839
|
+
async for chunk in response.content.iter_chunked(8192):
|
840
|
+
f.write(chunk)
|
841
|
+
return True
|
842
|
+
except Exception as e:
|
843
|
+
LOGGER.warning(f"Failed to download {http_url}: {e}")
|
844
|
+
return False
|
845
|
+
return True
|
846
|
+
|
847
|
+
# Process all images with async downloads
|
848
|
+
semaphore = asyncio.Semaphore(64)
|
849
|
+
async with aiohttp.ClientSession() as session:
|
850
|
+
pbar = TQDM(
|
851
|
+
total=len(image_records),
|
852
|
+
desc=f"Converting {ndjson_path.name} → {dataset_dir} ({len(image_records)} images)",
|
853
|
+
)
|
854
|
+
|
855
|
+
async def tracked_process(record):
|
856
|
+
result = await process_record(session, semaphore, record)
|
857
|
+
pbar.update(1)
|
858
|
+
return result
|
859
|
+
|
860
|
+
await asyncio.gather(*[tracked_process(record) for record in image_records])
|
861
|
+
pbar.close()
|
862
|
+
|
863
|
+
# Write data.yaml
|
864
|
+
yaml_path = dataset_dir / "data.yaml"
|
865
|
+
YAML.save(yaml_path, data_yaml)
|
866
|
+
|
867
|
+
return yaml_path
|
ultralytics/engine/trainer.py
CHANGED
@@ -598,6 +598,15 @@ class BaseTrainer:
|
|
598
598
|
try:
|
599
599
|
if self.args.task == "classify":
|
600
600
|
data = check_cls_dataset(self.args.data)
|
601
|
+
elif self.args.data.rsplit(".", 1)[-1] == "ndjson":
|
602
|
+
# Convert NDJSON to YOLO format
|
603
|
+
import asyncio
|
604
|
+
|
605
|
+
from ultralytics.data.converter import convert_ndjson_to_yolo
|
606
|
+
|
607
|
+
yaml_path = asyncio.run(convert_ndjson_to_yolo(self.args.data))
|
608
|
+
self.args.data = str(yaml_path)
|
609
|
+
data = check_det_dataset(self.args.data)
|
601
610
|
elif self.args.data.rsplit(".", 1)[-1] in {"yaml", "yml"} or self.args.task in {
|
602
611
|
"detect",
|
603
612
|
"segment",
|
@@ -181,7 +181,7 @@ class YOLOEDetectValidator(DetectionValidator):
|
|
181
181
|
else:
|
182
182
|
if refer_data is not None:
|
183
183
|
assert load_vp, "Refer data is only used for visual prompt validation."
|
184
|
-
self.device = select_device(self.args.device)
|
184
|
+
self.device = select_device(self.args.device, verbose=False)
|
185
185
|
|
186
186
|
if isinstance(model, (str, Path)):
|
187
187
|
from ultralytics.nn.tasks import attempt_load_weights
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|