dgenerate-ultralytics-headless 8.3.163__py3-none-any.whl → 8.3.166__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (70) hide show
  1. {dgenerate_ultralytics_headless-8.3.163.dist-info → dgenerate_ultralytics_headless-8.3.166.dist-info}/METADATA +1 -1
  2. {dgenerate_ultralytics_headless-8.3.163.dist-info → dgenerate_ultralytics_headless-8.3.166.dist-info}/RECORD +70 -70
  3. ultralytics/__init__.py +1 -1
  4. ultralytics/cfg/datasets/Argoverse.yaml +1 -1
  5. ultralytics/cfg/datasets/DOTAv1.5.yaml +1 -1
  6. ultralytics/cfg/datasets/DOTAv1.yaml +1 -1
  7. ultralytics/cfg/datasets/GlobalWheat2020.yaml +1 -1
  8. ultralytics/cfg/datasets/HomeObjects-3K.yaml +3 -4
  9. ultralytics/cfg/datasets/ImageNet.yaml +1 -1
  10. ultralytics/cfg/datasets/Objects365.yaml +1 -1
  11. ultralytics/cfg/datasets/SKU-110K.yaml +4 -4
  12. ultralytics/cfg/datasets/VOC.yaml +3 -3
  13. ultralytics/cfg/datasets/VisDrone.yaml +37 -30
  14. ultralytics/cfg/datasets/african-wildlife.yaml +4 -4
  15. ultralytics/cfg/datasets/brain-tumor.yaml +3 -4
  16. ultralytics/cfg/datasets/carparts-seg.yaml +4 -4
  17. ultralytics/cfg/datasets/coco-pose.yaml +1 -1
  18. ultralytics/cfg/datasets/coco.yaml +1 -1
  19. ultralytics/cfg/datasets/coco128-seg.yaml +1 -1
  20. ultralytics/cfg/datasets/coco128.yaml +1 -1
  21. ultralytics/cfg/datasets/coco8-grayscale.yaml +1 -1
  22. ultralytics/cfg/datasets/coco8-multispectral.yaml +1 -1
  23. ultralytics/cfg/datasets/coco8-pose.yaml +1 -1
  24. ultralytics/cfg/datasets/coco8-seg.yaml +1 -1
  25. ultralytics/cfg/datasets/coco8.yaml +1 -1
  26. ultralytics/cfg/datasets/crack-seg.yaml +4 -4
  27. ultralytics/cfg/datasets/dog-pose.yaml +3 -3
  28. ultralytics/cfg/datasets/dota8-multispectral.yaml +1 -1
  29. ultralytics/cfg/datasets/dota8.yaml +1 -1
  30. ultralytics/cfg/datasets/hand-keypoints.yaml +3 -3
  31. ultralytics/cfg/datasets/lvis.yaml +1 -1
  32. ultralytics/cfg/datasets/medical-pills.yaml +3 -4
  33. ultralytics/cfg/datasets/open-images-v7.yaml +1 -1
  34. ultralytics/cfg/datasets/package-seg.yaml +4 -4
  35. ultralytics/cfg/datasets/signature.yaml +3 -3
  36. ultralytics/cfg/datasets/tiger-pose.yaml +3 -3
  37. ultralytics/cfg/datasets/xView.yaml +1 -1
  38. ultralytics/data/augment.py +182 -153
  39. ultralytics/data/build.py +23 -3
  40. ultralytics/data/dataset.py +6 -2
  41. ultralytics/data/loaders.py +2 -2
  42. ultralytics/data/utils.py +9 -7
  43. ultralytics/engine/exporter.py +7 -3
  44. ultralytics/engine/results.py +42 -42
  45. ultralytics/models/fastsam/model.py +1 -1
  46. ultralytics/models/fastsam/predict.py +1 -1
  47. ultralytics/models/sam/model.py +4 -4
  48. ultralytics/models/sam/modules/blocks.py +5 -5
  49. ultralytics/models/sam/modules/memory_attention.py +19 -19
  50. ultralytics/models/sam/modules/transformer.py +24 -22
  51. ultralytics/models/yolo/detect/val.py +2 -2
  52. ultralytics/models/yolo/world/train_world.py +9 -1
  53. ultralytics/solutions/distance_calculation.py +1 -1
  54. ultralytics/solutions/instance_segmentation.py +2 -2
  55. ultralytics/solutions/object_blurrer.py +2 -2
  56. ultralytics/solutions/object_counter.py +2 -2
  57. ultralytics/solutions/object_cropper.py +1 -1
  58. ultralytics/solutions/queue_management.py +1 -1
  59. ultralytics/solutions/security_alarm.py +2 -2
  60. ultralytics/solutions/templates/similarity-search.html +0 -24
  61. ultralytics/solutions/vision_eye.py +1 -1
  62. ultralytics/utils/benchmarks.py +2 -2
  63. ultralytics/utils/export.py +0 -2
  64. ultralytics/utils/instance.py +32 -25
  65. ultralytics/utils/metrics.py +4 -4
  66. ultralytics/utils/ops.py +8 -8
  67. {dgenerate_ultralytics_headless-8.3.163.dist-info → dgenerate_ultralytics_headless-8.3.166.dist-info}/WHEEL +0 -0
  68. {dgenerate_ultralytics_headless-8.3.163.dist-info → dgenerate_ultralytics_headless-8.3.166.dist-info}/entry_points.txt +0 -0
  69. {dgenerate_ultralytics_headless-8.3.163.dist-info → dgenerate_ultralytics_headless-8.3.166.dist-info}/licenses/LICENSE +0 -0
  70. {dgenerate_ultralytics_headless-8.3.163.dist-info → dgenerate_ultralytics_headless-8.3.166.dist-info}/top_level.txt +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: dgenerate-ultralytics-headless
3
- Version: 8.3.163
3
+ Version: 8.3.166
4
4
  Summary: Automatically built Ultralytics package with python-opencv-headless dependency instead of python-opencv
5
5
  Author-email: Glenn Jocher <glenn.jocher@ultralytics.com>, Jing Qiu <jing.qiu@ultralytics.com>
6
6
  Maintainer-email: Ultralytics <hello@ultralytics.com>
@@ -1,4 +1,4 @@
1
- dgenerate_ultralytics_headless-8.3.163.dist-info/licenses/LICENSE,sha256=DZak_2itbUtvHzD3E7GNUYSRK6jdOJ-GqncQ2weavLA,34523
1
+ dgenerate_ultralytics_headless-8.3.166.dist-info/licenses/LICENSE,sha256=DZak_2itbUtvHzD3E7GNUYSRK6jdOJ-GqncQ2weavLA,34523
2
2
  tests/__init__.py,sha256=b4KP5_q-2IO8Br8YHOSLYnn7IwZS81l_vfEF2YPa2lM,894
3
3
  tests/conftest.py,sha256=LXtQJcFNWPGuzauTGkiXgsvVC3llJKfg22WcmhRzuQc,2593
4
4
  tests/test_cli.py,sha256=Kpfxq_RlbKK1Z8xNScDUbre6GB7neZhXZAYGI1tiDS8,5660
@@ -8,45 +8,45 @@ tests/test_exports.py,sha256=HmMKOTCia9ZDC0VYc_EPmvBTM5LM5eeI1NF_pKjLpd8,9677
8
8
  tests/test_integrations.py,sha256=kl_AKmE_Qs1GB0_91iVwbzNxofm_hFTt0zzU6JF-pg4,6323
9
9
  tests/test_python.py,sha256=JJu-69IfuUf1dLK7Ko9elyPONiQ1yu7yhapMVIAt_KI,27907
10
10
  tests/test_solutions.py,sha256=tuf6n_fsI8KvSdJrnc-cqP2qYdiYqCWuVrx0z9dOz3Q,13213
11
- ultralytics/__init__.py,sha256=6O34X8CQb6O0LdQxuAb1p_K16CimZHrdPN1T75KtT8A,730
11
+ ultralytics/__init__.py,sha256=yczpDVZI5DkFqH3t28doRPDuDqSjoNtwLkDWy4qLC3c,730
12
12
  ultralytics/assets/bus.jpg,sha256=wCAZxJecGR63Od3ZRERe9Aja1Weayrb9Ug751DS_vGM,137419
13
13
  ultralytics/assets/zidane.jpg,sha256=Ftc4aeMmen1O0A3o6GCDO9FlfBslLpTAw0gnetx7bts,50427
14
14
  ultralytics/cfg/__init__.py,sha256=VIpPHImhjb0XLJquGZrG_LBGZchtOtBSXR7HYTYV2GU,39602
15
15
  ultralytics/cfg/default.yaml,sha256=oFG6llJO-Py5H-cR9qs-7FieJamroDLwpbrkhmfROOM,8307
16
- ultralytics/cfg/datasets/Argoverse.yaml,sha256=0mm20vJBZxxLQtc_Z3Op6zUjmJkINLi70hO6aw67Lwc,3263
17
- ultralytics/cfg/datasets/DOTAv1.5.yaml,sha256=aT3VKgkVPTaaRRjnpHEhIbgANU-yt7VsFjAf5562wqA,1212
18
- ultralytics/cfg/datasets/DOTAv1.yaml,sha256=Ydf8_hRfZkaFMEkDKw3as0msVV4KPD1JuFjVMYDqIMQ,1182
19
- ultralytics/cfg/datasets/GlobalWheat2020.yaml,sha256=JP6zk5GR2fufGGFmOMr57EnRj7kKh9-fIuInkdmXMlU,2145
20
- ultralytics/cfg/datasets/HomeObjects-3K.yaml,sha256=Cgokv3w-g6z1KnQ5ALuS9qTTwBzgN7vWroQuIajJIZo,978
21
- ultralytics/cfg/datasets/ImageNet.yaml,sha256=1zci8FWwbkFwNHlAkfDUnWyoOKrFvkEXz1VNpVAizBg,42531
22
- ultralytics/cfg/datasets/Objects365.yaml,sha256=EfhNwsYMqDCXc3kZfokvk4LYq1QZDKl-ZpfoecP7aOE,9355
23
- ultralytics/cfg/datasets/SKU-110K.yaml,sha256=OBUCCRFr6UXrp6LkXZSXA92dSYCc6MrDP_0rlmmLrvI,2546
24
- ultralytics/cfg/datasets/VOC.yaml,sha256=zVkCLoj6EbZm8gf8cOg8QbEIpsN6W6oreKmW2czTWeE,3788
25
- ultralytics/cfg/datasets/VisDrone.yaml,sha256=iIAxa9F3CxG18d3SFrwqM8_8HFzObxEM3yyhWaQ8saQ,3282
26
- ultralytics/cfg/datasets/african-wildlife.yaml,sha256=SLSyIAOg9Kbx0lN7VApPDLGjAL2RKdYvzG1ErAZtwhc,918
27
- ultralytics/cfg/datasets/brain-tumor.yaml,sha256=SWJOiFGvJfxe4oGxG35Pw5NXsBxMdYWEw5UlkRSr0kg,844
28
- ultralytics/cfg/datasets/carparts-seg.yaml,sha256=liuHTeQOaztNMGr87Qtp0P8-h3VATSAB9FMfBOQ-rTo,1256
29
- ultralytics/cfg/datasets/coco-pose.yaml,sha256=j_ynggAOE1aNpjG42QHMDTrYiPic8S0cnbNHXqmH7vY,1624
30
- ultralytics/cfg/datasets/coco.yaml,sha256=E5OlAwkJkzhRI2BFIPnUE0VnzdQNDFhv2czDVS582BQ,2607
31
- ultralytics/cfg/datasets/coco128-seg.yaml,sha256=04Pfr7RPgJM2hF_LpYYD2zIPqCyOJ2sWW23HO2qXoEI,1983
32
- ultralytics/cfg/datasets/coco128.yaml,sha256=hNHjxEq57lRpcNYuN3dX7ockjhgQu7SdiXepcGApjdU,1966
33
- ultralytics/cfg/datasets/coco8-grayscale.yaml,sha256=YfAJRbM2wWd37p1Jl7rOOoxiPH3rWRo5mddjUvJcFxg,1962
34
- ultralytics/cfg/datasets/coco8-multispectral.yaml,sha256=Kaca3kaq8-iwtBOdmvJaETI-JzDNyjKbk7SSUWGUnO4,2064
35
- ultralytics/cfg/datasets/coco8-pose.yaml,sha256=4S_0RSNNK_ccz1Qxp7wdO0-RjxwwhldTRpGahQnzIw8,1010
36
- ultralytics/cfg/datasets/coco8-seg.yaml,sha256=8V59_ASLtTg3jsXtV03opU4TRwyFy2fsNUUSR791cB0,1914
37
- ultralytics/cfg/datasets/coco8.yaml,sha256=aPefOD63vx1EJ4BhdeumSrYVoJIh2uMyIb6BTrEFk68,1889
38
- ultralytics/cfg/datasets/crack-seg.yaml,sha256=8zkQD4eAeWjkxFQQGSTNvxla1b02Vuo8AlmLY7PZvjE,840
39
- ultralytics/cfg/datasets/dog-pose.yaml,sha256=CjvPu8y_KBZFcXn8JOaeDzi1NkVYgd3M4yVazOSYUT0,895
40
- ultralytics/cfg/datasets/dota8-multispectral.yaml,sha256=AD9LGIV0FdnHLJCsczU06SIOIHYOygr5owb69bi-Nk0,1217
41
- ultralytics/cfg/datasets/dota8.yaml,sha256=cVmqA8SYVIY4Rp5y0oIPfw1Si2AZMPMDrFaV8ZRUnGI,1061
42
- ultralytics/cfg/datasets/hand-keypoints.yaml,sha256=w_G5BmUKuWFb0yCbTOeWjGhz8ZAqAYeN7ECZpO37h3g,977
43
- ultralytics/cfg/datasets/lvis.yaml,sha256=69E7zRFQxqdx6T7GhrLVR8XoZtfx4pwR7I3kobxmz2M,29704
44
- ultralytics/cfg/datasets/medical-pills.yaml,sha256=1CtNFVtc2Lmo1Wjssh_hzAevo_mvkMuQGoLDGD7i2S0,836
45
- ultralytics/cfg/datasets/open-images-v7.yaml,sha256=GblFutr27lY3W2h9GyK8zUqq5svtF1EeEBoP5kbnd5o,12120
46
- ultralytics/cfg/datasets/package-seg.yaml,sha256=gJZmxXNzmvPU4K2cmkPR44Lp6aGW_9J4EFcYqgrS4T4,852
47
- ultralytics/cfg/datasets/signature.yaml,sha256=uqPSj6XCILKOmIn01GXKLXZqoouZvKx7tOusfF4hL5c,777
48
- ultralytics/cfg/datasets/tiger-pose.yaml,sha256=0f_Q45eOexla9-nKG8SDziK2ACZcND8wRZpXCKO3iO8,913
49
- ultralytics/cfg/datasets/xView.yaml,sha256=46Z-TaZAXHXM85PoSWeI9mhpu__RB5TOtPAfo0cbAFM,5341
16
+ ultralytics/cfg/datasets/Argoverse.yaml,sha256=4SGaJio9JFUkrscHJTPnH_QSbYm48Wbk8EFwl39zntc,3262
17
+ ultralytics/cfg/datasets/DOTAv1.5.yaml,sha256=VZ_KKFX0H2YvlFVJ8JHcLWYBZ2xiQ6Z-ROSTiKWpS7c,1211
18
+ ultralytics/cfg/datasets/DOTAv1.yaml,sha256=JrDuYcQ0JU9lJlCA-dCkMNko_jaj6MAVGHjsfjeZ_u0,1181
19
+ ultralytics/cfg/datasets/GlobalWheat2020.yaml,sha256=dnr_loeYSE6Eo_f7V1yubILsMRBMRm1ozyC5r7uT-iY,2144
20
+ ultralytics/cfg/datasets/HomeObjects-3K.yaml,sha256=xEtSqEad-rtfGuIrERjjhdISggmPlvaX-315ZzKz50I,934
21
+ ultralytics/cfg/datasets/ImageNet.yaml,sha256=GvDWypLVG_H3H67Ai8IC1pvK6fwcTtF5FRhzO1OXXDU,42530
22
+ ultralytics/cfg/datasets/Objects365.yaml,sha256=vLzbT3xgpLR-bHhrHOiYyzYvDIniRdevgSyPetm8QHk,9354
23
+ ultralytics/cfg/datasets/SKU-110K.yaml,sha256=a52le1-JQ2YH6b1WLMUxVz7RkZ36YsmXgWyw0z3q9nQ,2542
24
+ ultralytics/cfg/datasets/VOC.yaml,sha256=GfJkYxN6uAiBTHOsR57L0UDi5NE9vH59A15EROrp0DU,3785
25
+ ultralytics/cfg/datasets/VisDrone.yaml,sha256=NujUSnR6gpXYdcvgg9nxmSZjPjcC9MdZ_YzMipvnuK8,3615
26
+ ultralytics/cfg/datasets/african-wildlife.yaml,sha256=SuloMp9WAZBigGC8az-VLACsFhTM76_O29yhTvUqdnU,915
27
+ ultralytics/cfg/datasets/brain-tumor.yaml,sha256=qrxPO_t9wxbn2kHFwP3vGTzSWj2ELTLelUwYL3_b6nc,800
28
+ ultralytics/cfg/datasets/carparts-seg.yaml,sha256=A4e9hM1unTY2jjZIXGiKSarF6R-Ad9R99t57OgRJ37w,1253
29
+ ultralytics/cfg/datasets/coco-pose.yaml,sha256=UYEY90XjHxTEYsUMXZXXaxzxs31zRun-PLTMRo1i334,1623
30
+ ultralytics/cfg/datasets/coco.yaml,sha256=iptVWzO1gLRPs76Mrs1Sp4yjYAR4f3AYeoUwP0r4UKw,2606
31
+ ultralytics/cfg/datasets/coco128-seg.yaml,sha256=knBS2enqHzQj5R5frU4nJdxKsFFBhq8TQ1G1JNiaz9s,1982
32
+ ultralytics/cfg/datasets/coco128.yaml,sha256=ok_dzaBUzSd0DWfe531GT_uYTEoF5mIQcgoMHZyIVIA,1965
33
+ ultralytics/cfg/datasets/coco8-grayscale.yaml,sha256=8v6G6mOzZHQNdQM1YwdTBW_lsWWkLRnAimwZBHKtJg8,1961
34
+ ultralytics/cfg/datasets/coco8-multispectral.yaml,sha256=nlU4W0d8rl1cVChthOk0NImhVDCm0voY3FrZs2D0lY0,2063
35
+ ultralytics/cfg/datasets/coco8-pose.yaml,sha256=GfSONSl-Oh4QErto91E_ws3im9ZTEYmDMaPOaSLLdV8,1009
36
+ ultralytics/cfg/datasets/coco8-seg.yaml,sha256=Ez42ZE6xHlj8lcjtMBJJP2Y460q2BuiwRfk090XnBgE,1913
37
+ ultralytics/cfg/datasets/coco8.yaml,sha256=tzrDY1KW82AHsgpCxte_yPkgMIIpNY6Pb4F46TDPxkk,1888
38
+ ultralytics/cfg/datasets/crack-seg.yaml,sha256=fqvSIq1fRXO55V_g2T92hcYAVoKBHZsSZQR7CokoPUI,837
39
+ ultralytics/cfg/datasets/dog-pose.yaml,sha256=sRU1JDtEC4nLVf2vkn7lxbp4ILWNcgE-ok96rxZv2lc,908
40
+ ultralytics/cfg/datasets/dota8-multispectral.yaml,sha256=2lMBi1Q3_pc0auK00yX80oF7oUMo0bUlwjkOrp33hvs,1216
41
+ ultralytics/cfg/datasets/dota8.yaml,sha256=5n4h_4zdrtUSkmH5DHJ-JLPvfiATcieIkgP3NeOP5nI,1060
42
+ ultralytics/cfg/datasets/hand-keypoints.yaml,sha256=6JF2wwrfAfaVb5M_yLmXyv7iIFXtAt91FqS-Q3kJda0,990
43
+ ultralytics/cfg/datasets/lvis.yaml,sha256=nEQgUdSdBcTYW3LzdK2ba3k8SK-p7NNgZ-SoCXf5vns,29703
44
+ ultralytics/cfg/datasets/medical-pills.yaml,sha256=RK7iQFpDDkUS6EsEGqlbFjoohi3cgSsUIbsk7UItyds,792
45
+ ultralytics/cfg/datasets/open-images-v7.yaml,sha256=wK9v3OAGdHORkFdqoBi0hS0fa1b74LLroAzUSWjxEqw,12119
46
+ ultralytics/cfg/datasets/package-seg.yaml,sha256=V4uyTDWWzgft24y9HJWuELKuZ5AndAHXbanxMI6T8GU,849
47
+ ultralytics/cfg/datasets/signature.yaml,sha256=gBvU3715gVxVAafI_yaYczGX3kfEfA4BttbiMkgOXNk,774
48
+ ultralytics/cfg/datasets/tiger-pose.yaml,sha256=Y_8htA4--6hmpqHTW-Ix4t9SdaWenSSyl_FUtI2A7n8,926
49
+ ultralytics/cfg/datasets/xView.yaml,sha256=NEEGaRTvTGafckJiFD1ltFyMl0b04zOyOFu_J-PN-Ik,5340
50
50
  ultralytics/cfg/models/11/yolo11-cls-resnet18.yaml,sha256=1Ycp9qMrwpb8rq7cqht3Q-1gMN0R87U35nm2j_isdro,524
51
51
  ultralytics/cfg/models/11/yolo11-cls.yaml,sha256=17l5GdN-Vst4LvafsK2-q6Li9VX9UlUcT5ClCtikweE,1412
52
52
  ultralytics/cfg/models/11/yolo11-obb.yaml,sha256=3M_c06B-y8da4tunHVxQQ-iFUNLKUfofqCZTpnH5FEU,2034
@@ -106,24 +106,24 @@ ultralytics/cfg/trackers/botsort.yaml,sha256=TpRaK5kH_-QbjCQ7ekM4s_7j8I8ti3q8Hs7
106
106
  ultralytics/cfg/trackers/bytetrack.yaml,sha256=6u-tiZlk16EqEwkNXaMrza6PAQmWj_ypgv26LGCtPDg,886
107
107
  ultralytics/data/__init__.py,sha256=nAXaL1puCc7z_NjzQNlJnhbVhT9Fla2u7Dsqo7q1dAc,644
108
108
  ultralytics/data/annotator.py,sha256=uAgd7K-yudxiwdNqHz0ubfFg5JsfNlae4cgxdvCMyuY,3030
109
- ultralytics/data/augment.py,sha256=elMnIEubT1ywhH0tbppLbWW4dEs3-n5vnm8U8TzsDEw,129493
109
+ ultralytics/data/augment.py,sha256=lZhe2p8nrMrlfq1Y0FEXzDUAqLK0zROd2Heb7pJqn58,132420
110
110
  ultralytics/data/base.py,sha256=mRcuehK1thNuuzQGL6D1AaZkod71oHRdYTod_zdQZQg,19688
111
- ultralytics/data/build.py,sha256=13gPxCJIZRjgcNh7zbzanCgtyK6_oZM0ho9KQhHcM6c,11153
111
+ ultralytics/data/build.py,sha256=TfMLSPMbE2hGZVMLl178NTFrihC1-50jNOt1ex9elxw,11480
112
112
  ultralytics/data/converter.py,sha256=dExElV0vWd4EmDtZaFMC0clEmLdjRDIdFiXf01PUvQA,27134
113
- ultralytics/data/dataset.py,sha256=0VjzciGleGGF_XN5fEnS3c5UT0r533HMmQ9DfEQ_lA4,36463
114
- ultralytics/data/loaders.py,sha256=kTGO1P-HntpQk078i1ASyXYckDx9Z7Pe7o1YbePcjC4,31657
113
+ ultralytics/data/dataset.py,sha256=GhoFzBiuGvTr_5-3pzgWu6D_3aQVwW-hcS7kCo8XscM,36752
114
+ ultralytics/data/loaders.py,sha256=VcBg1c6hbASOU-PcFSMg_UXFUIGbG-xox4t80JbUD4c,31649
115
115
  ultralytics/data/split.py,sha256=F6O73bAbESj70FQZzqkydXQeXgPXGHGiC06b5MkLHjQ,5109
116
116
  ultralytics/data/split_dota.py,sha256=rr-lLpTUVaFZMggV_fUYZdFVIJk_zbbSOpgB_Qp50_M,12893
117
- ultralytics/data/utils.py,sha256=KAWSi0pqzCbG1QL9lblgeEyz12QoLtTx-f-LNmJ49Xw,36711
117
+ ultralytics/data/utils.py,sha256=UhxqsRCxPtZ7v_hiBd_dk-Dk2N3YUvxt8Snnz2ibNII,36837
118
118
  ultralytics/data/scripts/download_weights.sh,sha256=0y8XtZxOru7dVThXDFUXLHBuICgOIqZNUwpyL4Rh6lg,595
119
119
  ultralytics/data/scripts/get_coco.sh,sha256=UuJpJeo3qQpTHVINeOpmP0NYmg8PhEFE3A8J3jKrnPw,1768
120
120
  ultralytics/data/scripts/get_coco128.sh,sha256=qmRQl_hOKrsdHrTrnyQuFIH01oDz3lfaz138OgGfLt8,650
121
121
  ultralytics/data/scripts/get_imagenet.sh,sha256=hr42H16bM47iT27rgS7MpEo-GeOZAYUQXgr0B2cwn48,1705
122
122
  ultralytics/engine/__init__.py,sha256=lm6MckFYCPTbqIoX7w0s_daxdjNeBeKW6DXppv1-QUM,70
123
- ultralytics/engine/exporter.py,sha256=6ScFs_fTm9kHuEO4C0DA4JXhxFUzW0mG9qqDSeY2JkY,73261
123
+ ultralytics/engine/exporter.py,sha256=mb_mJ2eQ7pvCpRk9xrzGOmTvJ6dbknGWN6adcHe_7pM,73500
124
124
  ultralytics/engine/model.py,sha256=FmLwiKuItVNgoyXhAvesUnD3UeHBzCVzGHDrqB8J4ms,53453
125
125
  ultralytics/engine/predictor.py,sha256=xxl1kdAzKrN8Y_5MQ5f92uFPeeRq1mYOl6hNlzpPjy8,22520
126
- ultralytics/engine/results.py,sha256=rLQlttkgPudiV0u0d6Xy5hKKr1x3SJL1zrXA5W5vw7Y,71999
126
+ ultralytics/engine/results.py,sha256=QcHcbPVlLBiy_APwABr-T5K65HR8Bl1rRzxawjjP76E,71873
127
127
  ultralytics/engine/trainer.py,sha256=28FeqASvQRxCaK96SXDM-BfPJjqy5KNiWhf8v6GXTug,39785
128
128
  ultralytics/engine/tuner.py,sha256=sfQ8_yzgLNcGlKyz9b2vAzyggGZXiQzdZ5tKstyqjHM,12825
129
129
  ultralytics/engine/validator.py,sha256=qftJUomb4A-6rSThtST3TccEbc_zTmzovCBBCSpYm3k,16671
@@ -134,8 +134,8 @@ ultralytics/hub/utils.py,sha256=5-y3WBT5U_L0ZscTJrUWvGB02QYwVAF82OiFqvvd0sE,1026
134
134
  ultralytics/hub/google/__init__.py,sha256=ZJnS6s6wVl792p9h5aUmm9K2Di1DrHmTk1aEUJdTXhs,8443
135
135
  ultralytics/models/__init__.py,sha256=DqQFFYJ4IQlqIDb61H1HzcnZU7SuHN-43bw94-l-YAQ,309
136
136
  ultralytics/models/fastsam/__init__.py,sha256=HGJ8EKlBAsdF-e2aIwQLjSDAFI_r0yHR0A1gzrp4vqE,231
137
- ultralytics/models/fastsam/model.py,sha256=4Aazwv3tUYLxqyoEwZ2FLiZnOXwLlFEdSfqpltQwxzg,3439
138
- ultralytics/models/fastsam/predict.py,sha256=G-o8hs8W5XmqSN5G37zi6q9FglFnZSbD6qH_1KIIXwY,8965
137
+ ultralytics/models/fastsam/model.py,sha256=IW0QCgQgGNWjVToEInZ8jVwemfc3XnPA78A_zROw3xk,3436
138
+ ultralytics/models/fastsam/predict.py,sha256=feta9w9UD7xlbfB3p5QCum31RZ-eDMnWt01VCdVdT44,8962
139
139
  ultralytics/models/fastsam/utils.py,sha256=yuCXB4CVjRx8lDf61DP8B6qMx7TVf7AynQvdWREeFco,884
140
140
  ultralytics/models/fastsam/val.py,sha256=oLxB8vBKTfiT7eBbTzvpqq_xNSvDOjGdP1J7egHGsCA,2041
141
141
  ultralytics/models/nas/__init__.py,sha256=wybeHZuAXMNeXMjKTbK55FZmXJkA4K9IozDeFM9OB-s,207
@@ -150,16 +150,16 @@ ultralytics/models/rtdetr/val.py,sha256=MGzHWMfVDx9KPgaK09nvuHfXRQ6FagpzEyNO1R_8
150
150
  ultralytics/models/sam/__init__.py,sha256=iR7B06rAEni21eptg8n4rLOP0Z_qV9y9PL-L93n4_7s,266
151
151
  ultralytics/models/sam/amg.py,sha256=IpcuIfC5KBRiF4sdrsPl1ecWEJy75axo1yG23r5BFsw,11783
152
152
  ultralytics/models/sam/build.py,sha256=J6n-_QOYLa63jldEZmhRe9D3Is_AJE8xyZLUjzfRyTY,12629
153
- ultralytics/models/sam/model.py,sha256=E9aTW7UGl3TkkGbVFZ6_FBJWrb3kyJ_vuD6T1YCT0M0,7243
153
+ ultralytics/models/sam/model.py,sha256=j1TwsLmtxhiXyceU31VPzGVkjRXGylphKrdPSzUJRJc,7231
154
154
  ultralytics/models/sam/predict.py,sha256=2dg6L8X_I4RqTHAeH8w3m2ojFczkplx1Wu_ytwzAAgQ,82979
155
155
  ultralytics/models/sam/modules/__init__.py,sha256=lm6MckFYCPTbqIoX7w0s_daxdjNeBeKW6DXppv1-QUM,70
156
- ultralytics/models/sam/modules/blocks.py,sha256=YweiuDzMdBcfzt_cye6zeXx2ASbk03k4TqY-xMg1GwQ,45951
156
+ ultralytics/models/sam/modules/blocks.py,sha256=n8oe9sx91_RktsF2_2UYNKH7qk8bFXuJtEaIEpQQ3ws,46059
157
157
  ultralytics/models/sam/modules/decoders.py,sha256=-1fhBO47hA-3CzkU-PzkCK4Nsi_VJ_CH6Q9SMjydN4I,25609
158
158
  ultralytics/models/sam/modules/encoders.py,sha256=f1cdGdmQ_3Vt7MKxMVNIgvEvYmVR8lM1uVocNnrrYrU,37392
159
- ultralytics/models/sam/modules/memory_attention.py,sha256=UNUbVyF8m6NIdhGOvTAwb_lS6x_Had8Ek3OP5JJqcQU,13539
159
+ ultralytics/models/sam/modules/memory_attention.py,sha256=F1XJAxSwho2-LMlrao_ij0MoALTvhkK-OVghi0D4cU0,13651
160
160
  ultralytics/models/sam/modules/sam.py,sha256=LUNmH-1iFPLnl7qzLeLpRqgc82_b8xKNCszDo272rrM,55684
161
161
  ultralytics/models/sam/modules/tiny_encoder.py,sha256=lmUIeZ9-3M-C3YmJBs13W6t__dzeJloOl0qFR9Ll8ew,42241
162
- ultralytics/models/sam/modules/transformer.py,sha256=dIcq1UyCRYIhTPeetVpdjRcqR_b_a5AkkYo-L3Cq6hE,14747
162
+ ultralytics/models/sam/modules/transformer.py,sha256=xc2g6gb0jvr7cJkHkzIbZOGcTrmsOn2ojvuH-MVIMVs,14953
163
163
  ultralytics/models/sam/modules/utils.py,sha256=0qxBCh4tTzXNT10-BiKbqH6QDjzhkmLz2OiVG7gQfww,16021
164
164
  ultralytics/models/utils/__init__.py,sha256=lm6MckFYCPTbqIoX7w0s_daxdjNeBeKW6DXppv1-QUM,70
165
165
  ultralytics/models/utils/loss.py,sha256=E-61TfLPc04IdeL6IlFDityDoPju-ov0ouWV_cNY4Kg,21254
@@ -173,7 +173,7 @@ ultralytics/models/yolo/classify/val.py,sha256=YakPxBVZCd85Kp4wFKx8KH6JJFiU7nkFS
173
173
  ultralytics/models/yolo/detect/__init__.py,sha256=GIRsLYR-kT4JJx7lh4ZZAFGBZj0aebokuU0A7JbjDVA,257
174
174
  ultralytics/models/yolo/detect/predict.py,sha256=ySUsdIf8dw00bzWhcxN1jZwLWKPRT2M7-N7TNL3o4zo,5387
175
175
  ultralytics/models/yolo/detect/train.py,sha256=HlaCoHJ6Y2TpCXXWabMRZApAYqBvjuM_YQJUV5JYCvw,9907
176
- ultralytics/models/yolo/detect/val.py,sha256=qA3Jq4JDZ-sSAy0JMQcz2ncmhLqLRUughMNYLZ1YifE,20485
176
+ ultralytics/models/yolo/detect/val.py,sha256=TrLclevqfD9NnpqPSIEvB5KakCsozyBegaD4lhd3noE,20485
177
177
  ultralytics/models/yolo/obb/__init__.py,sha256=tQmpG8wVHsajWkZdmD6cjGohJ4ki64iSXQT8JY_dydo,221
178
178
  ultralytics/models/yolo/obb/predict.py,sha256=4r1eSld6TNJlk9JG56e-DX6oPL8uBBqiuztyBpxWlHE,2888
179
179
  ultralytics/models/yolo/obb/train.py,sha256=bnYFAMur7Uvbw5Dc09-S2ge7B05iGX-t37Ksgc0ef6g,3921
@@ -188,7 +188,7 @@ ultralytics/models/yolo/segment/train.py,sha256=XrPkXUiNu1Jvhn8iDew_RaLLjZA3un65
188
188
  ultralytics/models/yolo/segment/val.py,sha256=AnvY0O7HhD5xZ2BE2artLTAVW4SNmHbVopBJsYRcmk8,12328
189
189
  ultralytics/models/yolo/world/__init__.py,sha256=nlh8I6t8hMGz_vZg8QSlsUW1R-2eKvn9CGUoPPQEGhA,131
190
190
  ultralytics/models/yolo/world/train.py,sha256=wBKnSC-TvrKWM1Taxqwo13XcwGHwwAXzNYV1tmqcOpc,7845
191
- ultralytics/models/yolo/world/train_world.py,sha256=OLS1ofDSfMBsEG07PjEMruvbaXzNEWs07FpPowHVffs,9306
191
+ ultralytics/models/yolo/world/train_world.py,sha256=lk9z_INGPSTP_W7Rjh3qrWSmjHaxOJtGngonh1cj2SM,9551
192
192
  ultralytics/models/yolo/yoloe/__init__.py,sha256=6SLytdJtwu37qewf7CobG7C7Wl1m-xtNdvCXEasfPDE,760
193
193
  ultralytics/models/yolo/yoloe/predict.py,sha256=TAcT6fiWbV-jOewu9hx_shGI10VLF_6oSPf7jfatBWo,7041
194
194
  ultralytics/models/yolo/yoloe/train.py,sha256=XYpQYSnSD8vi_9VSj_S5oIsNUEqm3e66vPT8rNFI_HY,14086
@@ -209,23 +209,23 @@ ultralytics/solutions/__init__.py,sha256=ZoeAQavTLp8aClnhZ9tbl6lxy86GxofyGvZWTx2
209
209
  ultralytics/solutions/ai_gym.py,sha256=wwfTqX7G3mZXneMwiibEfYbVYaJF_JUX3SQdsdQUvBM,5217
210
210
  ultralytics/solutions/analytics.py,sha256=aHwKjSEW_3y47LrzugJbPB3VQGTDQCIb5goiPuxnmrc,12802
211
211
  ultralytics/solutions/config.py,sha256=CevL8lzeSbiSAAA514CTiduCg2_Wh04P0RaB_kmwJa8,5404
212
- ultralytics/solutions/distance_calculation.py,sha256=r05_ufxb2Mpw3EIX8X32PIWlh9rYMADypGhVIPoZYV4,5939
212
+ ultralytics/solutions/distance_calculation.py,sha256=TYX7pRlM1v7XTq6wTTfJmj3WHT3zRBhRRcu50uZQ_AE,5936
213
213
  ultralytics/solutions/heatmap.py,sha256=hBJR_Z3Lu9JcvCaEwnd-uN_WEiXK14FDRXedgaI8oqU,5515
214
- ultralytics/solutions/instance_segmentation.py,sha256=qsIQkvuR1Ur2bdEsCCJP2IEO1Hz2l0wfR2KUBo247xE,3795
215
- ultralytics/solutions/object_blurrer.py,sha256=wHbfrudh6li_JADc-dTHGGMI8GU-MvesoTvVlX6YuYc,3998
216
- ultralytics/solutions/object_counter.py,sha256=ccKuchrVkNE8AD4EvArtl6LCVf442jTOyc6_7tGua5o,9433
217
- ultralytics/solutions/object_cropper.py,sha256=mS3iT_CgqfqG9ldM_AM5ptq5bfYFyTycPQY5DxxMlSA,3525
214
+ ultralytics/solutions/instance_segmentation.py,sha256=zPMBY9ixn4YmZozBD2EyowLBadu4dOvZwk-m65EwgDk,3789
215
+ ultralytics/solutions/object_blurrer.py,sha256=96KOAEagk4UoErlUMiIDK6j1CWs2nN1dcJ5V6pl9L-8,3992
216
+ ultralytics/solutions/object_counter.py,sha256=zD-EYIxu_y7qCFEkv6aqV60oMCZ4q6b_kL_stXKof_A,9427
217
+ ultralytics/solutions/object_cropper.py,sha256=x3gN-ihtwkJntp6EMcVWnIvVTOu1iRkP5RrX-1kwJHg,3522
218
218
  ultralytics/solutions/parking_management.py,sha256=IfPUn15aelxz6YZNo9WYkVEl5IOVSw8VD0OrpKtExPE,13613
219
- ultralytics/solutions/queue_management.py,sha256=u0VFzRqa0OxIWY7xXItsXEm073CzkQGFhhXG-6VK3SI,4393
219
+ ultralytics/solutions/queue_management.py,sha256=gTkILx4dVcsKRZXSCXtelkEjCRiDS5iznb3FnddC61c,4390
220
220
  ultralytics/solutions/region_counter.py,sha256=nmtCoq1sFIU2Hx4gKImYNF7Yf5YpADHwujxxQGDvf1s,5916
221
- ultralytics/solutions/security_alarm.py,sha256=U6FTbg3cthKLfWeLunsFhOJvB6GGmwYDDxZ3K0GCx-Q,6351
221
+ ultralytics/solutions/security_alarm.py,sha256=czEaMcy04q-iBkKqT_14d8H20CFB6zcKH_31nBGQnyw,6345
222
222
  ultralytics/solutions/similarity_search.py,sha256=H9MPf8F5AvVfmb9hnng0FrIOTbLU_I-CkVHGpC81CE0,9496
223
223
  ultralytics/solutions/solutions.py,sha256=KtoSUSxM4s-Ti5EAzT21pItuv70qlIOH6ymJP95Gl-E,37318
224
224
  ultralytics/solutions/speed_estimation.py,sha256=chg_tBuKFw3EnFiv_obNDaUXLAo-FypxC7gsDeB_VUI,5878
225
225
  ultralytics/solutions/streamlit_inference.py,sha256=SqL-YxU3RCxCKscH2AYUTkmJknilV9jCCco6ufqsFk4,10501
226
226
  ultralytics/solutions/trackzone.py,sha256=kIS94rNfL3yVPAtSbnW8F-aLMxXowQtsfKNB-jLezz8,3941
227
- ultralytics/solutions/vision_eye.py,sha256=nlIdXhfM5EwJh4vqVhz3AEOoHXIELMo1OG8Cr1tMQRw,3008
228
- ultralytics/solutions/templates/similarity-search.html,sha256=vdz9XCH6VHbksvSW_sSg6Z2xVp82_EanaS_rY7xjZBE,4743
227
+ ultralytics/solutions/vision_eye.py,sha256=J_nsXhWkhfWz8THNJU4Yag4wbPv78ymby6SlNKeSuk4,3005
228
+ ultralytics/solutions/templates/similarity-search.html,sha256=nyyurpWlkvYlDeNh-74TlV4ctCpTksvkVy2Yc4ImQ1U,4261
229
229
  ultralytics/trackers/__init__.py,sha256=Zlu_Ig5osn7hqch_g5Be_e4pwZUkeeTQiesJCi0pFGI,255
230
230
  ultralytics/trackers/basetrack.py,sha256=-skBFFatzgJFAPN9Frm1u1h_RDUg3WOlxG6eHQxp2Gw,4384
231
231
  ultralytics/trackers/bot_sort.py,sha256=knP5oo1LC45Lrato8LpcY_j4KBojQFP1lxT_NJxhEUo,12134
@@ -238,17 +238,17 @@ ultralytics/trackers/utils/matching.py,sha256=uSYtywqi1lE_uNN1FwuBFPyISfDQXHMu8K
238
238
  ultralytics/utils/__init__.py,sha256=2xXw_PdASHKkAuOu3eaShJVqisQtFkF8nw5FyMuDUCQ,59401
239
239
  ultralytics/utils/autobatch.py,sha256=33m8YgggLIhltDqMXZ5OE-FGs2QiHrl2-LfgY1mI4cw,5119
240
240
  ultralytics/utils/autodevice.py,sha256=AvgXFt8c1Cg4icKh0Hbhhz8UmVQ2Wjyfdfkeb2C8zck,8855
241
- ultralytics/utils/benchmarks.py,sha256=GlsR6SvD3qlus2hVj7SqSNErsejBlIxO0Y7hMc_cWHw,31041
241
+ ultralytics/utils/benchmarks.py,sha256=btsi_B0mfLPfhE8GrsBpi79vl7SRam0YYngNFAsY8Ak,31035
242
242
  ultralytics/utils/checks.py,sha256=mkDl_BTLZyjfhYbFVSG6xYmxhB2s7wsQ62ugnhspqOc,34707
243
243
  ultralytics/utils/dist.py,sha256=A9lDGtGefTjSVvVS38w86GOdbtLzNBDZuDGK0MT4PRI,4170
244
244
  ultralytics/utils/downloads.py,sha256=YB6rJkcRGQfklUjZqi9dOkTiZaDSqbkGyZEFcZLQkgc,22080
245
245
  ultralytics/utils/errors.py,sha256=XT9Ru7ivoBgofK6PlnyigGoa7Fmf5nEhyHtnD-8TRXI,1584
246
- ultralytics/utils/export.py,sha256=0gG_GZNRqHcORJbjQq_1MXEHc3UEfzPAdpOl2X5VoDc,10008
246
+ ultralytics/utils/export.py,sha256=LK-wlTlyb_zIKtSvOmfmvR70RcUU9Ct9UBDt5wn9_rY,9880
247
247
  ultralytics/utils/files.py,sha256=ZCbLGleiF0f-PqYfaxMFAWop88w7U1hpreHXl8b2ko0,8238
248
- ultralytics/utils/instance.py,sha256=s97d-GXSSCluu-My2DFLAubdk_hf44BuVQ6OCROBrMc,18550
248
+ ultralytics/utils/instance.py,sha256=dC83rHvQXciAED3rOiScFs3BOX9OI06Ey1mj9sjUKvs,19070
249
249
  ultralytics/utils/loss.py,sha256=fbOWc3Iu0QOJiWbi-mXWA9-1otTYlehtmUsI7os7ydM,39799
250
- ultralytics/utils/metrics.py,sha256=3nQsz3rAm8n65iqikRzU30Pd2x20FY60ZlWrCMv5ZYk,62225
251
- ultralytics/utils/ops.py,sha256=Jkh80ujyi0XDQwNqCUYyomH8NQ145AH9doMUS8Vt8GE,34545
250
+ ultralytics/utils/metrics.py,sha256=pazuzAjKFnfnhSVH_w6xEWB4vN7RpC8n7v3zj9LkFbs,62247
251
+ ultralytics/utils/ops.py,sha256=8d60fbpntrexK3gPoLUS6mWAYGrtrQaQCOYyRJsCjuI,34521
252
252
  ultralytics/utils/patches.py,sha256=tBAsNo_RyoFLL9OAzVuJmuoDLUJIPuTMByBYyblGG1A,6517
253
253
  ultralytics/utils/plotting.py,sha256=LO-iR-k1UewV5vt4xXDUIirdmNEZdpfiQvLyIWqINPg,47171
254
254
  ultralytics/utils/tal.py,sha256=aXawOnhn8ni65tJWIW-PYqWr_TRvltbHBjrTo7o6lDQ,20924
@@ -266,8 +266,8 @@ ultralytics/utils/callbacks/neptune.py,sha256=j8pecmlcsM8FGzLKWoBw5xUsi5t8E5HuxY
266
266
  ultralytics/utils/callbacks/raytune.py,sha256=S6Bq16oQDQ8BQgnZzA0zJHGN_BBr8iAM_WtGoLiEcwg,1283
267
267
  ultralytics/utils/callbacks/tensorboard.py,sha256=MDPBW7aDes-66OE6YqKXXvqA_EocjzEMHWGM-8z9vUQ,5281
268
268
  ultralytics/utils/callbacks/wb.py,sha256=Tm_-aRr2CN32MJkY9tylpMBJkb007-MSRNSQ7rDJ5QU,7521
269
- dgenerate_ultralytics_headless-8.3.163.dist-info/METADATA,sha256=0m-qrhwzXtjycTiskozzo1HKgk8Dufoir_1_2G95Lhg,38672
270
- dgenerate_ultralytics_headless-8.3.163.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
271
- dgenerate_ultralytics_headless-8.3.163.dist-info/entry_points.txt,sha256=YM_wiKyTe9yRrsEfqvYolNO5ngwfoL4-NwgKzc8_7sI,93
272
- dgenerate_ultralytics_headless-8.3.163.dist-info/top_level.txt,sha256=XP49TwiMw4QGsvTLSYiJhz1xF_k7ev5mQ8jJXaXi45Q,12
273
- dgenerate_ultralytics_headless-8.3.163.dist-info/RECORD,,
269
+ dgenerate_ultralytics_headless-8.3.166.dist-info/METADATA,sha256=0pclHc5tA3osCgE9XTl4UXoTJHFQx3usp2Fr-8-FzcI,38672
270
+ dgenerate_ultralytics_headless-8.3.166.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
271
+ dgenerate_ultralytics_headless-8.3.166.dist-info/entry_points.txt,sha256=YM_wiKyTe9yRrsEfqvYolNO5ngwfoL4-NwgKzc8_7sI,93
272
+ dgenerate_ultralytics_headless-8.3.166.dist-info/top_level.txt,sha256=XP49TwiMw4QGsvTLSYiJhz1xF_k7ev5mQ8jJXaXi45Q,12
273
+ dgenerate_ultralytics_headless-8.3.166.dist-info/RECORD,,
ultralytics/__init__.py CHANGED
@@ -1,6 +1,6 @@
1
1
  # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
2
 
3
- __version__ = "8.3.163"
3
+ __version__ = "8.3.166"
4
4
 
5
5
  import os
6
6
 
@@ -6,7 +6,7 @@
6
6
  # parent
7
7
  # ├── ultralytics
8
8
  # └── datasets
9
- # └── Argoverse ← downloads here (31.5 GB)
9
+ # └── Argoverse ← downloads here (31.5 GB)
10
10
 
11
11
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
12
  path: Argoverse # dataset root dir
@@ -6,7 +6,7 @@
6
6
  # parent
7
7
  # ├── ultralytics
8
8
  # └── datasets
9
- # └── dota1.5 ← downloads here (2GB)
9
+ # └── dota1.5 ← downloads here (2GB)
10
10
 
11
11
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
12
  path: DOTAv1.5 # dataset root dir
@@ -6,7 +6,7 @@
6
6
  # parent
7
7
  # ├── ultralytics
8
8
  # └── datasets
9
- # └── dota1 ← downloads here (2GB)
9
+ # └── dota1 ← downloads here (2GB)
10
10
 
11
11
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
12
  path: DOTAv1 # dataset root dir
@@ -6,7 +6,7 @@
6
6
  # parent
7
7
  # ├── ultralytics
8
8
  # └── datasets
9
- # └── GlobalWheat2020 ← downloads here (7.0 GB)
9
+ # └── GlobalWheat2020 ← downloads here (7.0 GB)
10
10
 
11
11
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
12
  path: GlobalWheat2020 # dataset root dir
@@ -6,13 +6,12 @@
6
6
  # parent
7
7
  # ├── ultralytics
8
8
  # └── datasets
9
- # └── homeobjects-3K ← downloads here (390 MB)
9
+ # └── homeobjects-3K ← downloads here (390 MB)
10
10
 
11
11
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
12
  path: homeobjects-3K # dataset root dir
13
- train: train/images # train images (relative to 'path') 2285 images
14
- val: valid/images # val images (relative to 'path') 404 images
15
- test: # test images (relative to 'path')
13
+ train: images/train # train images (relative to 'path') 2285 images
14
+ val: images/val # val images (relative to 'path') 404 images
16
15
 
17
16
  # Classes
18
17
  names:
@@ -7,7 +7,7 @@
7
7
  # parent
8
8
  # ├── ultralytics
9
9
  # └── datasets
10
- # └── imagenet ← downloads here (144 GB)
10
+ # └── imagenet ← downloads here (144 GB)
11
11
 
12
12
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
13
13
  path: imagenet # dataset root dir
@@ -6,7 +6,7 @@
6
6
  # parent
7
7
  # ├── ultralytics
8
8
  # └── datasets
9
- # └── Objects365 ← downloads here (712 GB = 367G data + 345G zips)
9
+ # └── Objects365 ← downloads here (712 GB = 367G data + 345G zips)
10
10
 
11
11
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
12
  path: Objects365 # dataset root dir
@@ -6,13 +6,13 @@
6
6
  # parent
7
7
  # ├── ultralytics
8
8
  # └── datasets
9
- # └── SKU-110K ← downloads here (13.6 GB)
9
+ # └── SKU-110K ← downloads here (13.6 GB)
10
10
 
11
11
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
12
  path: SKU-110K # dataset root dir
13
- train: train.txt # train images (relative to 'path') 8219 images
14
- val: val.txt # val images (relative to 'path') 588 images
15
- test: test.txt # test images (optional) 2936 images
13
+ train: train.txt # train images (relative to 'path') 8219 images
14
+ val: val.txt # val images (relative to 'path') 588 images
15
+ test: test.txt # test images (optional) 2936 images
16
16
 
17
17
  # Classes
18
18
  names:
@@ -6,16 +6,16 @@
6
6
  # parent
7
7
  # ├── ultralytics
8
8
  # └── datasets
9
- # └── VOC ← downloads here (2.8 GB)
9
+ # └── VOC ← downloads here (2.8 GB)
10
10
 
11
11
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
12
  path: VOC
13
- train: # train images (relative to 'path') 16551 images
13
+ train: # train images (relative to 'path') 16551 images
14
14
  - images/train2012
15
15
  - images/train2007
16
16
  - images/val2012
17
17
  - images/val2007
18
- val: # val images (relative to 'path') 4952 images
18
+ val: # val images (relative to 'path') 4952 images
19
19
  - images/test2007
20
20
  test: # test images (optional)
21
21
  - images/test2007
@@ -6,13 +6,13 @@
6
6
  # parent
7
7
  # ├── ultralytics
8
8
  # └── datasets
9
- # └── VisDrone ← downloads here (2.3 GB)
9
+ # └── VisDrone ← downloads here (2.3 GB)
10
10
 
11
11
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
12
  path: VisDrone # dataset root dir
13
- train: VisDrone2019-DET-train/images # train images (relative to 'path') 6471 images
14
- val: VisDrone2019-DET-val/images # val images (relative to 'path') 548 images
15
- test: VisDrone2019-DET-test-dev/images # test images (optional) 1610 images
13
+ train: images/train # train images (relative to 'path') 6471 images
14
+ val: images/val # val images (relative to 'path') 548 images
15
+ test: images/test # test-dev images (optional) 1610 images
16
16
 
17
17
  # Classes
18
18
  names:
@@ -31,50 +31,57 @@ names:
31
31
  download: |
32
32
  import os
33
33
  from pathlib import Path
34
+ import shutil
34
35
 
35
36
  from ultralytics.utils.downloads import download
36
37
 
37
38
 
38
- def visdrone2yolo(dir):
39
- """Convert VisDrone annotations to YOLO format, creating label files with normalized bounding box coordinates."""
39
+ def visdrone2yolo(dir, split, source_name=None):
40
+ """Convert VisDrone annotations to YOLO format with images/{split} and labels/{split} structure."""
40
41
  from PIL import Image
41
42
  from tqdm import tqdm
42
43
 
43
- def convert_box(size, box):
44
- # Convert VisDrone box to YOLO xywh box
45
- dw = 1.0 / size[0]
46
- dh = 1.0 / size[1]
47
- return (box[0] + box[2] / 2) * dw, (box[1] + box[3] / 2) * dh, box[2] * dw, box[3] * dh
48
-
49
- (dir / "labels").mkdir(parents=True, exist_ok=True) # make labels directory
50
- pbar = tqdm((dir / "annotations").glob("*.txt"), desc=f"Converting {dir}")
51
- for f in pbar:
52
- img_size = Image.open((dir / "images" / f.name).with_suffix(".jpg")).size
44
+ source_dir = dir / (source_name or f"VisDrone2019-DET-{split}")
45
+ images_dir = dir / "images" / split
46
+ labels_dir = dir / "labels" / split
47
+ labels_dir.mkdir(parents=True, exist_ok=True)
48
+
49
+ # Move images to new structure
50
+ if (source_images_dir := source_dir / "images").exists():
51
+ images_dir.mkdir(parents=True, exist_ok=True)
52
+ for img in source_images_dir.glob("*.jpg"):
53
+ img.rename(images_dir / img.name)
54
+
55
+ for f in tqdm((source_dir / "annotations").glob("*.txt"), desc=f"Converting {split}"):
56
+ img_size = Image.open(images_dir / f.with_suffix(".jpg").name).size
57
+ dw, dh = 1.0 / img_size[0], 1.0 / img_size[1]
53
58
  lines = []
54
- with open(f, encoding="utf-8") as file: # read annotation.txt
59
+
60
+ with open(f, encoding="utf-8") as file:
55
61
  for row in [x.split(",") for x in file.read().strip().splitlines()]:
56
- if row[4] == "0": # VisDrone 'ignored regions' class 0
57
- continue
58
- cls = int(row[5]) - 1
59
- box = convert_box(img_size, tuple(map(int, row[:4])))
60
- lines.append(f"{cls} {' '.join(f'{x:.6f}' for x in box)}\n")
62
+ if row[4] != "0": # Skip ignored regions
63
+ x, y, w, h = map(int, row[:4])
64
+ cls = int(row[5]) - 1
65
+ # Convert to YOLO format
66
+ x_center, y_center = (x + w / 2) * dw, (y + h / 2) * dh
67
+ w_norm, h_norm = w * dw, h * dh
68
+ lines.append(f"{cls} {x_center:.6f} {y_center:.6f} {w_norm:.6f} {h_norm:.6f}\n")
61
69
 
62
- label_file = str(f).replace(f"{os.sep}annotations{os.sep}", f"{os.sep}labels{os.sep}")
63
- with open(label_file, "w", encoding="utf-8") as fl:
64
- fl.writelines(lines)
65
-
70
+ (labels_dir / f.name).write_text("".join(lines), encoding="utf-8")
66
71
 
67
72
 
68
- # Download
73
+ # Download (ignores test-challenge split)
69
74
  dir = Path(yaml["path"]) # dataset root dir
70
75
  urls = [
71
76
  "https://github.com/ultralytics/assets/releases/download/v0.0.0/VisDrone2019-DET-train.zip",
72
77
  "https://github.com/ultralytics/assets/releases/download/v0.0.0/VisDrone2019-DET-val.zip",
73
78
  "https://github.com/ultralytics/assets/releases/download/v0.0.0/VisDrone2019-DET-test-dev.zip",
74
- "https://github.com/ultralytics/assets/releases/download/v0.0.0/VisDrone2019-DET-test-challenge.zip",
79
+ # "https://github.com/ultralytics/assets/releases/download/v0.0.0/VisDrone2019-DET-test-challenge.zip",
75
80
  ]
76
81
  download(urls, dir=dir, curl=True, threads=4)
77
82
 
78
83
  # Convert
79
- for d in "VisDrone2019-DET-train", "VisDrone2019-DET-val", "VisDrone2019-DET-test-dev":
80
- visdrone2yolo(dir / d) # convert VisDrone annotations to YOLO labels
84
+ splits = {"VisDrone2019-DET-train": "train", "VisDrone2019-DET-val": "val", "VisDrone2019-DET-test-dev": "test"}
85
+ for folder, split in splits.items():
86
+ visdrone2yolo(dir, split, folder) # convert VisDrone annotations to YOLO labels
87
+ shutil.rmtree(dir / folder) # cleanup original directory
@@ -6,13 +6,13 @@
6
6
  # parent
7
7
  # ├── ultralytics
8
8
  # └── datasets
9
- # └── african-wildlife ← downloads here (100 MB)
9
+ # └── african-wildlife ← downloads here (100 MB)
10
10
 
11
11
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
12
  path: african-wildlife # dataset root dir
13
- train: train/images # train images (relative to 'path') 1052 images
14
- val: valid/images # val images (relative to 'path') 225 images
15
- test: test/images # test images (relative to 'path') 227 images
13
+ train: images/train # train images (relative to 'path') 1052 images
14
+ val: images/val # val images (relative to 'path') 225 images
15
+ test: images/test # test images (relative to 'path') 227 images
16
16
 
17
17
  # Classes
18
18
  names:
@@ -6,13 +6,12 @@
6
6
  # parent
7
7
  # ├── ultralytics
8
8
  # └── datasets
9
- # └── brain-tumor ← downloads here (4.05 MB)
9
+ # └── brain-tumor ← downloads here (4.21 MB)
10
10
 
11
11
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
12
  path: brain-tumor # dataset root dir
13
- train: train/images # train images (relative to 'path') 893 images
14
- val: valid/images # val images (relative to 'path') 223 images
15
- test: # test images (relative to 'path')
13
+ train: images/train # train images (relative to 'path') 893 images
14
+ val: images/val # val images (relative to 'path') 223 images
16
15
 
17
16
  # Classes
18
17
  names:
@@ -6,13 +6,13 @@
6
6
  # parent
7
7
  # ├── ultralytics
8
8
  # └── datasets
9
- # └── carparts-seg ← downloads here (132 MB)
9
+ # └── carparts-seg ← downloads here (133 MB)
10
10
 
11
11
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
12
  path: carparts-seg # dataset root dir
13
- train: train/images # train images (relative to 'path') 3516 images
14
- val: valid/images # val images (relative to 'path') 276 images
15
- test: test/images # test images (relative to 'path') 401 images
13
+ train: images/train # train images (relative to 'path') 3516 images
14
+ val: images/val # val images (relative to 'path') 276 images
15
+ test: images/test # test images (relative to 'path') 401 images
16
16
 
17
17
  # Classes
18
18
  names:
@@ -6,7 +6,7 @@
6
6
  # parent
7
7
  # ├── ultralytics
8
8
  # └── datasets
9
- # └── coco-pose ← downloads here (20.1 GB)
9
+ # └── coco-pose ← downloads here (20.1 GB)
10
10
 
11
11
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
12
  path: coco-pose # dataset root dir
@@ -6,7 +6,7 @@
6
6
  # parent
7
7
  # ├── ultralytics
8
8
  # └── datasets
9
- # └── coco ← downloads here (20.1 GB)
9
+ # └── coco ← downloads here (20.1 GB)
10
10
 
11
11
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
12
  path: coco # dataset root dir
@@ -6,7 +6,7 @@
6
6
  # parent
7
7
  # ├── ultralytics
8
8
  # └── datasets
9
- # └── coco128-seg ← downloads here (7 MB)
9
+ # └── coco128-seg ← downloads here (7 MB)
10
10
 
11
11
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
12
  path: coco128-seg # dataset root dir
@@ -6,7 +6,7 @@
6
6
  # parent
7
7
  # ├── ultralytics
8
8
  # └── datasets
9
- # └── coco128 ← downloads here (7 MB)
9
+ # └── coco128 ← downloads here (7 MB)
10
10
 
11
11
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
12
  path: coco128 # dataset root dir
@@ -6,7 +6,7 @@
6
6
  # parent
7
7
  # ├── ultralytics
8
8
  # └── datasets
9
- # └── coco8-grayscale ← downloads here (1 MB)
9
+ # └── coco8-grayscale ← downloads here (1 MB)
10
10
 
11
11
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
12
  path: coco8-grayscale # dataset root dir
@@ -6,7 +6,7 @@
6
6
  # parent
7
7
  # ├── ultralytics
8
8
  # └── datasets
9
- # └── coco8-multispectral ← downloads here (20.2 MB)
9
+ # └── coco8-multispectral ← downloads here (20.2 MB)
10
10
 
11
11
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
12
  path: coco8-multispectral # dataset root dir