dgenerate-ultralytics-headless 8.3.163__py3-none-any.whl → 8.3.165__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (46) hide show
  1. {dgenerate_ultralytics_headless-8.3.163.dist-info → dgenerate_ultralytics_headless-8.3.165.dist-info}/METADATA +1 -1
  2. {dgenerate_ultralytics_headless-8.3.163.dist-info → dgenerate_ultralytics_headless-8.3.165.dist-info}/RECORD +46 -46
  3. ultralytics/__init__.py +1 -1
  4. ultralytics/cfg/datasets/HomeObjects-3K.yaml +2 -3
  5. ultralytics/cfg/datasets/african-wildlife.yaml +3 -3
  6. ultralytics/cfg/datasets/brain-tumor.yaml +3 -4
  7. ultralytics/cfg/datasets/carparts-seg.yaml +4 -4
  8. ultralytics/cfg/datasets/crack-seg.yaml +4 -4
  9. ultralytics/cfg/datasets/dog-pose.yaml +2 -2
  10. ultralytics/cfg/datasets/hand-keypoints.yaml +2 -2
  11. ultralytics/cfg/datasets/medical-pills.yaml +2 -3
  12. ultralytics/cfg/datasets/package-seg.yaml +4 -4
  13. ultralytics/cfg/datasets/signature.yaml +3 -3
  14. ultralytics/cfg/datasets/tiger-pose.yaml +3 -3
  15. ultralytics/data/augment.py +182 -153
  16. ultralytics/data/build.py +23 -3
  17. ultralytics/data/dataset.py +6 -2
  18. ultralytics/data/loaders.py +2 -2
  19. ultralytics/data/utils.py +9 -7
  20. ultralytics/engine/exporter.py +7 -3
  21. ultralytics/engine/results.py +42 -42
  22. ultralytics/models/fastsam/model.py +1 -1
  23. ultralytics/models/fastsam/predict.py +1 -1
  24. ultralytics/models/sam/model.py +4 -4
  25. ultralytics/models/sam/modules/blocks.py +5 -5
  26. ultralytics/models/sam/modules/memory_attention.py +19 -19
  27. ultralytics/models/sam/modules/transformer.py +24 -22
  28. ultralytics/models/yolo/detect/val.py +2 -2
  29. ultralytics/models/yolo/world/train_world.py +9 -1
  30. ultralytics/solutions/distance_calculation.py +1 -1
  31. ultralytics/solutions/instance_segmentation.py +2 -2
  32. ultralytics/solutions/object_blurrer.py +2 -2
  33. ultralytics/solutions/object_counter.py +2 -2
  34. ultralytics/solutions/object_cropper.py +1 -1
  35. ultralytics/solutions/queue_management.py +1 -1
  36. ultralytics/solutions/security_alarm.py +2 -2
  37. ultralytics/solutions/templates/similarity-search.html +0 -24
  38. ultralytics/solutions/vision_eye.py +1 -1
  39. ultralytics/utils/benchmarks.py +2 -2
  40. ultralytics/utils/export.py +0 -2
  41. ultralytics/utils/instance.py +32 -25
  42. ultralytics/utils/ops.py +8 -8
  43. {dgenerate_ultralytics_headless-8.3.163.dist-info → dgenerate_ultralytics_headless-8.3.165.dist-info}/WHEEL +0 -0
  44. {dgenerate_ultralytics_headless-8.3.163.dist-info → dgenerate_ultralytics_headless-8.3.165.dist-info}/entry_points.txt +0 -0
  45. {dgenerate_ultralytics_headless-8.3.163.dist-info → dgenerate_ultralytics_headless-8.3.165.dist-info}/licenses/LICENSE +0 -0
  46. {dgenerate_ultralytics_headless-8.3.163.dist-info → dgenerate_ultralytics_headless-8.3.165.dist-info}/top_level.txt +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: dgenerate-ultralytics-headless
3
- Version: 8.3.163
3
+ Version: 8.3.165
4
4
  Summary: Automatically built Ultralytics package with python-opencv-headless dependency instead of python-opencv
5
5
  Author-email: Glenn Jocher <glenn.jocher@ultralytics.com>, Jing Qiu <jing.qiu@ultralytics.com>
6
6
  Maintainer-email: Ultralytics <hello@ultralytics.com>
@@ -1,4 +1,4 @@
1
- dgenerate_ultralytics_headless-8.3.163.dist-info/licenses/LICENSE,sha256=DZak_2itbUtvHzD3E7GNUYSRK6jdOJ-GqncQ2weavLA,34523
1
+ dgenerate_ultralytics_headless-8.3.165.dist-info/licenses/LICENSE,sha256=DZak_2itbUtvHzD3E7GNUYSRK6jdOJ-GqncQ2weavLA,34523
2
2
  tests/__init__.py,sha256=b4KP5_q-2IO8Br8YHOSLYnn7IwZS81l_vfEF2YPa2lM,894
3
3
  tests/conftest.py,sha256=LXtQJcFNWPGuzauTGkiXgsvVC3llJKfg22WcmhRzuQc,2593
4
4
  tests/test_cli.py,sha256=Kpfxq_RlbKK1Z8xNScDUbre6GB7neZhXZAYGI1tiDS8,5660
@@ -8,7 +8,7 @@ tests/test_exports.py,sha256=HmMKOTCia9ZDC0VYc_EPmvBTM5LM5eeI1NF_pKjLpd8,9677
8
8
  tests/test_integrations.py,sha256=kl_AKmE_Qs1GB0_91iVwbzNxofm_hFTt0zzU6JF-pg4,6323
9
9
  tests/test_python.py,sha256=JJu-69IfuUf1dLK7Ko9elyPONiQ1yu7yhapMVIAt_KI,27907
10
10
  tests/test_solutions.py,sha256=tuf6n_fsI8KvSdJrnc-cqP2qYdiYqCWuVrx0z9dOz3Q,13213
11
- ultralytics/__init__.py,sha256=6O34X8CQb6O0LdQxuAb1p_K16CimZHrdPN1T75KtT8A,730
11
+ ultralytics/__init__.py,sha256=wIZPLrHc-rAxfQk9cYyc2VaweiqnHQTfua9fEcayfKc,730
12
12
  ultralytics/assets/bus.jpg,sha256=wCAZxJecGR63Od3ZRERe9Aja1Weayrb9Ug751DS_vGM,137419
13
13
  ultralytics/assets/zidane.jpg,sha256=Ftc4aeMmen1O0A3o6GCDO9FlfBslLpTAw0gnetx7bts,50427
14
14
  ultralytics/cfg/__init__.py,sha256=VIpPHImhjb0XLJquGZrG_LBGZchtOtBSXR7HYTYV2GU,39602
@@ -17,15 +17,15 @@ ultralytics/cfg/datasets/Argoverse.yaml,sha256=0mm20vJBZxxLQtc_Z3Op6zUjmJkINLi70
17
17
  ultralytics/cfg/datasets/DOTAv1.5.yaml,sha256=aT3VKgkVPTaaRRjnpHEhIbgANU-yt7VsFjAf5562wqA,1212
18
18
  ultralytics/cfg/datasets/DOTAv1.yaml,sha256=Ydf8_hRfZkaFMEkDKw3as0msVV4KPD1JuFjVMYDqIMQ,1182
19
19
  ultralytics/cfg/datasets/GlobalWheat2020.yaml,sha256=JP6zk5GR2fufGGFmOMr57EnRj7kKh9-fIuInkdmXMlU,2145
20
- ultralytics/cfg/datasets/HomeObjects-3K.yaml,sha256=Cgokv3w-g6z1KnQ5ALuS9qTTwBzgN7vWroQuIajJIZo,978
20
+ ultralytics/cfg/datasets/HomeObjects-3K.yaml,sha256=kF9tsGZKoFf9D7IA4SyiZrRMavhOpBW1TM_xWiyK_Iw,935
21
21
  ultralytics/cfg/datasets/ImageNet.yaml,sha256=1zci8FWwbkFwNHlAkfDUnWyoOKrFvkEXz1VNpVAizBg,42531
22
22
  ultralytics/cfg/datasets/Objects365.yaml,sha256=EfhNwsYMqDCXc3kZfokvk4LYq1QZDKl-ZpfoecP7aOE,9355
23
23
  ultralytics/cfg/datasets/SKU-110K.yaml,sha256=OBUCCRFr6UXrp6LkXZSXA92dSYCc6MrDP_0rlmmLrvI,2546
24
24
  ultralytics/cfg/datasets/VOC.yaml,sha256=zVkCLoj6EbZm8gf8cOg8QbEIpsN6W6oreKmW2czTWeE,3788
25
25
  ultralytics/cfg/datasets/VisDrone.yaml,sha256=iIAxa9F3CxG18d3SFrwqM8_8HFzObxEM3yyhWaQ8saQ,3282
26
- ultralytics/cfg/datasets/african-wildlife.yaml,sha256=SLSyIAOg9Kbx0lN7VApPDLGjAL2RKdYvzG1ErAZtwhc,918
27
- ultralytics/cfg/datasets/brain-tumor.yaml,sha256=SWJOiFGvJfxe4oGxG35Pw5NXsBxMdYWEw5UlkRSr0kg,844
28
- ultralytics/cfg/datasets/carparts-seg.yaml,sha256=liuHTeQOaztNMGr87Qtp0P8-h3VATSAB9FMfBOQ-rTo,1256
26
+ ultralytics/cfg/datasets/african-wildlife.yaml,sha256=WGr59qBlu_MgxQeh1bACHU-vcLbrdKi7VYQ0_pZSgg0,916
27
+ ultralytics/cfg/datasets/brain-tumor.yaml,sha256=3NJ7my1ZXse4nnvtf7tTxeLdFO6UhjZlLAbA6VrIsrU,801
28
+ ultralytics/cfg/datasets/carparts-seg.yaml,sha256=f1m1eKGkDseizSMOHMRUmxf_Q9XAn4cztbAkeHfkyis,1254
29
29
  ultralytics/cfg/datasets/coco-pose.yaml,sha256=j_ynggAOE1aNpjG42QHMDTrYiPic8S0cnbNHXqmH7vY,1624
30
30
  ultralytics/cfg/datasets/coco.yaml,sha256=E5OlAwkJkzhRI2BFIPnUE0VnzdQNDFhv2czDVS582BQ,2607
31
31
  ultralytics/cfg/datasets/coco128-seg.yaml,sha256=04Pfr7RPgJM2hF_LpYYD2zIPqCyOJ2sWW23HO2qXoEI,1983
@@ -35,17 +35,17 @@ ultralytics/cfg/datasets/coco8-multispectral.yaml,sha256=Kaca3kaq8-iwtBOdmvJaETI
35
35
  ultralytics/cfg/datasets/coco8-pose.yaml,sha256=4S_0RSNNK_ccz1Qxp7wdO0-RjxwwhldTRpGahQnzIw8,1010
36
36
  ultralytics/cfg/datasets/coco8-seg.yaml,sha256=8V59_ASLtTg3jsXtV03opU4TRwyFy2fsNUUSR791cB0,1914
37
37
  ultralytics/cfg/datasets/coco8.yaml,sha256=aPefOD63vx1EJ4BhdeumSrYVoJIh2uMyIb6BTrEFk68,1889
38
- ultralytics/cfg/datasets/crack-seg.yaml,sha256=8zkQD4eAeWjkxFQQGSTNvxla1b02Vuo8AlmLY7PZvjE,840
39
- ultralytics/cfg/datasets/dog-pose.yaml,sha256=CjvPu8y_KBZFcXn8JOaeDzi1NkVYgd3M4yVazOSYUT0,895
38
+ ultralytics/cfg/datasets/crack-seg.yaml,sha256=mfoOsT4opIR9JbQuRqfZvj0xe_SBKB_rcp-Hnz2kFCY,838
39
+ ultralytics/cfg/datasets/dog-pose.yaml,sha256=6b1EXTZcbwOQAOSewICR26gslN410xl6zjS3pcgZjmc,909
40
40
  ultralytics/cfg/datasets/dota8-multispectral.yaml,sha256=AD9LGIV0FdnHLJCsczU06SIOIHYOygr5owb69bi-Nk0,1217
41
41
  ultralytics/cfg/datasets/dota8.yaml,sha256=cVmqA8SYVIY4Rp5y0oIPfw1Si2AZMPMDrFaV8ZRUnGI,1061
42
- ultralytics/cfg/datasets/hand-keypoints.yaml,sha256=w_G5BmUKuWFb0yCbTOeWjGhz8ZAqAYeN7ECZpO37h3g,977
42
+ ultralytics/cfg/datasets/hand-keypoints.yaml,sha256=Rt8G2UhSofoyZew1N_PWwBhiuwo_3T22k7lwmvM0980,991
43
43
  ultralytics/cfg/datasets/lvis.yaml,sha256=69E7zRFQxqdx6T7GhrLVR8XoZtfx4pwR7I3kobxmz2M,29704
44
- ultralytics/cfg/datasets/medical-pills.yaml,sha256=1CtNFVtc2Lmo1Wjssh_hzAevo_mvkMuQGoLDGD7i2S0,836
44
+ ultralytics/cfg/datasets/medical-pills.yaml,sha256=gc1LspJeskPAA23WHFNz_CracF6H5SIFqVT5Zh_lb14,793
45
45
  ultralytics/cfg/datasets/open-images-v7.yaml,sha256=GblFutr27lY3W2h9GyK8zUqq5svtF1EeEBoP5kbnd5o,12120
46
- ultralytics/cfg/datasets/package-seg.yaml,sha256=gJZmxXNzmvPU4K2cmkPR44Lp6aGW_9J4EFcYqgrS4T4,852
47
- ultralytics/cfg/datasets/signature.yaml,sha256=uqPSj6XCILKOmIn01GXKLXZqoouZvKx7tOusfF4hL5c,777
48
- ultralytics/cfg/datasets/tiger-pose.yaml,sha256=0f_Q45eOexla9-nKG8SDziK2ACZcND8wRZpXCKO3iO8,913
46
+ ultralytics/cfg/datasets/package-seg.yaml,sha256=N7k3rofNVuTPSc5KMPRInsOKvWiQWelezRHvW1usemQ,850
47
+ ultralytics/cfg/datasets/signature.yaml,sha256=iNp2q29yUzMVtTJWJhrC7stt7jFPC70SCzQFOtoIad4,775
48
+ ultralytics/cfg/datasets/tiger-pose.yaml,sha256=numopgYHU42-3n5NvOWwouQ5KpRzwah4qcJortFUgyQ,927
49
49
  ultralytics/cfg/datasets/xView.yaml,sha256=46Z-TaZAXHXM85PoSWeI9mhpu__RB5TOtPAfo0cbAFM,5341
50
50
  ultralytics/cfg/models/11/yolo11-cls-resnet18.yaml,sha256=1Ycp9qMrwpb8rq7cqht3Q-1gMN0R87U35nm2j_isdro,524
51
51
  ultralytics/cfg/models/11/yolo11-cls.yaml,sha256=17l5GdN-Vst4LvafsK2-q6Li9VX9UlUcT5ClCtikweE,1412
@@ -106,24 +106,24 @@ ultralytics/cfg/trackers/botsort.yaml,sha256=TpRaK5kH_-QbjCQ7ekM4s_7j8I8ti3q8Hs7
106
106
  ultralytics/cfg/trackers/bytetrack.yaml,sha256=6u-tiZlk16EqEwkNXaMrza6PAQmWj_ypgv26LGCtPDg,886
107
107
  ultralytics/data/__init__.py,sha256=nAXaL1puCc7z_NjzQNlJnhbVhT9Fla2u7Dsqo7q1dAc,644
108
108
  ultralytics/data/annotator.py,sha256=uAgd7K-yudxiwdNqHz0ubfFg5JsfNlae4cgxdvCMyuY,3030
109
- ultralytics/data/augment.py,sha256=elMnIEubT1ywhH0tbppLbWW4dEs3-n5vnm8U8TzsDEw,129493
109
+ ultralytics/data/augment.py,sha256=lZhe2p8nrMrlfq1Y0FEXzDUAqLK0zROd2Heb7pJqn58,132420
110
110
  ultralytics/data/base.py,sha256=mRcuehK1thNuuzQGL6D1AaZkod71oHRdYTod_zdQZQg,19688
111
- ultralytics/data/build.py,sha256=13gPxCJIZRjgcNh7zbzanCgtyK6_oZM0ho9KQhHcM6c,11153
111
+ ultralytics/data/build.py,sha256=TfMLSPMbE2hGZVMLl178NTFrihC1-50jNOt1ex9elxw,11480
112
112
  ultralytics/data/converter.py,sha256=dExElV0vWd4EmDtZaFMC0clEmLdjRDIdFiXf01PUvQA,27134
113
- ultralytics/data/dataset.py,sha256=0VjzciGleGGF_XN5fEnS3c5UT0r533HMmQ9DfEQ_lA4,36463
114
- ultralytics/data/loaders.py,sha256=kTGO1P-HntpQk078i1ASyXYckDx9Z7Pe7o1YbePcjC4,31657
113
+ ultralytics/data/dataset.py,sha256=GhoFzBiuGvTr_5-3pzgWu6D_3aQVwW-hcS7kCo8XscM,36752
114
+ ultralytics/data/loaders.py,sha256=VcBg1c6hbASOU-PcFSMg_UXFUIGbG-xox4t80JbUD4c,31649
115
115
  ultralytics/data/split.py,sha256=F6O73bAbESj70FQZzqkydXQeXgPXGHGiC06b5MkLHjQ,5109
116
116
  ultralytics/data/split_dota.py,sha256=rr-lLpTUVaFZMggV_fUYZdFVIJk_zbbSOpgB_Qp50_M,12893
117
- ultralytics/data/utils.py,sha256=KAWSi0pqzCbG1QL9lblgeEyz12QoLtTx-f-LNmJ49Xw,36711
117
+ ultralytics/data/utils.py,sha256=UhxqsRCxPtZ7v_hiBd_dk-Dk2N3YUvxt8Snnz2ibNII,36837
118
118
  ultralytics/data/scripts/download_weights.sh,sha256=0y8XtZxOru7dVThXDFUXLHBuICgOIqZNUwpyL4Rh6lg,595
119
119
  ultralytics/data/scripts/get_coco.sh,sha256=UuJpJeo3qQpTHVINeOpmP0NYmg8PhEFE3A8J3jKrnPw,1768
120
120
  ultralytics/data/scripts/get_coco128.sh,sha256=qmRQl_hOKrsdHrTrnyQuFIH01oDz3lfaz138OgGfLt8,650
121
121
  ultralytics/data/scripts/get_imagenet.sh,sha256=hr42H16bM47iT27rgS7MpEo-GeOZAYUQXgr0B2cwn48,1705
122
122
  ultralytics/engine/__init__.py,sha256=lm6MckFYCPTbqIoX7w0s_daxdjNeBeKW6DXppv1-QUM,70
123
- ultralytics/engine/exporter.py,sha256=6ScFs_fTm9kHuEO4C0DA4JXhxFUzW0mG9qqDSeY2JkY,73261
123
+ ultralytics/engine/exporter.py,sha256=mb_mJ2eQ7pvCpRk9xrzGOmTvJ6dbknGWN6adcHe_7pM,73500
124
124
  ultralytics/engine/model.py,sha256=FmLwiKuItVNgoyXhAvesUnD3UeHBzCVzGHDrqB8J4ms,53453
125
125
  ultralytics/engine/predictor.py,sha256=xxl1kdAzKrN8Y_5MQ5f92uFPeeRq1mYOl6hNlzpPjy8,22520
126
- ultralytics/engine/results.py,sha256=rLQlttkgPudiV0u0d6Xy5hKKr1x3SJL1zrXA5W5vw7Y,71999
126
+ ultralytics/engine/results.py,sha256=QcHcbPVlLBiy_APwABr-T5K65HR8Bl1rRzxawjjP76E,71873
127
127
  ultralytics/engine/trainer.py,sha256=28FeqASvQRxCaK96SXDM-BfPJjqy5KNiWhf8v6GXTug,39785
128
128
  ultralytics/engine/tuner.py,sha256=sfQ8_yzgLNcGlKyz9b2vAzyggGZXiQzdZ5tKstyqjHM,12825
129
129
  ultralytics/engine/validator.py,sha256=qftJUomb4A-6rSThtST3TccEbc_zTmzovCBBCSpYm3k,16671
@@ -134,8 +134,8 @@ ultralytics/hub/utils.py,sha256=5-y3WBT5U_L0ZscTJrUWvGB02QYwVAF82OiFqvvd0sE,1026
134
134
  ultralytics/hub/google/__init__.py,sha256=ZJnS6s6wVl792p9h5aUmm9K2Di1DrHmTk1aEUJdTXhs,8443
135
135
  ultralytics/models/__init__.py,sha256=DqQFFYJ4IQlqIDb61H1HzcnZU7SuHN-43bw94-l-YAQ,309
136
136
  ultralytics/models/fastsam/__init__.py,sha256=HGJ8EKlBAsdF-e2aIwQLjSDAFI_r0yHR0A1gzrp4vqE,231
137
- ultralytics/models/fastsam/model.py,sha256=4Aazwv3tUYLxqyoEwZ2FLiZnOXwLlFEdSfqpltQwxzg,3439
138
- ultralytics/models/fastsam/predict.py,sha256=G-o8hs8W5XmqSN5G37zi6q9FglFnZSbD6qH_1KIIXwY,8965
137
+ ultralytics/models/fastsam/model.py,sha256=IW0QCgQgGNWjVToEInZ8jVwemfc3XnPA78A_zROw3xk,3436
138
+ ultralytics/models/fastsam/predict.py,sha256=feta9w9UD7xlbfB3p5QCum31RZ-eDMnWt01VCdVdT44,8962
139
139
  ultralytics/models/fastsam/utils.py,sha256=yuCXB4CVjRx8lDf61DP8B6qMx7TVf7AynQvdWREeFco,884
140
140
  ultralytics/models/fastsam/val.py,sha256=oLxB8vBKTfiT7eBbTzvpqq_xNSvDOjGdP1J7egHGsCA,2041
141
141
  ultralytics/models/nas/__init__.py,sha256=wybeHZuAXMNeXMjKTbK55FZmXJkA4K9IozDeFM9OB-s,207
@@ -150,16 +150,16 @@ ultralytics/models/rtdetr/val.py,sha256=MGzHWMfVDx9KPgaK09nvuHfXRQ6FagpzEyNO1R_8
150
150
  ultralytics/models/sam/__init__.py,sha256=iR7B06rAEni21eptg8n4rLOP0Z_qV9y9PL-L93n4_7s,266
151
151
  ultralytics/models/sam/amg.py,sha256=IpcuIfC5KBRiF4sdrsPl1ecWEJy75axo1yG23r5BFsw,11783
152
152
  ultralytics/models/sam/build.py,sha256=J6n-_QOYLa63jldEZmhRe9D3Is_AJE8xyZLUjzfRyTY,12629
153
- ultralytics/models/sam/model.py,sha256=E9aTW7UGl3TkkGbVFZ6_FBJWrb3kyJ_vuD6T1YCT0M0,7243
153
+ ultralytics/models/sam/model.py,sha256=j1TwsLmtxhiXyceU31VPzGVkjRXGylphKrdPSzUJRJc,7231
154
154
  ultralytics/models/sam/predict.py,sha256=2dg6L8X_I4RqTHAeH8w3m2ojFczkplx1Wu_ytwzAAgQ,82979
155
155
  ultralytics/models/sam/modules/__init__.py,sha256=lm6MckFYCPTbqIoX7w0s_daxdjNeBeKW6DXppv1-QUM,70
156
- ultralytics/models/sam/modules/blocks.py,sha256=YweiuDzMdBcfzt_cye6zeXx2ASbk03k4TqY-xMg1GwQ,45951
156
+ ultralytics/models/sam/modules/blocks.py,sha256=n8oe9sx91_RktsF2_2UYNKH7qk8bFXuJtEaIEpQQ3ws,46059
157
157
  ultralytics/models/sam/modules/decoders.py,sha256=-1fhBO47hA-3CzkU-PzkCK4Nsi_VJ_CH6Q9SMjydN4I,25609
158
158
  ultralytics/models/sam/modules/encoders.py,sha256=f1cdGdmQ_3Vt7MKxMVNIgvEvYmVR8lM1uVocNnrrYrU,37392
159
- ultralytics/models/sam/modules/memory_attention.py,sha256=UNUbVyF8m6NIdhGOvTAwb_lS6x_Had8Ek3OP5JJqcQU,13539
159
+ ultralytics/models/sam/modules/memory_attention.py,sha256=F1XJAxSwho2-LMlrao_ij0MoALTvhkK-OVghi0D4cU0,13651
160
160
  ultralytics/models/sam/modules/sam.py,sha256=LUNmH-1iFPLnl7qzLeLpRqgc82_b8xKNCszDo272rrM,55684
161
161
  ultralytics/models/sam/modules/tiny_encoder.py,sha256=lmUIeZ9-3M-C3YmJBs13W6t__dzeJloOl0qFR9Ll8ew,42241
162
- ultralytics/models/sam/modules/transformer.py,sha256=dIcq1UyCRYIhTPeetVpdjRcqR_b_a5AkkYo-L3Cq6hE,14747
162
+ ultralytics/models/sam/modules/transformer.py,sha256=xc2g6gb0jvr7cJkHkzIbZOGcTrmsOn2ojvuH-MVIMVs,14953
163
163
  ultralytics/models/sam/modules/utils.py,sha256=0qxBCh4tTzXNT10-BiKbqH6QDjzhkmLz2OiVG7gQfww,16021
164
164
  ultralytics/models/utils/__init__.py,sha256=lm6MckFYCPTbqIoX7w0s_daxdjNeBeKW6DXppv1-QUM,70
165
165
  ultralytics/models/utils/loss.py,sha256=E-61TfLPc04IdeL6IlFDityDoPju-ov0ouWV_cNY4Kg,21254
@@ -173,7 +173,7 @@ ultralytics/models/yolo/classify/val.py,sha256=YakPxBVZCd85Kp4wFKx8KH6JJFiU7nkFS
173
173
  ultralytics/models/yolo/detect/__init__.py,sha256=GIRsLYR-kT4JJx7lh4ZZAFGBZj0aebokuU0A7JbjDVA,257
174
174
  ultralytics/models/yolo/detect/predict.py,sha256=ySUsdIf8dw00bzWhcxN1jZwLWKPRT2M7-N7TNL3o4zo,5387
175
175
  ultralytics/models/yolo/detect/train.py,sha256=HlaCoHJ6Y2TpCXXWabMRZApAYqBvjuM_YQJUV5JYCvw,9907
176
- ultralytics/models/yolo/detect/val.py,sha256=qA3Jq4JDZ-sSAy0JMQcz2ncmhLqLRUughMNYLZ1YifE,20485
176
+ ultralytics/models/yolo/detect/val.py,sha256=TrLclevqfD9NnpqPSIEvB5KakCsozyBegaD4lhd3noE,20485
177
177
  ultralytics/models/yolo/obb/__init__.py,sha256=tQmpG8wVHsajWkZdmD6cjGohJ4ki64iSXQT8JY_dydo,221
178
178
  ultralytics/models/yolo/obb/predict.py,sha256=4r1eSld6TNJlk9JG56e-DX6oPL8uBBqiuztyBpxWlHE,2888
179
179
  ultralytics/models/yolo/obb/train.py,sha256=bnYFAMur7Uvbw5Dc09-S2ge7B05iGX-t37Ksgc0ef6g,3921
@@ -188,7 +188,7 @@ ultralytics/models/yolo/segment/train.py,sha256=XrPkXUiNu1Jvhn8iDew_RaLLjZA3un65
188
188
  ultralytics/models/yolo/segment/val.py,sha256=AnvY0O7HhD5xZ2BE2artLTAVW4SNmHbVopBJsYRcmk8,12328
189
189
  ultralytics/models/yolo/world/__init__.py,sha256=nlh8I6t8hMGz_vZg8QSlsUW1R-2eKvn9CGUoPPQEGhA,131
190
190
  ultralytics/models/yolo/world/train.py,sha256=wBKnSC-TvrKWM1Taxqwo13XcwGHwwAXzNYV1tmqcOpc,7845
191
- ultralytics/models/yolo/world/train_world.py,sha256=OLS1ofDSfMBsEG07PjEMruvbaXzNEWs07FpPowHVffs,9306
191
+ ultralytics/models/yolo/world/train_world.py,sha256=lk9z_INGPSTP_W7Rjh3qrWSmjHaxOJtGngonh1cj2SM,9551
192
192
  ultralytics/models/yolo/yoloe/__init__.py,sha256=6SLytdJtwu37qewf7CobG7C7Wl1m-xtNdvCXEasfPDE,760
193
193
  ultralytics/models/yolo/yoloe/predict.py,sha256=TAcT6fiWbV-jOewu9hx_shGI10VLF_6oSPf7jfatBWo,7041
194
194
  ultralytics/models/yolo/yoloe/train.py,sha256=XYpQYSnSD8vi_9VSj_S5oIsNUEqm3e66vPT8rNFI_HY,14086
@@ -209,23 +209,23 @@ ultralytics/solutions/__init__.py,sha256=ZoeAQavTLp8aClnhZ9tbl6lxy86GxofyGvZWTx2
209
209
  ultralytics/solutions/ai_gym.py,sha256=wwfTqX7G3mZXneMwiibEfYbVYaJF_JUX3SQdsdQUvBM,5217
210
210
  ultralytics/solutions/analytics.py,sha256=aHwKjSEW_3y47LrzugJbPB3VQGTDQCIb5goiPuxnmrc,12802
211
211
  ultralytics/solutions/config.py,sha256=CevL8lzeSbiSAAA514CTiduCg2_Wh04P0RaB_kmwJa8,5404
212
- ultralytics/solutions/distance_calculation.py,sha256=r05_ufxb2Mpw3EIX8X32PIWlh9rYMADypGhVIPoZYV4,5939
212
+ ultralytics/solutions/distance_calculation.py,sha256=TYX7pRlM1v7XTq6wTTfJmj3WHT3zRBhRRcu50uZQ_AE,5936
213
213
  ultralytics/solutions/heatmap.py,sha256=hBJR_Z3Lu9JcvCaEwnd-uN_WEiXK14FDRXedgaI8oqU,5515
214
- ultralytics/solutions/instance_segmentation.py,sha256=qsIQkvuR1Ur2bdEsCCJP2IEO1Hz2l0wfR2KUBo247xE,3795
215
- ultralytics/solutions/object_blurrer.py,sha256=wHbfrudh6li_JADc-dTHGGMI8GU-MvesoTvVlX6YuYc,3998
216
- ultralytics/solutions/object_counter.py,sha256=ccKuchrVkNE8AD4EvArtl6LCVf442jTOyc6_7tGua5o,9433
217
- ultralytics/solutions/object_cropper.py,sha256=mS3iT_CgqfqG9ldM_AM5ptq5bfYFyTycPQY5DxxMlSA,3525
214
+ ultralytics/solutions/instance_segmentation.py,sha256=zPMBY9ixn4YmZozBD2EyowLBadu4dOvZwk-m65EwgDk,3789
215
+ ultralytics/solutions/object_blurrer.py,sha256=96KOAEagk4UoErlUMiIDK6j1CWs2nN1dcJ5V6pl9L-8,3992
216
+ ultralytics/solutions/object_counter.py,sha256=zD-EYIxu_y7qCFEkv6aqV60oMCZ4q6b_kL_stXKof_A,9427
217
+ ultralytics/solutions/object_cropper.py,sha256=x3gN-ihtwkJntp6EMcVWnIvVTOu1iRkP5RrX-1kwJHg,3522
218
218
  ultralytics/solutions/parking_management.py,sha256=IfPUn15aelxz6YZNo9WYkVEl5IOVSw8VD0OrpKtExPE,13613
219
- ultralytics/solutions/queue_management.py,sha256=u0VFzRqa0OxIWY7xXItsXEm073CzkQGFhhXG-6VK3SI,4393
219
+ ultralytics/solutions/queue_management.py,sha256=gTkILx4dVcsKRZXSCXtelkEjCRiDS5iznb3FnddC61c,4390
220
220
  ultralytics/solutions/region_counter.py,sha256=nmtCoq1sFIU2Hx4gKImYNF7Yf5YpADHwujxxQGDvf1s,5916
221
- ultralytics/solutions/security_alarm.py,sha256=U6FTbg3cthKLfWeLunsFhOJvB6GGmwYDDxZ3K0GCx-Q,6351
221
+ ultralytics/solutions/security_alarm.py,sha256=czEaMcy04q-iBkKqT_14d8H20CFB6zcKH_31nBGQnyw,6345
222
222
  ultralytics/solutions/similarity_search.py,sha256=H9MPf8F5AvVfmb9hnng0FrIOTbLU_I-CkVHGpC81CE0,9496
223
223
  ultralytics/solutions/solutions.py,sha256=KtoSUSxM4s-Ti5EAzT21pItuv70qlIOH6ymJP95Gl-E,37318
224
224
  ultralytics/solutions/speed_estimation.py,sha256=chg_tBuKFw3EnFiv_obNDaUXLAo-FypxC7gsDeB_VUI,5878
225
225
  ultralytics/solutions/streamlit_inference.py,sha256=SqL-YxU3RCxCKscH2AYUTkmJknilV9jCCco6ufqsFk4,10501
226
226
  ultralytics/solutions/trackzone.py,sha256=kIS94rNfL3yVPAtSbnW8F-aLMxXowQtsfKNB-jLezz8,3941
227
- ultralytics/solutions/vision_eye.py,sha256=nlIdXhfM5EwJh4vqVhz3AEOoHXIELMo1OG8Cr1tMQRw,3008
228
- ultralytics/solutions/templates/similarity-search.html,sha256=vdz9XCH6VHbksvSW_sSg6Z2xVp82_EanaS_rY7xjZBE,4743
227
+ ultralytics/solutions/vision_eye.py,sha256=J_nsXhWkhfWz8THNJU4Yag4wbPv78ymby6SlNKeSuk4,3005
228
+ ultralytics/solutions/templates/similarity-search.html,sha256=nyyurpWlkvYlDeNh-74TlV4ctCpTksvkVy2Yc4ImQ1U,4261
229
229
  ultralytics/trackers/__init__.py,sha256=Zlu_Ig5osn7hqch_g5Be_e4pwZUkeeTQiesJCi0pFGI,255
230
230
  ultralytics/trackers/basetrack.py,sha256=-skBFFatzgJFAPN9Frm1u1h_RDUg3WOlxG6eHQxp2Gw,4384
231
231
  ultralytics/trackers/bot_sort.py,sha256=knP5oo1LC45Lrato8LpcY_j4KBojQFP1lxT_NJxhEUo,12134
@@ -238,17 +238,17 @@ ultralytics/trackers/utils/matching.py,sha256=uSYtywqi1lE_uNN1FwuBFPyISfDQXHMu8K
238
238
  ultralytics/utils/__init__.py,sha256=2xXw_PdASHKkAuOu3eaShJVqisQtFkF8nw5FyMuDUCQ,59401
239
239
  ultralytics/utils/autobatch.py,sha256=33m8YgggLIhltDqMXZ5OE-FGs2QiHrl2-LfgY1mI4cw,5119
240
240
  ultralytics/utils/autodevice.py,sha256=AvgXFt8c1Cg4icKh0Hbhhz8UmVQ2Wjyfdfkeb2C8zck,8855
241
- ultralytics/utils/benchmarks.py,sha256=GlsR6SvD3qlus2hVj7SqSNErsejBlIxO0Y7hMc_cWHw,31041
241
+ ultralytics/utils/benchmarks.py,sha256=btsi_B0mfLPfhE8GrsBpi79vl7SRam0YYngNFAsY8Ak,31035
242
242
  ultralytics/utils/checks.py,sha256=mkDl_BTLZyjfhYbFVSG6xYmxhB2s7wsQ62ugnhspqOc,34707
243
243
  ultralytics/utils/dist.py,sha256=A9lDGtGefTjSVvVS38w86GOdbtLzNBDZuDGK0MT4PRI,4170
244
244
  ultralytics/utils/downloads.py,sha256=YB6rJkcRGQfklUjZqi9dOkTiZaDSqbkGyZEFcZLQkgc,22080
245
245
  ultralytics/utils/errors.py,sha256=XT9Ru7ivoBgofK6PlnyigGoa7Fmf5nEhyHtnD-8TRXI,1584
246
- ultralytics/utils/export.py,sha256=0gG_GZNRqHcORJbjQq_1MXEHc3UEfzPAdpOl2X5VoDc,10008
246
+ ultralytics/utils/export.py,sha256=LK-wlTlyb_zIKtSvOmfmvR70RcUU9Ct9UBDt5wn9_rY,9880
247
247
  ultralytics/utils/files.py,sha256=ZCbLGleiF0f-PqYfaxMFAWop88w7U1hpreHXl8b2ko0,8238
248
- ultralytics/utils/instance.py,sha256=s97d-GXSSCluu-My2DFLAubdk_hf44BuVQ6OCROBrMc,18550
248
+ ultralytics/utils/instance.py,sha256=dC83rHvQXciAED3rOiScFs3BOX9OI06Ey1mj9sjUKvs,19070
249
249
  ultralytics/utils/loss.py,sha256=fbOWc3Iu0QOJiWbi-mXWA9-1otTYlehtmUsI7os7ydM,39799
250
250
  ultralytics/utils/metrics.py,sha256=3nQsz3rAm8n65iqikRzU30Pd2x20FY60ZlWrCMv5ZYk,62225
251
- ultralytics/utils/ops.py,sha256=Jkh80ujyi0XDQwNqCUYyomH8NQ145AH9doMUS8Vt8GE,34545
251
+ ultralytics/utils/ops.py,sha256=8d60fbpntrexK3gPoLUS6mWAYGrtrQaQCOYyRJsCjuI,34521
252
252
  ultralytics/utils/patches.py,sha256=tBAsNo_RyoFLL9OAzVuJmuoDLUJIPuTMByBYyblGG1A,6517
253
253
  ultralytics/utils/plotting.py,sha256=LO-iR-k1UewV5vt4xXDUIirdmNEZdpfiQvLyIWqINPg,47171
254
254
  ultralytics/utils/tal.py,sha256=aXawOnhn8ni65tJWIW-PYqWr_TRvltbHBjrTo7o6lDQ,20924
@@ -266,8 +266,8 @@ ultralytics/utils/callbacks/neptune.py,sha256=j8pecmlcsM8FGzLKWoBw5xUsi5t8E5HuxY
266
266
  ultralytics/utils/callbacks/raytune.py,sha256=S6Bq16oQDQ8BQgnZzA0zJHGN_BBr8iAM_WtGoLiEcwg,1283
267
267
  ultralytics/utils/callbacks/tensorboard.py,sha256=MDPBW7aDes-66OE6YqKXXvqA_EocjzEMHWGM-8z9vUQ,5281
268
268
  ultralytics/utils/callbacks/wb.py,sha256=Tm_-aRr2CN32MJkY9tylpMBJkb007-MSRNSQ7rDJ5QU,7521
269
- dgenerate_ultralytics_headless-8.3.163.dist-info/METADATA,sha256=0m-qrhwzXtjycTiskozzo1HKgk8Dufoir_1_2G95Lhg,38672
270
- dgenerate_ultralytics_headless-8.3.163.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
271
- dgenerate_ultralytics_headless-8.3.163.dist-info/entry_points.txt,sha256=YM_wiKyTe9yRrsEfqvYolNO5ngwfoL4-NwgKzc8_7sI,93
272
- dgenerate_ultralytics_headless-8.3.163.dist-info/top_level.txt,sha256=XP49TwiMw4QGsvTLSYiJhz1xF_k7ev5mQ8jJXaXi45Q,12
273
- dgenerate_ultralytics_headless-8.3.163.dist-info/RECORD,,
269
+ dgenerate_ultralytics_headless-8.3.165.dist-info/METADATA,sha256=dn7pmXhiMT8r-izfeG1OBh52O3IndQ0KxlW5T1dL1oA,38672
270
+ dgenerate_ultralytics_headless-8.3.165.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
271
+ dgenerate_ultralytics_headless-8.3.165.dist-info/entry_points.txt,sha256=YM_wiKyTe9yRrsEfqvYolNO5ngwfoL4-NwgKzc8_7sI,93
272
+ dgenerate_ultralytics_headless-8.3.165.dist-info/top_level.txt,sha256=XP49TwiMw4QGsvTLSYiJhz1xF_k7ev5mQ8jJXaXi45Q,12
273
+ dgenerate_ultralytics_headless-8.3.165.dist-info/RECORD,,
ultralytics/__init__.py CHANGED
@@ -1,6 +1,6 @@
1
1
  # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
2
 
3
- __version__ = "8.3.163"
3
+ __version__ = "8.3.165"
4
4
 
5
5
  import os
6
6
 
@@ -10,9 +10,8 @@
10
10
 
11
11
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
12
  path: homeobjects-3K # dataset root dir
13
- train: train/images # train images (relative to 'path') 2285 images
14
- val: valid/images # val images (relative to 'path') 404 images
15
- test: # test images (relative to 'path')
13
+ train: images/train # train images (relative to 'path') 2285 images
14
+ val: images/val # val images (relative to 'path') 404 images
16
15
 
17
16
  # Classes
18
17
  names:
@@ -10,9 +10,9 @@
10
10
 
11
11
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
12
  path: african-wildlife # dataset root dir
13
- train: train/images # train images (relative to 'path') 1052 images
14
- val: valid/images # val images (relative to 'path') 225 images
15
- test: test/images # test images (relative to 'path') 227 images
13
+ train: images/train # train images (relative to 'path') 1052 images
14
+ val: images/val # val images (relative to 'path') 225 images
15
+ test: images/test # test images (relative to 'path') 227 images
16
16
 
17
17
  # Classes
18
18
  names:
@@ -6,13 +6,12 @@
6
6
  # parent
7
7
  # ├── ultralytics
8
8
  # └── datasets
9
- # └── brain-tumor ← downloads here (4.05 MB)
9
+ # └── brain-tumor ← downloads here (4.21 MB)
10
10
 
11
11
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
12
  path: brain-tumor # dataset root dir
13
- train: train/images # train images (relative to 'path') 893 images
14
- val: valid/images # val images (relative to 'path') 223 images
15
- test: # test images (relative to 'path')
13
+ train: images/train # train images (relative to 'path') 893 images
14
+ val: images/val # val images (relative to 'path') 223 images
16
15
 
17
16
  # Classes
18
17
  names:
@@ -6,13 +6,13 @@
6
6
  # parent
7
7
  # ├── ultralytics
8
8
  # └── datasets
9
- # └── carparts-seg ← downloads here (132 MB)
9
+ # └── carparts-seg ← downloads here (133 MB)
10
10
 
11
11
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
12
  path: carparts-seg # dataset root dir
13
- train: train/images # train images (relative to 'path') 3516 images
14
- val: valid/images # val images (relative to 'path') 276 images
15
- test: test/images # test images (relative to 'path') 401 images
13
+ train: images/train # train images (relative to 'path') 3516 images
14
+ val: images/val # val images (relative to 'path') 276 images
15
+ test: images/test # test images (relative to 'path') 401 images
16
16
 
17
17
  # Classes
18
18
  names:
@@ -6,13 +6,13 @@
6
6
  # parent
7
7
  # ├── ultralytics
8
8
  # └── datasets
9
- # └── crack-seg ← downloads here (91.2 MB)
9
+ # └── crack-seg ← downloads here (91.6 MB)
10
10
 
11
11
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
12
  path: crack-seg # dataset root dir
13
- train: train/images # train images (relative to 'path') 3717 images
14
- val: valid/images # val images (relative to 'path') 112 images
15
- test: test/images # test images (relative to 'path') 200 images
13
+ train: images/train # train images (relative to 'path') 3717 images
14
+ val: images/val # val images (relative to 'path') 112 images
15
+ test: images/test # test images (relative to 'path') 200 images
16
16
 
17
17
  # Classes
18
18
  names:
@@ -10,8 +10,8 @@
10
10
 
11
11
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
12
  path: dog-pose # dataset root dir
13
- train: train # train images (relative to 'path') 6773 images
14
- val: val # val images (relative to 'path') 1703 images
13
+ train: images/train # train images (relative to 'path') 6773 images
14
+ val: images/val # val images (relative to 'path') 1703 images
15
15
 
16
16
  # Keypoints
17
17
  kpt_shape: [24, 3] # number of keypoints, number of dims (2 for x,y or 3 for x,y,visible)
@@ -10,8 +10,8 @@
10
10
 
11
11
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
12
  path: hand-keypoints # dataset root dir
13
- train: train # train images (relative to 'path') 18776 images
14
- val: val # val images (relative to 'path') 7992 images
13
+ train: images/train # train images (relative to 'path') 18776 images
14
+ val: images/val # val images (relative to 'path') 7992 images
15
15
 
16
16
  # Keypoints
17
17
  kpt_shape: [21, 3] # number of keypoints, number of dims (2 for x,y or 3 for x,y,visible)
@@ -10,9 +10,8 @@
10
10
 
11
11
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
12
  path: medical-pills # dataset root dir
13
- train: train/images # train images (relative to 'path') 92 images
14
- val: valid/images # val images (relative to 'path') 23 images
15
- test: # test images (relative to 'path')
13
+ train: images/train # train images (relative to 'path') 92 images
14
+ val: images/val # val images (relative to 'path') 23 images
16
15
 
17
16
  # Classes
18
17
  names:
@@ -6,13 +6,13 @@
6
6
  # parent
7
7
  # ├── ultralytics
8
8
  # └── datasets
9
- # └── package-seg ← downloads here (102 MB)
9
+ # └── package-seg ← downloads here (103 MB)
10
10
 
11
11
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
12
  path: package-seg # dataset root dir
13
- train: train/images # train images (relative to 'path') 1920 images
14
- val: valid/images # val images (relative to 'path') 89 images
15
- test: test/images # test images (relative to 'path') 188 images
13
+ train: images/train # train images (relative to 'path') 1920 images
14
+ val: images/val # val images (relative to 'path') 89 images
15
+ test: images/test # test images (relative to 'path') 188 images
16
16
 
17
17
  # Classes
18
18
  names:
@@ -6,12 +6,12 @@
6
6
  # parent
7
7
  # ├── ultralytics
8
8
  # └── datasets
9
- # └── signature ← downloads here (11.2 MB)
9
+ # └── signature ← downloads here (11.3 MB)
10
10
 
11
11
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
12
  path: signature # dataset root dir
13
- train: train/images # train images (relative to 'path') 143 images
14
- val: valid/images # val images (relative to 'path') 35 images
13
+ train: images/train # train images (relative to 'path') 143 images
14
+ val: images/val # val images (relative to 'path') 35 images
15
15
 
16
16
  # Classes
17
17
  names:
@@ -6,12 +6,12 @@
6
6
  # parent
7
7
  # ├── ultralytics
8
8
  # └── datasets
9
- # └── tiger-pose ← downloads here (75.3 MB)
9
+ # └── tiger-pose ← downloads here (22.8 MB)
10
10
 
11
11
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
12
  path: tiger-pose # dataset root dir
13
- train: train # train images (relative to 'path') 210 images
14
- val: val # val images (relative to 'path') 53 images
13
+ train: images/train # train images (relative to 'path') 210 images
14
+ val: images/val # val images (relative to 'path') 53 images
15
15
 
16
16
  # Keypoints
17
17
  kpt_shape: [12, 2] # number of keypoints, number of dims (2 for x,y or 3 for x,y,visible)