dgenerate-ultralytics-headless 8.3.159__py3-none-any.whl → 8.3.161__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {dgenerate_ultralytics_headless-8.3.159.dist-info → dgenerate_ultralytics_headless-8.3.161.dist-info}/METADATA +1 -1
- {dgenerate_ultralytics_headless-8.3.159.dist-info → dgenerate_ultralytics_headless-8.3.161.dist-info}/RECORD +62 -62
- tests/test_python.py +2 -1
- ultralytics/__init__.py +1 -1
- ultralytics/cfg/__init__.py +0 -2
- ultralytics/cfg/datasets/Argoverse.yaml +1 -1
- ultralytics/cfg/datasets/DOTAv1.5.yaml +1 -1
- ultralytics/cfg/datasets/DOTAv1.yaml +1 -1
- ultralytics/cfg/datasets/GlobalWheat2020.yaml +1 -1
- ultralytics/cfg/datasets/HomeObjects-3K.yaml +1 -1
- ultralytics/cfg/datasets/ImageNet.yaml +1 -1
- ultralytics/cfg/datasets/Objects365.yaml +1 -1
- ultralytics/cfg/datasets/SKU-110K.yaml +1 -1
- ultralytics/cfg/datasets/VOC.yaml +1 -1
- ultralytics/cfg/datasets/VisDrone.yaml +6 -3
- ultralytics/cfg/datasets/african-wildlife.yaml +1 -1
- ultralytics/cfg/datasets/brain-tumor.yaml +1 -1
- ultralytics/cfg/datasets/carparts-seg.yaml +1 -1
- ultralytics/cfg/datasets/coco-pose.yaml +1 -1
- ultralytics/cfg/datasets/coco.yaml +1 -1
- ultralytics/cfg/datasets/coco128-seg.yaml +1 -1
- ultralytics/cfg/datasets/coco128.yaml +1 -1
- ultralytics/cfg/datasets/coco8-grayscale.yaml +1 -1
- ultralytics/cfg/datasets/coco8-multispectral.yaml +1 -1
- ultralytics/cfg/datasets/coco8-pose.yaml +1 -1
- ultralytics/cfg/datasets/coco8-seg.yaml +1 -1
- ultralytics/cfg/datasets/coco8.yaml +1 -1
- ultralytics/cfg/datasets/crack-seg.yaml +1 -1
- ultralytics/cfg/datasets/dog-pose.yaml +1 -1
- ultralytics/cfg/datasets/dota8-multispectral.yaml +1 -1
- ultralytics/cfg/datasets/dota8.yaml +1 -1
- ultralytics/cfg/datasets/hand-keypoints.yaml +1 -1
- ultralytics/cfg/datasets/lvis.yaml +1 -1
- ultralytics/cfg/datasets/medical-pills.yaml +1 -1
- ultralytics/cfg/datasets/open-images-v7.yaml +1 -1
- ultralytics/cfg/datasets/package-seg.yaml +1 -1
- ultralytics/cfg/datasets/signature.yaml +1 -1
- ultralytics/cfg/datasets/tiger-pose.yaml +1 -1
- ultralytics/cfg/datasets/xView.yaml +1 -1
- ultralytics/data/augment.py +8 -8
- ultralytics/data/converter.py +3 -5
- ultralytics/data/dataset.py +1 -1
- ultralytics/data/split.py +1 -1
- ultralytics/engine/exporter.py +11 -2
- ultralytics/engine/model.py +2 -0
- ultralytics/engine/results.py +1 -6
- ultralytics/models/yolo/model.py +25 -24
- ultralytics/models/yolo/world/train.py +1 -1
- ultralytics/models/yolo/world/train_world.py +6 -6
- ultralytics/models/yolo/yoloe/train.py +1 -1
- ultralytics/nn/autobackend.py +7 -1
- ultralytics/solutions/heatmap.py +1 -1
- ultralytics/solutions/object_counter.py +9 -9
- ultralytics/solutions/similarity_search.py +11 -12
- ultralytics/solutions/solutions.py +55 -56
- ultralytics/utils/__init__.py +1 -4
- ultralytics/utils/instance.py +2 -0
- ultralytics/utils/metrics.py +24 -36
- {dgenerate_ultralytics_headless-8.3.159.dist-info → dgenerate_ultralytics_headless-8.3.161.dist-info}/WHEEL +0 -0
- {dgenerate_ultralytics_headless-8.3.159.dist-info → dgenerate_ultralytics_headless-8.3.161.dist-info}/entry_points.txt +0 -0
- {dgenerate_ultralytics_headless-8.3.159.dist-info → dgenerate_ultralytics_headless-8.3.161.dist-info}/licenses/LICENSE +0 -0
- {dgenerate_ultralytics_headless-8.3.159.dist-info → dgenerate_ultralytics_headless-8.3.161.dist-info}/top_level.txt +0 -0
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.4
|
2
2
|
Name: dgenerate-ultralytics-headless
|
3
|
-
Version: 8.3.
|
3
|
+
Version: 8.3.161
|
4
4
|
Summary: Automatically built Ultralytics package with python-opencv-headless dependency instead of python-opencv
|
5
5
|
Author-email: Glenn Jocher <glenn.jocher@ultralytics.com>, Jing Qiu <jing.qiu@ultralytics.com>
|
6
6
|
Maintainer-email: Ultralytics <hello@ultralytics.com>
|
@@ -1,4 +1,4 @@
|
|
1
|
-
dgenerate_ultralytics_headless-8.3.
|
1
|
+
dgenerate_ultralytics_headless-8.3.161.dist-info/licenses/LICENSE,sha256=DZak_2itbUtvHzD3E7GNUYSRK6jdOJ-GqncQ2weavLA,34523
|
2
2
|
tests/__init__.py,sha256=b4KP5_q-2IO8Br8YHOSLYnn7IwZS81l_vfEF2YPa2lM,894
|
3
3
|
tests/conftest.py,sha256=JjgKSs36ZaGmmtqGmAapmFSoFF1YwyV3IZsOgqt2IVM,2593
|
4
4
|
tests/test_cli.py,sha256=Kpfxq_RlbKK1Z8xNScDUbre6GB7neZhXZAYGI1tiDS8,5660
|
@@ -6,47 +6,47 @@ tests/test_cuda.py,sha256=-nQsfF3lGfqLm6cIeu_BCiXqLj7HzpL7R1GzPEc6z2I,8128
|
|
6
6
|
tests/test_engine.py,sha256=Jpt2KVrltrEgh2-3Ykouz-2Z_2fza0eymL5ectRXadM,4922
|
7
7
|
tests/test_exports.py,sha256=HmMKOTCia9ZDC0VYc_EPmvBTM5LM5eeI1NF_pKjLpd8,9677
|
8
8
|
tests/test_integrations.py,sha256=kl_AKmE_Qs1GB0_91iVwbzNxofm_hFTt0zzU6JF-pg4,6323
|
9
|
-
tests/test_python.py,sha256=
|
9
|
+
tests/test_python.py,sha256=b8vSSJx2iq59sSaIbnPe6sQ5CRyANVoy0ZaR6iQuqCA,27907
|
10
10
|
tests/test_solutions.py,sha256=tuf6n_fsI8KvSdJrnc-cqP2qYdiYqCWuVrx0z9dOz3Q,13213
|
11
|
-
ultralytics/__init__.py,sha256=
|
11
|
+
ultralytics/__init__.py,sha256=W7njVgOtDaS2k2-WZMYQVMYB5uby9LMlSjgo6Lq1Ey0,730
|
12
12
|
ultralytics/assets/bus.jpg,sha256=wCAZxJecGR63Od3ZRERe9Aja1Weayrb9Ug751DS_vGM,137419
|
13
13
|
ultralytics/assets/zidane.jpg,sha256=Ftc4aeMmen1O0A3o6GCDO9FlfBslLpTAw0gnetx7bts,50427
|
14
|
-
ultralytics/cfg/__init__.py,sha256=
|
14
|
+
ultralytics/cfg/__init__.py,sha256=VIpPHImhjb0XLJquGZrG_LBGZchtOtBSXR7HYTYV2GU,39602
|
15
15
|
ultralytics/cfg/default.yaml,sha256=oFG6llJO-Py5H-cR9qs-7FieJamroDLwpbrkhmfROOM,8307
|
16
|
-
ultralytics/cfg/datasets/Argoverse.yaml,sha256=
|
17
|
-
ultralytics/cfg/datasets/DOTAv1.5.yaml,sha256=
|
18
|
-
ultralytics/cfg/datasets/DOTAv1.yaml,sha256=
|
19
|
-
ultralytics/cfg/datasets/GlobalWheat2020.yaml,sha256=
|
20
|
-
ultralytics/cfg/datasets/HomeObjects-3K.yaml,sha256
|
21
|
-
ultralytics/cfg/datasets/ImageNet.yaml,sha256=
|
22
|
-
ultralytics/cfg/datasets/Objects365.yaml,sha256=
|
23
|
-
ultralytics/cfg/datasets/SKU-110K.yaml,sha256=
|
24
|
-
ultralytics/cfg/datasets/VOC.yaml,sha256=
|
25
|
-
ultralytics/cfg/datasets/VisDrone.yaml,sha256=
|
26
|
-
ultralytics/cfg/datasets/african-wildlife.yaml,sha256=
|
27
|
-
ultralytics/cfg/datasets/brain-tumor.yaml,sha256=
|
28
|
-
ultralytics/cfg/datasets/carparts-seg.yaml,sha256=
|
29
|
-
ultralytics/cfg/datasets/coco-pose.yaml,sha256=
|
30
|
-
ultralytics/cfg/datasets/coco.yaml,sha256=
|
31
|
-
ultralytics/cfg/datasets/coco128-seg.yaml,sha256=
|
32
|
-
ultralytics/cfg/datasets/coco128.yaml,sha256=
|
33
|
-
ultralytics/cfg/datasets/coco8-grayscale.yaml,sha256=
|
34
|
-
ultralytics/cfg/datasets/coco8-multispectral.yaml,sha256=
|
35
|
-
ultralytics/cfg/datasets/coco8-pose.yaml,sha256=
|
36
|
-
ultralytics/cfg/datasets/coco8-seg.yaml,sha256=
|
37
|
-
ultralytics/cfg/datasets/coco8.yaml,sha256=
|
38
|
-
ultralytics/cfg/datasets/crack-seg.yaml,sha256=
|
39
|
-
ultralytics/cfg/datasets/dog-pose.yaml,sha256=
|
40
|
-
ultralytics/cfg/datasets/dota8-multispectral.yaml,sha256=
|
41
|
-
ultralytics/cfg/datasets/dota8.yaml,sha256=
|
42
|
-
ultralytics/cfg/datasets/hand-keypoints.yaml,sha256=
|
43
|
-
ultralytics/cfg/datasets/lvis.yaml,sha256=
|
44
|
-
ultralytics/cfg/datasets/medical-pills.yaml,sha256=
|
45
|
-
ultralytics/cfg/datasets/open-images-v7.yaml,sha256=
|
46
|
-
ultralytics/cfg/datasets/package-seg.yaml,sha256=
|
47
|
-
ultralytics/cfg/datasets/signature.yaml,sha256=
|
48
|
-
ultralytics/cfg/datasets/tiger-pose.yaml,sha256=
|
49
|
-
ultralytics/cfg/datasets/xView.yaml,sha256=
|
16
|
+
ultralytics/cfg/datasets/Argoverse.yaml,sha256=0mm20vJBZxxLQtc_Z3Op6zUjmJkINLi70hO6aw67Lwc,3263
|
17
|
+
ultralytics/cfg/datasets/DOTAv1.5.yaml,sha256=aT3VKgkVPTaaRRjnpHEhIbgANU-yt7VsFjAf5562wqA,1212
|
18
|
+
ultralytics/cfg/datasets/DOTAv1.yaml,sha256=Ydf8_hRfZkaFMEkDKw3as0msVV4KPD1JuFjVMYDqIMQ,1182
|
19
|
+
ultralytics/cfg/datasets/GlobalWheat2020.yaml,sha256=JP6zk5GR2fufGGFmOMr57EnRj7kKh9-fIuInkdmXMlU,2145
|
20
|
+
ultralytics/cfg/datasets/HomeObjects-3K.yaml,sha256=Cgokv3w-g6z1KnQ5ALuS9qTTwBzgN7vWroQuIajJIZo,978
|
21
|
+
ultralytics/cfg/datasets/ImageNet.yaml,sha256=1zci8FWwbkFwNHlAkfDUnWyoOKrFvkEXz1VNpVAizBg,42531
|
22
|
+
ultralytics/cfg/datasets/Objects365.yaml,sha256=EfhNwsYMqDCXc3kZfokvk4LYq1QZDKl-ZpfoecP7aOE,9355
|
23
|
+
ultralytics/cfg/datasets/SKU-110K.yaml,sha256=OBUCCRFr6UXrp6LkXZSXA92dSYCc6MrDP_0rlmmLrvI,2546
|
24
|
+
ultralytics/cfg/datasets/VOC.yaml,sha256=zVkCLoj6EbZm8gf8cOg8QbEIpsN6W6oreKmW2czTWeE,3788
|
25
|
+
ultralytics/cfg/datasets/VisDrone.yaml,sha256=iIAxa9F3CxG18d3SFrwqM8_8HFzObxEM3yyhWaQ8saQ,3282
|
26
|
+
ultralytics/cfg/datasets/african-wildlife.yaml,sha256=SLSyIAOg9Kbx0lN7VApPDLGjAL2RKdYvzG1ErAZtwhc,918
|
27
|
+
ultralytics/cfg/datasets/brain-tumor.yaml,sha256=SWJOiFGvJfxe4oGxG35Pw5NXsBxMdYWEw5UlkRSr0kg,844
|
28
|
+
ultralytics/cfg/datasets/carparts-seg.yaml,sha256=liuHTeQOaztNMGr87Qtp0P8-h3VATSAB9FMfBOQ-rTo,1256
|
29
|
+
ultralytics/cfg/datasets/coco-pose.yaml,sha256=j_ynggAOE1aNpjG42QHMDTrYiPic8S0cnbNHXqmH7vY,1624
|
30
|
+
ultralytics/cfg/datasets/coco.yaml,sha256=E5OlAwkJkzhRI2BFIPnUE0VnzdQNDFhv2czDVS582BQ,2607
|
31
|
+
ultralytics/cfg/datasets/coco128-seg.yaml,sha256=04Pfr7RPgJM2hF_LpYYD2zIPqCyOJ2sWW23HO2qXoEI,1983
|
32
|
+
ultralytics/cfg/datasets/coco128.yaml,sha256=hNHjxEq57lRpcNYuN3dX7ockjhgQu7SdiXepcGApjdU,1966
|
33
|
+
ultralytics/cfg/datasets/coco8-grayscale.yaml,sha256=YfAJRbM2wWd37p1Jl7rOOoxiPH3rWRo5mddjUvJcFxg,1962
|
34
|
+
ultralytics/cfg/datasets/coco8-multispectral.yaml,sha256=Kaca3kaq8-iwtBOdmvJaETI-JzDNyjKbk7SSUWGUnO4,2064
|
35
|
+
ultralytics/cfg/datasets/coco8-pose.yaml,sha256=4S_0RSNNK_ccz1Qxp7wdO0-RjxwwhldTRpGahQnzIw8,1010
|
36
|
+
ultralytics/cfg/datasets/coco8-seg.yaml,sha256=8V59_ASLtTg3jsXtV03opU4TRwyFy2fsNUUSR791cB0,1914
|
37
|
+
ultralytics/cfg/datasets/coco8.yaml,sha256=aPefOD63vx1EJ4BhdeumSrYVoJIh2uMyIb6BTrEFk68,1889
|
38
|
+
ultralytics/cfg/datasets/crack-seg.yaml,sha256=8zkQD4eAeWjkxFQQGSTNvxla1b02Vuo8AlmLY7PZvjE,840
|
39
|
+
ultralytics/cfg/datasets/dog-pose.yaml,sha256=CjvPu8y_KBZFcXn8JOaeDzi1NkVYgd3M4yVazOSYUT0,895
|
40
|
+
ultralytics/cfg/datasets/dota8-multispectral.yaml,sha256=AD9LGIV0FdnHLJCsczU06SIOIHYOygr5owb69bi-Nk0,1217
|
41
|
+
ultralytics/cfg/datasets/dota8.yaml,sha256=cVmqA8SYVIY4Rp5y0oIPfw1Si2AZMPMDrFaV8ZRUnGI,1061
|
42
|
+
ultralytics/cfg/datasets/hand-keypoints.yaml,sha256=w_G5BmUKuWFb0yCbTOeWjGhz8ZAqAYeN7ECZpO37h3g,977
|
43
|
+
ultralytics/cfg/datasets/lvis.yaml,sha256=69E7zRFQxqdx6T7GhrLVR8XoZtfx4pwR7I3kobxmz2M,29704
|
44
|
+
ultralytics/cfg/datasets/medical-pills.yaml,sha256=1CtNFVtc2Lmo1Wjssh_hzAevo_mvkMuQGoLDGD7i2S0,836
|
45
|
+
ultralytics/cfg/datasets/open-images-v7.yaml,sha256=GblFutr27lY3W2h9GyK8zUqq5svtF1EeEBoP5kbnd5o,12120
|
46
|
+
ultralytics/cfg/datasets/package-seg.yaml,sha256=gJZmxXNzmvPU4K2cmkPR44Lp6aGW_9J4EFcYqgrS4T4,852
|
47
|
+
ultralytics/cfg/datasets/signature.yaml,sha256=uqPSj6XCILKOmIn01GXKLXZqoouZvKx7tOusfF4hL5c,777
|
48
|
+
ultralytics/cfg/datasets/tiger-pose.yaml,sha256=0f_Q45eOexla9-nKG8SDziK2ACZcND8wRZpXCKO3iO8,913
|
49
|
+
ultralytics/cfg/datasets/xView.yaml,sha256=46Z-TaZAXHXM85PoSWeI9mhpu__RB5TOtPAfo0cbAFM,5341
|
50
50
|
ultralytics/cfg/models/11/yolo11-cls-resnet18.yaml,sha256=1Ycp9qMrwpb8rq7cqht3Q-1gMN0R87U35nm2j_isdro,524
|
51
51
|
ultralytics/cfg/models/11/yolo11-cls.yaml,sha256=17l5GdN-Vst4LvafsK2-q6Li9VX9UlUcT5ClCtikweE,1412
|
52
52
|
ultralytics/cfg/models/11/yolo11-obb.yaml,sha256=3M_c06B-y8da4tunHVxQQ-iFUNLKUfofqCZTpnH5FEU,2034
|
@@ -106,13 +106,13 @@ ultralytics/cfg/trackers/botsort.yaml,sha256=TpRaK5kH_-QbjCQ7ekM4s_7j8I8ti3q8Hs7
|
|
106
106
|
ultralytics/cfg/trackers/bytetrack.yaml,sha256=6u-tiZlk16EqEwkNXaMrza6PAQmWj_ypgv26LGCtPDg,886
|
107
107
|
ultralytics/data/__init__.py,sha256=nAXaL1puCc7z_NjzQNlJnhbVhT9Fla2u7Dsqo7q1dAc,644
|
108
108
|
ultralytics/data/annotator.py,sha256=uAgd7K-yudxiwdNqHz0ubfFg5JsfNlae4cgxdvCMyuY,3030
|
109
|
-
ultralytics/data/augment.py,sha256=
|
109
|
+
ultralytics/data/augment.py,sha256=jyEXZ1TqJFIdz_oqecsDa4gKDCMC71RGiMJh3kQV9G0,129378
|
110
110
|
ultralytics/data/base.py,sha256=mRcuehK1thNuuzQGL6D1AaZkod71oHRdYTod_zdQZQg,19688
|
111
111
|
ultralytics/data/build.py,sha256=13gPxCJIZRjgcNh7zbzanCgtyK6_oZM0ho9KQhHcM6c,11153
|
112
|
-
ultralytics/data/converter.py,sha256=
|
113
|
-
ultralytics/data/dataset.py,sha256=
|
112
|
+
ultralytics/data/converter.py,sha256=e4FgGV3DsxrdNVe8-nS8MclSYtlDrbePxyDeZ3rhqFU,27134
|
113
|
+
ultralytics/data/dataset.py,sha256=0VjzciGleGGF_XN5fEnS3c5UT0r533HMmQ9DfEQ_lA4,36463
|
114
114
|
ultralytics/data/loaders.py,sha256=kTGO1P-HntpQk078i1ASyXYckDx9Z7Pe7o1YbePcjC4,31657
|
115
|
-
ultralytics/data/split.py,sha256=
|
115
|
+
ultralytics/data/split.py,sha256=F6O73bAbESj70FQZzqkydXQeXgPXGHGiC06b5MkLHjQ,5109
|
116
116
|
ultralytics/data/split_dota.py,sha256=RJHxwOX2Z9CfSX_h7L7mO-aLQ4Ap_ZpZanQdno10oSA,12893
|
117
117
|
ultralytics/data/utils.py,sha256=fJqVJkjaub-xT0cB1o40Hl1WIH1ljKINT0SJaJyZse4,36637
|
118
118
|
ultralytics/data/scripts/download_weights.sh,sha256=0y8XtZxOru7dVThXDFUXLHBuICgOIqZNUwpyL4Rh6lg,595
|
@@ -120,10 +120,10 @@ ultralytics/data/scripts/get_coco.sh,sha256=UuJpJeo3qQpTHVINeOpmP0NYmg8PhEFE3A8J
|
|
120
120
|
ultralytics/data/scripts/get_coco128.sh,sha256=qmRQl_hOKrsdHrTrnyQuFIH01oDz3lfaz138OgGfLt8,650
|
121
121
|
ultralytics/data/scripts/get_imagenet.sh,sha256=hr42H16bM47iT27rgS7MpEo-GeOZAYUQXgr0B2cwn48,1705
|
122
122
|
ultralytics/engine/__init__.py,sha256=lm6MckFYCPTbqIoX7w0s_daxdjNeBeKW6DXppv1-QUM,70
|
123
|
-
ultralytics/engine/exporter.py,sha256=
|
124
|
-
ultralytics/engine/model.py,sha256=
|
123
|
+
ultralytics/engine/exporter.py,sha256=j9Yr03besifwA96jvGS-3HJv4iCnAkXQd89j1oW9pWM,73273
|
124
|
+
ultralytics/engine/model.py,sha256=FmLwiKuItVNgoyXhAvesUnD3UeHBzCVzGHDrqB8J4ms,53453
|
125
125
|
ultralytics/engine/predictor.py,sha256=88zrgZP91ehwdeGl8BM_cQ_caeuwKIPDy3OzxcRBjTU,22474
|
126
|
-
ultralytics/engine/results.py,sha256=
|
126
|
+
ultralytics/engine/results.py,sha256=rLQlttkgPudiV0u0d6Xy5hKKr1x3SJL1zrXA5W5vw7Y,71999
|
127
127
|
ultralytics/engine/trainer.py,sha256=28FeqASvQRxCaK96SXDM-BfPJjqy5KNiWhf8v6GXTug,39785
|
128
128
|
ultralytics/engine/tuner.py,sha256=4ue7JbMFQp7JcWhhwCAY-b-xZsjm5VKVlPFDUTyxt_8,12789
|
129
129
|
ultralytics/engine/validator.py,sha256=qftJUomb4A-6rSThtST3TccEbc_zTmzovCBBCSpYm3k,16671
|
@@ -165,7 +165,7 @@ ultralytics/models/utils/__init__.py,sha256=lm6MckFYCPTbqIoX7w0s_daxdjNeBeKW6DXp
|
|
165
165
|
ultralytics/models/utils/loss.py,sha256=E-61TfLPc04IdeL6IlFDityDoPju-ov0ouWV_cNY4Kg,21254
|
166
166
|
ultralytics/models/utils/ops.py,sha256=Pr77n8XW25SUEx4X3bBvXcVIbRdJPoaXJuG0KWWawRQ,15253
|
167
167
|
ultralytics/models/yolo/__init__.py,sha256=or0j5xvcM0usMlsFTYhNAOcQUri7reD0cD9JR5b7zDk,307
|
168
|
-
ultralytics/models/yolo/model.py,sha256=
|
168
|
+
ultralytics/models/yolo/model.py,sha256=xK-Te6D0PGY3vpWQg-HT3TwP0bzPs0XfUjd_L_tVXRs,18752
|
169
169
|
ultralytics/models/yolo/classify/__init__.py,sha256=9--HVaNOfI1K7rn_rRqclL8FUAnpfeBrRqEQIaQw2xM,383
|
170
170
|
ultralytics/models/yolo/classify/predict.py,sha256=FqAC2YXe25bRwedMZhF3Lw0waoY-a60xMKELhxApP9I,4149
|
171
171
|
ultralytics/models/yolo/classify/train.py,sha256=V-hevc6X7xemnpyru84OfTRA77eNnkVSMEz16_OUvo4,10244
|
@@ -187,15 +187,15 @@ ultralytics/models/yolo/segment/predict.py,sha256=qlprQCZn4_bpjpI08U0MU9Q9_1gpHr
|
|
187
187
|
ultralytics/models/yolo/segment/train.py,sha256=XrPkXUiNu1Jvhn8iDew_RaLLjZA3un65rK-QH9mtNIw,3802
|
188
188
|
ultralytics/models/yolo/segment/val.py,sha256=AnvY0O7HhD5xZ2BE2artLTAVW4SNmHbVopBJsYRcmk8,12328
|
189
189
|
ultralytics/models/yolo/world/__init__.py,sha256=nlh8I6t8hMGz_vZg8QSlsUW1R-2eKvn9CGUoPPQEGhA,131
|
190
|
-
ultralytics/models/yolo/world/train.py,sha256=
|
191
|
-
ultralytics/models/yolo/world/train_world.py,sha256=
|
190
|
+
ultralytics/models/yolo/world/train.py,sha256=karlbEdkfAh08ZzYj9nXOiqLsRq5grsbV-XDv3yl6GQ,7819
|
191
|
+
ultralytics/models/yolo/world/train_world.py,sha256=WYcBzOrCEwqrjmgLnIa-33n5NOI-5MqCJYGHrixFcJk,8950
|
192
192
|
ultralytics/models/yolo/yoloe/__init__.py,sha256=6SLytdJtwu37qewf7CobG7C7Wl1m-xtNdvCXEasfPDE,760
|
193
193
|
ultralytics/models/yolo/yoloe/predict.py,sha256=TAcT6fiWbV-jOewu9hx_shGI10VLF_6oSPf7jfatBWo,7041
|
194
|
-
ultralytics/models/yolo/yoloe/train.py,sha256=
|
194
|
+
ultralytics/models/yolo/yoloe/train.py,sha256=H1Z5yzcYklyfIkT0xR35qq3f7CxmeG2jUhWhbVyE6RA,14060
|
195
195
|
ultralytics/models/yolo/yoloe/train_seg.py,sha256=aCV7M8oQOvODFnU4piZdJh3tIrBJYAzZfRVRx1vRgxo,4956
|
196
196
|
ultralytics/models/yolo/yoloe/val.py,sha256=yebPkxwKKt__cY05Zbh1YXg4_BKzzpcDc3Cv3FJ5SAA,9769
|
197
197
|
ultralytics/nn/__init__.py,sha256=rjociYD9lo_K-d-1s6TbdWklPLjTcEHk7OIlRDJstIE,615
|
198
|
-
ultralytics/nn/autobackend.py,sha256=
|
198
|
+
ultralytics/nn/autobackend.py,sha256=n-2ADzX3Y2MRE8nHFeVvFCJFJP9rCbkkNbcufPZ24dE,41532
|
199
199
|
ultralytics/nn/tasks.py,sha256=aCXYmWan2LTznH3i_-2OwMagG3ZwnVL1gjKtY-3oShM,72456
|
200
200
|
ultralytics/nn/text_model.py,sha256=cYwD-0el4VeToDBP4iPFOQGqyEQatJOBHrVyONL3K_s,15282
|
201
201
|
ultralytics/nn/modules/__init__.py,sha256=2nY0X69Z5DD5SWt6v3CUTZa5gXSzC9TQr3VTVqhyGho,3158
|
@@ -210,17 +210,17 @@ ultralytics/solutions/ai_gym.py,sha256=wwfTqX7G3mZXneMwiibEfYbVYaJF_JUX3SQdsdQUv
|
|
210
210
|
ultralytics/solutions/analytics.py,sha256=aHwKjSEW_3y47LrzugJbPB3VQGTDQCIb5goiPuxnmrc,12802
|
211
211
|
ultralytics/solutions/config.py,sha256=CevL8lzeSbiSAAA514CTiduCg2_Wh04P0RaB_kmwJa8,5404
|
212
212
|
ultralytics/solutions/distance_calculation.py,sha256=r05_ufxb2Mpw3EIX8X32PIWlh9rYMADypGhVIPoZYV4,5939
|
213
|
-
ultralytics/solutions/heatmap.py,sha256=
|
213
|
+
ultralytics/solutions/heatmap.py,sha256=hBJR_Z3Lu9JcvCaEwnd-uN_WEiXK14FDRXedgaI8oqU,5515
|
214
214
|
ultralytics/solutions/instance_segmentation.py,sha256=qsIQkvuR1Ur2bdEsCCJP2IEO1Hz2l0wfR2KUBo247xE,3795
|
215
215
|
ultralytics/solutions/object_blurrer.py,sha256=wHbfrudh6li_JADc-dTHGGMI8GU-MvesoTvVlX6YuYc,3998
|
216
|
-
ultralytics/solutions/object_counter.py,sha256=
|
216
|
+
ultralytics/solutions/object_counter.py,sha256=ccKuchrVkNE8AD4EvArtl6LCVf442jTOyc6_7tGua5o,9433
|
217
217
|
ultralytics/solutions/object_cropper.py,sha256=mS3iT_CgqfqG9ldM_AM5ptq5bfYFyTycPQY5DxxMlSA,3525
|
218
218
|
ultralytics/solutions/parking_management.py,sha256=IfPUn15aelxz6YZNo9WYkVEl5IOVSw8VD0OrpKtExPE,13613
|
219
219
|
ultralytics/solutions/queue_management.py,sha256=u0VFzRqa0OxIWY7xXItsXEm073CzkQGFhhXG-6VK3SI,4393
|
220
220
|
ultralytics/solutions/region_counter.py,sha256=j6f5VAaE1JWGdWOecZpWMFp6yF1GdCnHjftN6CRybjQ,5967
|
221
221
|
ultralytics/solutions/security_alarm.py,sha256=U6FTbg3cthKLfWeLunsFhOJvB6GGmwYDDxZ3K0GCx-Q,6351
|
222
|
-
ultralytics/solutions/similarity_search.py,sha256=
|
223
|
-
ultralytics/solutions/solutions.py,sha256=
|
222
|
+
ultralytics/solutions/similarity_search.py,sha256=H9MPf8F5AvVfmb9hnng0FrIOTbLU_I-CkVHGpC81CE0,9496
|
223
|
+
ultralytics/solutions/solutions.py,sha256=2FyT3v6SpNisHvbTs96Z3jhzyl3Y72yds8R6CpnVhp4,37318
|
224
224
|
ultralytics/solutions/speed_estimation.py,sha256=chg_tBuKFw3EnFiv_obNDaUXLAo-FypxC7gsDeB_VUI,5878
|
225
225
|
ultralytics/solutions/streamlit_inference.py,sha256=SqL-YxU3RCxCKscH2AYUTkmJknilV9jCCco6ufqsFk4,10501
|
226
226
|
ultralytics/solutions/trackzone.py,sha256=kIS94rNfL3yVPAtSbnW8F-aLMxXowQtsfKNB-jLezz8,3941
|
@@ -235,7 +235,7 @@ ultralytics/trackers/utils/__init__.py,sha256=lm6MckFYCPTbqIoX7w0s_daxdjNeBeKW6D
|
|
235
235
|
ultralytics/trackers/utils/gmc.py,sha256=9IvCf5MhBYY9ppVHykN02_oBWHmE98R8EaYFKaykdV0,14032
|
236
236
|
ultralytics/trackers/utils/kalman_filter.py,sha256=PPmM0lwBMdT_hGojvfLoUsBUFMBBMNRAxKbMcQa3wJ0,21619
|
237
237
|
ultralytics/trackers/utils/matching.py,sha256=uSYtywqi1lE_uNN1FwuBFPyISfDQXHMu8K5KH69nrRI,7160
|
238
|
-
ultralytics/utils/__init__.py,sha256=
|
238
|
+
ultralytics/utils/__init__.py,sha256=oJZ1o2L2R-EHepFbe_9bAzyiLi3Rd3Cv6gJmgO5jNfc,59437
|
239
239
|
ultralytics/utils/autobatch.py,sha256=33m8YgggLIhltDqMXZ5OE-FGs2QiHrl2-LfgY1mI4cw,5119
|
240
240
|
ultralytics/utils/autodevice.py,sha256=AvgXFt8c1Cg4icKh0Hbhhz8UmVQ2Wjyfdfkeb2C8zck,8855
|
241
241
|
ultralytics/utils/benchmarks.py,sha256=GlsR6SvD3qlus2hVj7SqSNErsejBlIxO0Y7hMc_cWHw,31041
|
@@ -245,9 +245,9 @@ ultralytics/utils/downloads.py,sha256=YB6rJkcRGQfklUjZqi9dOkTiZaDSqbkGyZEFcZLQkg
|
|
245
245
|
ultralytics/utils/errors.py,sha256=XT9Ru7ivoBgofK6PlnyigGoa7Fmf5nEhyHtnD-8TRXI,1584
|
246
246
|
ultralytics/utils/export.py,sha256=0gG_GZNRqHcORJbjQq_1MXEHc3UEfzPAdpOl2X5VoDc,10008
|
247
247
|
ultralytics/utils/files.py,sha256=ZCbLGleiF0f-PqYfaxMFAWop88w7U1hpreHXl8b2ko0,8238
|
248
|
-
ultralytics/utils/instance.py,sha256=
|
248
|
+
ultralytics/utils/instance.py,sha256=s97d-GXSSCluu-My2DFLAubdk_hf44BuVQ6OCROBrMc,18550
|
249
249
|
ultralytics/utils/loss.py,sha256=fbOWc3Iu0QOJiWbi-mXWA9-1otTYlehtmUsI7os7ydM,39799
|
250
|
-
ultralytics/utils/metrics.py,sha256=
|
250
|
+
ultralytics/utils/metrics.py,sha256=llNqzrACnbWS0qWt5aCudQyBMN8LpVpMsr6Wq0HL4Zc,62167
|
251
251
|
ultralytics/utils/ops.py,sha256=Jkh80ujyi0XDQwNqCUYyomH8NQ145AH9doMUS8Vt8GE,34545
|
252
252
|
ultralytics/utils/patches.py,sha256=P2uQy7S4RzSHBfwJEXJsjyuRUluaaUusiVU84lV3moQ,6577
|
253
253
|
ultralytics/utils/plotting.py,sha256=SCpG5DHZUPlFUsu72kNH3DYGpsjgkd3eIZ9-QTllY88,47171
|
@@ -266,8 +266,8 @@ ultralytics/utils/callbacks/neptune.py,sha256=j8pecmlcsM8FGzLKWoBw5xUsi5t8E5HuxY
|
|
266
266
|
ultralytics/utils/callbacks/raytune.py,sha256=S6Bq16oQDQ8BQgnZzA0zJHGN_BBr8iAM_WtGoLiEcwg,1283
|
267
267
|
ultralytics/utils/callbacks/tensorboard.py,sha256=MDPBW7aDes-66OE6YqKXXvqA_EocjzEMHWGM-8z9vUQ,5281
|
268
268
|
ultralytics/utils/callbacks/wb.py,sha256=Tm_-aRr2CN32MJkY9tylpMBJkb007-MSRNSQ7rDJ5QU,7521
|
269
|
-
dgenerate_ultralytics_headless-8.3.
|
270
|
-
dgenerate_ultralytics_headless-8.3.
|
271
|
-
dgenerate_ultralytics_headless-8.3.
|
272
|
-
dgenerate_ultralytics_headless-8.3.
|
273
|
-
dgenerate_ultralytics_headless-8.3.
|
269
|
+
dgenerate_ultralytics_headless-8.3.161.dist-info/METADATA,sha256=h0X2W5lDRa2zoonPXEN6eMP4dFog9TvfMfSpZGeqafc,38318
|
270
|
+
dgenerate_ultralytics_headless-8.3.161.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
271
|
+
dgenerate_ultralytics_headless-8.3.161.dist-info/entry_points.txt,sha256=YM_wiKyTe9yRrsEfqvYolNO5ngwfoL4-NwgKzc8_7sI,93
|
272
|
+
dgenerate_ultralytics_headless-8.3.161.dist-info/top_level.txt,sha256=XP49TwiMw4QGsvTLSYiJhz1xF_k7ev5mQ8jJXaXi45Q,12
|
273
|
+
dgenerate_ultralytics_headless-8.3.161.dist-info/RECORD,,
|
tests/test_python.py
CHANGED
@@ -16,6 +16,7 @@ from tests import CFG, MODEL, MODELS, SOURCE, SOURCES_LIST, TASK_MODEL_DATA, TMP
|
|
16
16
|
from ultralytics import RTDETR, YOLO
|
17
17
|
from ultralytics.cfg import TASK2DATA, TASKS
|
18
18
|
from ultralytics.data.build import load_inference_source
|
19
|
+
from ultralytics.data.utils import check_det_dataset
|
19
20
|
from ultralytics.utils import (
|
20
21
|
ARM64,
|
21
22
|
ASSETS,
|
@@ -720,7 +721,7 @@ def test_grayscale(task: str, model: str, data: str) -> None:
|
|
720
721
|
if task == "classify": # not support grayscale classification yet
|
721
722
|
return
|
722
723
|
grayscale_data = Path(TMP) / f"{Path(data).stem}-grayscale.yaml"
|
723
|
-
data =
|
724
|
+
data = check_det_dataset(data)
|
724
725
|
data["channels"] = 1 # add additional channels key for grayscale
|
725
726
|
YAML.save(grayscale_data, data)
|
726
727
|
# remove npy files in train/val splits if exists, might be created by previous tests
|
ultralytics/__init__.py
CHANGED
ultralytics/cfg/__init__.py
CHANGED
@@ -954,8 +954,6 @@ def entrypoint(debug: str = "") -> None:
|
|
954
954
|
from ultralytics import YOLO
|
955
955
|
|
956
956
|
model = YOLO(model, task=task)
|
957
|
-
if isinstance(overrides.get("pretrained"), str):
|
958
|
-
model.load(overrides["pretrained"])
|
959
957
|
|
960
958
|
# Task Update
|
961
959
|
if task != model.task:
|
@@ -9,7 +9,7 @@
|
|
9
9
|
# └── Argoverse ← downloads here (31.5 GB)
|
10
10
|
|
11
11
|
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
12
|
-
path:
|
12
|
+
path: Argoverse # dataset root dir
|
13
13
|
train: Argoverse-1.1/images/train/ # train images (relative to 'path') 39384 images
|
14
14
|
val: Argoverse-1.1/images/val/ # val images (relative to 'path') 15062 images
|
15
15
|
test: Argoverse-1.1/images/test/ # test images (optional) https://eval.ai/web/challenges/challenge-page/800/overview
|
@@ -9,7 +9,7 @@
|
|
9
9
|
# └── dota1.5 ← downloads here (2GB)
|
10
10
|
|
11
11
|
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
12
|
-
path:
|
12
|
+
path: DOTAv1.5 # dataset root dir
|
13
13
|
train: images/train # train images (relative to 'path') 1411 images
|
14
14
|
val: images/val # val images (relative to 'path') 458 images
|
15
15
|
test: images/test # test images (optional) 937 images
|
@@ -9,7 +9,7 @@
|
|
9
9
|
# └── dota1 ← downloads here (2GB)
|
10
10
|
|
11
11
|
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
12
|
-
path:
|
12
|
+
path: DOTAv1 # dataset root dir
|
13
13
|
train: images/train # train images (relative to 'path') 1411 images
|
14
14
|
val: images/val # val images (relative to 'path') 458 images
|
15
15
|
test: images/test # test images (optional) 937 images
|
@@ -9,7 +9,7 @@
|
|
9
9
|
# └── GlobalWheat2020 ← downloads here (7.0 GB)
|
10
10
|
|
11
11
|
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
12
|
-
path:
|
12
|
+
path: GlobalWheat2020 # dataset root dir
|
13
13
|
train: # train images (relative to 'path') 3422 images
|
14
14
|
- images/arvalis_1
|
15
15
|
- images/arvalis_2
|
@@ -9,7 +9,7 @@
|
|
9
9
|
# └── homeobjects-3K ← downloads here (390 MB)
|
10
10
|
|
11
11
|
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
12
|
-
path:
|
12
|
+
path: homeobjects-3K # dataset root dir
|
13
13
|
train: train/images # train images (relative to 'path') 2285 images
|
14
14
|
val: valid/images # val images (relative to 'path') 404 images
|
15
15
|
test: # test images (relative to 'path')
|
@@ -10,7 +10,7 @@
|
|
10
10
|
# └── imagenet ← downloads here (144 GB)
|
11
11
|
|
12
12
|
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
13
|
-
path:
|
13
|
+
path: imagenet # dataset root dir
|
14
14
|
train: train # train images (relative to 'path') 1281167 images
|
15
15
|
val: val # val images (relative to 'path') 50000 images
|
16
16
|
test: # test images (optional)
|
@@ -9,7 +9,7 @@
|
|
9
9
|
# └── Objects365 ← downloads here (712 GB = 367G data + 345G zips)
|
10
10
|
|
11
11
|
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
12
|
-
path:
|
12
|
+
path: Objects365 # dataset root dir
|
13
13
|
train: images/train # train images (relative to 'path') 1742289 images
|
14
14
|
val: images/val # val images (relative to 'path') 80000 images
|
15
15
|
test: # test images (optional)
|
@@ -9,7 +9,7 @@
|
|
9
9
|
# └── SKU-110K ← downloads here (13.6 GB)
|
10
10
|
|
11
11
|
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
12
|
-
path:
|
12
|
+
path: SKU-110K # dataset root dir
|
13
13
|
train: train.txt # train images (relative to 'path') 8219 images
|
14
14
|
val: val.txt # val images (relative to 'path') 588 images
|
15
15
|
test: test.txt # test images (optional) 2936 images
|
@@ -9,7 +9,7 @@
|
|
9
9
|
# └── VOC ← downloads here (2.8 GB)
|
10
10
|
|
11
11
|
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
12
|
-
path:
|
12
|
+
path: VOC
|
13
13
|
train: # train images (relative to 'path') 16551 images
|
14
14
|
- images/train2012
|
15
15
|
- images/train2007
|
@@ -9,7 +9,7 @@
|
|
9
9
|
# └── VisDrone ← downloads here (2.3 GB)
|
10
10
|
|
11
11
|
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
12
|
-
path:
|
12
|
+
path: VisDrone # dataset root dir
|
13
13
|
train: VisDrone2019-DET-train/images # train images (relative to 'path') 6471 images
|
14
14
|
val: VisDrone2019-DET-val/images # val images (relative to 'path') 548 images
|
15
15
|
test: VisDrone2019-DET-test-dev/images # test images (optional) 1610 images
|
@@ -58,8 +58,11 @@ download: |
|
|
58
58
|
cls = int(row[5]) - 1
|
59
59
|
box = convert_box(img_size, tuple(map(int, row[:4])))
|
60
60
|
lines.append(f"{cls} {' '.join(f'{x:.6f}' for x in box)}\n")
|
61
|
-
|
62
|
-
|
61
|
+
|
62
|
+
label_file = str(f).replace(f"{os.sep}annotations{os.sep}", f"{os.sep}labels{os.sep}")
|
63
|
+
with open(label_file, "w", encoding="utf-8") as fl:
|
64
|
+
fl.writelines(lines)
|
65
|
+
|
63
66
|
|
64
67
|
|
65
68
|
# Download
|
@@ -9,7 +9,7 @@
|
|
9
9
|
# └── african-wildlife ← downloads here (100 MB)
|
10
10
|
|
11
11
|
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
12
|
-
path:
|
12
|
+
path: african-wildlife # dataset root dir
|
13
13
|
train: train/images # train images (relative to 'path') 1052 images
|
14
14
|
val: valid/images # val images (relative to 'path') 225 images
|
15
15
|
test: test/images # test images (relative to 'path') 227 images
|
@@ -9,7 +9,7 @@
|
|
9
9
|
# └── brain-tumor ← downloads here (4.05 MB)
|
10
10
|
|
11
11
|
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
12
|
-
path:
|
12
|
+
path: brain-tumor # dataset root dir
|
13
13
|
train: train/images # train images (relative to 'path') 893 images
|
14
14
|
val: valid/images # val images (relative to 'path') 223 images
|
15
15
|
test: # test images (relative to 'path')
|
@@ -9,7 +9,7 @@
|
|
9
9
|
# └── carparts-seg ← downloads here (132 MB)
|
10
10
|
|
11
11
|
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
12
|
-
path:
|
12
|
+
path: carparts-seg # dataset root dir
|
13
13
|
train: train/images # train images (relative to 'path') 3516 images
|
14
14
|
val: valid/images # val images (relative to 'path') 276 images
|
15
15
|
test: test/images # test images (relative to 'path') 401 images
|
@@ -9,7 +9,7 @@
|
|
9
9
|
# └── coco-pose ← downloads here (20.1 GB)
|
10
10
|
|
11
11
|
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
12
|
-
path:
|
12
|
+
path: coco-pose # dataset root dir
|
13
13
|
train: train2017.txt # train images (relative to 'path') 56599 images
|
14
14
|
val: val2017.txt # val images (relative to 'path') 2346 images
|
15
15
|
test: test-dev2017.txt # 20288 of 40670 images, submit to https://codalab.lisn.upsaclay.fr/competitions/7403
|
@@ -9,7 +9,7 @@
|
|
9
9
|
# └── coco ← downloads here (20.1 GB)
|
10
10
|
|
11
11
|
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
12
|
-
path:
|
12
|
+
path: coco # dataset root dir
|
13
13
|
train: train2017.txt # train images (relative to 'path') 118287 images
|
14
14
|
val: val2017.txt # val images (relative to 'path') 5000 images
|
15
15
|
test: test-dev2017.txt # 20288 of 40670 images, submit to https://competitions.codalab.org/competitions/20794
|
@@ -9,7 +9,7 @@
|
|
9
9
|
# └── coco128-seg ← downloads here (7 MB)
|
10
10
|
|
11
11
|
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
12
|
-
path:
|
12
|
+
path: coco128-seg # dataset root dir
|
13
13
|
train: images/train2017 # train images (relative to 'path') 128 images
|
14
14
|
val: images/train2017 # val images (relative to 'path') 128 images
|
15
15
|
test: # test images (optional)
|
@@ -9,7 +9,7 @@
|
|
9
9
|
# └── coco128 ← downloads here (7 MB)
|
10
10
|
|
11
11
|
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
12
|
-
path:
|
12
|
+
path: coco128 # dataset root dir
|
13
13
|
train: images/train2017 # train images (relative to 'path') 128 images
|
14
14
|
val: images/train2017 # val images (relative to 'path') 128 images
|
15
15
|
test: # test images (optional)
|
@@ -9,7 +9,7 @@
|
|
9
9
|
# └── coco8-grayscale ← downloads here (1 MB)
|
10
10
|
|
11
11
|
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
12
|
-
path:
|
12
|
+
path: coco8-grayscale # dataset root dir
|
13
13
|
train: images/train # train images (relative to 'path') 4 images
|
14
14
|
val: images/val # val images (relative to 'path') 4 images
|
15
15
|
test: # test images (optional)
|
@@ -9,7 +9,7 @@
|
|
9
9
|
# └── coco8-multispectral ← downloads here (20.2 MB)
|
10
10
|
|
11
11
|
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
12
|
-
path:
|
12
|
+
path: coco8-multispectral # dataset root dir
|
13
13
|
train: images/train # train images (relative to 'path') 4 images
|
14
14
|
val: images/val # val images (relative to 'path') 4 images
|
15
15
|
test: # test images (optional)
|
@@ -9,7 +9,7 @@
|
|
9
9
|
# └── coco8-pose ← downloads here (1 MB)
|
10
10
|
|
11
11
|
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
12
|
-
path:
|
12
|
+
path: coco8-pose # dataset root dir
|
13
13
|
train: images/train # train images (relative to 'path') 4 images
|
14
14
|
val: images/val # val images (relative to 'path') 4 images
|
15
15
|
test: # test images (optional)
|
@@ -9,7 +9,7 @@
|
|
9
9
|
# └── coco8-seg ← downloads here (1 MB)
|
10
10
|
|
11
11
|
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
12
|
-
path:
|
12
|
+
path: coco8-seg # dataset root dir
|
13
13
|
train: images/train # train images (relative to 'path') 4 images
|
14
14
|
val: images/val # val images (relative to 'path') 4 images
|
15
15
|
test: # test images (optional)
|
@@ -9,7 +9,7 @@
|
|
9
9
|
# └── coco8 ← downloads here (1 MB)
|
10
10
|
|
11
11
|
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
12
|
-
path:
|
12
|
+
path: coco8 # dataset root dir
|
13
13
|
train: images/train # train images (relative to 'path') 4 images
|
14
14
|
val: images/val # val images (relative to 'path') 4 images
|
15
15
|
test: # test images (optional)
|
@@ -9,7 +9,7 @@
|
|
9
9
|
# └── crack-seg ← downloads here (91.2 MB)
|
10
10
|
|
11
11
|
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
12
|
-
path:
|
12
|
+
path: crack-seg # dataset root dir
|
13
13
|
train: train/images # train images (relative to 'path') 3717 images
|
14
14
|
val: valid/images # val images (relative to 'path') 112 images
|
15
15
|
test: test/images # test images (relative to 'path') 200 images
|
@@ -9,7 +9,7 @@
|
|
9
9
|
# └── dog-pose ← downloads here (337 MB)
|
10
10
|
|
11
11
|
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
12
|
-
path:
|
12
|
+
path: dog-pose # dataset root dir
|
13
13
|
train: train # train images (relative to 'path') 6773 images
|
14
14
|
val: val # val images (relative to 'path') 1703 images
|
15
15
|
|
@@ -9,7 +9,7 @@
|
|
9
9
|
# └── dota8-multispectral ← downloads here (37.3MB)
|
10
10
|
|
11
11
|
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
12
|
-
path:
|
12
|
+
path: dota8-multispectral # dataset root dir
|
13
13
|
train: images/train # train images (relative to 'path') 4 images
|
14
14
|
val: images/val # val images (relative to 'path') 4 images
|
15
15
|
|
@@ -9,7 +9,7 @@
|
|
9
9
|
# └── dota8 ← downloads here (1MB)
|
10
10
|
|
11
11
|
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
12
|
-
path:
|
12
|
+
path: dota8 # dataset root dir
|
13
13
|
train: images/train # train images (relative to 'path') 4 images
|
14
14
|
val: images/val # val images (relative to 'path') 4 images
|
15
15
|
|
@@ -9,7 +9,7 @@
|
|
9
9
|
# └── hand-keypoints ← downloads here (369 MB)
|
10
10
|
|
11
11
|
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
12
|
-
path:
|
12
|
+
path: hand-keypoints # dataset root dir
|
13
13
|
train: train # train images (relative to 'path') 18776 images
|
14
14
|
val: val # val images (relative to 'path') 7992 images
|
15
15
|
|
@@ -9,7 +9,7 @@
|
|
9
9
|
# └── lvis ← downloads here (20.1 GB)
|
10
10
|
|
11
11
|
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
12
|
-
path:
|
12
|
+
path: lvis # dataset root dir
|
13
13
|
train: train.txt # train images (relative to 'path') 100170 images
|
14
14
|
val: val.txt # val images (relative to 'path') 19809 images
|
15
15
|
minival: minival.txt # minival images (relative to 'path') 5000 images
|
@@ -9,7 +9,7 @@
|
|
9
9
|
# └── medical-pills ← downloads here (8.19 MB)
|
10
10
|
|
11
11
|
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
12
|
-
path:
|
12
|
+
path: medical-pills # dataset root dir
|
13
13
|
train: train/images # train images (relative to 'path') 92 images
|
14
14
|
val: valid/images # val images (relative to 'path') 23 images
|
15
15
|
test: # test images (relative to 'path')
|
@@ -9,7 +9,7 @@
|
|
9
9
|
# └── open-images-v7 ← downloads here (561 GB)
|
10
10
|
|
11
11
|
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
12
|
-
path:
|
12
|
+
path: open-images-v7 # dataset root dir
|
13
13
|
train: images/train # train images (relative to 'path') 1743042 images
|
14
14
|
val: images/val # val images (relative to 'path') 41620 images
|
15
15
|
test: # test images (optional)
|
@@ -9,7 +9,7 @@
|
|
9
9
|
# └── package-seg ← downloads here (102 MB)
|
10
10
|
|
11
11
|
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
12
|
-
path:
|
12
|
+
path: package-seg # dataset root dir
|
13
13
|
train: train/images # train images (relative to 'path') 1920 images
|
14
14
|
val: valid/images # val images (relative to 'path') 89 images
|
15
15
|
test: test/images # test images (relative to 'path') 188 images
|
@@ -9,7 +9,7 @@
|
|
9
9
|
# └── signature ← downloads here (11.2 MB)
|
10
10
|
|
11
11
|
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
12
|
-
path:
|
12
|
+
path: signature # dataset root dir
|
13
13
|
train: train/images # train images (relative to 'path') 143 images
|
14
14
|
val: valid/images # val images (relative to 'path') 35 images
|
15
15
|
|