dgenerate-ultralytics-headless 8.3.159__py3-none-any.whl → 8.3.161__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (62) hide show
  1. {dgenerate_ultralytics_headless-8.3.159.dist-info → dgenerate_ultralytics_headless-8.3.161.dist-info}/METADATA +1 -1
  2. {dgenerate_ultralytics_headless-8.3.159.dist-info → dgenerate_ultralytics_headless-8.3.161.dist-info}/RECORD +62 -62
  3. tests/test_python.py +2 -1
  4. ultralytics/__init__.py +1 -1
  5. ultralytics/cfg/__init__.py +0 -2
  6. ultralytics/cfg/datasets/Argoverse.yaml +1 -1
  7. ultralytics/cfg/datasets/DOTAv1.5.yaml +1 -1
  8. ultralytics/cfg/datasets/DOTAv1.yaml +1 -1
  9. ultralytics/cfg/datasets/GlobalWheat2020.yaml +1 -1
  10. ultralytics/cfg/datasets/HomeObjects-3K.yaml +1 -1
  11. ultralytics/cfg/datasets/ImageNet.yaml +1 -1
  12. ultralytics/cfg/datasets/Objects365.yaml +1 -1
  13. ultralytics/cfg/datasets/SKU-110K.yaml +1 -1
  14. ultralytics/cfg/datasets/VOC.yaml +1 -1
  15. ultralytics/cfg/datasets/VisDrone.yaml +6 -3
  16. ultralytics/cfg/datasets/african-wildlife.yaml +1 -1
  17. ultralytics/cfg/datasets/brain-tumor.yaml +1 -1
  18. ultralytics/cfg/datasets/carparts-seg.yaml +1 -1
  19. ultralytics/cfg/datasets/coco-pose.yaml +1 -1
  20. ultralytics/cfg/datasets/coco.yaml +1 -1
  21. ultralytics/cfg/datasets/coco128-seg.yaml +1 -1
  22. ultralytics/cfg/datasets/coco128.yaml +1 -1
  23. ultralytics/cfg/datasets/coco8-grayscale.yaml +1 -1
  24. ultralytics/cfg/datasets/coco8-multispectral.yaml +1 -1
  25. ultralytics/cfg/datasets/coco8-pose.yaml +1 -1
  26. ultralytics/cfg/datasets/coco8-seg.yaml +1 -1
  27. ultralytics/cfg/datasets/coco8.yaml +1 -1
  28. ultralytics/cfg/datasets/crack-seg.yaml +1 -1
  29. ultralytics/cfg/datasets/dog-pose.yaml +1 -1
  30. ultralytics/cfg/datasets/dota8-multispectral.yaml +1 -1
  31. ultralytics/cfg/datasets/dota8.yaml +1 -1
  32. ultralytics/cfg/datasets/hand-keypoints.yaml +1 -1
  33. ultralytics/cfg/datasets/lvis.yaml +1 -1
  34. ultralytics/cfg/datasets/medical-pills.yaml +1 -1
  35. ultralytics/cfg/datasets/open-images-v7.yaml +1 -1
  36. ultralytics/cfg/datasets/package-seg.yaml +1 -1
  37. ultralytics/cfg/datasets/signature.yaml +1 -1
  38. ultralytics/cfg/datasets/tiger-pose.yaml +1 -1
  39. ultralytics/cfg/datasets/xView.yaml +1 -1
  40. ultralytics/data/augment.py +8 -8
  41. ultralytics/data/converter.py +3 -5
  42. ultralytics/data/dataset.py +1 -1
  43. ultralytics/data/split.py +1 -1
  44. ultralytics/engine/exporter.py +11 -2
  45. ultralytics/engine/model.py +2 -0
  46. ultralytics/engine/results.py +1 -6
  47. ultralytics/models/yolo/model.py +25 -24
  48. ultralytics/models/yolo/world/train.py +1 -1
  49. ultralytics/models/yolo/world/train_world.py +6 -6
  50. ultralytics/models/yolo/yoloe/train.py +1 -1
  51. ultralytics/nn/autobackend.py +7 -1
  52. ultralytics/solutions/heatmap.py +1 -1
  53. ultralytics/solutions/object_counter.py +9 -9
  54. ultralytics/solutions/similarity_search.py +11 -12
  55. ultralytics/solutions/solutions.py +55 -56
  56. ultralytics/utils/__init__.py +1 -4
  57. ultralytics/utils/instance.py +2 -0
  58. ultralytics/utils/metrics.py +24 -36
  59. {dgenerate_ultralytics_headless-8.3.159.dist-info → dgenerate_ultralytics_headless-8.3.161.dist-info}/WHEEL +0 -0
  60. {dgenerate_ultralytics_headless-8.3.159.dist-info → dgenerate_ultralytics_headless-8.3.161.dist-info}/entry_points.txt +0 -0
  61. {dgenerate_ultralytics_headless-8.3.159.dist-info → dgenerate_ultralytics_headless-8.3.161.dist-info}/licenses/LICENSE +0 -0
  62. {dgenerate_ultralytics_headless-8.3.159.dist-info → dgenerate_ultralytics_headless-8.3.161.dist-info}/top_level.txt +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: dgenerate-ultralytics-headless
3
- Version: 8.3.159
3
+ Version: 8.3.161
4
4
  Summary: Automatically built Ultralytics package with python-opencv-headless dependency instead of python-opencv
5
5
  Author-email: Glenn Jocher <glenn.jocher@ultralytics.com>, Jing Qiu <jing.qiu@ultralytics.com>
6
6
  Maintainer-email: Ultralytics <hello@ultralytics.com>
@@ -1,4 +1,4 @@
1
- dgenerate_ultralytics_headless-8.3.159.dist-info/licenses/LICENSE,sha256=DZak_2itbUtvHzD3E7GNUYSRK6jdOJ-GqncQ2weavLA,34523
1
+ dgenerate_ultralytics_headless-8.3.161.dist-info/licenses/LICENSE,sha256=DZak_2itbUtvHzD3E7GNUYSRK6jdOJ-GqncQ2weavLA,34523
2
2
  tests/__init__.py,sha256=b4KP5_q-2IO8Br8YHOSLYnn7IwZS81l_vfEF2YPa2lM,894
3
3
  tests/conftest.py,sha256=JjgKSs36ZaGmmtqGmAapmFSoFF1YwyV3IZsOgqt2IVM,2593
4
4
  tests/test_cli.py,sha256=Kpfxq_RlbKK1Z8xNScDUbre6GB7neZhXZAYGI1tiDS8,5660
@@ -6,47 +6,47 @@ tests/test_cuda.py,sha256=-nQsfF3lGfqLm6cIeu_BCiXqLj7HzpL7R1GzPEc6z2I,8128
6
6
  tests/test_engine.py,sha256=Jpt2KVrltrEgh2-3Ykouz-2Z_2fza0eymL5ectRXadM,4922
7
7
  tests/test_exports.py,sha256=HmMKOTCia9ZDC0VYc_EPmvBTM5LM5eeI1NF_pKjLpd8,9677
8
8
  tests/test_integrations.py,sha256=kl_AKmE_Qs1GB0_91iVwbzNxofm_hFTt0zzU6JF-pg4,6323
9
- tests/test_python.py,sha256=nOoaPDg-0j7ZPRz9-uGFny3uocxjUM1ze5wA3BpGxKQ,27865
9
+ tests/test_python.py,sha256=b8vSSJx2iq59sSaIbnPe6sQ5CRyANVoy0ZaR6iQuqCA,27907
10
10
  tests/test_solutions.py,sha256=tuf6n_fsI8KvSdJrnc-cqP2qYdiYqCWuVrx0z9dOz3Q,13213
11
- ultralytics/__init__.py,sha256=sbeS4zCdUAcxO1GIm2GxM1Pk92RQ2Kom9Fk52c9syUs,730
11
+ ultralytics/__init__.py,sha256=W7njVgOtDaS2k2-WZMYQVMYB5uby9LMlSjgo6Lq1Ey0,730
12
12
  ultralytics/assets/bus.jpg,sha256=wCAZxJecGR63Od3ZRERe9Aja1Weayrb9Ug751DS_vGM,137419
13
13
  ultralytics/assets/zidane.jpg,sha256=Ftc4aeMmen1O0A3o6GCDO9FlfBslLpTAw0gnetx7bts,50427
14
- ultralytics/cfg/__init__.py,sha256=ds63URbbeRj5UxkCSyl62OrNw6HQy7xeit5-0wGDEKg,39699
14
+ ultralytics/cfg/__init__.py,sha256=VIpPHImhjb0XLJquGZrG_LBGZchtOtBSXR7HYTYV2GU,39602
15
15
  ultralytics/cfg/default.yaml,sha256=oFG6llJO-Py5H-cR9qs-7FieJamroDLwpbrkhmfROOM,8307
16
- ultralytics/cfg/datasets/Argoverse.yaml,sha256=_xlEDIJ9XkUo0v_iNL7FW079BoSeZtKSuLteKTtGbA8,3275
17
- ultralytics/cfg/datasets/DOTAv1.5.yaml,sha256=SHND_CFkojxw5iQD5Mcgju2kCZIl0gW2ajuzv1cqoL0,1224
18
- ultralytics/cfg/datasets/DOTAv1.yaml,sha256=j_DvXVQzZ4dQmf8I7oPX4v9xO3WZXztxV4Xo9VhUTsM,1194
19
- ultralytics/cfg/datasets/GlobalWheat2020.yaml,sha256=TgPAhAnQAwviZcWRkuVTEww3u9VJ86rBlJvjj58ENu4,2157
20
- ultralytics/cfg/datasets/HomeObjects-3K.yaml,sha256=-7HrCmBkKVzfp5c7LCHg-nBZYMZ4j58QVHXz_4V6daQ,990
21
- ultralytics/cfg/datasets/ImageNet.yaml,sha256=6F1GXJg80iS8PJTcbAVbZX7Eb25NdJAAZ4UIS8mmrhk,42543
22
- ultralytics/cfg/datasets/Objects365.yaml,sha256=tAIb6zXQrGo48I9V5reoWeWIJT6ywJmvhg0ZCt0JX9s,9367
23
- ultralytics/cfg/datasets/SKU-110K.yaml,sha256=EmYFUdlxmF4SnijaifO3dHaP_uf95Vgz4FdckHeEVEM,2558
24
- ultralytics/cfg/datasets/VOC.yaml,sha256=xQOx67XQaYCgUjHxp4HjY94zx7ZOphDGlwgzxYfaed0,3800
25
- ultralytics/cfg/datasets/VisDrone.yaml,sha256=jONp3ws_RL1Iccnp81ho-zVhLUE63QfcvdUJ395h-GY,3263
26
- ultralytics/cfg/datasets/african-wildlife.yaml,sha256=pENEc4cO8A-uAk1dLn1Kul9ofDGcUmeGuQARs13Plhg,930
27
- ultralytics/cfg/datasets/brain-tumor.yaml,sha256=wDRZVNZ9Z_p2KRMaFpqrFY00riQ-GGfGYk7N4bDkGFw,856
28
- ultralytics/cfg/datasets/carparts-seg.yaml,sha256=5fJKD-bLoio9-LUC09bPrt5qEYbCIQ7i5TAZ1VADeL8,1268
29
- ultralytics/cfg/datasets/coco-pose.yaml,sha256=NHdgSsGkHS0-X636p2-hExTJGdoWUSP1TPshH2nVRPk,1636
30
- ultralytics/cfg/datasets/coco.yaml,sha256=chdzyIHLfekjOcng-G2_bpC57VUcHPjVvW8ENJfiQao,2619
31
- ultralytics/cfg/datasets/coco128-seg.yaml,sha256=ifDPbVuuN7N2_3e8e_YBdTVcANYIOKORQMgXlsPS6D4,1995
32
- ultralytics/cfg/datasets/coco128.yaml,sha256=udymG6qzF9Bvh_JYC7BOSXOUeA1Ia8ZmR2EzNGsY6YY,1978
33
- ultralytics/cfg/datasets/coco8-grayscale.yaml,sha256=U3jjPUoFahLch4N11qjG1myhE5wsy2tFeC23I9w_nr0,1974
34
- ultralytics/cfg/datasets/coco8-multispectral.yaml,sha256=h5Kbx9y3wjWUw6p8jeQVUaIs07VoQS7ZY0vMau5WGAg,2076
35
- ultralytics/cfg/datasets/coco8-pose.yaml,sha256=yfw2_SkCZO3ttPLiI0mfjxv5gr4-CA3i0elYP5PY71k,1022
36
- ultralytics/cfg/datasets/coco8-seg.yaml,sha256=wpfFI-GfL5asbLtFyaHLE6593jdka7waE07Am3_eg8w,1926
37
- ultralytics/cfg/datasets/coco8.yaml,sha256=qJX2TSM7nMV-PpCMXCX4702yp3a-ZF1ubLatlGN5XOE,1901
38
- ultralytics/cfg/datasets/crack-seg.yaml,sha256=QEnxOouOKQ3TM6Cl8pBnX5QLPWdChZEBA28jaLkzxA4,852
39
- ultralytics/cfg/datasets/dog-pose.yaml,sha256=Cr-J7dPhHmNfW9TKH48L22WPYmJFtWH-lbOAxLHnjKU,907
40
- ultralytics/cfg/datasets/dota8-multispectral.yaml,sha256=F_GBGsFyuJwaWItCOn27CBDgCdsVyI9e0IcXKbZc7t0,1229
41
- ultralytics/cfg/datasets/dota8.yaml,sha256=W43bp_6yUUVjs6vpogNrGI9vU7rLbEsSx6vyfIkDyj8,1073
42
- ultralytics/cfg/datasets/hand-keypoints.yaml,sha256=5vue4kvPrAdd6ZyB90rZgtGUUHvSi3s_ht7jBBqX7a4,989
43
- ultralytics/cfg/datasets/lvis.yaml,sha256=jD-z6cny0l_Cl7xN6RqiFAc7a7odcVwr3E8_jmH-wzA,29716
44
- ultralytics/cfg/datasets/medical-pills.yaml,sha256=3ho9VW8p5Hm1TuicguiL-akfC9dCZO5nwthO4sUR3k0,848
45
- ultralytics/cfg/datasets/open-images-v7.yaml,sha256=uhsujByejzeysTB10QnSLfDNb9U_HqoES45QJrqMC7g,12132
46
- ultralytics/cfg/datasets/package-seg.yaml,sha256=uechtCYfX8OrJrO5zV1-uGwbr69lUSuon1oXguEkLGg,864
47
- ultralytics/cfg/datasets/signature.yaml,sha256=eABYny9n4w3RleR3RQmb505DiBll8R5cvcjWj8wkuf0,789
48
- ultralytics/cfg/datasets/tiger-pose.yaml,sha256=gCQc1AX04Xfhnms4czm7R_XnT2XFL2u-t3M8Yya20ds,925
49
- ultralytics/cfg/datasets/xView.yaml,sha256=3PRpBl6q53SUZ09u5efuhaKyeob45EUcxF4nQQqKnUQ,5353
16
+ ultralytics/cfg/datasets/Argoverse.yaml,sha256=0mm20vJBZxxLQtc_Z3Op6zUjmJkINLi70hO6aw67Lwc,3263
17
+ ultralytics/cfg/datasets/DOTAv1.5.yaml,sha256=aT3VKgkVPTaaRRjnpHEhIbgANU-yt7VsFjAf5562wqA,1212
18
+ ultralytics/cfg/datasets/DOTAv1.yaml,sha256=Ydf8_hRfZkaFMEkDKw3as0msVV4KPD1JuFjVMYDqIMQ,1182
19
+ ultralytics/cfg/datasets/GlobalWheat2020.yaml,sha256=JP6zk5GR2fufGGFmOMr57EnRj7kKh9-fIuInkdmXMlU,2145
20
+ ultralytics/cfg/datasets/HomeObjects-3K.yaml,sha256=Cgokv3w-g6z1KnQ5ALuS9qTTwBzgN7vWroQuIajJIZo,978
21
+ ultralytics/cfg/datasets/ImageNet.yaml,sha256=1zci8FWwbkFwNHlAkfDUnWyoOKrFvkEXz1VNpVAizBg,42531
22
+ ultralytics/cfg/datasets/Objects365.yaml,sha256=EfhNwsYMqDCXc3kZfokvk4LYq1QZDKl-ZpfoecP7aOE,9355
23
+ ultralytics/cfg/datasets/SKU-110K.yaml,sha256=OBUCCRFr6UXrp6LkXZSXA92dSYCc6MrDP_0rlmmLrvI,2546
24
+ ultralytics/cfg/datasets/VOC.yaml,sha256=zVkCLoj6EbZm8gf8cOg8QbEIpsN6W6oreKmW2czTWeE,3788
25
+ ultralytics/cfg/datasets/VisDrone.yaml,sha256=iIAxa9F3CxG18d3SFrwqM8_8HFzObxEM3yyhWaQ8saQ,3282
26
+ ultralytics/cfg/datasets/african-wildlife.yaml,sha256=SLSyIAOg9Kbx0lN7VApPDLGjAL2RKdYvzG1ErAZtwhc,918
27
+ ultralytics/cfg/datasets/brain-tumor.yaml,sha256=SWJOiFGvJfxe4oGxG35Pw5NXsBxMdYWEw5UlkRSr0kg,844
28
+ ultralytics/cfg/datasets/carparts-seg.yaml,sha256=liuHTeQOaztNMGr87Qtp0P8-h3VATSAB9FMfBOQ-rTo,1256
29
+ ultralytics/cfg/datasets/coco-pose.yaml,sha256=j_ynggAOE1aNpjG42QHMDTrYiPic8S0cnbNHXqmH7vY,1624
30
+ ultralytics/cfg/datasets/coco.yaml,sha256=E5OlAwkJkzhRI2BFIPnUE0VnzdQNDFhv2czDVS582BQ,2607
31
+ ultralytics/cfg/datasets/coco128-seg.yaml,sha256=04Pfr7RPgJM2hF_LpYYD2zIPqCyOJ2sWW23HO2qXoEI,1983
32
+ ultralytics/cfg/datasets/coco128.yaml,sha256=hNHjxEq57lRpcNYuN3dX7ockjhgQu7SdiXepcGApjdU,1966
33
+ ultralytics/cfg/datasets/coco8-grayscale.yaml,sha256=YfAJRbM2wWd37p1Jl7rOOoxiPH3rWRo5mddjUvJcFxg,1962
34
+ ultralytics/cfg/datasets/coco8-multispectral.yaml,sha256=Kaca3kaq8-iwtBOdmvJaETI-JzDNyjKbk7SSUWGUnO4,2064
35
+ ultralytics/cfg/datasets/coco8-pose.yaml,sha256=4S_0RSNNK_ccz1Qxp7wdO0-RjxwwhldTRpGahQnzIw8,1010
36
+ ultralytics/cfg/datasets/coco8-seg.yaml,sha256=8V59_ASLtTg3jsXtV03opU4TRwyFy2fsNUUSR791cB0,1914
37
+ ultralytics/cfg/datasets/coco8.yaml,sha256=aPefOD63vx1EJ4BhdeumSrYVoJIh2uMyIb6BTrEFk68,1889
38
+ ultralytics/cfg/datasets/crack-seg.yaml,sha256=8zkQD4eAeWjkxFQQGSTNvxla1b02Vuo8AlmLY7PZvjE,840
39
+ ultralytics/cfg/datasets/dog-pose.yaml,sha256=CjvPu8y_KBZFcXn8JOaeDzi1NkVYgd3M4yVazOSYUT0,895
40
+ ultralytics/cfg/datasets/dota8-multispectral.yaml,sha256=AD9LGIV0FdnHLJCsczU06SIOIHYOygr5owb69bi-Nk0,1217
41
+ ultralytics/cfg/datasets/dota8.yaml,sha256=cVmqA8SYVIY4Rp5y0oIPfw1Si2AZMPMDrFaV8ZRUnGI,1061
42
+ ultralytics/cfg/datasets/hand-keypoints.yaml,sha256=w_G5BmUKuWFb0yCbTOeWjGhz8ZAqAYeN7ECZpO37h3g,977
43
+ ultralytics/cfg/datasets/lvis.yaml,sha256=69E7zRFQxqdx6T7GhrLVR8XoZtfx4pwR7I3kobxmz2M,29704
44
+ ultralytics/cfg/datasets/medical-pills.yaml,sha256=1CtNFVtc2Lmo1Wjssh_hzAevo_mvkMuQGoLDGD7i2S0,836
45
+ ultralytics/cfg/datasets/open-images-v7.yaml,sha256=GblFutr27lY3W2h9GyK8zUqq5svtF1EeEBoP5kbnd5o,12120
46
+ ultralytics/cfg/datasets/package-seg.yaml,sha256=gJZmxXNzmvPU4K2cmkPR44Lp6aGW_9J4EFcYqgrS4T4,852
47
+ ultralytics/cfg/datasets/signature.yaml,sha256=uqPSj6XCILKOmIn01GXKLXZqoouZvKx7tOusfF4hL5c,777
48
+ ultralytics/cfg/datasets/tiger-pose.yaml,sha256=0f_Q45eOexla9-nKG8SDziK2ACZcND8wRZpXCKO3iO8,913
49
+ ultralytics/cfg/datasets/xView.yaml,sha256=46Z-TaZAXHXM85PoSWeI9mhpu__RB5TOtPAfo0cbAFM,5341
50
50
  ultralytics/cfg/models/11/yolo11-cls-resnet18.yaml,sha256=1Ycp9qMrwpb8rq7cqht3Q-1gMN0R87U35nm2j_isdro,524
51
51
  ultralytics/cfg/models/11/yolo11-cls.yaml,sha256=17l5GdN-Vst4LvafsK2-q6Li9VX9UlUcT5ClCtikweE,1412
52
52
  ultralytics/cfg/models/11/yolo11-obb.yaml,sha256=3M_c06B-y8da4tunHVxQQ-iFUNLKUfofqCZTpnH5FEU,2034
@@ -106,13 +106,13 @@ ultralytics/cfg/trackers/botsort.yaml,sha256=TpRaK5kH_-QbjCQ7ekM4s_7j8I8ti3q8Hs7
106
106
  ultralytics/cfg/trackers/bytetrack.yaml,sha256=6u-tiZlk16EqEwkNXaMrza6PAQmWj_ypgv26LGCtPDg,886
107
107
  ultralytics/data/__init__.py,sha256=nAXaL1puCc7z_NjzQNlJnhbVhT9Fla2u7Dsqo7q1dAc,644
108
108
  ultralytics/data/annotator.py,sha256=uAgd7K-yudxiwdNqHz0ubfFg5JsfNlae4cgxdvCMyuY,3030
109
- ultralytics/data/augment.py,sha256=Zxqp6dWKALAbUYha-R_MVrcysdlBj9glm4Nsth_JLrg,129030
109
+ ultralytics/data/augment.py,sha256=jyEXZ1TqJFIdz_oqecsDa4gKDCMC71RGiMJh3kQV9G0,129378
110
110
  ultralytics/data/base.py,sha256=mRcuehK1thNuuzQGL6D1AaZkod71oHRdYTod_zdQZQg,19688
111
111
  ultralytics/data/build.py,sha256=13gPxCJIZRjgcNh7zbzanCgtyK6_oZM0ho9KQhHcM6c,11153
112
- ultralytics/data/converter.py,sha256=oKW8ODtvFOKBx9Un8n87xUUm3b5GStU4ViIBH5UDylM,27200
113
- ultralytics/data/dataset.py,sha256=eXADBdtj9gj0s2JEa9MJz7E3XmkHk_PmvHHXNQ1UJQM,36463
112
+ ultralytics/data/converter.py,sha256=e4FgGV3DsxrdNVe8-nS8MclSYtlDrbePxyDeZ3rhqFU,27134
113
+ ultralytics/data/dataset.py,sha256=0VjzciGleGGF_XN5fEnS3c5UT0r533HMmQ9DfEQ_lA4,36463
114
114
  ultralytics/data/loaders.py,sha256=kTGO1P-HntpQk078i1ASyXYckDx9Z7Pe7o1YbePcjC4,31657
115
- ultralytics/data/split.py,sha256=qOHZwsHi3I1IKLgLfcz7jH3CTibeJUDyjo7HwNtB_kk,5121
115
+ ultralytics/data/split.py,sha256=F6O73bAbESj70FQZzqkydXQeXgPXGHGiC06b5MkLHjQ,5109
116
116
  ultralytics/data/split_dota.py,sha256=RJHxwOX2Z9CfSX_h7L7mO-aLQ4Ap_ZpZanQdno10oSA,12893
117
117
  ultralytics/data/utils.py,sha256=fJqVJkjaub-xT0cB1o40Hl1WIH1ljKINT0SJaJyZse4,36637
118
118
  ultralytics/data/scripts/download_weights.sh,sha256=0y8XtZxOru7dVThXDFUXLHBuICgOIqZNUwpyL4Rh6lg,595
@@ -120,10 +120,10 @@ ultralytics/data/scripts/get_coco.sh,sha256=UuJpJeo3qQpTHVINeOpmP0NYmg8PhEFE3A8J
120
120
  ultralytics/data/scripts/get_coco128.sh,sha256=qmRQl_hOKrsdHrTrnyQuFIH01oDz3lfaz138OgGfLt8,650
121
121
  ultralytics/data/scripts/get_imagenet.sh,sha256=hr42H16bM47iT27rgS7MpEo-GeOZAYUQXgr0B2cwn48,1705
122
122
  ultralytics/engine/__init__.py,sha256=lm6MckFYCPTbqIoX7w0s_daxdjNeBeKW6DXppv1-QUM,70
123
- ultralytics/engine/exporter.py,sha256=n9mRjOWdX-3T9SroICwdMaRRVi9h98coAfCzDYopyW4,73070
124
- ultralytics/engine/model.py,sha256=DwugtVxUbCGzpY2pStFMcEloim0ai6LrT6kTbwskSJ8,53302
123
+ ultralytics/engine/exporter.py,sha256=j9Yr03besifwA96jvGS-3HJv4iCnAkXQd89j1oW9pWM,73273
124
+ ultralytics/engine/model.py,sha256=FmLwiKuItVNgoyXhAvesUnD3UeHBzCVzGHDrqB8J4ms,53453
125
125
  ultralytics/engine/predictor.py,sha256=88zrgZP91ehwdeGl8BM_cQ_caeuwKIPDy3OzxcRBjTU,22474
126
- ultralytics/engine/results.py,sha256=Mb8pBTOrBtQh0PQtGVbhRZ_C1VyqYFumjLggiKCRIJs,72295
126
+ ultralytics/engine/results.py,sha256=rLQlttkgPudiV0u0d6Xy5hKKr1x3SJL1zrXA5W5vw7Y,71999
127
127
  ultralytics/engine/trainer.py,sha256=28FeqASvQRxCaK96SXDM-BfPJjqy5KNiWhf8v6GXTug,39785
128
128
  ultralytics/engine/tuner.py,sha256=4ue7JbMFQp7JcWhhwCAY-b-xZsjm5VKVlPFDUTyxt_8,12789
129
129
  ultralytics/engine/validator.py,sha256=qftJUomb4A-6rSThtST3TccEbc_zTmzovCBBCSpYm3k,16671
@@ -165,7 +165,7 @@ ultralytics/models/utils/__init__.py,sha256=lm6MckFYCPTbqIoX7w0s_daxdjNeBeKW6DXp
165
165
  ultralytics/models/utils/loss.py,sha256=E-61TfLPc04IdeL6IlFDityDoPju-ov0ouWV_cNY4Kg,21254
166
166
  ultralytics/models/utils/ops.py,sha256=Pr77n8XW25SUEx4X3bBvXcVIbRdJPoaXJuG0KWWawRQ,15253
167
167
  ultralytics/models/yolo/__init__.py,sha256=or0j5xvcM0usMlsFTYhNAOcQUri7reD0cD9JR5b7zDk,307
168
- ultralytics/models/yolo/model.py,sha256=C0wInQC6rFuFOGpdAen1s2e5LIFDmqevto8uPbpmB8c,18449
168
+ ultralytics/models/yolo/model.py,sha256=xK-Te6D0PGY3vpWQg-HT3TwP0bzPs0XfUjd_L_tVXRs,18752
169
169
  ultralytics/models/yolo/classify/__init__.py,sha256=9--HVaNOfI1K7rn_rRqclL8FUAnpfeBrRqEQIaQw2xM,383
170
170
  ultralytics/models/yolo/classify/predict.py,sha256=FqAC2YXe25bRwedMZhF3Lw0waoY-a60xMKELhxApP9I,4149
171
171
  ultralytics/models/yolo/classify/train.py,sha256=V-hevc6X7xemnpyru84OfTRA77eNnkVSMEz16_OUvo4,10244
@@ -187,15 +187,15 @@ ultralytics/models/yolo/segment/predict.py,sha256=qlprQCZn4_bpjpI08U0MU9Q9_1gpHr
187
187
  ultralytics/models/yolo/segment/train.py,sha256=XrPkXUiNu1Jvhn8iDew_RaLLjZA3un65rK-QH9mtNIw,3802
188
188
  ultralytics/models/yolo/segment/val.py,sha256=AnvY0O7HhD5xZ2BE2artLTAVW4SNmHbVopBJsYRcmk8,12328
189
189
  ultralytics/models/yolo/world/__init__.py,sha256=nlh8I6t8hMGz_vZg8QSlsUW1R-2eKvn9CGUoPPQEGhA,131
190
- ultralytics/models/yolo/world/train.py,sha256=94_hgCluzsv39JkBVDmR2gjuycYjeJC8wVrCfrjpENk,7806
191
- ultralytics/models/yolo/world/train_world.py,sha256=YJm37ZTgr0CoE_sYrjxN45w9mICr2RMWfWZrriiHqbM,9022
190
+ ultralytics/models/yolo/world/train.py,sha256=karlbEdkfAh08ZzYj9nXOiqLsRq5grsbV-XDv3yl6GQ,7819
191
+ ultralytics/models/yolo/world/train_world.py,sha256=WYcBzOrCEwqrjmgLnIa-33n5NOI-5MqCJYGHrixFcJk,8950
192
192
  ultralytics/models/yolo/yoloe/__init__.py,sha256=6SLytdJtwu37qewf7CobG7C7Wl1m-xtNdvCXEasfPDE,760
193
193
  ultralytics/models/yolo/yoloe/predict.py,sha256=TAcT6fiWbV-jOewu9hx_shGI10VLF_6oSPf7jfatBWo,7041
194
- ultralytics/models/yolo/yoloe/train.py,sha256=Dt6orqXcQTzyoAqMVvleP1FQbXChMvEj3QtxIctr3A0,14047
194
+ ultralytics/models/yolo/yoloe/train.py,sha256=H1Z5yzcYklyfIkT0xR35qq3f7CxmeG2jUhWhbVyE6RA,14060
195
195
  ultralytics/models/yolo/yoloe/train_seg.py,sha256=aCV7M8oQOvODFnU4piZdJh3tIrBJYAzZfRVRx1vRgxo,4956
196
196
  ultralytics/models/yolo/yoloe/val.py,sha256=yebPkxwKKt__cY05Zbh1YXg4_BKzzpcDc3Cv3FJ5SAA,9769
197
197
  ultralytics/nn/__init__.py,sha256=rjociYD9lo_K-d-1s6TbdWklPLjTcEHk7OIlRDJstIE,615
198
- ultralytics/nn/autobackend.py,sha256=yk1IXPChI1D7rupJdH2TMvUqFv6PVmBU3tgfZOquQ_8,41358
198
+ ultralytics/nn/autobackend.py,sha256=n-2ADzX3Y2MRE8nHFeVvFCJFJP9rCbkkNbcufPZ24dE,41532
199
199
  ultralytics/nn/tasks.py,sha256=aCXYmWan2LTznH3i_-2OwMagG3ZwnVL1gjKtY-3oShM,72456
200
200
  ultralytics/nn/text_model.py,sha256=cYwD-0el4VeToDBP4iPFOQGqyEQatJOBHrVyONL3K_s,15282
201
201
  ultralytics/nn/modules/__init__.py,sha256=2nY0X69Z5DD5SWt6v3CUTZa5gXSzC9TQr3VTVqhyGho,3158
@@ -210,17 +210,17 @@ ultralytics/solutions/ai_gym.py,sha256=wwfTqX7G3mZXneMwiibEfYbVYaJF_JUX3SQdsdQUv
210
210
  ultralytics/solutions/analytics.py,sha256=aHwKjSEW_3y47LrzugJbPB3VQGTDQCIb5goiPuxnmrc,12802
211
211
  ultralytics/solutions/config.py,sha256=CevL8lzeSbiSAAA514CTiduCg2_Wh04P0RaB_kmwJa8,5404
212
212
  ultralytics/solutions/distance_calculation.py,sha256=r05_ufxb2Mpw3EIX8X32PIWlh9rYMADypGhVIPoZYV4,5939
213
- ultralytics/solutions/heatmap.py,sha256=vEdzLSYCNIFC9CsBWYSnCLiM8xNuYLJ-1i7enjQgOQw,5516
213
+ ultralytics/solutions/heatmap.py,sha256=hBJR_Z3Lu9JcvCaEwnd-uN_WEiXK14FDRXedgaI8oqU,5515
214
214
  ultralytics/solutions/instance_segmentation.py,sha256=qsIQkvuR1Ur2bdEsCCJP2IEO1Hz2l0wfR2KUBo247xE,3795
215
215
  ultralytics/solutions/object_blurrer.py,sha256=wHbfrudh6li_JADc-dTHGGMI8GU-MvesoTvVlX6YuYc,3998
216
- ultralytics/solutions/object_counter.py,sha256=djg6XIgOuseoKCEY5PrLRf4Z1JjbTEBXrERRV8dOSlU,9442
216
+ ultralytics/solutions/object_counter.py,sha256=ccKuchrVkNE8AD4EvArtl6LCVf442jTOyc6_7tGua5o,9433
217
217
  ultralytics/solutions/object_cropper.py,sha256=mS3iT_CgqfqG9ldM_AM5ptq5bfYFyTycPQY5DxxMlSA,3525
218
218
  ultralytics/solutions/parking_management.py,sha256=IfPUn15aelxz6YZNo9WYkVEl5IOVSw8VD0OrpKtExPE,13613
219
219
  ultralytics/solutions/queue_management.py,sha256=u0VFzRqa0OxIWY7xXItsXEm073CzkQGFhhXG-6VK3SI,4393
220
220
  ultralytics/solutions/region_counter.py,sha256=j6f5VAaE1JWGdWOecZpWMFp6yF1GdCnHjftN6CRybjQ,5967
221
221
  ultralytics/solutions/security_alarm.py,sha256=U6FTbg3cthKLfWeLunsFhOJvB6GGmwYDDxZ3K0GCx-Q,6351
222
- ultralytics/solutions/similarity_search.py,sha256=ri8bf65tt6xyS6Xa-ikj2AgvfCsFOtaQk6IM_k7FhKg,9579
223
- ultralytics/solutions/solutions.py,sha256=N5t1DgZpuFBbDvLVZ7wRkafmgu8SS1VC9VNjuupglwQ,37532
222
+ ultralytics/solutions/similarity_search.py,sha256=H9MPf8F5AvVfmb9hnng0FrIOTbLU_I-CkVHGpC81CE0,9496
223
+ ultralytics/solutions/solutions.py,sha256=2FyT3v6SpNisHvbTs96Z3jhzyl3Y72yds8R6CpnVhp4,37318
224
224
  ultralytics/solutions/speed_estimation.py,sha256=chg_tBuKFw3EnFiv_obNDaUXLAo-FypxC7gsDeB_VUI,5878
225
225
  ultralytics/solutions/streamlit_inference.py,sha256=SqL-YxU3RCxCKscH2AYUTkmJknilV9jCCco6ufqsFk4,10501
226
226
  ultralytics/solutions/trackzone.py,sha256=kIS94rNfL3yVPAtSbnW8F-aLMxXowQtsfKNB-jLezz8,3941
@@ -235,7 +235,7 @@ ultralytics/trackers/utils/__init__.py,sha256=lm6MckFYCPTbqIoX7w0s_daxdjNeBeKW6D
235
235
  ultralytics/trackers/utils/gmc.py,sha256=9IvCf5MhBYY9ppVHykN02_oBWHmE98R8EaYFKaykdV0,14032
236
236
  ultralytics/trackers/utils/kalman_filter.py,sha256=PPmM0lwBMdT_hGojvfLoUsBUFMBBMNRAxKbMcQa3wJ0,21619
237
237
  ultralytics/trackers/utils/matching.py,sha256=uSYtywqi1lE_uNN1FwuBFPyISfDQXHMu8K5KH69nrRI,7160
238
- ultralytics/utils/__init__.py,sha256=GYsojWuYvvSCKhUtQhzv-HmLjfUJrqZXqvu8bw7HbeU,59523
238
+ ultralytics/utils/__init__.py,sha256=oJZ1o2L2R-EHepFbe_9bAzyiLi3Rd3Cv6gJmgO5jNfc,59437
239
239
  ultralytics/utils/autobatch.py,sha256=33m8YgggLIhltDqMXZ5OE-FGs2QiHrl2-LfgY1mI4cw,5119
240
240
  ultralytics/utils/autodevice.py,sha256=AvgXFt8c1Cg4icKh0Hbhhz8UmVQ2Wjyfdfkeb2C8zck,8855
241
241
  ultralytics/utils/benchmarks.py,sha256=GlsR6SvD3qlus2hVj7SqSNErsejBlIxO0Y7hMc_cWHw,31041
@@ -245,9 +245,9 @@ ultralytics/utils/downloads.py,sha256=YB6rJkcRGQfklUjZqi9dOkTiZaDSqbkGyZEFcZLQkg
245
245
  ultralytics/utils/errors.py,sha256=XT9Ru7ivoBgofK6PlnyigGoa7Fmf5nEhyHtnD-8TRXI,1584
246
246
  ultralytics/utils/export.py,sha256=0gG_GZNRqHcORJbjQq_1MXEHc3UEfzPAdpOl2X5VoDc,10008
247
247
  ultralytics/utils/files.py,sha256=ZCbLGleiF0f-PqYfaxMFAWop88w7U1hpreHXl8b2ko0,8238
248
- ultralytics/utils/instance.py,sha256=vhqaZRGT_4K9Q3oQH5KNNK4ISOzxlf1_JjauwhuFhu0,18408
248
+ ultralytics/utils/instance.py,sha256=s97d-GXSSCluu-My2DFLAubdk_hf44BuVQ6OCROBrMc,18550
249
249
  ultralytics/utils/loss.py,sha256=fbOWc3Iu0QOJiWbi-mXWA9-1otTYlehtmUsI7os7ydM,39799
250
- ultralytics/utils/metrics.py,sha256=1XaTT3n3tfLms6LOCiEzg_QGHQJzjZmfjFoAYsCCc24,62646
250
+ ultralytics/utils/metrics.py,sha256=llNqzrACnbWS0qWt5aCudQyBMN8LpVpMsr6Wq0HL4Zc,62167
251
251
  ultralytics/utils/ops.py,sha256=Jkh80ujyi0XDQwNqCUYyomH8NQ145AH9doMUS8Vt8GE,34545
252
252
  ultralytics/utils/patches.py,sha256=P2uQy7S4RzSHBfwJEXJsjyuRUluaaUusiVU84lV3moQ,6577
253
253
  ultralytics/utils/plotting.py,sha256=SCpG5DHZUPlFUsu72kNH3DYGpsjgkd3eIZ9-QTllY88,47171
@@ -266,8 +266,8 @@ ultralytics/utils/callbacks/neptune.py,sha256=j8pecmlcsM8FGzLKWoBw5xUsi5t8E5HuxY
266
266
  ultralytics/utils/callbacks/raytune.py,sha256=S6Bq16oQDQ8BQgnZzA0zJHGN_BBr8iAM_WtGoLiEcwg,1283
267
267
  ultralytics/utils/callbacks/tensorboard.py,sha256=MDPBW7aDes-66OE6YqKXXvqA_EocjzEMHWGM-8z9vUQ,5281
268
268
  ultralytics/utils/callbacks/wb.py,sha256=Tm_-aRr2CN32MJkY9tylpMBJkb007-MSRNSQ7rDJ5QU,7521
269
- dgenerate_ultralytics_headless-8.3.159.dist-info/METADATA,sha256=TuUw0G5ABLwDMNuiQ_NCh9Z4jOMqAKj7zEaH3G5Qx5o,38318
270
- dgenerate_ultralytics_headless-8.3.159.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
271
- dgenerate_ultralytics_headless-8.3.159.dist-info/entry_points.txt,sha256=YM_wiKyTe9yRrsEfqvYolNO5ngwfoL4-NwgKzc8_7sI,93
272
- dgenerate_ultralytics_headless-8.3.159.dist-info/top_level.txt,sha256=XP49TwiMw4QGsvTLSYiJhz1xF_k7ev5mQ8jJXaXi45Q,12
273
- dgenerate_ultralytics_headless-8.3.159.dist-info/RECORD,,
269
+ dgenerate_ultralytics_headless-8.3.161.dist-info/METADATA,sha256=h0X2W5lDRa2zoonPXEN6eMP4dFog9TvfMfSpZGeqafc,38318
270
+ dgenerate_ultralytics_headless-8.3.161.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
271
+ dgenerate_ultralytics_headless-8.3.161.dist-info/entry_points.txt,sha256=YM_wiKyTe9yRrsEfqvYolNO5ngwfoL4-NwgKzc8_7sI,93
272
+ dgenerate_ultralytics_headless-8.3.161.dist-info/top_level.txt,sha256=XP49TwiMw4QGsvTLSYiJhz1xF_k7ev5mQ8jJXaXi45Q,12
273
+ dgenerate_ultralytics_headless-8.3.161.dist-info/RECORD,,
tests/test_python.py CHANGED
@@ -16,6 +16,7 @@ from tests import CFG, MODEL, MODELS, SOURCE, SOURCES_LIST, TASK_MODEL_DATA, TMP
16
16
  from ultralytics import RTDETR, YOLO
17
17
  from ultralytics.cfg import TASK2DATA, TASKS
18
18
  from ultralytics.data.build import load_inference_source
19
+ from ultralytics.data.utils import check_det_dataset
19
20
  from ultralytics.utils import (
20
21
  ARM64,
21
22
  ASSETS,
@@ -720,7 +721,7 @@ def test_grayscale(task: str, model: str, data: str) -> None:
720
721
  if task == "classify": # not support grayscale classification yet
721
722
  return
722
723
  grayscale_data = Path(TMP) / f"{Path(data).stem}-grayscale.yaml"
723
- data = YAML.load(checks.check_file(data))
724
+ data = check_det_dataset(data)
724
725
  data["channels"] = 1 # add additional channels key for grayscale
725
726
  YAML.save(grayscale_data, data)
726
727
  # remove npy files in train/val splits if exists, might be created by previous tests
ultralytics/__init__.py CHANGED
@@ -1,6 +1,6 @@
1
1
  # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
2
 
3
- __version__ = "8.3.159"
3
+ __version__ = "8.3.161"
4
4
 
5
5
  import os
6
6
 
@@ -954,8 +954,6 @@ def entrypoint(debug: str = "") -> None:
954
954
  from ultralytics import YOLO
955
955
 
956
956
  model = YOLO(model, task=task)
957
- if isinstance(overrides.get("pretrained"), str):
958
- model.load(overrides["pretrained"])
959
957
 
960
958
  # Task Update
961
959
  if task != model.task:
@@ -9,7 +9,7 @@
9
9
  # └── Argoverse ← downloads here (31.5 GB)
10
10
 
11
11
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
- path: ../datasets/Argoverse # dataset root dir
12
+ path: Argoverse # dataset root dir
13
13
  train: Argoverse-1.1/images/train/ # train images (relative to 'path') 39384 images
14
14
  val: Argoverse-1.1/images/val/ # val images (relative to 'path') 15062 images
15
15
  test: Argoverse-1.1/images/test/ # test images (optional) https://eval.ai/web/challenges/challenge-page/800/overview
@@ -9,7 +9,7 @@
9
9
  # └── dota1.5 ← downloads here (2GB)
10
10
 
11
11
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
- path: ../datasets/DOTAv1.5 # dataset root dir
12
+ path: DOTAv1.5 # dataset root dir
13
13
  train: images/train # train images (relative to 'path') 1411 images
14
14
  val: images/val # val images (relative to 'path') 458 images
15
15
  test: images/test # test images (optional) 937 images
@@ -9,7 +9,7 @@
9
9
  # └── dota1 ← downloads here (2GB)
10
10
 
11
11
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
- path: ../datasets/DOTAv1 # dataset root dir
12
+ path: DOTAv1 # dataset root dir
13
13
  train: images/train # train images (relative to 'path') 1411 images
14
14
  val: images/val # val images (relative to 'path') 458 images
15
15
  test: images/test # test images (optional) 937 images
@@ -9,7 +9,7 @@
9
9
  # └── GlobalWheat2020 ← downloads here (7.0 GB)
10
10
 
11
11
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
- path: ../datasets/GlobalWheat2020 # dataset root dir
12
+ path: GlobalWheat2020 # dataset root dir
13
13
  train: # train images (relative to 'path') 3422 images
14
14
  - images/arvalis_1
15
15
  - images/arvalis_2
@@ -9,7 +9,7 @@
9
9
  # └── homeobjects-3K ← downloads here (390 MB)
10
10
 
11
11
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
- path: ../datasets/homeobjects-3K # dataset root dir
12
+ path: homeobjects-3K # dataset root dir
13
13
  train: train/images # train images (relative to 'path') 2285 images
14
14
  val: valid/images # val images (relative to 'path') 404 images
15
15
  test: # test images (relative to 'path')
@@ -10,7 +10,7 @@
10
10
  # └── imagenet ← downloads here (144 GB)
11
11
 
12
12
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
13
- path: ../datasets/imagenet # dataset root dir
13
+ path: imagenet # dataset root dir
14
14
  train: train # train images (relative to 'path') 1281167 images
15
15
  val: val # val images (relative to 'path') 50000 images
16
16
  test: # test images (optional)
@@ -9,7 +9,7 @@
9
9
  # └── Objects365 ← downloads here (712 GB = 367G data + 345G zips)
10
10
 
11
11
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
- path: ../datasets/Objects365 # dataset root dir
12
+ path: Objects365 # dataset root dir
13
13
  train: images/train # train images (relative to 'path') 1742289 images
14
14
  val: images/val # val images (relative to 'path') 80000 images
15
15
  test: # test images (optional)
@@ -9,7 +9,7 @@
9
9
  # └── SKU-110K ← downloads here (13.6 GB)
10
10
 
11
11
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
- path: ../datasets/SKU-110K # dataset root dir
12
+ path: SKU-110K # dataset root dir
13
13
  train: train.txt # train images (relative to 'path') 8219 images
14
14
  val: val.txt # val images (relative to 'path') 588 images
15
15
  test: test.txt # test images (optional) 2936 images
@@ -9,7 +9,7 @@
9
9
  # └── VOC ← downloads here (2.8 GB)
10
10
 
11
11
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
- path: ../datasets/VOC
12
+ path: VOC
13
13
  train: # train images (relative to 'path') 16551 images
14
14
  - images/train2012
15
15
  - images/train2007
@@ -9,7 +9,7 @@
9
9
  # └── VisDrone ← downloads here (2.3 GB)
10
10
 
11
11
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
- path: ../datasets/VisDrone # dataset root dir
12
+ path: VisDrone # dataset root dir
13
13
  train: VisDrone2019-DET-train/images # train images (relative to 'path') 6471 images
14
14
  val: VisDrone2019-DET-val/images # val images (relative to 'path') 548 images
15
15
  test: VisDrone2019-DET-test-dev/images # test images (optional) 1610 images
@@ -58,8 +58,11 @@ download: |
58
58
  cls = int(row[5]) - 1
59
59
  box = convert_box(img_size, tuple(map(int, row[:4])))
60
60
  lines.append(f"{cls} {' '.join(f'{x:.6f}' for x in box)}\n")
61
- with open(str(f).replace(f"{os.sep}annotations{os.sep}", f"{os.sep}labels{os.sep}"), "w", encoding="utf-8") as fl:
62
- fl.writelines(lines) # write label.txt
61
+
62
+ label_file = str(f).replace(f"{os.sep}annotations{os.sep}", f"{os.sep}labels{os.sep}")
63
+ with open(label_file, "w", encoding="utf-8") as fl:
64
+ fl.writelines(lines)
65
+
63
66
 
64
67
 
65
68
  # Download
@@ -9,7 +9,7 @@
9
9
  # └── african-wildlife ← downloads here (100 MB)
10
10
 
11
11
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
- path: ../datasets/african-wildlife # dataset root dir
12
+ path: african-wildlife # dataset root dir
13
13
  train: train/images # train images (relative to 'path') 1052 images
14
14
  val: valid/images # val images (relative to 'path') 225 images
15
15
  test: test/images # test images (relative to 'path') 227 images
@@ -9,7 +9,7 @@
9
9
  # └── brain-tumor ← downloads here (4.05 MB)
10
10
 
11
11
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
- path: ../datasets/brain-tumor # dataset root dir
12
+ path: brain-tumor # dataset root dir
13
13
  train: train/images # train images (relative to 'path') 893 images
14
14
  val: valid/images # val images (relative to 'path') 223 images
15
15
  test: # test images (relative to 'path')
@@ -9,7 +9,7 @@
9
9
  # └── carparts-seg ← downloads here (132 MB)
10
10
 
11
11
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
- path: ../datasets/carparts-seg # dataset root dir
12
+ path: carparts-seg # dataset root dir
13
13
  train: train/images # train images (relative to 'path') 3516 images
14
14
  val: valid/images # val images (relative to 'path') 276 images
15
15
  test: test/images # test images (relative to 'path') 401 images
@@ -9,7 +9,7 @@
9
9
  # └── coco-pose ← downloads here (20.1 GB)
10
10
 
11
11
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
- path: ../datasets/coco-pose # dataset root dir
12
+ path: coco-pose # dataset root dir
13
13
  train: train2017.txt # train images (relative to 'path') 56599 images
14
14
  val: val2017.txt # val images (relative to 'path') 2346 images
15
15
  test: test-dev2017.txt # 20288 of 40670 images, submit to https://codalab.lisn.upsaclay.fr/competitions/7403
@@ -9,7 +9,7 @@
9
9
  # └── coco ← downloads here (20.1 GB)
10
10
 
11
11
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
- path: ../datasets/coco # dataset root dir
12
+ path: coco # dataset root dir
13
13
  train: train2017.txt # train images (relative to 'path') 118287 images
14
14
  val: val2017.txt # val images (relative to 'path') 5000 images
15
15
  test: test-dev2017.txt # 20288 of 40670 images, submit to https://competitions.codalab.org/competitions/20794
@@ -9,7 +9,7 @@
9
9
  # └── coco128-seg ← downloads here (7 MB)
10
10
 
11
11
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
- path: ../datasets/coco128-seg # dataset root dir
12
+ path: coco128-seg # dataset root dir
13
13
  train: images/train2017 # train images (relative to 'path') 128 images
14
14
  val: images/train2017 # val images (relative to 'path') 128 images
15
15
  test: # test images (optional)
@@ -9,7 +9,7 @@
9
9
  # └── coco128 ← downloads here (7 MB)
10
10
 
11
11
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
- path: ../datasets/coco128 # dataset root dir
12
+ path: coco128 # dataset root dir
13
13
  train: images/train2017 # train images (relative to 'path') 128 images
14
14
  val: images/train2017 # val images (relative to 'path') 128 images
15
15
  test: # test images (optional)
@@ -9,7 +9,7 @@
9
9
  # └── coco8-grayscale ← downloads here (1 MB)
10
10
 
11
11
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
- path: ../datasets/coco8-grayscale # dataset root dir
12
+ path: coco8-grayscale # dataset root dir
13
13
  train: images/train # train images (relative to 'path') 4 images
14
14
  val: images/val # val images (relative to 'path') 4 images
15
15
  test: # test images (optional)
@@ -9,7 +9,7 @@
9
9
  # └── coco8-multispectral ← downloads here (20.2 MB)
10
10
 
11
11
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
- path: ../datasets/coco8-multispectral # dataset root dir
12
+ path: coco8-multispectral # dataset root dir
13
13
  train: images/train # train images (relative to 'path') 4 images
14
14
  val: images/val # val images (relative to 'path') 4 images
15
15
  test: # test images (optional)
@@ -9,7 +9,7 @@
9
9
  # └── coco8-pose ← downloads here (1 MB)
10
10
 
11
11
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
- path: ../datasets/coco8-pose # dataset root dir
12
+ path: coco8-pose # dataset root dir
13
13
  train: images/train # train images (relative to 'path') 4 images
14
14
  val: images/val # val images (relative to 'path') 4 images
15
15
  test: # test images (optional)
@@ -9,7 +9,7 @@
9
9
  # └── coco8-seg ← downloads here (1 MB)
10
10
 
11
11
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
- path: ../datasets/coco8-seg # dataset root dir
12
+ path: coco8-seg # dataset root dir
13
13
  train: images/train # train images (relative to 'path') 4 images
14
14
  val: images/val # val images (relative to 'path') 4 images
15
15
  test: # test images (optional)
@@ -9,7 +9,7 @@
9
9
  # └── coco8 ← downloads here (1 MB)
10
10
 
11
11
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
- path: ../datasets/coco8 # dataset root dir
12
+ path: coco8 # dataset root dir
13
13
  train: images/train # train images (relative to 'path') 4 images
14
14
  val: images/val # val images (relative to 'path') 4 images
15
15
  test: # test images (optional)
@@ -9,7 +9,7 @@
9
9
  # └── crack-seg ← downloads here (91.2 MB)
10
10
 
11
11
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
- path: ../datasets/crack-seg # dataset root dir
12
+ path: crack-seg # dataset root dir
13
13
  train: train/images # train images (relative to 'path') 3717 images
14
14
  val: valid/images # val images (relative to 'path') 112 images
15
15
  test: test/images # test images (relative to 'path') 200 images
@@ -9,7 +9,7 @@
9
9
  # └── dog-pose ← downloads here (337 MB)
10
10
 
11
11
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
- path: ../datasets/dog-pose # dataset root dir
12
+ path: dog-pose # dataset root dir
13
13
  train: train # train images (relative to 'path') 6773 images
14
14
  val: val # val images (relative to 'path') 1703 images
15
15
 
@@ -9,7 +9,7 @@
9
9
  # └── dota8-multispectral ← downloads here (37.3MB)
10
10
 
11
11
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
- path: ../datasets/dota8-multispectral # dataset root dir
12
+ path: dota8-multispectral # dataset root dir
13
13
  train: images/train # train images (relative to 'path') 4 images
14
14
  val: images/val # val images (relative to 'path') 4 images
15
15
 
@@ -9,7 +9,7 @@
9
9
  # └── dota8 ← downloads here (1MB)
10
10
 
11
11
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
- path: ../datasets/dota8 # dataset root dir
12
+ path: dota8 # dataset root dir
13
13
  train: images/train # train images (relative to 'path') 4 images
14
14
  val: images/val # val images (relative to 'path') 4 images
15
15
 
@@ -9,7 +9,7 @@
9
9
  # └── hand-keypoints ← downloads here (369 MB)
10
10
 
11
11
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
- path: ../datasets/hand-keypoints # dataset root dir
12
+ path: hand-keypoints # dataset root dir
13
13
  train: train # train images (relative to 'path') 18776 images
14
14
  val: val # val images (relative to 'path') 7992 images
15
15
 
@@ -9,7 +9,7 @@
9
9
  # └── lvis ← downloads here (20.1 GB)
10
10
 
11
11
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
- path: ../datasets/lvis # dataset root dir
12
+ path: lvis # dataset root dir
13
13
  train: train.txt # train images (relative to 'path') 100170 images
14
14
  val: val.txt # val images (relative to 'path') 19809 images
15
15
  minival: minival.txt # minival images (relative to 'path') 5000 images
@@ -9,7 +9,7 @@
9
9
  # └── medical-pills ← downloads here (8.19 MB)
10
10
 
11
11
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
- path: ../datasets/medical-pills # dataset root dir
12
+ path: medical-pills # dataset root dir
13
13
  train: train/images # train images (relative to 'path') 92 images
14
14
  val: valid/images # val images (relative to 'path') 23 images
15
15
  test: # test images (relative to 'path')
@@ -9,7 +9,7 @@
9
9
  # └── open-images-v7 ← downloads here (561 GB)
10
10
 
11
11
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
- path: ../datasets/open-images-v7 # dataset root dir
12
+ path: open-images-v7 # dataset root dir
13
13
  train: images/train # train images (relative to 'path') 1743042 images
14
14
  val: images/val # val images (relative to 'path') 41620 images
15
15
  test: # test images (optional)
@@ -9,7 +9,7 @@
9
9
  # └── package-seg ← downloads here (102 MB)
10
10
 
11
11
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
- path: ../datasets/package-seg # dataset root dir
12
+ path: package-seg # dataset root dir
13
13
  train: train/images # train images (relative to 'path') 1920 images
14
14
  val: valid/images # val images (relative to 'path') 89 images
15
15
  test: test/images # test images (relative to 'path') 188 images
@@ -9,7 +9,7 @@
9
9
  # └── signature ← downloads here (11.2 MB)
10
10
 
11
11
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
- path: ../datasets/signature # dataset root dir
12
+ path: signature # dataset root dir
13
13
  train: train/images # train images (relative to 'path') 143 images
14
14
  val: valid/images # val images (relative to 'path') 35 images
15
15