dgenerate-ultralytics-headless 8.3.140__py3-none-any.whl → 8.3.141__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {dgenerate_ultralytics_headless-8.3.140.dist-info → dgenerate_ultralytics_headless-8.3.141.dist-info}/METADATA +1 -1
- {dgenerate_ultralytics_headless-8.3.140.dist-info → dgenerate_ultralytics_headless-8.3.141.dist-info}/RECORD +17 -17
- {dgenerate_ultralytics_headless-8.3.140.dist-info → dgenerate_ultralytics_headless-8.3.141.dist-info}/WHEEL +1 -1
- tests/test_cuda.py +1 -1
- tests/test_solutions.py +3 -2
- ultralytics/__init__.py +1 -1
- ultralytics/cfg/datasets/open-images-v7.yaml +4 -7
- ultralytics/engine/model.py +6 -3
- ultralytics/models/yolo/classify/predict.py +1 -1
- ultralytics/models/yolo/model.py +7 -1
- ultralytics/utils/autodevice.py +9 -7
- ultralytics/utils/loss.py +1 -2
- ultralytics/utils/tal.py +3 -6
- ultralytics/utils/torch_utils.py +1 -1
- {dgenerate_ultralytics_headless-8.3.140.dist-info → dgenerate_ultralytics_headless-8.3.141.dist-info}/entry_points.txt +0 -0
- {dgenerate_ultralytics_headless-8.3.140.dist-info → dgenerate_ultralytics_headless-8.3.141.dist-info}/licenses/LICENSE +0 -0
- {dgenerate_ultralytics_headless-8.3.140.dist-info → dgenerate_ultralytics_headless-8.3.141.dist-info}/top_level.txt +0 -0
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.4
|
2
2
|
Name: dgenerate-ultralytics-headless
|
3
|
-
Version: 8.3.
|
3
|
+
Version: 8.3.141
|
4
4
|
Summary: Automatically built Ultralytics package with python-opencv-headless dependency instead of python-opencv
|
5
5
|
Author-email: Glenn Jocher <glenn.jocher@ultralytics.com>, Jing Qiu <jing.qiu@ultralytics.com>
|
6
6
|
Maintainer-email: Ultralytics <hello@ultralytics.com>
|
@@ -1,14 +1,14 @@
|
|
1
|
-
dgenerate_ultralytics_headless-8.3.
|
1
|
+
dgenerate_ultralytics_headless-8.3.141.dist-info/licenses/LICENSE,sha256=DZak_2itbUtvHzD3E7GNUYSRK6jdOJ-GqncQ2weavLA,34523
|
2
2
|
tests/__init__.py,sha256=xnMhv3O_DF1YrW4zk__ZywQzAaoTDjPKPoiI1Ktss1w,670
|
3
3
|
tests/conftest.py,sha256=rsIAipRKfrVNoTaJ1LdpYue8AbcJ_fr3d3WIlM_6uXY,2982
|
4
4
|
tests/test_cli.py,sha256=vXUC_EK0fa87JRhHsCOZf7AJQ5_Jm1sL8u-yhmsaQh0,5851
|
5
|
-
tests/test_cuda.py,sha256=
|
5
|
+
tests/test_cuda.py,sha256=bT_IzqxKQW3u2E06_Gcox2tZfmadMEv0W66OUrPF0P4,7917
|
6
6
|
tests/test_engine.py,sha256=aGqZ8P7QO5C_nOa1b4FOyk92Ysdk5WiP-ST310Vyxys,4962
|
7
7
|
tests/test_exports.py,sha256=dhZn86LdbapW15RthQF870LGxDjC1MUZhlGdBgPmgIQ,9716
|
8
8
|
tests/test_integrations.py,sha256=dQteeRsRVuT_p5-T88-7jqT65Zm9iAXkyKg-KQ1_TQ8,6341
|
9
9
|
tests/test_python.py,sha256=Zx9OlPN11_D1WSLpi9nPFqORNHNz0lEn6mxVNL2ZHjE,25852
|
10
|
-
tests/test_solutions.py,sha256=
|
11
|
-
ultralytics/__init__.py,sha256=
|
10
|
+
tests/test_solutions.py,sha256=8qntPMu_k278R3ZTxaFXq1N7m9wLnvpXPdw33fobKSU,13045
|
11
|
+
ultralytics/__init__.py,sha256=_3DM3aMwE5IQ66Fs3XZ2U-B1NAt5-I591YunoNGaj3E,730
|
12
12
|
ultralytics/assets/bus.jpg,sha256=wCAZxJecGR63Od3ZRERe9Aja1Weayrb9Ug751DS_vGM,137419
|
13
13
|
ultralytics/assets/zidane.jpg,sha256=Ftc4aeMmen1O0A3o6GCDO9FlfBslLpTAw0gnetx7bts,50427
|
14
14
|
ultralytics/cfg/__init__.py,sha256=mpvLR68Iff4J59zYGhysSl8VwIVVzV_VMOYeVdqnYj4,39544
|
@@ -41,7 +41,7 @@ ultralytics/cfg/datasets/dota8.yaml,sha256=W43bp_6yUUVjs6vpogNrGI9vU7rLbEsSx6vyf
|
|
41
41
|
ultralytics/cfg/datasets/hand-keypoints.yaml,sha256=5vue4kvPrAdd6ZyB90rZgtGUUHvSi3s_ht7jBBqX7a4,989
|
42
42
|
ultralytics/cfg/datasets/lvis.yaml,sha256=jD-z6cny0l_Cl7xN6RqiFAc7a7odcVwr3E8_jmH-wzA,29716
|
43
43
|
ultralytics/cfg/datasets/medical-pills.yaml,sha256=3ho9VW8p5Hm1TuicguiL-akfC9dCZO5nwthO4sUR3k0,848
|
44
|
-
ultralytics/cfg/datasets/open-images-v7.yaml,sha256=
|
44
|
+
ultralytics/cfg/datasets/open-images-v7.yaml,sha256=uhsujByejzeysTB10QnSLfDNb9U_HqoES45QJrqMC7g,12132
|
45
45
|
ultralytics/cfg/datasets/package-seg.yaml,sha256=uechtCYfX8OrJrO5zV1-uGwbr69lUSuon1oXguEkLGg,864
|
46
46
|
ultralytics/cfg/datasets/signature.yaml,sha256=eABYny9n4w3RleR3RQmb505DiBll8R5cvcjWj8wkuf0,789
|
47
47
|
ultralytics/cfg/datasets/tiger-pose.yaml,sha256=gCQc1AX04Xfhnms4czm7R_XnT2XFL2u-t3M8Yya20ds,925
|
@@ -120,7 +120,7 @@ ultralytics/data/scripts/get_coco128.sh,sha256=qmRQl_hOKrsdHrTrnyQuFIH01oDz3lfaz
|
|
120
120
|
ultralytics/data/scripts/get_imagenet.sh,sha256=hr42H16bM47iT27rgS7MpEo-GeOZAYUQXgr0B2cwn48,1705
|
121
121
|
ultralytics/engine/__init__.py,sha256=lm6MckFYCPTbqIoX7w0s_daxdjNeBeKW6DXppv1-QUM,70
|
122
122
|
ultralytics/engine/exporter.py,sha256=BZWa7Mnl1BPvbPiD-RJs6M5Bca4sm3_MQgjoHesvXEs,70949
|
123
|
-
ultralytics/engine/model.py,sha256=
|
123
|
+
ultralytics/engine/model.py,sha256=6AhrrcuLOQk_JuOAPQt3uNktAhEBWcBBh_AP2DGEbAs,53147
|
124
124
|
ultralytics/engine/predictor.py,sha256=rZ5mIPeejkxUerpTfUf_1rSAklOR3THqoejlil4C04w,21651
|
125
125
|
ultralytics/engine/results.py,sha256=2sNNhAc2zaIRaQBXl_36gAKK31V8tgNDcgC4ZPiGqKI,70072
|
126
126
|
ultralytics/engine/trainer.py,sha256=xdgNAgq6umJ6915tiCK3U22NeY7w1HnvmAhXlwS_hYI,38955
|
@@ -164,9 +164,9 @@ ultralytics/models/utils/__init__.py,sha256=lm6MckFYCPTbqIoX7w0s_daxdjNeBeKW6DXp
|
|
164
164
|
ultralytics/models/utils/loss.py,sha256=FShJFvzFBk0HRepRhiSVNz9J-Cq08FxkSNXhLppycI0,19993
|
165
165
|
ultralytics/models/utils/ops.py,sha256=SuBnwwgUTqByNHpufobGLW72yO2cyfZFi14KAFWSjjw,13613
|
166
166
|
ultralytics/models/yolo/__init__.py,sha256=or0j5xvcM0usMlsFTYhNAOcQUri7reD0cD9JR5b7zDk,307
|
167
|
-
ultralytics/models/yolo/model.py,sha256=
|
167
|
+
ultralytics/models/yolo/model.py,sha256=Akq0TuthKAWDIa2l2gNs3QLWVV5Zpk520fdnNa7zxm0,14648
|
168
168
|
ultralytics/models/yolo/classify/__init__.py,sha256=9--HVaNOfI1K7rn_rRqclL8FUAnpfeBrRqEQIaQw2xM,383
|
169
|
-
ultralytics/models/yolo/classify/predict.py,sha256=
|
169
|
+
ultralytics/models/yolo/classify/predict.py,sha256=aSNANtN4pbuaiprGR9d3krIfqnAMcAGhnOM8KRh8wR0,4639
|
170
170
|
ultralytics/models/yolo/classify/train.py,sha256=rv2CJv9fzvtHf2q4l5g0RsjplWKeLpz637kKqjtrLNY,9737
|
171
171
|
ultralytics/models/yolo/classify/val.py,sha256=xk-YwSQdl_oqyCBV0OOAOcXFL6CchebFOc36AkRSyjE,9992
|
172
172
|
ultralytics/models/yolo/detect/__init__.py,sha256=GIRsLYR-kT4JJx7lh4ZZAFGBZj0aebokuU0A7JbjDVA,257
|
@@ -236,7 +236,7 @@ ultralytics/trackers/utils/kalman_filter.py,sha256=A0CqOnnaKH6kr0XwuHzyHmIU6aJAj
|
|
236
236
|
ultralytics/trackers/utils/matching.py,sha256=7eIufSdeN7cXuFMjvcfvz0Ldq84m4YKZl5IGxBR8IIo,7169
|
237
237
|
ultralytics/utils/__init__.py,sha256=7VT2VSCIgDPInuNKO0sy2_3-qUwuCafLG0wF4wAyjBg,59059
|
238
238
|
ultralytics/utils/autobatch.py,sha256=kg05q2qKg74y_Uq2vvr01i3KhLfpVR7sT0IXBt3_kyI,4921
|
239
|
-
ultralytics/utils/autodevice.py,sha256=
|
239
|
+
ultralytics/utils/autodevice.py,sha256=gSai9YvsDTYj5Kj18n4XGtf0oXXVPbjanKrO1C1w0C4,7454
|
240
240
|
ultralytics/utils/benchmarks.py,sha256=iqjxD29srcCpimtAhbSidpsjnUlMhNR5S6QGPZyz16I,30287
|
241
241
|
ultralytics/utils/checks.py,sha256=SinI5gY-znVbQ-JXk1JaHIlSp2kuBv92Rv99NWFzOFg,33763
|
242
242
|
ultralytics/utils/dist.py,sha256=aytW0JEkcA5ZTZucV92ot7Bn-apiej8aLk3QNWicjAc,4103
|
@@ -245,13 +245,13 @@ ultralytics/utils/errors.py,sha256=vY9h2evFSrHnZdHJVVrmm8Zzw4qVDLyo9DeYW5g0dFk,1
|
|
245
245
|
ultralytics/utils/export.py,sha256=Rr5R3GdJBapJJt1XHkH6VQwYN52-L_7wGiRDCgnb7BY,8817
|
246
246
|
ultralytics/utils/files.py,sha256=0K4O1cgqRiXaDw7EQK13TqA5SME_RrvfDVQSPetNr5w,8042
|
247
247
|
ultralytics/utils/instance.py,sha256=UOEsXR9V-bXNRk6BTonASBEgeMqvzzAk4S7VdXZJUAM,18090
|
248
|
-
ultralytics/utils/loss.py,sha256=
|
248
|
+
ultralytics/utils/loss.py,sha256=KMug5vHESghC3B3V5Vi-fhGVDdTjG9nGkGJmgO_WnPI,37575
|
249
249
|
ultralytics/utils/metrics.py,sha256=8x4S7y-rBKRkM47f_o7jfMHA1Bz8SDq3t-R1FXlQNEM,59267
|
250
250
|
ultralytics/utils/ops.py,sha256=YFwPrKlPcgEmgAWqnJVR0Ccx5NQgp5e3P-YYHwVSP0k,34779
|
251
251
|
ultralytics/utils/patches.py,sha256=_dhIU_eDklQE-aWIjpyjPHl_wOwZoGuIUQnXgdSwk_A,5020
|
252
252
|
ultralytics/utils/plotting.py,sha256=oFq19c3tRng-dKHEH-j-S_wLG4CZ_mk8wqE_Gab2H8A,47221
|
253
|
-
ultralytics/utils/tal.py,sha256=
|
254
|
-
ultralytics/utils/torch_utils.py,sha256=
|
253
|
+
ultralytics/utils/tal.py,sha256=fkOdogPqPBUN07ThixpI8X7hea-oEfTIaaBLc26_O2s,20610
|
254
|
+
ultralytics/utils/torch_utils.py,sha256=WGNxGocstHD6ljhvujSCWjsYd4xWjNIXk_pq53zcKCc,39675
|
255
255
|
ultralytics/utils/triton.py,sha256=9P2rlQcGCTMFVKLA5S5mTYzU9cKbR5HF9ruVkPpVBE8,5307
|
256
256
|
ultralytics/utils/tuner.py,sha256=0Bp7l5dWZe1RzdvAIa11wQoX6eoAaoNRcA-EAnpofbk,6755
|
257
257
|
ultralytics/utils/callbacks/__init__.py,sha256=hzL63Rce6VkZhP4Lcim9LKjadixaQG86nKqPhk7IkS0,242
|
@@ -265,8 +265,8 @@ ultralytics/utils/callbacks/neptune.py,sha256=yYUgEgSv6L39sSev6vjwhAWU3DlPDsbSDV
|
|
265
265
|
ultralytics/utils/callbacks/raytune.py,sha256=A8amUGpux7dYES-L1iSeMoMXBySGWCD1aUqT7vcG-pU,1284
|
266
266
|
ultralytics/utils/callbacks/tensorboard.py,sha256=jgYnym3cUQFAgN1GzTyO7l3jINtfAh8zhrllDvnLuVQ,5339
|
267
267
|
ultralytics/utils/callbacks/wb.py,sha256=iDRFXI4IIDm8R5OI89DMTmjs8aHLo1HRCLkOFKdaMG4,7507
|
268
|
-
dgenerate_ultralytics_headless-8.3.
|
269
|
-
dgenerate_ultralytics_headless-8.3.
|
270
|
-
dgenerate_ultralytics_headless-8.3.
|
271
|
-
dgenerate_ultralytics_headless-8.3.
|
272
|
-
dgenerate_ultralytics_headless-8.3.
|
268
|
+
dgenerate_ultralytics_headless-8.3.141.dist-info/METADATA,sha256=7-T_-8QzLeo3fOcJohIp3v8LDenDuJax0sr8sowfDC8,38296
|
269
|
+
dgenerate_ultralytics_headless-8.3.141.dist-info/WHEEL,sha256=zaaOINJESkSfm_4HQVc5ssNzHCPXhJm0kEUakpsEHaU,91
|
270
|
+
dgenerate_ultralytics_headless-8.3.141.dist-info/entry_points.txt,sha256=YM_wiKyTe9yRrsEfqvYolNO5ngwfoL4-NwgKzc8_7sI,93
|
271
|
+
dgenerate_ultralytics_headless-8.3.141.dist-info/top_level.txt,sha256=XP49TwiMw4QGsvTLSYiJhz1xF_k7ev5mQ8jJXaXi45Q,12
|
272
|
+
dgenerate_ultralytics_headless-8.3.141.dist-info/RECORD,,
|
tests/test_cuda.py
CHANGED
@@ -22,7 +22,7 @@ if CUDA_IS_AVAILABLE:
|
|
22
22
|
else:
|
23
23
|
gpu_info = GPUInfo()
|
24
24
|
gpu_info.print_status()
|
25
|
-
idle_gpus = gpu_info.select_idle_gpu(count=2,
|
25
|
+
idle_gpus = gpu_info.select_idle_gpu(count=2, min_memory_fraction=0.2)
|
26
26
|
if idle_gpus:
|
27
27
|
DEVICES = idle_gpus
|
28
28
|
|
tests/test_solutions.py
CHANGED
@@ -205,12 +205,12 @@ def test_solution(name, solution_class, needs_frame_count, video, kwargs):
|
|
205
205
|
)
|
206
206
|
|
207
207
|
|
208
|
-
@pytest.mark.slow
|
209
208
|
@pytest.mark.skipif(checks.IS_PYTHON_3_8, reason="Disabled due to unsupported CLIP dependencies.")
|
210
209
|
@pytest.mark.skipif(IS_RASPBERRYPI, reason="Disabled due to slow performance on Raspberry Pi.")
|
211
210
|
def test_similarity_search():
|
212
211
|
"""Test similarity search solution."""
|
213
|
-
|
212
|
+
safe_download(f"{ASSETS_URL}/4-imgs-similaritysearch.zip", dir=TMP) # 4 dog images for testing in a zip file.
|
213
|
+
searcher = solutions.VisualAISearch(data=str(TMP / "4-imgs-similaritysearch"))
|
214
214
|
_ = searcher("a dog sitting on a bench") # Returns the results in format "- img name | similarity score"
|
215
215
|
|
216
216
|
|
@@ -297,6 +297,7 @@ def test_streamlit_handle_video_upload_creates_file():
|
|
297
297
|
os.remove("ultralytics.mp4")
|
298
298
|
|
299
299
|
|
300
|
+
@pytest.mark.skipif(checks.IS_PYTHON_3_8, reason="Disabled due to unsupported CLIP dependencies.")
|
300
301
|
@pytest.mark.skipif(IS_RASPBERRYPI, reason="Disabled due to slow performance on Raspberry Pi.")
|
301
302
|
def test_similarity_search_app_init():
|
302
303
|
"""Test SearchApp initializes with required attributes."""
|
ultralytics/__init__.py
CHANGED
@@ -622,21 +622,18 @@ names:
|
|
622
622
|
download: |
|
623
623
|
import warnings
|
624
624
|
|
625
|
-
from ultralytics.utils import LOGGER, SETTINGS, Path
|
626
|
-
from ultralytics.utils.checks import check_requirements
|
625
|
+
from ultralytics.utils import LOGGER, SETTINGS, Path
|
626
|
+
from ultralytics.utils.checks import check_requirements
|
627
627
|
|
628
628
|
check_requirements("fiftyone")
|
629
|
-
|
630
|
-
# Ubuntu>=22.04 patch https://github.com/voxel51/fiftyone/issues/2961#issuecomment-1666519347
|
631
|
-
check_requirements("fiftyone-db-ubuntu2204")
|
632
|
-
|
629
|
+
|
633
630
|
import fiftyone as fo
|
634
631
|
import fiftyone.zoo as foz
|
635
632
|
|
636
633
|
name = "open-images-v7"
|
637
634
|
fo.config.dataset_zoo_dir = Path(SETTINGS["datasets_dir"]) / "fiftyone" / name
|
638
635
|
fraction = 1.0 # fraction of full dataset to use
|
639
|
-
LOGGER.warning("
|
636
|
+
LOGGER.warning("Open Images V7 dataset requires at least **561 GB of free space. Starting download...")
|
640
637
|
for split in "train", "validation": # 1743042 train, 41620 val images
|
641
638
|
train = split == "train"
|
642
639
|
|
ultralytics/engine/model.py
CHANGED
@@ -79,7 +79,7 @@ class Model(torch.nn.Module):
|
|
79
79
|
|
80
80
|
def __init__(
|
81
81
|
self,
|
82
|
-
model: Union[str, Path] = "yolo11n.pt",
|
82
|
+
model: Union[str, Path, "Model"] = "yolo11n.pt",
|
83
83
|
task: str = None,
|
84
84
|
verbose: bool = False,
|
85
85
|
) -> None:
|
@@ -92,8 +92,8 @@ class Model(torch.nn.Module):
|
|
92
92
|
prediction, or export.
|
93
93
|
|
94
94
|
Args:
|
95
|
-
model (str | Path): Path or name of the model to load or create. Can be a local file path, a
|
96
|
-
model name from Ultralytics HUB,
|
95
|
+
model (str | Path | Model): Path or name of the model to load or create. Can be a local file path, a
|
96
|
+
model name from Ultralytics HUB, a Triton Server model, or an already initialized Model instance.
|
97
97
|
task (str | None): The task type associated with the YOLO model, specifying its application domain.
|
98
98
|
verbose (bool): If True, enables verbose output during the model's initialization and subsequent
|
99
99
|
operations.
|
@@ -108,6 +108,9 @@ class Model(torch.nn.Module):
|
|
108
108
|
>>> model = Model("path/to/model.yaml", task="detect")
|
109
109
|
>>> model = Model("hub_model", verbose=True)
|
110
110
|
"""
|
111
|
+
if isinstance(model, Model):
|
112
|
+
self.__dict__ = model.__dict__ # accepts an already initialized Model
|
113
|
+
return
|
111
114
|
super().__init__()
|
112
115
|
self.callbacks = callbacks.get_default_callbacks()
|
113
116
|
self.predictor = None # reuse predictor
|
@@ -57,7 +57,7 @@ class ClassificationPredictor(BasePredictor):
|
|
57
57
|
super().setup_source(source)
|
58
58
|
updated = (
|
59
59
|
self.model.model.transforms.transforms[0].size != max(self.imgsz)
|
60
|
-
if hasattr(self.model.model, "transforms")
|
60
|
+
if hasattr(self.model.model, "transforms") and hasattr(self.model.model.transforms.transforms[0], "size")
|
61
61
|
else True
|
62
62
|
)
|
63
63
|
self.transforms = self.model.model.transforms if not updated else classify_transforms(self.imgsz)
|
ultralytics/models/yolo/model.py
CHANGED
@@ -39,7 +39,7 @@ class YOLO(Model):
|
|
39
39
|
>>> model = YOLO("yolo11n.pt") # load a pretrained YOLOv11n detection model
|
40
40
|
>>> model = YOLO("yolo11n-seg.pt") # load a pretrained YOLO11n segmentation model
|
41
41
|
"""
|
42
|
-
path = Path(model)
|
42
|
+
path = Path(model if isinstance(model, (str, Path)) else "")
|
43
43
|
if "-world" in path.stem and path.suffix in {".pt", ".yaml", ".yml"}: # if YOLOWorld PyTorch model
|
44
44
|
new_instance = YOLOWorld(path, verbose=verbose)
|
45
45
|
self.__class__ = type(new_instance)
|
@@ -51,6 +51,12 @@ class YOLO(Model):
|
|
51
51
|
else:
|
52
52
|
# Continue with default YOLO initialization
|
53
53
|
super().__init__(model=model, task=task, verbose=verbose)
|
54
|
+
if hasattr(self.model, "model") and "RTDETR" in self.model.model[-1]._get_name(): # if RTDETR head
|
55
|
+
from ultralytics import RTDETR
|
56
|
+
|
57
|
+
new_instance = RTDETR(self)
|
58
|
+
self.__class__ = type(new_instance)
|
59
|
+
self.__dict__ = new_instance.__dict__
|
54
60
|
|
55
61
|
@property
|
56
62
|
def task_map(self):
|
ultralytics/utils/autodevice.py
CHANGED
@@ -116,13 +116,13 @@ class GPUInfo:
|
|
116
116
|
|
117
117
|
LOGGER.info(f"{'-' * len(hdr)}\n")
|
118
118
|
|
119
|
-
def select_idle_gpu(self, count=1,
|
119
|
+
def select_idle_gpu(self, count=1, min_memory_fraction=0):
|
120
120
|
"""
|
121
121
|
Selects the 'count' most idle GPUs based on utilization and free memory.
|
122
122
|
|
123
123
|
Args:
|
124
124
|
count (int): The number of idle GPUs to select. Defaults to 1.
|
125
|
-
|
125
|
+
min_memory_fraction (float): Minimum free memory required (fraction). Defaults to 0.
|
126
126
|
|
127
127
|
Returns:
|
128
128
|
(list[int]): Indices of the selected GPUs, sorted by idleness.
|
@@ -131,7 +131,8 @@ class GPUInfo:
|
|
131
131
|
Returns fewer than 'count' if not enough qualify or exist.
|
132
132
|
Returns basic CUDA indices if NVML fails. Empty list if no GPUs found.
|
133
133
|
"""
|
134
|
-
|
134
|
+
assert min_memory_fraction <= 1.0, f"min_memory_fraction must be <= 1.0, got {min_memory_fraction}"
|
135
|
+
LOGGER.info(f"Searching for {count} idle GPUs with >= {min_memory_fraction * 100:.1f}% free memory...")
|
135
136
|
|
136
137
|
if count <= 0:
|
137
138
|
return []
|
@@ -145,7 +146,8 @@ class GPUInfo:
|
|
145
146
|
eligible_gpus = [
|
146
147
|
gpu
|
147
148
|
for gpu in self.gpu_stats
|
148
|
-
if gpu.get("memory_free",
|
149
|
+
if gpu.get("memory_free", 0) / gpu.get("memory_total", 1) >= min_memory_fraction
|
150
|
+
and gpu.get("utilization", -1) != -1
|
149
151
|
]
|
150
152
|
eligible_gpus.sort(key=lambda x: (x.get("utilization", 101), -x.get("memory_free", 0)))
|
151
153
|
|
@@ -155,19 +157,19 @@ class GPUInfo:
|
|
155
157
|
if selected:
|
156
158
|
LOGGER.info(f"Selected idle CUDA devices {selected}")
|
157
159
|
else:
|
158
|
-
LOGGER.warning(f"No GPUs met criteria (Util != -1, Free Mem >= {
|
160
|
+
LOGGER.warning(f"No GPUs met criteria (Util != -1, Free Mem >= {min_memory_fraction * 100:.1f}%).")
|
159
161
|
|
160
162
|
return selected
|
161
163
|
|
162
164
|
|
163
165
|
if __name__ == "__main__":
|
164
|
-
|
166
|
+
required_free_mem_fraction = 0.2 # Require 20% free VRAM
|
165
167
|
num_gpus_to_select = 1
|
166
168
|
|
167
169
|
gpu_info = GPUInfo()
|
168
170
|
gpu_info.print_status()
|
169
171
|
|
170
|
-
selected = gpu_info.select_idle_gpu(count=num_gpus_to_select,
|
172
|
+
selected = gpu_info.select_idle_gpu(count=num_gpus_to_select, min_memory_fraction=required_free_mem_fraction)
|
171
173
|
if selected:
|
172
174
|
print(f"\n==> Using selected GPU indices: {selected}")
|
173
175
|
devices = [f"cuda:{idx}" for idx in selected]
|
ultralytics/utils/loss.py
CHANGED
@@ -613,8 +613,7 @@ class v8ClassificationLoss:
|
|
613
613
|
"""Compute the classification loss between predictions and true labels."""
|
614
614
|
preds = preds[1] if isinstance(preds, (list, tuple)) else preds
|
615
615
|
loss = F.cross_entropy(preds, batch["cls"], reduction="mean")
|
616
|
-
|
617
|
-
return loss, loss_items
|
616
|
+
return loss, loss.detach()
|
618
617
|
|
619
618
|
|
620
619
|
class v8OBBLoss(v8DetectionLoss):
|
ultralytics/utils/tal.py
CHANGED
@@ -21,7 +21,6 @@ class TaskAlignedAssigner(nn.Module):
|
|
21
21
|
Attributes:
|
22
22
|
topk (int): The number of top candidates to consider.
|
23
23
|
num_classes (int): The number of object classes.
|
24
|
-
bg_idx (int): Background class index.
|
25
24
|
alpha (float): The alpha parameter for the classification component of the task-aligned metric.
|
26
25
|
beta (float): The beta parameter for the localization component of the task-aligned metric.
|
27
26
|
eps (float): A small value to prevent division by zero.
|
@@ -32,7 +31,6 @@ class TaskAlignedAssigner(nn.Module):
|
|
32
31
|
super().__init__()
|
33
32
|
self.topk = topk
|
34
33
|
self.num_classes = num_classes
|
35
|
-
self.bg_idx = num_classes
|
36
34
|
self.alpha = alpha
|
37
35
|
self.beta = beta
|
38
36
|
self.eps = eps
|
@@ -66,7 +64,7 @@ class TaskAlignedAssigner(nn.Module):
|
|
66
64
|
|
67
65
|
if self.n_max_boxes == 0:
|
68
66
|
return (
|
69
|
-
torch.full_like(pd_scores[..., 0], self.
|
67
|
+
torch.full_like(pd_scores[..., 0], self.num_classes),
|
70
68
|
torch.zeros_like(pd_bboxes),
|
71
69
|
torch.zeros_like(pd_scores),
|
72
70
|
torch.zeros_like(pd_scores[..., 0]),
|
@@ -193,7 +191,7 @@ class TaskAlignedAssigner(nn.Module):
|
|
193
191
|
"""
|
194
192
|
return bbox_iou(gt_bboxes, pd_bboxes, xywh=False, CIoU=True).squeeze(-1).clamp_(0)
|
195
193
|
|
196
|
-
def select_topk_candidates(self, metrics,
|
194
|
+
def select_topk_candidates(self, metrics, topk_mask=None):
|
197
195
|
"""
|
198
196
|
Select the top-k candidates based on the given metrics.
|
199
197
|
|
@@ -201,7 +199,6 @@ class TaskAlignedAssigner(nn.Module):
|
|
201
199
|
metrics (torch.Tensor): A tensor of shape (b, max_num_obj, h*w), where b is the batch size,
|
202
200
|
max_num_obj is the maximum number of objects, and h*w represents the
|
203
201
|
total number of anchor points.
|
204
|
-
largest (bool): If True, select the largest values; otherwise, select the smallest values.
|
205
202
|
topk_mask (torch.Tensor): An optional boolean tensor of shape (b, max_num_obj, topk), where
|
206
203
|
topk is the number of top candidates to consider. If not provided,
|
207
204
|
the top-k values are automatically computed based on the given metrics.
|
@@ -210,7 +207,7 @@ class TaskAlignedAssigner(nn.Module):
|
|
210
207
|
(torch.Tensor): A tensor of shape (b, max_num_obj, h*w) containing the selected top-k candidates.
|
211
208
|
"""
|
212
209
|
# (b, max_num_obj, topk)
|
213
|
-
topk_metrics, topk_idxs = torch.topk(metrics, self.topk, dim=-1, largest=
|
210
|
+
topk_metrics, topk_idxs = torch.topk(metrics, self.topk, dim=-1, largest=True)
|
214
211
|
if topk_mask is None:
|
215
212
|
topk_mask = (topk_metrics.max(-1, keepdim=True)[0] > self.eps).expand_as(topk_idxs)
|
216
213
|
# (b, max_num_obj, topk)
|
ultralytics/utils/torch_utils.py
CHANGED
@@ -174,7 +174,7 @@ def select_device(device="", batch=0, newline=False, verbose=True):
|
|
174
174
|
|
175
175
|
# Replace each -1 with a selected GPU or remove it
|
176
176
|
parts = device.split(",")
|
177
|
-
selected = GPUInfo().select_idle_gpu(count=parts.count("-1"),
|
177
|
+
selected = GPUInfo().select_idle_gpu(count=parts.count("-1"), min_memory_fraction=0.2)
|
178
178
|
for i in range(len(parts)):
|
179
179
|
if parts[i] == "-1":
|
180
180
|
parts[i] = str(selected.pop(0)) if selected else ""
|
File without changes
|
File without changes
|
File without changes
|