dfax 0.1.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
dfax/__init__.py ADDED
@@ -0,0 +1,2 @@
1
+ from dfax.dfax import *
2
+ from dfax.utils import *
dfax/dfax.py ADDED
@@ -0,0 +1,356 @@
1
+ import jax
2
+ import chex
3
+ import jax.numpy as jnp
4
+ from flax import struct
5
+
6
+
7
+ @jax.jit
8
+ def DFAx(start, transitions, labels):
9
+ n_states, n_tokens = transitions.shape
10
+ trans_flat = transitions.flatten()
11
+ is_reach_init = jnp.zeros((n_states,), dtype=bool).at[start].set(True)
12
+
13
+ def step(is_reach: jnp.ndarray) -> jnp.ndarray:
14
+ reach_repeat = jnp.repeat(is_reach, n_tokens)
15
+ dest_counts = jnp.zeros((n_states,), dtype=jnp.int32).at[trans_flat].add(reach_repeat)
16
+ return dest_counts > 0
17
+
18
+ def cond(pair):
19
+ prev_is_reach, curr_is_reach = pair
20
+ return jnp.any(prev_is_reach != curr_is_reach)
21
+
22
+ def body(pair):
23
+ prev_is_reach, curr_is_reach = pair
24
+ next_is_reach = step(curr_is_reach)
25
+ return (curr_is_reach, next_is_reach)
26
+
27
+ is_reach, _ = jax.lax.while_loop(cond, body, (is_reach_init, step(is_reach_init)))
28
+
29
+ return _DFAx(start=start,
30
+ transitions=transitions,
31
+ labels=labels,
32
+ is_reach=is_reach)
33
+
34
+
35
+ @struct.dataclass
36
+ class _DFAx:
37
+ start: int
38
+ transitions: jnp.ndarray
39
+ labels: jnp.ndarray
40
+ is_reach: jnp.ndarray
41
+
42
+ @property
43
+ def n_states(self):
44
+ return jnp.sum(self.is_reach)
45
+
46
+ @property
47
+ def max_n_states(self):
48
+ return self.transitions.shape[0]
49
+
50
+ @property
51
+ def n_tokens(self):
52
+ return self.transitions.shape[1]
53
+
54
+ @property
55
+ def is_reach_tile(self) -> jnp.ndarray:
56
+ return jnp.tile(self.is_reach.reshape(-1, 1), (1, self.n_tokens))
57
+
58
+ @jax.jit
59
+ def __eq__(self, other: "DFAx") -> jnp.ndarray:
60
+ n = min(self.max_n_states, other.max_n_states)
61
+
62
+ start_eq = (self.start == other.start)
63
+ transitions_eq = jnp.where(
64
+ self.n_tokens == other.n_tokens,
65
+ jnp.all(self.transitions[:n] == other.transitions[:n]),
66
+ False
67
+ )
68
+ labels_eq = jnp.all(self.labels[:n] == other.labels[:n])
69
+
70
+ return jnp.logical_and(start_eq, jnp.logical_and(transitions_eq, labels_eq))
71
+
72
+
73
+ @jax.jit
74
+ def advance(self, symbol: int) -> "DFAx":
75
+ return DFAx(
76
+ start=jnp.where(
77
+ jnp.logical_and(symbol >= 0, symbol < self.n_tokens),
78
+ self.transitions[self.start, symbol],
79
+ self.start
80
+ ),
81
+ transitions=self.transitions,
82
+ labels=self.labels)
83
+
84
+ @jax.jit
85
+ def mutate(self, key: chex.PRNGKey) -> "DFAx":
86
+ key, k1, k2 = jax.random.split(key, 3)
87
+
88
+ flat_is_reach_tile = self.is_reach_tile.flatten()
89
+
90
+ scores, indices = jax.lax.top_k(jnp.where(flat_is_reach_tile, 1, 0), flat_is_reach_tile.size)
91
+ num_valid = jnp.sum(scores > 0)
92
+ valid_idx = jax.random.randint(k1, (), 0, num_valid)
93
+ flat_idx = indices[valid_idx]
94
+ s, a = jnp.divmod(flat_idx, self.n_tokens)
95
+
96
+ scores, indices = jax.lax.top_k(jnp.where(self.is_reach, 1, 0), self.max_n_states)
97
+ num_valid = jnp.sum(scores > 0)
98
+ valid_idx = jax.random.randint(k2, (), 0, num_valid)
99
+ t = indices[valid_idx]
100
+
101
+ transitions = self.transitions.at[s, a].set(t)
102
+
103
+ return DFAx(start=self.start,
104
+ transitions=transitions,
105
+ labels=self.labels)
106
+
107
+ @jax.jit
108
+ def mutate_reject_lang(self, key: chex.PRNGKey) -> "DFAx":
109
+ key, k1, k2 = jax.random.split(key, 3)
110
+
111
+ is_self_loop = self.transitions == jnp.arange(self.max_n_states)[:, None]
112
+ sa_mask = jnp.logical_and(
113
+ jnp.logical_and(self.is_reach_tile, is_self_loop),
114
+ jnp.logical_not(self.labels)[:, None]
115
+ ).flatten()
116
+
117
+ scores, indices = jax.lax.top_k(jnp.where(sa_mask, 1, 0), sa_mask.size)
118
+ num_valid = jnp.sum(scores > 0)
119
+ valid_idx = jax.random.randint(k1, (), 0, num_valid)
120
+ flat_idx = indices[valid_idx]
121
+ s, a = jnp.divmod(flat_idx, self.n_tokens)
122
+
123
+ is_sink = jnp.all(is_self_loop, axis=-1)
124
+ is_reject = jnp.logical_and.reduce(jnp.array([self.is_reach, is_sink, jnp.logical_not(self.labels)]))
125
+ t_mask = jnp.where(jnp.any(is_reject), is_reject, jnp.logical_not(self.is_reach))
126
+
127
+ scores, indices = jax.lax.top_k(jnp.where(t_mask, 1, 0), t_mask.size)
128
+ num_valid = jnp.sum(scores > 0)
129
+ valid_idx = jax.random.randint(k2, (), 0, num_valid)
130
+ t = indices[valid_idx]
131
+
132
+ transitions = self.transitions.at[s, a].set(t)
133
+
134
+ return DFAx(start=self.start,
135
+ transitions=transitions,
136
+ labels=self.labels)
137
+
138
+ @jax.jit
139
+ def sink_accepts(self) -> "DFAx":
140
+ accept_mask = jnp.tile(self.labels.reshape(-1, 1), (1, self.n_tokens))
141
+ replace_mask = accept_mask & self.is_reach_tile
142
+
143
+ sink_indices = jnp.tile(jnp.arange(self.max_n_states).reshape(-1, 1), (1, self.n_tokens))
144
+ transitions = jnp.where(replace_mask, sink_indices, self.transitions)
145
+
146
+ return DFAx(
147
+ start=self.start,
148
+ transitions=transitions,
149
+ labels=self.labels
150
+ )
151
+
152
+ @jax.jit
153
+ def prune(self) -> "DFAx":
154
+ pruned_transitions = jnp.where(self.is_reach_tile, self.transitions, jnp.arange(self.max_n_states)[:, None])
155
+ pruned_labels = jnp.where(self.is_reach, self.labels, False)
156
+
157
+ return DFAx(start=self.start,
158
+ transitions=pruned_transitions,
159
+ labels=pruned_labels)
160
+
161
+ @jax.jit
162
+ def minimize(self) -> "DFAx":
163
+ return self.naivePR().prune().canonicalize()
164
+
165
+ @jax.jit
166
+ def naivePR(self) -> "DFAx":
167
+ # Algorithm 2 from https://arxiv.org/pdf/2410.22764
168
+ q_f = jnp.argmax(jnp.where(self.is_reach, self.labels, 0))
169
+ q_n = jnp.argmin(jnp.where(self.is_reach, self.labels, 1))
170
+ block = jnp.where(self.labels, q_f, q_n)
171
+ block = jnp.where(self.is_reach, block, jnp.arange(self.max_n_states))
172
+
173
+ qs = jnp.arange(self.max_n_states)
174
+ as_ = jnp.arange(self.n_tokens)
175
+ qas = jnp.stack(jnp.meshgrid(qs, as_, indexing="ij"), axis=-1).reshape(-1, 2)
176
+
177
+ def iteration(state):
178
+ block, _ = state
179
+
180
+ def elect(q_a):
181
+ q, a = q_a
182
+ return jax.lax.cond(
183
+ self.is_reach[q],
184
+ lambda _: (
185
+ block[q],
186
+ jnp.where(
187
+ block[self.transitions[q, a]] != block[self.transitions[block[q], a]],
188
+ q,
189
+ -1
190
+ )
191
+ ),
192
+ lambda _: (block[q], -1),
193
+ operand=None
194
+ )
195
+ blk_idx, leaders = jax.vmap(elect)(qas)
196
+ new_leader = jax.ops.segment_max(leaders, blk_idx, num_segments=self.max_n_states)
197
+
198
+ def assign(q_a):
199
+ q, a = q_a
200
+ return jax.lax.cond(
201
+ self.is_reach[q],
202
+ lambda _: (
203
+ q,
204
+ jnp.where(
205
+ (block[self.transitions[q, a]] != block[self.transitions[block[q], a]]),
206
+ new_leader[block[q]],
207
+ -1
208
+ )
209
+ ),
210
+ lambda _: (q, -1),
211
+ operand=None
212
+ )
213
+ qs_idx, new_vals = jax.vmap(assign)(qas)
214
+ new_block = jax.ops.segment_max(new_vals, qs_idx, num_segments=self.max_n_states)
215
+ new_block = jnp.where(new_block < 0, block, new_block)
216
+
217
+ return (new_block, jnp.any(new_block != block))
218
+
219
+ block, _ = jax.lax.while_loop(
220
+ lambda s: s[1],
221
+ lambda s: iteration((s[0], False)),
222
+ (block, True)
223
+ )
224
+
225
+ minimized_start = block[self.start]
226
+ minimized_labels = self.labels[block]
227
+ minimized_transitions = block[self.transitions]
228
+
229
+ return DFAx(start=minimized_start,
230
+ transitions=minimized_transitions,
231
+ labels=minimized_labels)
232
+
233
+ @jax.jit
234
+ def canonicalize(self) -> "DFAx":
235
+ old_to_new = (-jnp.ones((self.max_n_states,), dtype=jnp.int32)).at[self.start].set(0)
236
+ visited = jnp.zeros((self.max_n_states,), dtype=bool).at[self.start].set(True)
237
+ queue = (-jnp.ones((self.max_n_states,), dtype=jnp.int32)).at[0].set(self.start)
238
+ head = 0
239
+ tail = (head + 1) % self.max_n_states
240
+ count = 0
241
+
242
+ def cond(carry):
243
+ _, _, _, head, tail, _ = carry
244
+ return head != tail
245
+
246
+ def body(carry):
247
+ visited, old_to_new, queue, head, tail, count = carry
248
+
249
+ current_state = queue[head]
250
+ head = (head + 1) % self.max_n_states
251
+
252
+ old_to_new = old_to_new.at[current_state].set(count)
253
+ count += 1
254
+
255
+ next_states = self.transitions[current_state]
256
+
257
+ def push(i, carry):
258
+ visited, queue, tail = carry
259
+ ns = next_states[i]
260
+ unseen = jnp.logical_not(visited[ns])
261
+
262
+ queue = queue.at[tail].set(jnp.where(unseen, ns, queue[tail]))
263
+ tail = (tail + unseen) % self.max_n_states
264
+
265
+ visited = visited.at[ns].set(True)
266
+ return visited, queue, tail
267
+
268
+ visited, queue, tail = jax.lax.fori_loop(
269
+ 0, self.n_tokens, push, (visited, queue, tail)
270
+ )
271
+
272
+ return visited, old_to_new, queue, head, tail, count
273
+
274
+ visited, old_to_new, queue, head, tail, count = jax.lax.while_loop(
275
+ cond, body, (visited, old_to_new, queue, head, tail, count)
276
+ )
277
+
278
+ mask = (old_to_new < 0)
279
+ ranks = jnp.cumsum(mask) - 1
280
+ fill_vals = count + ranks
281
+ old_to_new = jnp.where(mask, fill_vals, old_to_new)
282
+
283
+ start = old_to_new[self.start]
284
+ transitions = self.transitions.at[old_to_new].set(old_to_new[self.transitions])
285
+ labels = self.labels.at[old_to_new].set(self.labels)
286
+
287
+ return DFAx(start=start,
288
+ transitions=transitions,
289
+ labels=labels)
290
+
291
+ @jax.jit
292
+ def to_graph(self):
293
+ srcs, tgts = jnp.meshgrid(jnp.arange(self.max_n_states), jnp.arange(self.max_n_states), indexing="ij")
294
+ srcs = srcs.flatten()
295
+ tgts = tgts.flatten()
296
+
297
+ edge_index = jnp.stack([srcs, tgts])
298
+
299
+ is_init = jnp.logical_and(
300
+ self.is_reach,
301
+ jnp.arange(self.max_n_states) == self.start
302
+ )
303
+ is_accept = jnp.logical_and(
304
+ self.is_reach,
305
+ self.labels
306
+ )
307
+ is_reject = jnp.logical_and(
308
+ self.is_reach,
309
+ jnp.all(
310
+ jnp.logical_and(
311
+ self.transitions == jnp.arange(self.max_n_states)[:, None], # has all loops
312
+ jnp.logical_not(self.labels[:, None]) # not accepting
313
+ ),
314
+ axis=1
315
+ )
316
+ )
317
+ is_non_terminal = jnp.logical_and(
318
+ self.is_reach,
319
+ jnp.logical_and(
320
+ jnp.logical_not(is_accept),
321
+ jnp.logical_not(is_reject)
322
+ )
323
+ )
324
+
325
+ node_features = jnp.stack([is_init, is_accept, is_reject, is_non_terminal], axis=1).astype(jnp.float32)
326
+
327
+ edge_features = jnp.logical_and(
328
+ self.is_reach[:, None, None],
329
+ self.transitions[:, None, :] == jnp.arange(self.max_n_states)[None, :, None] # one hot tokens
330
+ ).astype(jnp.float32).reshape(-1, self.n_tokens)
331
+
332
+ mask = jnp.any(edge_features != 0, axis=-1)[:, None]
333
+ edge_features = jnp.concatenate([node_features[srcs] * mask, edge_features, node_features[tgts] * mask], axis=-1)
334
+
335
+ graph = {
336
+ "node_features": node_features,
337
+ "edge_features": edge_features,
338
+ "edge_index": edge_index,
339
+ "current_state": jnp.array([self.start]),
340
+ "n_states": jnp.full(self.max_n_states, self.n_states)
341
+ }
342
+
343
+ return graph
344
+
345
+ @jax.jit
346
+ def reward(self, binary: bool = False) -> float:
347
+ is_accept = self.labels[self.start]
348
+ start_row = self.transitions[self.start]
349
+ start_vec = jnp.full((self.n_tokens,), self.start, dtype=start_row.dtype)
350
+ is_sink = jnp.all(start_row == start_vec)
351
+
352
+ return jnp.where(binary,
353
+ jnp.where(is_accept, 1.0, 0.0),
354
+ jnp.where(is_accept, 1.0, jnp.where(is_sink, -1.0, 0.0))
355
+ )
356
+
dfax/samplers.py ADDED
@@ -0,0 +1,179 @@
1
+ import jax
2
+ import chex
3
+ import jax.numpy as jnp
4
+ from flax import struct
5
+ from dfax import DFAx
6
+ from functools import partial
7
+
8
+
9
+ # Base sampler: holds parameters
10
+ @struct.dataclass
11
+ class DFASampler:
12
+ n_tokens: int = 10
13
+ max_size: int = 10
14
+ p: float | None = None
15
+
16
+ @partial(jax.jit, static_argnums=(0,))
17
+ def sample(self, key: chex.PRNGKey) -> DFAx:
18
+ raise NotImplementedError
19
+
20
+ @partial(jax.jit, static_argnums=(0, 2))
21
+ def sample_n(self, key: chex.PRNGKey, lower_bound: int = 2):
22
+ if self.p is not None:
23
+ values = jnp.arange(lower_bound, self.max_size + 1)
24
+ weights = self.p ** values
25
+ weights = weights / jnp.sum(weights)
26
+ idx = jax.random.choice(key, values, p=weights)
27
+ return idx
28
+ else:
29
+ return jax.random.randint(key, (), lower_bound, self.max_size + 1)
30
+
31
+ @partial(jax.jit, static_argnums=(0,))
32
+ def trivial(self, label):
33
+ start = 0
34
+ transitions = jnp.tile(jnp.arange(self.max_size).reshape(-1, 1), (1, self.n_tokens))
35
+ labels = jnp.zeros((self.max_size,), dtype=bool).at[start].set(label)
36
+ return DFAx(start=start,
37
+ transitions=transitions,
38
+ labels=labels)
39
+
40
+
41
+ # Reach sampler
42
+ @struct.dataclass
43
+ class ReachSampler(DFASampler):
44
+ prob_stutter: float = 0.9
45
+
46
+ @partial(jax.jit, static_argnums=(0,))
47
+ def sample(self, key: chex.PRNGKey) -> DFAx:
48
+ key, subkey = jax.random.split(key)
49
+ n = self.sample_n(subkey, lower_bound=2)
50
+ success = n-1
51
+ transitions = jnp.tile(jnp.arange(self.max_size).reshape(-1, 1), (1, self.n_tokens))
52
+ labels = jnp.zeros(self.max_size, dtype=bool)
53
+ labels = labels.at[success].set(True)
54
+ transitions = transitions.at[success, :].set(success)
55
+
56
+ def body_fn(i, carry):
57
+ transitions, labels, key = carry
58
+ key, k1, k2, k3 = jax.random.split(key, 4)
59
+ perm = jax.random.permutation(k1, jnp.arange(self.n_tokens))
60
+ row = jnp.full(self.n_tokens, i, dtype=jnp.int32)
61
+ row = row.at[perm[0]].set(i+1)
62
+ rest = perm[1:]
63
+ r = jax.random.uniform(k2, (self.n_tokens-1,))
64
+ choice = jax.random.bernoulli(k3, 0.5, (self.n_tokens-1,))
65
+ dest = jnp.where(r <= self.prob_stutter, i, i+1)
66
+ row = row.at[rest].set(dest)
67
+ transitions = transitions.at[i].set(row)
68
+ return (transitions, labels, key)
69
+
70
+ transitions, labels, _ = jax.lax.cond(
71
+ n == 0,
72
+ lambda _: (jnp.tile(jnp.arange(self.max_size).reshape(-1, 1), (1, self.n_tokens)), jnp.zeros(self.max_size, dtype=bool).at[0].set(True), key),
73
+ lambda _: jax.lax.fori_loop(0, n-1, body_fn, (transitions, labels, key)),
74
+ operand=None
75
+ )
76
+ return DFAx(start=0, transitions=transitions, labels=labels).minimize()
77
+
78
+
79
+ # Reach-Avoid sampler
80
+ @struct.dataclass
81
+ class ReachAvoidSampler(DFASampler):
82
+ prob_stutter: float = 0.9
83
+
84
+ @partial(jax.jit, static_argnums=(0,))
85
+ def sample(self, key: chex.PRNGKey) -> DFAx:
86
+ key, subkey = jax.random.split(key)
87
+ n = self.sample_n(subkey, lower_bound=3)
88
+ success, fail = n-2, n-1
89
+ transitions = jnp.tile(jnp.arange(self.max_size).reshape(-1, 1), (1, self.n_tokens))
90
+ labels = jnp.zeros(self.max_size, dtype=bool)
91
+ labels = labels.at[success].set(True)
92
+ transitions = transitions.at[success, :].set(success)
93
+ transitions = transitions.at[fail, :].set(fail)
94
+
95
+ def body_fn(i, carry):
96
+ transitions, labels, key = carry
97
+ key, k1, k2, k3 = jax.random.split(key, 4)
98
+ perm = jax.random.permutation(k1, jnp.arange(self.n_tokens))
99
+ row = jnp.full(self.n_tokens, i, dtype=jnp.int32)
100
+ row = row.at[perm[0]].set(i+1)
101
+ row = row.at[perm[1]].set(fail)
102
+ rest = perm[2:]
103
+ r = jax.random.uniform(k2, (self.n_tokens-2,))
104
+ choice = jax.random.bernoulli(k3, 0.5, (self.n_tokens-2,))
105
+ dest = jnp.where(r <= self.prob_stutter, i, jnp.where(choice, i+1, fail))
106
+ row = row.at[rest].set(dest)
107
+ transitions = transitions.at[i].set(row)
108
+ return (transitions, labels, key)
109
+
110
+ transitions, labels, _ = jax.lax.cond(
111
+ n == 0,
112
+ lambda _: (jnp.tile(jnp.arange(self.max_size).reshape(-1, 1), (1, self.n_tokens)), jnp.zeros(self.max_size, dtype=bool).at[0].set(True), key),
113
+ lambda _: jax.lax.fori_loop(0, n-2, body_fn, (transitions, labels, key)),
114
+ operand=None
115
+ )
116
+ return DFAx(start=0, transitions=transitions, labels=labels).minimize()
117
+
118
+
119
+ # Reach-Avoid with random mutations
120
+ @struct.dataclass
121
+ class RADSampler(DFASampler):
122
+ p: float | None = 0.5
123
+ prob_stutter: float = 0.9
124
+ max_mutations: int = 5
125
+
126
+ @partial(jax.jit, static_argnums=(0,))
127
+ def sample(self, key: chex.PRNGKey) -> DFAx:
128
+ key, subkey = jax.random.split(key)
129
+ n = self.sample_n(subkey, lower_bound=3)
130
+ success, fail = n-2, n-1
131
+ transitions = jnp.tile(jnp.arange(self.max_size).reshape(-1, 1), (1, self.n_tokens))
132
+ labels = jnp.zeros(self.max_size, dtype=bool)
133
+ labels = labels.at[success].set(True)
134
+ transitions = transitions.at[success, :].set(success)
135
+ transitions = transitions.at[fail, :].set(fail)
136
+
137
+ def body_fn(i, carry):
138
+ transitions, labels, key = carry
139
+ key, k1, k2, k3, k4 = jax.random.split(key, 5)
140
+ perm = jax.random.permutation(k1, jnp.arange(self.n_tokens))
141
+ row = jnp.full(self.n_tokens, i, dtype=jnp.int32)
142
+ row = row.at[perm[0]].set(i+1)
143
+ is_avoid_problem = jax.random.bernoulli(k2, 0.5)
144
+ row = row.at[perm[1]].set(jnp.where(is_avoid_problem, fail, i))
145
+ rest = perm[2:]
146
+ r = jax.random.uniform(k3, (self.n_tokens-2,))
147
+ choice = jax.random.bernoulli(k4, 0.5, (self.n_tokens-2,))
148
+ dest = jnp.where(r <= self.prob_stutter, i, jnp.where(choice, i+1, fail))
149
+ row = row.at[rest].set(dest)
150
+ transitions = transitions.at[i].set(row)
151
+ return (transitions, labels, key)
152
+
153
+ transitions, labels, _ = jax.lax.cond(
154
+ n == 0,
155
+ lambda _: (jnp.tile(jnp.arange(self.max_size).reshape(-1, 1), (1, self.n_tokens)), jnp.zeros(self.max_size, dtype=bool).at[0].set(True), key),
156
+ lambda _: jax.lax.fori_loop(0, n-2, body_fn, (transitions, labels, key)),
157
+ operand=None
158
+ )
159
+ candidate = DFAx(start=0, transitions=transitions, labels=labels).minimize()
160
+
161
+ key, subkey = jax.random.split(key)
162
+ n_mutations = jax.random.choice(subkey, self.max_mutations + 1)
163
+
164
+ def derive(i, carry):
165
+ k, cand = carry
166
+ k, sk = jax.random.split(k)
167
+ new_cand = cand.mutate(sk).sink_accepts().minimize()
168
+ cand = jax.lax.cond(
169
+ new_cand.n_states <= 1,
170
+ lambda _: cand,
171
+ lambda _: new_cand,
172
+ operand=None
173
+ )
174
+ return k, cand
175
+
176
+ _, candidate = jax.lax.fori_loop(0, n_mutations, derive, (key, candidate))
177
+
178
+ return candidate
179
+
dfax/utils.py ADDED
@@ -0,0 +1,189 @@
1
+ import jax
2
+ from dfa import DFA
3
+ from dfax import DFAx
4
+ import networkx as nx
5
+ import jax.numpy as jnp
6
+ import matplotlib.pyplot as plt
7
+ import matplotlib.patches as patches
8
+
9
+
10
+ def dfa2dfax(dfa: DFA) -> DFAx:
11
+ states = dfa.states()
12
+ inputs = dfa.inputs
13
+ start = dfa.start
14
+ transitions = jnp.array([[dfa._transition(s, a) for a in inputs] for s in states])
15
+ labels = jnp.array([dfa._label(s) for s in states])
16
+ tmp = DFAx(
17
+ start=start,
18
+ transitions=transitions,
19
+ labels=labels
20
+ )
21
+ return tmp
22
+
23
+
24
+ def dfax2dfa(dfax: DFAx) -> DFA:
25
+ inputs = set(range(dfax.transitions.shape[1]))
26
+
27
+ def transition(s, a):
28
+ return int(dfax.transitions[s, a])
29
+
30
+ def label(s):
31
+ return bool(dfax.labels[s])
32
+
33
+ return DFA(
34
+ start=int(dfax.start),
35
+ inputs=inputs,
36
+ transition=transition,
37
+ label=label,
38
+ )
39
+
40
+
41
+ @jax.jit
42
+ def batch2graph(batch):
43
+ if batch["node_features"].ndim == 2 and batch["edge_features"].ndim == 2 and batch["edge_index"].ndim == 2 and batch["current_state"].ndim == 1:
44
+ return batch
45
+
46
+ batch_size, n_nodes, _ = batch["node_features"].shape
47
+ node_features = jnp.concatenate(batch["node_features"])
48
+ edge_features = jnp.concatenate(batch["edge_features"])
49
+ offset = (jnp.arange(batch_size, dtype=jnp.int32) * n_nodes)
50
+ edge_index = jnp.concatenate(batch["edge_index"] + offset[:, None, None], axis=1)
51
+ current_state = (batch["current_state"].reshape(batch_size, -1) + offset[:, None]).flatten()
52
+ n_states = jnp.concatenate(batch["n_states"])
53
+
54
+ graph = {
55
+ "node_features": node_features,
56
+ "edge_features": edge_features,
57
+ "edge_index": edge_index,
58
+ "current_state": current_state,
59
+ "n_states": n_states
60
+ }
61
+
62
+ return graph
63
+
64
+ @jax.jit
65
+ def list2batch(graphs):
66
+ node_features_batch = jnp.stack([graph["node_features"] for graph in graphs], axis=0)
67
+ node_features_batch = node_features_batch if node_features_batch.ndim == 3 else jnp.concatenate(node_features_batch, axis=0)
68
+
69
+ edge_features_batch = jnp.stack([graph["edge_features"] for graph in graphs], axis=0)
70
+ edge_features_batch = edge_features_batch if edge_features_batch.ndim == 3 else jnp.concatenate(edge_features_batch, axis=0)
71
+
72
+ edge_index_batch = jnp.stack([graph["edge_index"] for graph in graphs], axis=0)
73
+ edge_index_batch = edge_index_batch if edge_index_batch.ndim == 3 else jnp.concatenate(edge_index_batch, axis=0)
74
+
75
+ current_state_batch = jnp.stack([graph["current_state"] for graph in graphs], axis=0)
76
+ current_state_batch = current_state_batch if current_state_batch.ndim == 2 else jnp.concatenate(current_state_batch, axis=0)
77
+
78
+ n_states_batch = jnp.stack(jnp.array([graph["n_states"] for graph in graphs]), axis=0)
79
+ n_states_batch = n_states_batch if n_states_batch.ndim == 2 else jnp.concatenate(n_states_batch, axis=0)
80
+
81
+ batch = {
82
+ "node_features": node_features_batch,
83
+ "edge_features": edge_features_batch,
84
+ "edge_index": edge_index_batch,
85
+ "current_state": current_state_batch,
86
+ "n_states": n_states_batch,
87
+ }
88
+
89
+ return batch
90
+
91
+
92
+ def visualize(dfax, label_states=False, save_path=None):
93
+ n_states, n_tokens = dfax.transitions.shape
94
+
95
+ G = nx.DiGraph()
96
+ for s in range(n_states):
97
+ if dfax.is_reach[s]:
98
+ G.add_node(s, label=str(s))
99
+
100
+ edges = {}
101
+ for s in range(n_states):
102
+ s = int(s)
103
+ for a in range(n_tokens):
104
+ a = int(a)
105
+ t = int(dfax.transitions[s, a])
106
+ if s != t:
107
+ if (s, t) not in edges:
108
+ edges[(s, t)] = [str(a)]
109
+ else:
110
+ edges[(s, t)].append(str(a))
111
+
112
+ for (s, t) in edges:
113
+ G.add_edge(s, t, label=edges[(s, t)])
114
+
115
+ # dummy start node
116
+ dummy_start = ""
117
+ G.add_node(dummy_start)
118
+ G.add_edge(dummy_start, int(dfax.start))
119
+
120
+ pos = nx.shell_layout(G)
121
+ # pos = nx.planar_layout(G)
122
+ start_pos = pos[int(dfax.start)]
123
+ pos[dummy_start] = (start_pos[0] - 0.5, start_pos[1])
124
+
125
+ accept_nodes = [s for s in G.nodes() if s != dummy_start and dfax.labels[s]]
126
+ reject_nodes = [s for s in G.nodes() if s != dummy_start and not dfax.labels[s] and jnp.all(dfax.transitions[s] == s)]
127
+ undecd_nodes = [s for s in G.nodes() if s != dummy_start and not dfax.labels[s]]
128
+
129
+ # draw nodes
130
+ nx.draw_networkx_nodes(G, pos, nodelist=undecd_nodes, node_size=1200,
131
+ node_color="white", edgecolors="black", linewidths=2)
132
+ nx.draw_networkx_nodes(G, pos, nodelist=accept_nodes, node_size=1200,
133
+ node_color="#88E788", edgecolors="black", linewidths=2)
134
+ nx.draw_networkx_nodes(G, pos, nodelist=reject_nodes, node_size=1200,
135
+ node_color="#FF746C", edgecolors="black", linewidths=2)
136
+
137
+ if label_states:
138
+ nx.draw_networkx_labels(G, pos, font_size=20, font_weight="bold")
139
+
140
+ ax = plt.gca()
141
+
142
+ # draw edges
143
+ for (u, v) in G.edges():
144
+ if u == dummy_start:
145
+ nx.draw_networkx_edges(G, pos, edgelist=[(u, v)], arrows=True, arrowsize=20, node_size=1200)
146
+ continue
147
+
148
+ if G.has_edge(v, u):
149
+ rad = 0.25
150
+ else:
151
+ rad = 0.0
152
+
153
+ nx.draw_networkx_edges(G, pos, edgelist=[(u, v)], arrows=True, arrowsize=20,
154
+ connectionstyle=f"arc3,rad={rad}", node_size=1200)
155
+
156
+ # --- draw tokens along the curved edge ---
157
+ x0, y0 = pos[u]
158
+ x1, y1 = pos[v]
159
+ n = len(edges[(u, v)])
160
+ for i, a in enumerate(edges[(u, v)]):
161
+ ratio = (i + 1) / (n + 1)
162
+
163
+ # Compute midpoint along arc3 curve
164
+ if rad != 0:
165
+ # Control point for the quadratic Bezier
166
+ xm_ctrl = (x0 + x1) / 2 + rad * (y1 - y0)
167
+ ym_ctrl = (y0 + y1) / 2 - rad * (x1 - x0)
168
+
169
+ # Quadratic Bezier formula
170
+ xm = (1 - ratio) ** 2 * x0 + 2 * (1 - ratio) * ratio * xm_ctrl + ratio ** 2 * x1
171
+ ym = (1 - ratio) ** 2 * y0 + 2 * (1 - ratio) * ratio * ym_ctrl + ratio ** 2 * y1
172
+ else:
173
+ xm = x0 * (1 - ratio) + x1 * ratio
174
+ ym = y0 * (1 - ratio) + y1 * ratio
175
+
176
+ circle = patches.Circle((xm, ym), 0.08, facecolor="gold", edgecolor="orange", lw=1.5, zorder=5)
177
+ ax.add_patch(circle)
178
+ ax.text(xm, ym, a, ha="center", va="center", fontsize=16, color="black", weight="bold", zorder=6)
179
+
180
+ plt.axis("equal")
181
+ plt.tight_layout()
182
+ plt.axis("off")
183
+
184
+ if save_path:
185
+ plt.savefig(save_path, bbox_inches="tight", dpi=300)
186
+ else:
187
+ plt.show()
188
+ plt.close()
189
+
@@ -0,0 +1,136 @@
1
+ Metadata-Version: 2.4
2
+ Name: dfax
3
+ Version: 0.1.0
4
+ Summary: Python library for modeling DFAs, Moore Machines, and Transition Systems in JAX.
5
+ Author-email: Beyazit Yalcinkaya <beyazit@berkeley.edu>
6
+ License-File: LICENSE
7
+ Requires-Python: >=3.10
8
+ Description-Content-Type: text/markdown
9
+
10
+ # DFAx
11
+
12
+ A JAX-compatible Python implementation of a Deterministic Finite Automaton (DFA).
13
+
14
+ ## Installation
15
+
16
+ This package will soon be made pip-installable. In the meantime, pull the repo and and install locally.
17
+
18
+ ```
19
+ git clone https://github.com/rad-dfa/dfax.git
20
+ pip install -e dfax
21
+ ```
22
+
23
+ ## Usage
24
+
25
+ Create DFAs by specifying a `start` state, `transitions` matrix, which is max number of states by number of alphabet symbols, and the associated `labels` for each state.
26
+
27
+ ```python
28
+ from dfax import DFAx
29
+
30
+ dfax = DFAx(
31
+ start=0, # State referred to as 0 is the initial state
32
+ transitions=jnp.array([
33
+ [1, 2, 0, 0, 0],
34
+ [1, 1, 1, 1, 1],
35
+ [2, 2, 2, 2, 2],
36
+ ]), # Max number of states is 3 and number of tokens is 5
37
+ labels=jnp.array([False, True, False]) # State labels
38
+ ) # Returns a DFA
39
+ ```
40
+
41
+ Take transitions on the DFA using a given symbol.
42
+
43
+ ```python
44
+ dfax = dfax.advance(0) # Returns the resulting DFA after reading the symbol referred to as 0
45
+ ```
46
+
47
+ Minimize DFAs.
48
+
49
+ ```python
50
+ dfax = dfax.minimize() # Returns a canonical minimal DFA
51
+ ```
52
+
53
+
54
+ Canonicalize DFAs by relabeling states based on a BFS search.
55
+
56
+ ```python
57
+ dfax = dfax.canonicalize() # Returns a canonical DFA
58
+ ```
59
+
60
+ Mutate DFAs by randomly toggling entries in the transition matrix.
61
+
62
+ ```python
63
+ import jax
64
+
65
+ key = jax.random.PRNGKey(0)
66
+ dfax = dfax.mutate(key) # Returns a mutated DFA
67
+ ```
68
+
69
+ Perform syntactic equality check between DFAs.
70
+
71
+ ```python
72
+ dfax1 == dfax2
73
+ ```
74
+
75
+ Perform semantic equality check between DFAs.
76
+
77
+ ```python
78
+ dfax1.minimize() == dfax2.minimize()
79
+ ```
80
+
81
+ Use DFAs as reward functions. With ternary semantics, reward is (i) `+1` if the `start` state has label `True`, (ii) `-1` if the `start` state has label `False` and is a sink state, and (iii) `0` otherwise. With binary semantics, `0` is returned instead of `-1`.
82
+
83
+ ```python
84
+ dfax.reward() # Returns a ternary reward
85
+ dfax.reward(binary=True) # Returns a binary reward
86
+ ```
87
+
88
+
89
+ Sample from different DFA distributions: `Reach` samples DFAs ordering alphabet symbols, `ReachAvoid` samples `Reach` DFAs but also includes `Avoid` constraints, and `ReachAvoidDerived` samples randomly mutated `Reach` and `ReachAvoid` DFAs.
90
+
91
+ ```python
92
+ import jax
93
+ from dfax.samplers import ReachSampler, ReachAvoidSampler, RADSampler
94
+
95
+ key = jax.random.PRNGKey(0)
96
+ sampler = ReachAvoidSampler()
97
+
98
+ dfax = sampler.sample(key)
99
+ ```
100
+
101
+
102
+ Define your own DFA samplers by overloading `DFASampler `.
103
+
104
+ ```python
105
+ @struct.dataclass
106
+ class MySampler(DFASampler):
107
+ @partial(jax.jit, static_argnums=(0,))
108
+ def sample(self, key: chex.PRNGKey) -> DFAx:
109
+ # Write sampling code and return sampled DFA
110
+ ```
111
+
112
+ Visualize DFAs.
113
+
114
+ ```python
115
+ from dfax.utils import visualize
116
+ visualize(dfax)
117
+ ```
118
+
119
+
120
+ This project is a JAX extension of [dfa](https://github.com/mvcisback/dfa). Therefore, we include helper methods for translating `DFAx` objects to and from `DFA` objects.
121
+
122
+ ```python
123
+ from dfax import dfa2dfax, dfax2dfa
124
+
125
+ dfa = dfax2dfa(dfax) # Create DFA from DFAx
126
+ dfax = dfa2dfax(dfa) # Create DFAx from DFA
127
+ ```
128
+
129
+ ## In progress
130
+
131
+ Currently, we are working on implementing Boolean operations on `DFAx` objects, e.g., conjunction, disjunction, etc. If there are other functionalities you would like to have in this package, create pull request or contact us to work together!
132
+
133
+
134
+
135
+
136
+
@@ -0,0 +1,8 @@
1
+ dfax/__init__.py,sha256=Z7ML6_mY6woYNNoO8G-dqRwj9iLITiiArFP_PFNhmVY,48
2
+ dfax/dfax.py,sha256=dwBrsjSgrhBikvERw8aPL1fqTfQajr3YNOCTe1rsDFw,12486
3
+ dfax/samplers.py,sha256=r9b48rioT54T6rmzakDLmzbKUZJ59JtwPjQutsW5vxg,7263
4
+ dfax/utils.py,sha256=tEoruuxANe6ZIuNC7cqgTRef10VNbva7HNbgIXJGdGo,6732
5
+ dfax-0.1.0.dist-info/METADATA,sha256=wzgpWzITxHhyy4Okwe7Jp3CH9WtW8SpnsOpabCA3cbk,3523
6
+ dfax-0.1.0.dist-info/WHEEL,sha256=WLgqFyCfm_KASv4WHyYy0P3pM_m7J5L9k2skdKLirC8,87
7
+ dfax-0.1.0.dist-info/licenses/LICENSE,sha256=Cvu0BZqt3rcFFv70hcFDgD_y8ryOKW85F-qGRfYI4iM,1071
8
+ dfax-0.1.0.dist-info/RECORD,,
@@ -0,0 +1,4 @@
1
+ Wheel-Version: 1.0
2
+ Generator: hatchling 1.28.0
3
+ Root-Is-Purelib: true
4
+ Tag: py3-none-any
@@ -0,0 +1,21 @@
1
+ MIT License
2
+
3
+ Copyright (c) 2025 RAD-Embeddings
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the "Software"), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in all
13
+ copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
+ SOFTWARE.