denkproto 1.3.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (56) hide show
  1. denkproto/ImageAnalysis_ProtobufMessages_pb2.py +139 -0
  2. denkproto/ImageAnalysis_ProtobufMessages_pb2.pyi +598 -0
  3. denkproto/ImageAnalysis_ProtobufMessages_pb2_grpc.py +24 -0
  4. denkproto/__about__.py +1 -0
  5. denkproto/__init__.py +0 -0
  6. denkproto/annotation_comparer_request_pb2.py +40 -0
  7. denkproto/annotation_comparer_request_pb2.pyi +38 -0
  8. denkproto/annotation_comparer_request_pb2_grpc.py +24 -0
  9. denkproto/denkcache_pb2.py +77 -0
  10. denkproto/denkcache_pb2.pyi +155 -0
  11. denkproto/denkcache_pb2_grpc.py +398 -0
  12. denkproto/geometry_pb2.py +45 -0
  13. denkproto/geometry_pb2.pyi +54 -0
  14. denkproto/geometry_pb2_grpc.py +24 -0
  15. denkproto/inference_graph_pb2.py +185 -0
  16. denkproto/inference_graph_pb2.pyi +272 -0
  17. denkproto/inference_graph_pb2_grpc.py +24 -0
  18. denkproto/json/__init__.py +3 -0
  19. denkproto/json/classification_markup_schema_.py +28 -0
  20. denkproto/json/geometry_schema.py +71 -0
  21. denkproto/json/inference_graph_recipe_schema.py +336 -0
  22. denkproto/json/instance_segmentation_markup_schema.py +35 -0
  23. denkproto/json/object_detection_markup_schema.py +43 -0
  24. denkproto/json/ocr_markup_schema.py +48 -0
  25. denkproto/json/segmentation_markup_schema.py +242 -0
  26. denkproto/markup_pb2.py +56 -0
  27. denkproto/markup_pb2.pyi +155 -0
  28. denkproto/markup_pb2_grpc.py +24 -0
  29. denkproto/materialized_markup_pb2.py +46 -0
  30. denkproto/materialized_markup_pb2.pyi +71 -0
  31. denkproto/materialized_markup_pb2_grpc.py +24 -0
  32. denkproto/modelfile_v1_pb2.py +57 -0
  33. denkproto/modelfile_v1_pb2.pyi +216 -0
  34. denkproto/modelfile_v1_pb2_grpc.py +24 -0
  35. denkproto/modelfile_v2_pb2.py +154 -0
  36. denkproto/modelfile_v2_pb2.pyi +307 -0
  37. denkproto/modelfile_v2_pb2_grpc.py +24 -0
  38. denkproto/prediction_pb2.py +48 -0
  39. denkproto/prediction_pb2.pyi +89 -0
  40. denkproto/prediction_pb2_grpc.py +24 -0
  41. denkproto/prediction_request_pb2.py +43 -0
  42. denkproto/prediction_request_pb2.pyi +56 -0
  43. denkproto/prediction_request_pb2_grpc.py +24 -0
  44. denkproto/py.typed +0 -0
  45. denkproto/request_pb2.py +51 -0
  46. denkproto/request_pb2.pyi +92 -0
  47. denkproto/request_pb2_grpc.py +24 -0
  48. denkproto/results_pb2.py +91 -0
  49. denkproto/results_pb2.pyi +528 -0
  50. denkproto/results_pb2_grpc.py +24 -0
  51. denkproto/validate_pb2.py +86 -0
  52. denkproto/validate_pb2.pyi +494 -0
  53. denkproto/validate_pb2_grpc.py +24 -0
  54. denkproto-1.3.0.dist-info/METADATA +5 -0
  55. denkproto-1.3.0.dist-info/RECORD +56 -0
  56. denkproto-1.3.0.dist-info/WHEEL +4 -0
@@ -0,0 +1,185 @@
1
+ # -*- coding: utf-8 -*-
2
+ # Generated by the protocol buffer compiler. DO NOT EDIT!
3
+ # NO CHECKED-IN PROTOBUF GENCODE
4
+ # source: inference_graph.proto
5
+ # Protobuf Python Version: 5.28.1
6
+ """Generated protocol buffer code."""
7
+ from google.protobuf import descriptor as _descriptor
8
+ from google.protobuf import descriptor_pool as _descriptor_pool
9
+ from google.protobuf import runtime_version as _runtime_version
10
+ from google.protobuf import symbol_database as _symbol_database
11
+ from google.protobuf.internal import builder as _builder
12
+ _runtime_version.ValidateProtobufRuntimeVersion(
13
+ _runtime_version.Domain.PUBLIC,
14
+ 5,
15
+ 28,
16
+ 1,
17
+ '',
18
+ 'inference_graph.proto'
19
+ )
20
+ # @@protoc_insertion_point(imports)
21
+
22
+ _sym_db = _symbol_database.Default()
23
+
24
+
25
+ import denkproto.modelfile_v2_pb2 as modelfile__v2__pb2
26
+ import denkproto.validate_pb2 as validate__pb2
27
+
28
+
29
+ DESCRIPTOR = _descriptor_pool.Default().AddSerializedFile(b'\n\x15inference_graph.proto\x12\x0finference_graph\x1a\x12modelfile-v2.proto\x1a\x0evalidate.proto\"\xa5\x01\n\x0bModelSource\x12-\n\nfrom_proto\x18\x01 \x01(\x0b\x32\x17.modelfile.v2.ModelFileH\x00\x12#\n\x0f\x66rom_network_id\x18\x02 \x01(\tB\x08\xfa\x42\x05r\x03\xb0\x01\x01H\x00\x12.\n\x1a\x66rom_network_experiment_id\x18\x03 \x01(\tB\x08\xfa\x42\x05r\x03\xb0\x01\x01H\x00\x42\x12\n\x0bsource_type\x12\x03\xf8\x42\x01\"s\n\x0bSessionInfo\x12H\n\x12\x65xecution_provider\x18\x01 \x01(\x0e\x32\".inference_graph.ExecutionProviderB\x08\xfa\x42\x05\x82\x01\x02\x10\x01\x12\x1a\n\tdevice_id\x18\x02 \x01(\x05\x42\x07\xfa\x42\x04\x1a\x02(\x00\"\xa4\x03\n\x0f\x43onstTensorNode\x12\x15\n\x04name\x18\x01 \x01(\tB\x07\xfa\x42\x04r\x02\x10\x01\x12\r\n\x05shape\x18\x02 \x03(\r\x12\x43\n\x0buint64_data\x18\x03 \x01(\x0b\x32,.inference_graph.ConstTensorNode.Uint64ArrayH\x00\x12\x41\n\nint64_data\x18\x04 \x01(\x0b\x32+.inference_graph.ConstTensorNode.Int64ArrayH\x00\x12\x45\n\x0c\x66loat64_data\x18\x05 \x01(\x0b\x32-.inference_graph.ConstTensorNode.Float64ArrayH\x00\x12\x33\n\x10output_port_name\x18\x06 \x01(\tB\x19\xfa\x42\x16r\x14\x10\x01\x32\x10^[a-zA-Z0-9_-]+$\x1a\x1b\n\x0bUint64Array\x12\x0c\n\x04\x64\x61ta\x18\x01 \x03(\x04\x1a\x1a\n\nInt64Array\x12\x0c\n\x04\x64\x61ta\x18\x01 \x03(\x12\x1a\x1c\n\x0c\x46loat64Array\x12\x0c\n\x04\x64\x61ta\x18\x01 \x03(\x01\x42\x10\n\tdata_type\x12\x03\xf8\x42\x01\"\xc4\x02\n\x0fImageResizeNode\x12\x15\n\x04name\x18\x01 \x01(\tB\x07\xfa\x42\x04r\x02\x10\x01\x12L\n\ninput_size\x18\x02 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12M\n\x0binput_image\x18\x03 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12\x33\n\x10output_port_name\x18\x04 \x01(\tB\x19\xfa\x42\x16r\x14\x10\x01\x32\x10^[a-zA-Z0-9_-]+$\x12\x37\n\x0csession_info\x18\x05 \x01(\x0b\x32\x1c.inference_graph.SessionInfoH\x00\x88\x01\x01\x42\x0f\n\r_session_info\"\xa3\x05\n\x10ImagePatchesNode\x12\x15\n\x04name\x18\x01 \x01(\tB\x07\xfa\x42\x04r\x02\x10\x01\x12M\n\x0binput_image\x18\x02 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12V\n\x14input_bounding_boxes\x18\x03 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12W\n\x11input_target_size\x18\x04 \x01(\x0b\x32\x32.inference_graph.ImagePatchesNode.TargetSizeSourceB\x08\xfa\x42\x05\x8a\x01\x02\x10\x01\x12\x33\n\x10output_port_name\x18\x05 \x01(\tB\x19\xfa\x42\x16r\x14\x10\x01\x32\x10^[a-zA-Z0-9_-]+$\x12\x37\n\x0csession_info\x18\x07 \x01(\x0b\x32\x1c.inference_graph.SessionInfoH\x00\x88\x01\x01\x1a\xf8\x01\n\x10TargetSizeSource\x12I\n\x05topic\x18\x01 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$H\x00\x12L\n\x04size\x18\x02 \x01(\x0b\x32<.inference_graph.ImagePatchesNode.TargetSizeSource.ImageSizeH\x00\x1a<\n\tImageSize\x12\x17\n\x06height\x18\x01 \x01(\x03\x42\x07\xfa\x42\x04\"\x02(\x01\x12\x16\n\x05width\x18\x02 \x01(\x03\x42\x07\xfa\x42\x04\"\x02(\x01\x42\r\n\x06source\x12\x03\xf8\x42\x01\x42\x0f\n\r_session_info\"v\n\x11VirtualCameraNode\x12\x15\n\x04name\x18\x01 \x01(\tB\x07\xfa\x42\x04r\x02\x10\x01\x12\x15\n\x04path\x18\x02 \x01(\tB\x07\xfa\x42\x04r\x02\x10\x01\x12\x33\n\x10output_port_name\x18\x03 \x01(\tB\x19\xfa\x42\x16r\x14\x10\x01\x32\x10^[a-zA-Z0-9_-]+$\"\xb3\x02\n\x17ImageClassificationNode\x12\x0c\n\x04name\x18\x01 \x01(\t\x12M\n\x0binput_image\x18\x02 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12<\n\x0cmodel_source\x18\x03 \x01(\x0b\x32\x1c.inference_graph.ModelSourceB\x08\xfa\x42\x05\x8a\x01\x02\x10\x01\x12\x33\n\x10output_port_name\x18\x04 \x01(\tB\x19\xfa\x42\x16r\x14\x10\x01\x32\x10^[a-zA-Z0-9_-]+$\x12\x37\n\x0csession_info\x18\x05 \x01(\x0b\x32\x1c.inference_graph.SessionInfoH\x00\x88\x01\x01\x42\x0f\n\r_session_info\"\xd2\x02\n\x18ImageObjectDetectionNode\x12\x0c\n\x04name\x18\x01 \x01(\t\x12M\n\x0binput_image\x18\x02 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12<\n\x0cmodel_source\x18\x03 \x01(\x0b\x32\x1c.inference_graph.ModelSourceB\x08\xfa\x42\x05\x8a\x01\x02\x10\x01\x12\x1c\n\x14scale_bounding_boxes\x18\x04 \x01(\x08\x12\x33\n\x10output_port_name\x18\x05 \x01(\tB\x19\xfa\x42\x16r\x14\x10\x01\x32\x10^[a-zA-Z0-9_-]+$\x12\x37\n\x0csession_info\x18\x06 \x01(\x0b\x32\x1c.inference_graph.SessionInfoH\x00\x88\x01\x01\x42\x0f\n\r_session_info\"\xa8\x02\n\x0cImageOcrNode\x12\x0c\n\x04name\x18\x01 \x01(\t\x12M\n\x0binput_image\x18\x02 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12<\n\x0cmodel_source\x18\x03 \x01(\x0b\x32\x1c.inference_graph.ModelSourceB\x08\xfa\x42\x05\x8a\x01\x02\x10\x01\x12\x33\n\x10output_port_name\x18\x04 \x01(\tB\x19\xfa\x42\x16r\x14\x10\x01\x32\x10^[a-zA-Z0-9_-]+$\x12\x37\n\x0csession_info\x18\x05 \x01(\x0b\x32\x1c.inference_graph.SessionInfoH\x00\x88\x01\x01\x42\x0f\n\r_session_info\"\xb1\x02\n\x15ImageSegmentationNode\x12\x0c\n\x04name\x18\x01 \x01(\t\x12M\n\x0binput_image\x18\x02 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12<\n\x0cmodel_source\x18\x03 \x01(\x0b\x32\x1c.inference_graph.ModelSourceB\x08\xfa\x42\x05\x8a\x01\x02\x10\x01\x12\x33\n\x10output_port_name\x18\x04 \x01(\tB\x19\xfa\x42\x16r\x14\x10\x01\x32\x10^[a-zA-Z0-9_-]+$\x12\x37\n\x0csession_info\x18\x05 \x01(\x0b\x32\x1c.inference_graph.SessionInfoH\x00\x88\x01\x01\x42\x0f\n\r_session_info\"\xf7\x02\n\x1dImageInstanceSegmentationNode\x12\x0c\n\x04name\x18\x01 \x01(\t\x12M\n\x0binput_image\x18\x02 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12<\n\x0cmodel_source\x18\x03 \x01(\x0b\x32\x1c.inference_graph.ModelSourceB\x08\xfa\x42\x05\x8a\x01\x02\x10\x01\x12\x38\n\x15output_bounding_boxes\x18\x04 \x01(\tB\x19\xfa\x42\x16r\x14\x10\x01\x32\x10^[a-zA-Z0-9_-]+$\x12\x37\n\x14output_segmentations\x18\x05 \x01(\tB\x19\xfa\x42\x16r\x14\x10\x01\x32\x10^[a-zA-Z0-9_-]+$\x12\x37\n\x0csession_info\x18\x06 \x01(\x0b\x32\x1c.inference_graph.SessionInfoH\x00\x88\x01\x01\x42\x0f\n\r_session_info\"\xf3\x02\n\x19ImageAnomalyDetectionNode\x12\x0c\n\x04name\x18\x01 \x01(\t\x12M\n\x0binput_image\x18\x02 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12<\n\x0cmodel_source\x18\x03 \x01(\x0b\x32\x1c.inference_graph.ModelSourceB\x08\xfa\x42\x05\x8a\x01\x02\x10\x01\x12\x38\n\x15output_anomaly_scores\x18\x04 \x01(\tB\x19\xfa\x42\x16r\x14\x10\x01\x32\x10^[a-zA-Z0-9_-]+$\x12\x37\n\x14output_segmentations\x18\x05 \x01(\tB\x19\xfa\x42\x16r\x14\x10\x01\x32\x10^[a-zA-Z0-9_-]+$\x12\x37\n\x0csession_info\x18\x06 \x01(\x0b\x32\x1c.inference_graph.SessionInfoH\x00\x88\x01\x01\x42\x0f\n\r_session_info\"\xfd\x04\n\x15\x42oundingBoxFilterNode\x12\x15\n\x04name\x18\x01 \x01(\tB\x07\xfa\x42\x04r\x02\x10\x01\x12V\n\x14input_bounding_boxes\x18\x02 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12\x33\n\x10output_port_name\x18\x03 \x01(\tB\x19\xfa\x42\x16r\x14\x10\x01\x32\x10^[a-zA-Z0-9_-]+$\x12Z\n\x15input_score_threshold\x18\x04 \x01(\x0b\x32\x36.inference_graph.BoundingBoxFilterNode.ThresholdSourceH\x00\x88\x01\x01\x12X\n\x13input_iou_threshold\x18\x05 \x01(\x0b\x32\x36.inference_graph.BoundingBoxFilterNode.ThresholdSourceH\x01\x88\x01\x01\x12\x37\n\x0csession_info\x18\x06 \x01(\x0b\x32\x1c.inference_graph.SessionInfoH\x02\x88\x01\x01\x1a\x8d\x01\n\x0fThresholdSource\x12I\n\x05topic\x18\x01 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$H\x00\x12 \n\x05value\x18\x02 \x01(\x02\x42\x0f\xfa\x42\x0c\n\n\x1d\x00\x00\x80?-\x00\x00\x00\x00H\x00\x42\r\n\x06source\x12\x03\xf8\x42\x01\x42\x18\n\x16_input_score_thresholdB\x16\n\x14_input_iou_thresholdB\x0f\n\r_session_info\"\xbb\x06\n\x04Node\x12=\n\x11\x63onst_tensor_node\x18\x01 \x01(\x0b\x32 .inference_graph.ConstTensorNodeH\x00\x12=\n\x11image_resize_node\x18\x02 \x01(\x0b\x32 .inference_graph.ImageResizeNodeH\x00\x12?\n\x12image_patches_node\x18\x03 \x01(\x0b\x32!.inference_graph.ImagePatchesNodeH\x00\x12\x41\n\x13virtual_camera_node\x18\x04 \x01(\x0b\x32\".inference_graph.VirtualCameraNodeH\x00\x12M\n\x19image_classification_node\x18\x05 \x01(\x0b\x32(.inference_graph.ImageClassificationNodeH\x00\x12P\n\x1bimage_object_detection_node\x18\x06 \x01(\x0b\x32).inference_graph.ImageObjectDetectionNodeH\x00\x12\x37\n\x0eimage_ocr_node\x18\x07 \x01(\x0b\x32\x1d.inference_graph.ImageOcrNodeH\x00\x12J\n\x18\x62ounding_box_filter_node\x18\x08 \x01(\x0b\x32&.inference_graph.BoundingBoxFilterNodeH\x00\x12I\n\x17image_segmentation_node\x18\t \x01(\x0b\x32&.inference_graph.ImageSegmentationNodeH\x00\x12Z\n image_instance_segmentation_node\x18\n \x01(\x0b\x32..inference_graph.ImageInstanceSegmentationNodeH\x00\x12R\n\x1cimage_anomaly_detection_node\x18\x0b \x01(\x0b\x32*.inference_graph.ImageAnomalyDetectionNodeH\x00\x42\x10\n\tnode_type\x12\x03\xf8\x42\x01\"_\n\x05Graph\x12$\n\x05nodes\x18\x01 \x03(\x0b\x32\x15.inference_graph.Node\x12\x12\n\ncreated_at\x18\x02 \x01(\x03\x12\x1c\n\nlicense_id\x18\x03 \x01(\tB\x08\xfa\x42\x05r\x03\xb0\x01\x01*B\n\x11\x45xecutionProvider\x12\x07\n\x03\x43PU\x10\x00\x12\x08\n\x04\x43UDA\x10\x01\x12\x0c\n\x08\x44IRECTML\x10\x02\x12\x0c\n\x08TENSORRT\x10\x03\x42NZ0github.com/DENKweit/denkproto-go/inference_graph\xaa\x02\x19\x44\x45NK.Proto.InferenceGraphb\x06proto3')
30
+
31
+ _globals = globals()
32
+ _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals)
33
+ _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, 'inference_graph_pb2', _globals)
34
+ if not _descriptor._USE_C_DESCRIPTORS:
35
+ _globals['DESCRIPTOR']._loaded_options = None
36
+ _globals['DESCRIPTOR']._serialized_options = b'Z0github.com/DENKweit/denkproto-go/inference_graph\252\002\031DENK.Proto.InferenceGraph'
37
+ _globals['_MODELSOURCE'].oneofs_by_name['source_type']._loaded_options = None
38
+ _globals['_MODELSOURCE'].oneofs_by_name['source_type']._serialized_options = b'\370B\001'
39
+ _globals['_MODELSOURCE'].fields_by_name['from_network_id']._loaded_options = None
40
+ _globals['_MODELSOURCE'].fields_by_name['from_network_id']._serialized_options = b'\372B\005r\003\260\001\001'
41
+ _globals['_MODELSOURCE'].fields_by_name['from_network_experiment_id']._loaded_options = None
42
+ _globals['_MODELSOURCE'].fields_by_name['from_network_experiment_id']._serialized_options = b'\372B\005r\003\260\001\001'
43
+ _globals['_SESSIONINFO'].fields_by_name['execution_provider']._loaded_options = None
44
+ _globals['_SESSIONINFO'].fields_by_name['execution_provider']._serialized_options = b'\372B\005\202\001\002\020\001'
45
+ _globals['_SESSIONINFO'].fields_by_name['device_id']._loaded_options = None
46
+ _globals['_SESSIONINFO'].fields_by_name['device_id']._serialized_options = b'\372B\004\032\002(\000'
47
+ _globals['_CONSTTENSORNODE'].oneofs_by_name['data_type']._loaded_options = None
48
+ _globals['_CONSTTENSORNODE'].oneofs_by_name['data_type']._serialized_options = b'\370B\001'
49
+ _globals['_CONSTTENSORNODE'].fields_by_name['name']._loaded_options = None
50
+ _globals['_CONSTTENSORNODE'].fields_by_name['name']._serialized_options = b'\372B\004r\002\020\001'
51
+ _globals['_CONSTTENSORNODE'].fields_by_name['output_port_name']._loaded_options = None
52
+ _globals['_CONSTTENSORNODE'].fields_by_name['output_port_name']._serialized_options = b'\372B\026r\024\020\0012\020^[a-zA-Z0-9_-]+$'
53
+ _globals['_IMAGERESIZENODE'].fields_by_name['name']._loaded_options = None
54
+ _globals['_IMAGERESIZENODE'].fields_by_name['name']._serialized_options = b'\372B\004r\002\020\001'
55
+ _globals['_IMAGERESIZENODE'].fields_by_name['input_size']._loaded_options = None
56
+ _globals['_IMAGERESIZENODE'].fields_by_name['input_size']._serialized_options = b'\372B5r3\020\0012/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$'
57
+ _globals['_IMAGERESIZENODE'].fields_by_name['input_image']._loaded_options = None
58
+ _globals['_IMAGERESIZENODE'].fields_by_name['input_image']._serialized_options = b'\372B5r3\020\0012/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$'
59
+ _globals['_IMAGERESIZENODE'].fields_by_name['output_port_name']._loaded_options = None
60
+ _globals['_IMAGERESIZENODE'].fields_by_name['output_port_name']._serialized_options = b'\372B\026r\024\020\0012\020^[a-zA-Z0-9_-]+$'
61
+ _globals['_IMAGEPATCHESNODE_TARGETSIZESOURCE_IMAGESIZE'].fields_by_name['height']._loaded_options = None
62
+ _globals['_IMAGEPATCHESNODE_TARGETSIZESOURCE_IMAGESIZE'].fields_by_name['height']._serialized_options = b'\372B\004\"\002(\001'
63
+ _globals['_IMAGEPATCHESNODE_TARGETSIZESOURCE_IMAGESIZE'].fields_by_name['width']._loaded_options = None
64
+ _globals['_IMAGEPATCHESNODE_TARGETSIZESOURCE_IMAGESIZE'].fields_by_name['width']._serialized_options = b'\372B\004\"\002(\001'
65
+ _globals['_IMAGEPATCHESNODE_TARGETSIZESOURCE'].oneofs_by_name['source']._loaded_options = None
66
+ _globals['_IMAGEPATCHESNODE_TARGETSIZESOURCE'].oneofs_by_name['source']._serialized_options = b'\370B\001'
67
+ _globals['_IMAGEPATCHESNODE_TARGETSIZESOURCE'].fields_by_name['topic']._loaded_options = None
68
+ _globals['_IMAGEPATCHESNODE_TARGETSIZESOURCE'].fields_by_name['topic']._serialized_options = b'\372B5r3\020\0012/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$'
69
+ _globals['_IMAGEPATCHESNODE'].fields_by_name['name']._loaded_options = None
70
+ _globals['_IMAGEPATCHESNODE'].fields_by_name['name']._serialized_options = b'\372B\004r\002\020\001'
71
+ _globals['_IMAGEPATCHESNODE'].fields_by_name['input_image']._loaded_options = None
72
+ _globals['_IMAGEPATCHESNODE'].fields_by_name['input_image']._serialized_options = b'\372B5r3\020\0012/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$'
73
+ _globals['_IMAGEPATCHESNODE'].fields_by_name['input_bounding_boxes']._loaded_options = None
74
+ _globals['_IMAGEPATCHESNODE'].fields_by_name['input_bounding_boxes']._serialized_options = b'\372B5r3\020\0012/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$'
75
+ _globals['_IMAGEPATCHESNODE'].fields_by_name['input_target_size']._loaded_options = None
76
+ _globals['_IMAGEPATCHESNODE'].fields_by_name['input_target_size']._serialized_options = b'\372B\005\212\001\002\020\001'
77
+ _globals['_IMAGEPATCHESNODE'].fields_by_name['output_port_name']._loaded_options = None
78
+ _globals['_IMAGEPATCHESNODE'].fields_by_name['output_port_name']._serialized_options = b'\372B\026r\024\020\0012\020^[a-zA-Z0-9_-]+$'
79
+ _globals['_VIRTUALCAMERANODE'].fields_by_name['name']._loaded_options = None
80
+ _globals['_VIRTUALCAMERANODE'].fields_by_name['name']._serialized_options = b'\372B\004r\002\020\001'
81
+ _globals['_VIRTUALCAMERANODE'].fields_by_name['path']._loaded_options = None
82
+ _globals['_VIRTUALCAMERANODE'].fields_by_name['path']._serialized_options = b'\372B\004r\002\020\001'
83
+ _globals['_VIRTUALCAMERANODE'].fields_by_name['output_port_name']._loaded_options = None
84
+ _globals['_VIRTUALCAMERANODE'].fields_by_name['output_port_name']._serialized_options = b'\372B\026r\024\020\0012\020^[a-zA-Z0-9_-]+$'
85
+ _globals['_IMAGECLASSIFICATIONNODE'].fields_by_name['input_image']._loaded_options = None
86
+ _globals['_IMAGECLASSIFICATIONNODE'].fields_by_name['input_image']._serialized_options = b'\372B5r3\020\0012/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$'
87
+ _globals['_IMAGECLASSIFICATIONNODE'].fields_by_name['model_source']._loaded_options = None
88
+ _globals['_IMAGECLASSIFICATIONNODE'].fields_by_name['model_source']._serialized_options = b'\372B\005\212\001\002\020\001'
89
+ _globals['_IMAGECLASSIFICATIONNODE'].fields_by_name['output_port_name']._loaded_options = None
90
+ _globals['_IMAGECLASSIFICATIONNODE'].fields_by_name['output_port_name']._serialized_options = b'\372B\026r\024\020\0012\020^[a-zA-Z0-9_-]+$'
91
+ _globals['_IMAGEOBJECTDETECTIONNODE'].fields_by_name['input_image']._loaded_options = None
92
+ _globals['_IMAGEOBJECTDETECTIONNODE'].fields_by_name['input_image']._serialized_options = b'\372B5r3\020\0012/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$'
93
+ _globals['_IMAGEOBJECTDETECTIONNODE'].fields_by_name['model_source']._loaded_options = None
94
+ _globals['_IMAGEOBJECTDETECTIONNODE'].fields_by_name['model_source']._serialized_options = b'\372B\005\212\001\002\020\001'
95
+ _globals['_IMAGEOBJECTDETECTIONNODE'].fields_by_name['output_port_name']._loaded_options = None
96
+ _globals['_IMAGEOBJECTDETECTIONNODE'].fields_by_name['output_port_name']._serialized_options = b'\372B\026r\024\020\0012\020^[a-zA-Z0-9_-]+$'
97
+ _globals['_IMAGEOCRNODE'].fields_by_name['input_image']._loaded_options = None
98
+ _globals['_IMAGEOCRNODE'].fields_by_name['input_image']._serialized_options = b'\372B5r3\020\0012/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$'
99
+ _globals['_IMAGEOCRNODE'].fields_by_name['model_source']._loaded_options = None
100
+ _globals['_IMAGEOCRNODE'].fields_by_name['model_source']._serialized_options = b'\372B\005\212\001\002\020\001'
101
+ _globals['_IMAGEOCRNODE'].fields_by_name['output_port_name']._loaded_options = None
102
+ _globals['_IMAGEOCRNODE'].fields_by_name['output_port_name']._serialized_options = b'\372B\026r\024\020\0012\020^[a-zA-Z0-9_-]+$'
103
+ _globals['_IMAGESEGMENTATIONNODE'].fields_by_name['input_image']._loaded_options = None
104
+ _globals['_IMAGESEGMENTATIONNODE'].fields_by_name['input_image']._serialized_options = b'\372B5r3\020\0012/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$'
105
+ _globals['_IMAGESEGMENTATIONNODE'].fields_by_name['model_source']._loaded_options = None
106
+ _globals['_IMAGESEGMENTATIONNODE'].fields_by_name['model_source']._serialized_options = b'\372B\005\212\001\002\020\001'
107
+ _globals['_IMAGESEGMENTATIONNODE'].fields_by_name['output_port_name']._loaded_options = None
108
+ _globals['_IMAGESEGMENTATIONNODE'].fields_by_name['output_port_name']._serialized_options = b'\372B\026r\024\020\0012\020^[a-zA-Z0-9_-]+$'
109
+ _globals['_IMAGEINSTANCESEGMENTATIONNODE'].fields_by_name['input_image']._loaded_options = None
110
+ _globals['_IMAGEINSTANCESEGMENTATIONNODE'].fields_by_name['input_image']._serialized_options = b'\372B5r3\020\0012/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$'
111
+ _globals['_IMAGEINSTANCESEGMENTATIONNODE'].fields_by_name['model_source']._loaded_options = None
112
+ _globals['_IMAGEINSTANCESEGMENTATIONNODE'].fields_by_name['model_source']._serialized_options = b'\372B\005\212\001\002\020\001'
113
+ _globals['_IMAGEINSTANCESEGMENTATIONNODE'].fields_by_name['output_bounding_boxes']._loaded_options = None
114
+ _globals['_IMAGEINSTANCESEGMENTATIONNODE'].fields_by_name['output_bounding_boxes']._serialized_options = b'\372B\026r\024\020\0012\020^[a-zA-Z0-9_-]+$'
115
+ _globals['_IMAGEINSTANCESEGMENTATIONNODE'].fields_by_name['output_segmentations']._loaded_options = None
116
+ _globals['_IMAGEINSTANCESEGMENTATIONNODE'].fields_by_name['output_segmentations']._serialized_options = b'\372B\026r\024\020\0012\020^[a-zA-Z0-9_-]+$'
117
+ _globals['_IMAGEANOMALYDETECTIONNODE'].fields_by_name['input_image']._loaded_options = None
118
+ _globals['_IMAGEANOMALYDETECTIONNODE'].fields_by_name['input_image']._serialized_options = b'\372B5r3\020\0012/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$'
119
+ _globals['_IMAGEANOMALYDETECTIONNODE'].fields_by_name['model_source']._loaded_options = None
120
+ _globals['_IMAGEANOMALYDETECTIONNODE'].fields_by_name['model_source']._serialized_options = b'\372B\005\212\001\002\020\001'
121
+ _globals['_IMAGEANOMALYDETECTIONNODE'].fields_by_name['output_anomaly_scores']._loaded_options = None
122
+ _globals['_IMAGEANOMALYDETECTIONNODE'].fields_by_name['output_anomaly_scores']._serialized_options = b'\372B\026r\024\020\0012\020^[a-zA-Z0-9_-]+$'
123
+ _globals['_IMAGEANOMALYDETECTIONNODE'].fields_by_name['output_segmentations']._loaded_options = None
124
+ _globals['_IMAGEANOMALYDETECTIONNODE'].fields_by_name['output_segmentations']._serialized_options = b'\372B\026r\024\020\0012\020^[a-zA-Z0-9_-]+$'
125
+ _globals['_BOUNDINGBOXFILTERNODE_THRESHOLDSOURCE'].oneofs_by_name['source']._loaded_options = None
126
+ _globals['_BOUNDINGBOXFILTERNODE_THRESHOLDSOURCE'].oneofs_by_name['source']._serialized_options = b'\370B\001'
127
+ _globals['_BOUNDINGBOXFILTERNODE_THRESHOLDSOURCE'].fields_by_name['topic']._loaded_options = None
128
+ _globals['_BOUNDINGBOXFILTERNODE_THRESHOLDSOURCE'].fields_by_name['topic']._serialized_options = b'\372B5r3\020\0012/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$'
129
+ _globals['_BOUNDINGBOXFILTERNODE_THRESHOLDSOURCE'].fields_by_name['value']._loaded_options = None
130
+ _globals['_BOUNDINGBOXFILTERNODE_THRESHOLDSOURCE'].fields_by_name['value']._serialized_options = b'\372B\014\n\n\035\000\000\200?-\000\000\000\000'
131
+ _globals['_BOUNDINGBOXFILTERNODE'].fields_by_name['name']._loaded_options = None
132
+ _globals['_BOUNDINGBOXFILTERNODE'].fields_by_name['name']._serialized_options = b'\372B\004r\002\020\001'
133
+ _globals['_BOUNDINGBOXFILTERNODE'].fields_by_name['input_bounding_boxes']._loaded_options = None
134
+ _globals['_BOUNDINGBOXFILTERNODE'].fields_by_name['input_bounding_boxes']._serialized_options = b'\372B5r3\020\0012/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$'
135
+ _globals['_BOUNDINGBOXFILTERNODE'].fields_by_name['output_port_name']._loaded_options = None
136
+ _globals['_BOUNDINGBOXFILTERNODE'].fields_by_name['output_port_name']._serialized_options = b'\372B\026r\024\020\0012\020^[a-zA-Z0-9_-]+$'
137
+ _globals['_NODE'].oneofs_by_name['node_type']._loaded_options = None
138
+ _globals['_NODE'].oneofs_by_name['node_type']._serialized_options = b'\370B\001'
139
+ _globals['_GRAPH'].fields_by_name['license_id']._loaded_options = None
140
+ _globals['_GRAPH'].fields_by_name['license_id']._serialized_options = b'\372B\005r\003\260\001\001'
141
+ _globals['_EXECUTIONPROVIDER']._serialized_start=5488
142
+ _globals['_EXECUTIONPROVIDER']._serialized_end=5554
143
+ _globals['_MODELSOURCE']._serialized_start=79
144
+ _globals['_MODELSOURCE']._serialized_end=244
145
+ _globals['_SESSIONINFO']._serialized_start=246
146
+ _globals['_SESSIONINFO']._serialized_end=361
147
+ _globals['_CONSTTENSORNODE']._serialized_start=364
148
+ _globals['_CONSTTENSORNODE']._serialized_end=784
149
+ _globals['_CONSTTENSORNODE_UINT64ARRAY']._serialized_start=681
150
+ _globals['_CONSTTENSORNODE_UINT64ARRAY']._serialized_end=708
151
+ _globals['_CONSTTENSORNODE_INT64ARRAY']._serialized_start=710
152
+ _globals['_CONSTTENSORNODE_INT64ARRAY']._serialized_end=736
153
+ _globals['_CONSTTENSORNODE_FLOAT64ARRAY']._serialized_start=738
154
+ _globals['_CONSTTENSORNODE_FLOAT64ARRAY']._serialized_end=766
155
+ _globals['_IMAGERESIZENODE']._serialized_start=787
156
+ _globals['_IMAGERESIZENODE']._serialized_end=1111
157
+ _globals['_IMAGEPATCHESNODE']._serialized_start=1114
158
+ _globals['_IMAGEPATCHESNODE']._serialized_end=1789
159
+ _globals['_IMAGEPATCHESNODE_TARGETSIZESOURCE']._serialized_start=1524
160
+ _globals['_IMAGEPATCHESNODE_TARGETSIZESOURCE']._serialized_end=1772
161
+ _globals['_IMAGEPATCHESNODE_TARGETSIZESOURCE_IMAGESIZE']._serialized_start=1697
162
+ _globals['_IMAGEPATCHESNODE_TARGETSIZESOURCE_IMAGESIZE']._serialized_end=1757
163
+ _globals['_VIRTUALCAMERANODE']._serialized_start=1791
164
+ _globals['_VIRTUALCAMERANODE']._serialized_end=1909
165
+ _globals['_IMAGECLASSIFICATIONNODE']._serialized_start=1912
166
+ _globals['_IMAGECLASSIFICATIONNODE']._serialized_end=2219
167
+ _globals['_IMAGEOBJECTDETECTIONNODE']._serialized_start=2222
168
+ _globals['_IMAGEOBJECTDETECTIONNODE']._serialized_end=2560
169
+ _globals['_IMAGEOCRNODE']._serialized_start=2563
170
+ _globals['_IMAGEOCRNODE']._serialized_end=2859
171
+ _globals['_IMAGESEGMENTATIONNODE']._serialized_start=2862
172
+ _globals['_IMAGESEGMENTATIONNODE']._serialized_end=3167
173
+ _globals['_IMAGEINSTANCESEGMENTATIONNODE']._serialized_start=3170
174
+ _globals['_IMAGEINSTANCESEGMENTATIONNODE']._serialized_end=3545
175
+ _globals['_IMAGEANOMALYDETECTIONNODE']._serialized_start=3548
176
+ _globals['_IMAGEANOMALYDETECTIONNODE']._serialized_end=3919
177
+ _globals['_BOUNDINGBOXFILTERNODE']._serialized_start=3922
178
+ _globals['_BOUNDINGBOXFILTERNODE']._serialized_end=4559
179
+ _globals['_BOUNDINGBOXFILTERNODE_THRESHOLDSOURCE']._serialized_start=4351
180
+ _globals['_BOUNDINGBOXFILTERNODE_THRESHOLDSOURCE']._serialized_end=4492
181
+ _globals['_NODE']._serialized_start=4562
182
+ _globals['_NODE']._serialized_end=5389
183
+ _globals['_GRAPH']._serialized_start=5391
184
+ _globals['_GRAPH']._serialized_end=5486
185
+ # @@protoc_insertion_point(module_scope)
@@ -0,0 +1,272 @@
1
+ import modelfile_v2_pb2 as _modelfile_v2_pb2
2
+ import validate_pb2 as _validate_pb2
3
+ from google.protobuf.internal import containers as _containers
4
+ from google.protobuf.internal import enum_type_wrapper as _enum_type_wrapper
5
+ from google.protobuf import descriptor as _descriptor
6
+ from google.protobuf import message as _message
7
+ from typing import ClassVar as _ClassVar, Iterable as _Iterable, Mapping as _Mapping, Optional as _Optional, Union as _Union
8
+
9
+ DESCRIPTOR: _descriptor.FileDescriptor
10
+
11
+ class ExecutionProvider(int, metaclass=_enum_type_wrapper.EnumTypeWrapper):
12
+ __slots__ = ()
13
+ CPU: _ClassVar[ExecutionProvider]
14
+ CUDA: _ClassVar[ExecutionProvider]
15
+ DIRECTML: _ClassVar[ExecutionProvider]
16
+ TENSORRT: _ClassVar[ExecutionProvider]
17
+ CPU: ExecutionProvider
18
+ CUDA: ExecutionProvider
19
+ DIRECTML: ExecutionProvider
20
+ TENSORRT: ExecutionProvider
21
+
22
+ class ModelSource(_message.Message):
23
+ __slots__ = ("from_proto", "from_network_id", "from_network_experiment_id")
24
+ FROM_PROTO_FIELD_NUMBER: _ClassVar[int]
25
+ FROM_NETWORK_ID_FIELD_NUMBER: _ClassVar[int]
26
+ FROM_NETWORK_EXPERIMENT_ID_FIELD_NUMBER: _ClassVar[int]
27
+ from_proto: _modelfile_v2_pb2.ModelFile
28
+ from_network_id: str
29
+ from_network_experiment_id: str
30
+ def __init__(self, from_proto: _Optional[_Union[_modelfile_v2_pb2.ModelFile, _Mapping]] = ..., from_network_id: _Optional[str] = ..., from_network_experiment_id: _Optional[str] = ...) -> None: ...
31
+
32
+ class SessionInfo(_message.Message):
33
+ __slots__ = ("execution_provider", "device_id")
34
+ EXECUTION_PROVIDER_FIELD_NUMBER: _ClassVar[int]
35
+ DEVICE_ID_FIELD_NUMBER: _ClassVar[int]
36
+ execution_provider: ExecutionProvider
37
+ device_id: int
38
+ def __init__(self, execution_provider: _Optional[_Union[ExecutionProvider, str]] = ..., device_id: _Optional[int] = ...) -> None: ...
39
+
40
+ class ConstTensorNode(_message.Message):
41
+ __slots__ = ("name", "shape", "uint64_data", "int64_data", "float64_data", "output_port_name")
42
+ class Uint64Array(_message.Message):
43
+ __slots__ = ("data",)
44
+ DATA_FIELD_NUMBER: _ClassVar[int]
45
+ data: _containers.RepeatedScalarFieldContainer[int]
46
+ def __init__(self, data: _Optional[_Iterable[int]] = ...) -> None: ...
47
+ class Int64Array(_message.Message):
48
+ __slots__ = ("data",)
49
+ DATA_FIELD_NUMBER: _ClassVar[int]
50
+ data: _containers.RepeatedScalarFieldContainer[int]
51
+ def __init__(self, data: _Optional[_Iterable[int]] = ...) -> None: ...
52
+ class Float64Array(_message.Message):
53
+ __slots__ = ("data",)
54
+ DATA_FIELD_NUMBER: _ClassVar[int]
55
+ data: _containers.RepeatedScalarFieldContainer[float]
56
+ def __init__(self, data: _Optional[_Iterable[float]] = ...) -> None: ...
57
+ NAME_FIELD_NUMBER: _ClassVar[int]
58
+ SHAPE_FIELD_NUMBER: _ClassVar[int]
59
+ UINT64_DATA_FIELD_NUMBER: _ClassVar[int]
60
+ INT64_DATA_FIELD_NUMBER: _ClassVar[int]
61
+ FLOAT64_DATA_FIELD_NUMBER: _ClassVar[int]
62
+ OUTPUT_PORT_NAME_FIELD_NUMBER: _ClassVar[int]
63
+ name: str
64
+ shape: _containers.RepeatedScalarFieldContainer[int]
65
+ uint64_data: ConstTensorNode.Uint64Array
66
+ int64_data: ConstTensorNode.Int64Array
67
+ float64_data: ConstTensorNode.Float64Array
68
+ output_port_name: str
69
+ def __init__(self, name: _Optional[str] = ..., shape: _Optional[_Iterable[int]] = ..., uint64_data: _Optional[_Union[ConstTensorNode.Uint64Array, _Mapping]] = ..., int64_data: _Optional[_Union[ConstTensorNode.Int64Array, _Mapping]] = ..., float64_data: _Optional[_Union[ConstTensorNode.Float64Array, _Mapping]] = ..., output_port_name: _Optional[str] = ...) -> None: ...
70
+
71
+ class ImageResizeNode(_message.Message):
72
+ __slots__ = ("name", "input_size", "input_image", "output_port_name", "session_info")
73
+ NAME_FIELD_NUMBER: _ClassVar[int]
74
+ INPUT_SIZE_FIELD_NUMBER: _ClassVar[int]
75
+ INPUT_IMAGE_FIELD_NUMBER: _ClassVar[int]
76
+ OUTPUT_PORT_NAME_FIELD_NUMBER: _ClassVar[int]
77
+ SESSION_INFO_FIELD_NUMBER: _ClassVar[int]
78
+ name: str
79
+ input_size: str
80
+ input_image: str
81
+ output_port_name: str
82
+ session_info: SessionInfo
83
+ def __init__(self, name: _Optional[str] = ..., input_size: _Optional[str] = ..., input_image: _Optional[str] = ..., output_port_name: _Optional[str] = ..., session_info: _Optional[_Union[SessionInfo, _Mapping]] = ...) -> None: ...
84
+
85
+ class ImagePatchesNode(_message.Message):
86
+ __slots__ = ("name", "input_image", "input_bounding_boxes", "input_target_size", "output_port_name", "session_info")
87
+ class TargetSizeSource(_message.Message):
88
+ __slots__ = ("topic", "size")
89
+ class ImageSize(_message.Message):
90
+ __slots__ = ("height", "width")
91
+ HEIGHT_FIELD_NUMBER: _ClassVar[int]
92
+ WIDTH_FIELD_NUMBER: _ClassVar[int]
93
+ height: int
94
+ width: int
95
+ def __init__(self, height: _Optional[int] = ..., width: _Optional[int] = ...) -> None: ...
96
+ TOPIC_FIELD_NUMBER: _ClassVar[int]
97
+ SIZE_FIELD_NUMBER: _ClassVar[int]
98
+ topic: str
99
+ size: ImagePatchesNode.TargetSizeSource.ImageSize
100
+ def __init__(self, topic: _Optional[str] = ..., size: _Optional[_Union[ImagePatchesNode.TargetSizeSource.ImageSize, _Mapping]] = ...) -> None: ...
101
+ NAME_FIELD_NUMBER: _ClassVar[int]
102
+ INPUT_IMAGE_FIELD_NUMBER: _ClassVar[int]
103
+ INPUT_BOUNDING_BOXES_FIELD_NUMBER: _ClassVar[int]
104
+ INPUT_TARGET_SIZE_FIELD_NUMBER: _ClassVar[int]
105
+ OUTPUT_PORT_NAME_FIELD_NUMBER: _ClassVar[int]
106
+ SESSION_INFO_FIELD_NUMBER: _ClassVar[int]
107
+ name: str
108
+ input_image: str
109
+ input_bounding_boxes: str
110
+ input_target_size: ImagePatchesNode.TargetSizeSource
111
+ output_port_name: str
112
+ session_info: SessionInfo
113
+ def __init__(self, name: _Optional[str] = ..., input_image: _Optional[str] = ..., input_bounding_boxes: _Optional[str] = ..., input_target_size: _Optional[_Union[ImagePatchesNode.TargetSizeSource, _Mapping]] = ..., output_port_name: _Optional[str] = ..., session_info: _Optional[_Union[SessionInfo, _Mapping]] = ...) -> None: ...
114
+
115
+ class VirtualCameraNode(_message.Message):
116
+ __slots__ = ("name", "path", "output_port_name")
117
+ NAME_FIELD_NUMBER: _ClassVar[int]
118
+ PATH_FIELD_NUMBER: _ClassVar[int]
119
+ OUTPUT_PORT_NAME_FIELD_NUMBER: _ClassVar[int]
120
+ name: str
121
+ path: str
122
+ output_port_name: str
123
+ def __init__(self, name: _Optional[str] = ..., path: _Optional[str] = ..., output_port_name: _Optional[str] = ...) -> None: ...
124
+
125
+ class ImageClassificationNode(_message.Message):
126
+ __slots__ = ("name", "input_image", "model_source", "output_port_name", "session_info")
127
+ NAME_FIELD_NUMBER: _ClassVar[int]
128
+ INPUT_IMAGE_FIELD_NUMBER: _ClassVar[int]
129
+ MODEL_SOURCE_FIELD_NUMBER: _ClassVar[int]
130
+ OUTPUT_PORT_NAME_FIELD_NUMBER: _ClassVar[int]
131
+ SESSION_INFO_FIELD_NUMBER: _ClassVar[int]
132
+ name: str
133
+ input_image: str
134
+ model_source: ModelSource
135
+ output_port_name: str
136
+ session_info: SessionInfo
137
+ def __init__(self, name: _Optional[str] = ..., input_image: _Optional[str] = ..., model_source: _Optional[_Union[ModelSource, _Mapping]] = ..., output_port_name: _Optional[str] = ..., session_info: _Optional[_Union[SessionInfo, _Mapping]] = ...) -> None: ...
138
+
139
+ class ImageObjectDetectionNode(_message.Message):
140
+ __slots__ = ("name", "input_image", "model_source", "scale_bounding_boxes", "output_port_name", "session_info")
141
+ NAME_FIELD_NUMBER: _ClassVar[int]
142
+ INPUT_IMAGE_FIELD_NUMBER: _ClassVar[int]
143
+ MODEL_SOURCE_FIELD_NUMBER: _ClassVar[int]
144
+ SCALE_BOUNDING_BOXES_FIELD_NUMBER: _ClassVar[int]
145
+ OUTPUT_PORT_NAME_FIELD_NUMBER: _ClassVar[int]
146
+ SESSION_INFO_FIELD_NUMBER: _ClassVar[int]
147
+ name: str
148
+ input_image: str
149
+ model_source: ModelSource
150
+ scale_bounding_boxes: bool
151
+ output_port_name: str
152
+ session_info: SessionInfo
153
+ def __init__(self, name: _Optional[str] = ..., input_image: _Optional[str] = ..., model_source: _Optional[_Union[ModelSource, _Mapping]] = ..., scale_bounding_boxes: bool = ..., output_port_name: _Optional[str] = ..., session_info: _Optional[_Union[SessionInfo, _Mapping]] = ...) -> None: ...
154
+
155
+ class ImageOcrNode(_message.Message):
156
+ __slots__ = ("name", "input_image", "model_source", "output_port_name", "session_info")
157
+ NAME_FIELD_NUMBER: _ClassVar[int]
158
+ INPUT_IMAGE_FIELD_NUMBER: _ClassVar[int]
159
+ MODEL_SOURCE_FIELD_NUMBER: _ClassVar[int]
160
+ OUTPUT_PORT_NAME_FIELD_NUMBER: _ClassVar[int]
161
+ SESSION_INFO_FIELD_NUMBER: _ClassVar[int]
162
+ name: str
163
+ input_image: str
164
+ model_source: ModelSource
165
+ output_port_name: str
166
+ session_info: SessionInfo
167
+ def __init__(self, name: _Optional[str] = ..., input_image: _Optional[str] = ..., model_source: _Optional[_Union[ModelSource, _Mapping]] = ..., output_port_name: _Optional[str] = ..., session_info: _Optional[_Union[SessionInfo, _Mapping]] = ...) -> None: ...
168
+
169
+ class ImageSegmentationNode(_message.Message):
170
+ __slots__ = ("name", "input_image", "model_source", "output_port_name", "session_info")
171
+ NAME_FIELD_NUMBER: _ClassVar[int]
172
+ INPUT_IMAGE_FIELD_NUMBER: _ClassVar[int]
173
+ MODEL_SOURCE_FIELD_NUMBER: _ClassVar[int]
174
+ OUTPUT_PORT_NAME_FIELD_NUMBER: _ClassVar[int]
175
+ SESSION_INFO_FIELD_NUMBER: _ClassVar[int]
176
+ name: str
177
+ input_image: str
178
+ model_source: ModelSource
179
+ output_port_name: str
180
+ session_info: SessionInfo
181
+ def __init__(self, name: _Optional[str] = ..., input_image: _Optional[str] = ..., model_source: _Optional[_Union[ModelSource, _Mapping]] = ..., output_port_name: _Optional[str] = ..., session_info: _Optional[_Union[SessionInfo, _Mapping]] = ...) -> None: ...
182
+
183
+ class ImageInstanceSegmentationNode(_message.Message):
184
+ __slots__ = ("name", "input_image", "model_source", "output_bounding_boxes", "output_segmentations", "session_info")
185
+ NAME_FIELD_NUMBER: _ClassVar[int]
186
+ INPUT_IMAGE_FIELD_NUMBER: _ClassVar[int]
187
+ MODEL_SOURCE_FIELD_NUMBER: _ClassVar[int]
188
+ OUTPUT_BOUNDING_BOXES_FIELD_NUMBER: _ClassVar[int]
189
+ OUTPUT_SEGMENTATIONS_FIELD_NUMBER: _ClassVar[int]
190
+ SESSION_INFO_FIELD_NUMBER: _ClassVar[int]
191
+ name: str
192
+ input_image: str
193
+ model_source: ModelSource
194
+ output_bounding_boxes: str
195
+ output_segmentations: str
196
+ session_info: SessionInfo
197
+ def __init__(self, name: _Optional[str] = ..., input_image: _Optional[str] = ..., model_source: _Optional[_Union[ModelSource, _Mapping]] = ..., output_bounding_boxes: _Optional[str] = ..., output_segmentations: _Optional[str] = ..., session_info: _Optional[_Union[SessionInfo, _Mapping]] = ...) -> None: ...
198
+
199
+ class ImageAnomalyDetectionNode(_message.Message):
200
+ __slots__ = ("name", "input_image", "model_source", "output_anomaly_scores", "output_segmentations", "session_info")
201
+ NAME_FIELD_NUMBER: _ClassVar[int]
202
+ INPUT_IMAGE_FIELD_NUMBER: _ClassVar[int]
203
+ MODEL_SOURCE_FIELD_NUMBER: _ClassVar[int]
204
+ OUTPUT_ANOMALY_SCORES_FIELD_NUMBER: _ClassVar[int]
205
+ OUTPUT_SEGMENTATIONS_FIELD_NUMBER: _ClassVar[int]
206
+ SESSION_INFO_FIELD_NUMBER: _ClassVar[int]
207
+ name: str
208
+ input_image: str
209
+ model_source: ModelSource
210
+ output_anomaly_scores: str
211
+ output_segmentations: str
212
+ session_info: SessionInfo
213
+ def __init__(self, name: _Optional[str] = ..., input_image: _Optional[str] = ..., model_source: _Optional[_Union[ModelSource, _Mapping]] = ..., output_anomaly_scores: _Optional[str] = ..., output_segmentations: _Optional[str] = ..., session_info: _Optional[_Union[SessionInfo, _Mapping]] = ...) -> None: ...
214
+
215
+ class BoundingBoxFilterNode(_message.Message):
216
+ __slots__ = ("name", "input_bounding_boxes", "output_port_name", "input_score_threshold", "input_iou_threshold", "session_info")
217
+ class ThresholdSource(_message.Message):
218
+ __slots__ = ("topic", "value")
219
+ TOPIC_FIELD_NUMBER: _ClassVar[int]
220
+ VALUE_FIELD_NUMBER: _ClassVar[int]
221
+ topic: str
222
+ value: float
223
+ def __init__(self, topic: _Optional[str] = ..., value: _Optional[float] = ...) -> None: ...
224
+ NAME_FIELD_NUMBER: _ClassVar[int]
225
+ INPUT_BOUNDING_BOXES_FIELD_NUMBER: _ClassVar[int]
226
+ OUTPUT_PORT_NAME_FIELD_NUMBER: _ClassVar[int]
227
+ INPUT_SCORE_THRESHOLD_FIELD_NUMBER: _ClassVar[int]
228
+ INPUT_IOU_THRESHOLD_FIELD_NUMBER: _ClassVar[int]
229
+ SESSION_INFO_FIELD_NUMBER: _ClassVar[int]
230
+ name: str
231
+ input_bounding_boxes: str
232
+ output_port_name: str
233
+ input_score_threshold: BoundingBoxFilterNode.ThresholdSource
234
+ input_iou_threshold: BoundingBoxFilterNode.ThresholdSource
235
+ session_info: SessionInfo
236
+ def __init__(self, name: _Optional[str] = ..., input_bounding_boxes: _Optional[str] = ..., output_port_name: _Optional[str] = ..., input_score_threshold: _Optional[_Union[BoundingBoxFilterNode.ThresholdSource, _Mapping]] = ..., input_iou_threshold: _Optional[_Union[BoundingBoxFilterNode.ThresholdSource, _Mapping]] = ..., session_info: _Optional[_Union[SessionInfo, _Mapping]] = ...) -> None: ...
237
+
238
+ class Node(_message.Message):
239
+ __slots__ = ("const_tensor_node", "image_resize_node", "image_patches_node", "virtual_camera_node", "image_classification_node", "image_object_detection_node", "image_ocr_node", "bounding_box_filter_node", "image_segmentation_node", "image_instance_segmentation_node", "image_anomaly_detection_node")
240
+ CONST_TENSOR_NODE_FIELD_NUMBER: _ClassVar[int]
241
+ IMAGE_RESIZE_NODE_FIELD_NUMBER: _ClassVar[int]
242
+ IMAGE_PATCHES_NODE_FIELD_NUMBER: _ClassVar[int]
243
+ VIRTUAL_CAMERA_NODE_FIELD_NUMBER: _ClassVar[int]
244
+ IMAGE_CLASSIFICATION_NODE_FIELD_NUMBER: _ClassVar[int]
245
+ IMAGE_OBJECT_DETECTION_NODE_FIELD_NUMBER: _ClassVar[int]
246
+ IMAGE_OCR_NODE_FIELD_NUMBER: _ClassVar[int]
247
+ BOUNDING_BOX_FILTER_NODE_FIELD_NUMBER: _ClassVar[int]
248
+ IMAGE_SEGMENTATION_NODE_FIELD_NUMBER: _ClassVar[int]
249
+ IMAGE_INSTANCE_SEGMENTATION_NODE_FIELD_NUMBER: _ClassVar[int]
250
+ IMAGE_ANOMALY_DETECTION_NODE_FIELD_NUMBER: _ClassVar[int]
251
+ const_tensor_node: ConstTensorNode
252
+ image_resize_node: ImageResizeNode
253
+ image_patches_node: ImagePatchesNode
254
+ virtual_camera_node: VirtualCameraNode
255
+ image_classification_node: ImageClassificationNode
256
+ image_object_detection_node: ImageObjectDetectionNode
257
+ image_ocr_node: ImageOcrNode
258
+ bounding_box_filter_node: BoundingBoxFilterNode
259
+ image_segmentation_node: ImageSegmentationNode
260
+ image_instance_segmentation_node: ImageInstanceSegmentationNode
261
+ image_anomaly_detection_node: ImageAnomalyDetectionNode
262
+ def __init__(self, const_tensor_node: _Optional[_Union[ConstTensorNode, _Mapping]] = ..., image_resize_node: _Optional[_Union[ImageResizeNode, _Mapping]] = ..., image_patches_node: _Optional[_Union[ImagePatchesNode, _Mapping]] = ..., virtual_camera_node: _Optional[_Union[VirtualCameraNode, _Mapping]] = ..., image_classification_node: _Optional[_Union[ImageClassificationNode, _Mapping]] = ..., image_object_detection_node: _Optional[_Union[ImageObjectDetectionNode, _Mapping]] = ..., image_ocr_node: _Optional[_Union[ImageOcrNode, _Mapping]] = ..., bounding_box_filter_node: _Optional[_Union[BoundingBoxFilterNode, _Mapping]] = ..., image_segmentation_node: _Optional[_Union[ImageSegmentationNode, _Mapping]] = ..., image_instance_segmentation_node: _Optional[_Union[ImageInstanceSegmentationNode, _Mapping]] = ..., image_anomaly_detection_node: _Optional[_Union[ImageAnomalyDetectionNode, _Mapping]] = ...) -> None: ...
263
+
264
+ class Graph(_message.Message):
265
+ __slots__ = ("nodes", "created_at", "license_id")
266
+ NODES_FIELD_NUMBER: _ClassVar[int]
267
+ CREATED_AT_FIELD_NUMBER: _ClassVar[int]
268
+ LICENSE_ID_FIELD_NUMBER: _ClassVar[int]
269
+ nodes: _containers.RepeatedCompositeFieldContainer[Node]
270
+ created_at: int
271
+ license_id: str
272
+ def __init__(self, nodes: _Optional[_Iterable[_Union[Node, _Mapping]]] = ..., created_at: _Optional[int] = ..., license_id: _Optional[str] = ...) -> None: ...
@@ -0,0 +1,24 @@
1
+ # Generated by the gRPC Python protocol compiler plugin. DO NOT EDIT!
2
+ """Client and server classes corresponding to protobuf-defined services."""
3
+ import grpc
4
+ import warnings
5
+
6
+
7
+ GRPC_GENERATED_VERSION = '1.68.0'
8
+ GRPC_VERSION = grpc.__version__
9
+ _version_not_supported = False
10
+
11
+ try:
12
+ from grpc._utilities import first_version_is_lower
13
+ _version_not_supported = first_version_is_lower(GRPC_VERSION, GRPC_GENERATED_VERSION)
14
+ except ImportError:
15
+ _version_not_supported = True
16
+
17
+ if _version_not_supported:
18
+ raise RuntimeError(
19
+ f'The grpc package installed is at version {GRPC_VERSION},'
20
+ + f' but the generated code in inference_graph_pb2_grpc.py depends on'
21
+ + f' grpcio>={GRPC_GENERATED_VERSION}.'
22
+ + f' Please upgrade your grpc module to grpcio>={GRPC_GENERATED_VERSION}'
23
+ + f' or downgrade your generated code using grpcio-tools<={GRPC_VERSION}.'
24
+ )
@@ -0,0 +1,3 @@
1
+ # generated by datamodel-codegen:
2
+ # filename: json-schema
3
+ # timestamp: 2025-11-18T09:31:57+00:00
@@ -0,0 +1,28 @@
1
+ # generated by datamodel-codegen:
2
+ # filename: classification_markup.schema..json
3
+ # timestamp: 2025-11-18T09:31:57+00:00
4
+
5
+ from __future__ import annotations
6
+
7
+ from typing import Annotated
8
+ from uuid import UUID
9
+
10
+ from pydantic import BaseModel, ConfigDict, Field
11
+
12
+
13
+ class Annotation(BaseModel):
14
+ model_config = ConfigDict(
15
+ extra='forbid',
16
+ )
17
+ id: UUID
18
+ label_id: UUID
19
+ value: Annotated[float, Field(ge=0.0, le=1.0)]
20
+
21
+
22
+ class ClassificationMarkup(BaseModel):
23
+ model_config = ConfigDict(
24
+ extra='forbid',
25
+ )
26
+ height: Annotated[int, Field(ge=0)]
27
+ width: Annotated[int, Field(ge=0)]
28
+ annotations: list[Annotation]
@@ -0,0 +1,71 @@
1
+ # generated by datamodel-codegen:
2
+ # filename: geometry.schema.json
3
+ # timestamp: 2025-11-18T09:31:57+00:00
4
+
5
+ from __future__ import annotations
6
+
7
+ from typing import Annotated, Any, Optional
8
+
9
+ from pydantic import BaseModel, ConfigDict, Field, RootModel
10
+
11
+
12
+ class CommonGeometryTypes(RootModel[Any]):
13
+ root: Annotated[
14
+ Any,
15
+ Field(
16
+ description='Shared geometry definitions used across multiple schemas',
17
+ title='Common Geometry Types',
18
+ ),
19
+ ]
20
+
21
+
22
+ class BoundingBox(BaseModel):
23
+ model_config = ConfigDict(
24
+ extra='forbid',
25
+ )
26
+ top_left_x: Annotated[float, Field(ge=0.0, le=1.0)]
27
+ top_left_y: Annotated[float, Field(ge=0.0, le=1.0)]
28
+ bottom_right_x: Annotated[float, Field(ge=0.0, le=1.0)]
29
+ bottom_right_y: Annotated[float, Field(ge=0.0, le=1.0)]
30
+ angle: Annotated[Optional[float], Field(description='Optional rotation angle')] = (
31
+ None
32
+ )
33
+ full_orientation: Annotated[
34
+ Optional[bool], Field(description='Optional full orientation flag')
35
+ ] = None
36
+
37
+
38
+ class Point(BaseModel):
39
+ model_config = ConfigDict(
40
+ extra='forbid',
41
+ )
42
+ x: Annotated[float, Field(ge=0.0, le=1.0)]
43
+ y: Annotated[float, Field(ge=0.0, le=1.0)]
44
+
45
+
46
+ class PolygonRing(BaseModel):
47
+ model_config = ConfigDict(
48
+ extra='forbid',
49
+ )
50
+ hierarchy: Annotated[
51
+ int,
52
+ Field(
53
+ description='Nesting level: 0=outer, 1=hole in level 0, 2=poly in level 1 hole, etc. Even levels are filled areas, odd levels are holes.',
54
+ ge=0,
55
+ ),
56
+ ]
57
+ points: Annotated[
58
+ list[Point], Field(description='Vertices of the ring.', min_length=3)
59
+ ]
60
+
61
+
62
+ class PolygonAnnotation(BaseModel):
63
+ model_config = ConfigDict(
64
+ extra='forbid',
65
+ )
66
+ rings: Annotated[
67
+ list[PolygonRing],
68
+ Field(
69
+ description='Array of polygon rings. The hierarchy field within each ring determines nesting and fill/hole status.'
70
+ ),
71
+ ]