denkproto 1.0.90__py3-none-any.whl → 1.0.91__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of denkproto might be problematic. Click here for more details.
- denkproto/__about__.py +1 -1
- denkproto/inference_graph_pb2.py +16 -14
- denkproto/inference_graph_pb2.pyi +6 -4
- denkproto/json/inference_graph_models_generated.py +2 -1
- {denkproto-1.0.90.dist-info → denkproto-1.0.91.dist-info}/METADATA +1 -1
- {denkproto-1.0.90.dist-info → denkproto-1.0.91.dist-info}/RECORD +7 -7
- {denkproto-1.0.90.dist-info → denkproto-1.0.91.dist-info}/WHEEL +0 -0
denkproto/__about__.py
CHANGED
|
@@ -1 +1 @@
|
|
|
1
|
-
__version__ = "1.0.
|
|
1
|
+
__version__ = "1.0.91"
|
denkproto/inference_graph_pb2.py
CHANGED
|
@@ -26,7 +26,7 @@ import denkproto.modelfile_v2_pb2 as modelfile__v2__pb2
|
|
|
26
26
|
import denkproto.validate_pb2 as validate__pb2
|
|
27
27
|
|
|
28
28
|
|
|
29
|
-
DESCRIPTOR = _descriptor_pool.Default().AddSerializedFile(b'\n\x15inference_graph.proto\x12\x0finference_graph\x1a\x12modelfile-v2.proto\x1a\x0evalidate.proto\"\xa5\x01\n\x0bModelSource\x12-\n\nfrom_proto\x18\x01 \x01(\x0b\x32\x17.modelfile.v2.ModelFileH\x00\x12#\n\x0f\x66rom_network_id\x18\x02 \x01(\tB\x08\xfa\x42\x05r\x03\xb0\x01\x01H\x00\x12.\n\x1a\x66rom_network_experiment_id\x18\x03 \x01(\tB\x08\xfa\x42\x05r\x03\xb0\x01\x01H\x00\x42\x12\n\x0bsource_type\x12\x03\xf8\x42\x01\"s\n\x0bSessionInfo\x12H\n\x12\x65xecution_provider\x18\x01 \x01(\x0e\x32\".inference_graph.ExecutionProviderB\x08\xfa\x42\x05\x82\x01\x02\x10\x01\x12\x1a\n\tdevice_id\x18\x02 \x01(\x05\x42\x07\xfa\x42\x04\x1a\x02(\x00\"\xa4\x03\n\x0f\x43onstTensorNode\x12\x15\n\x04name\x18\x01 \x01(\tB\x07\xfa\x42\x04r\x02\x10\x01\x12\r\n\x05shape\x18\x02 \x03(\r\x12\x43\n\x0buint64_data\x18\x03 \x01(\x0b\x32,.inference_graph.ConstTensorNode.Uint64ArrayH\x00\x12\x41\n\nint64_data\x18\x04 \x01(\x0b\x32+.inference_graph.ConstTensorNode.Int64ArrayH\x00\x12\x45\n\x0c\x66loat64_data\x18\x05 \x01(\x0b\x32-.inference_graph.ConstTensorNode.Float64ArrayH\x00\x12\x33\n\x10output_port_name\x18\x06 \x01(\tB\x19\xfa\x42\x16r\x14\x10\x01\x32\x10^[a-zA-Z0-9_-]+$\x1a\x1b\n\x0bUint64Array\x12\x0c\n\x04\x64\x61ta\x18\x01 \x03(\x04\x1a\x1a\n\nInt64Array\x12\x0c\n\x04\x64\x61ta\x18\x01 \x03(\x12\x1a\x1c\n\x0c\x46loat64Array\x12\x0c\n\x04\x64\x61ta\x18\x01 \x03(\x01\x42\x10\n\tdata_type\x12\x03\xf8\x42\x01\"\xc4\x02\n\x0fImageResizeNode\x12\x15\n\x04name\x18\x01 \x01(\tB\x07\xfa\x42\x04r\x02\x10\x01\x12L\n\ninput_size\x18\x02 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12M\n\x0binput_image\x18\x03 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12\x33\n\x10output_port_name\x18\x04 \x01(\tB\x19\xfa\x42\x16r\x14\x10\x01\x32\x10^[a-zA-Z0-9_-]+$\x12\x37\n\x0csession_info\x18\x05 \x01(\x0b\x32\x1c.inference_graph.SessionInfoH\x00\x88\x01\x01\x42\x0f\n\r_session_info\"\xa3\x05\n\x10ImagePatchesNode\x12\x15\n\x04name\x18\x01 \x01(\tB\x07\xfa\x42\x04r\x02\x10\x01\x12M\n\x0binput_image\x18\x02 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12V\n\x14input_bounding_boxes\x18\x03 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12W\n\x11input_target_size\x18\x04 \x01(\x0b\x32\x32.inference_graph.ImagePatchesNode.TargetSizeSourceB\x08\xfa\x42\x05\x8a\x01\x02\x10\x01\x12\x33\n\x10output_port_name\x18\x05 \x01(\tB\x19\xfa\x42\x16r\x14\x10\x01\x32\x10^[a-zA-Z0-9_-]+$\x12\x37\n\x0csession_info\x18\x07 \x01(\x0b\x32\x1c.inference_graph.SessionInfoH\x00\x88\x01\x01\x1a\xf8\x01\n\x10TargetSizeSource\x12I\n\x05topic\x18\x01 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$H\x00\x12L\n\x04size\x18\x02 \x01(\x0b\x32<.inference_graph.ImagePatchesNode.TargetSizeSource.ImageSizeH\x00\x1a<\n\tImageSize\x12\x17\n\x06height\x18\x01 \x01(\x03\x42\x07\xfa\x42\x04\"\x02(\x01\x12\x16\n\x05width\x18\x02 \x01(\x03\x42\x07\xfa\x42\x04\"\x02(\x01\x42\r\n\x06source\x12\x03\xf8\x42\x01\x42\x0f\n\r_session_info\"v\n\x11VirtualCameraNode\x12\x15\n\x04name\x18\x01 \x01(\tB\x07\xfa\x42\x04r\x02\x10\x01\x12\x15\n\x04path\x18\x02 \x01(\tB\x07\xfa\x42\x04r\x02\x10\x01\x12\x33\n\x10output_port_name\x18\x03 \x01(\tB\x19\xfa\x42\x16r\x14\x10\x01\x32\x10^[a-zA-Z0-9_-]+$\"\xb3\x02\n\x17ImageClassificationNode\x12\x0c\n\x04name\x18\x01 \x01(\t\x12M\n\x0binput_image\x18\x02 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12<\n\x0cmodel_source\x18\x03 \x01(\x0b\x32\x1c.inference_graph.ModelSourceB\x08\xfa\x42\x05\x8a\x01\x02\x10\x01\x12\x33\n\x10output_port_name\x18\x04 \x01(\tB\x19\xfa\x42\x16r\x14\x10\x01\x32\x10^[a-zA-Z0-9_-]+$\x12\x37\n\x0csession_info\x18\x05 \x01(\x0b\x32\x1c.inference_graph.SessionInfoH\x00\x88\x01\x01\x42\x0f\n\r_session_info\"\xd2\x02\n\x18ImageObjectDetectionNode\x12\x0c\n\x04name\x18\x01 \x01(\t\x12M\n\x0binput_image\x18\x02 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12<\n\x0cmodel_source\x18\x03 \x01(\x0b\x32\x1c.inference_graph.ModelSourceB\x08\xfa\x42\x05\x8a\x01\x02\x10\x01\x12\x1c\n\x14scale_bounding_boxes\x18\x04 \x01(\x08\x12\x33\n\x10output_port_name\x18\x05 \x01(\tB\x19\xfa\x42\x16r\x14\x10\x01\x32\x10^[a-zA-Z0-9_-]+$\x12\x37\n\x0csession_info\x18\x06 \x01(\x0b\x32\x1c.inference_graph.SessionInfoH\x00\x88\x01\x01\x42\x0f\n\r_session_info\"\xa8\x02\n\x0cImageOcrNode\x12\x0c\n\x04name\x18\x01 \x01(\t\x12M\n\x0binput_image\x18\x02 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12<\n\x0cmodel_source\x18\x03 \x01(\x0b\x32\x1c.inference_graph.ModelSourceB\x08\xfa\x42\x05\x8a\x01\x02\x10\x01\x12\x33\n\x10output_port_name\x18\x04 \x01(\tB\x19\xfa\x42\x16r\x14\x10\x01\x32\x10^[a-zA-Z0-9_-]+$\x12\x37\n\x0csession_info\x18\x05 \x01(\x0b\x32\x1c.inference_graph.SessionInfoH\x00\x88\x01\x01\x42\x0f\n\r_session_info\"\xb1\x02\n\x15ImageSegmentationNode\x12\x0c\n\x04name\x18\x01 \x01(\t\x12M\n\x0binput_image\x18\x02 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12<\n\x0cmodel_source\x18\x03 \x01(\x0b\x32\x1c.inference_graph.ModelSourceB\x08\xfa\x42\x05\x8a\x01\x02\x10\x01\x12\x33\n\x10output_port_name\x18\x04 \x01(\tB\x19\xfa\x42\x16r\x14\x10\x01\x32\x10^[a-zA-Z0-9_-]+$\x12\x37\n\x0csession_info\x18\x05 \x01(\x0b\x32\x1c.inference_graph.SessionInfoH\x00\x88\x01\x01\x42\x0f\n\r_session_info\"\xf7\x02\n\x1dImageInstanceSegmentationNode\x12\x0c\n\x04name\x18\x01 \x01(\t\x12M\n\x0binput_image\x18\x02 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12<\n\x0cmodel_source\x18\x03 \x01(\x0b\x32\x1c.inference_graph.ModelSourceB\x08\xfa\x42\x05\x8a\x01\x02\x10\x01\x12\x38\n\x15output_bounding_boxes\x18\x04 \x01(\tB\x19\xfa\x42\x16r\x14\x10\x01\x32\x10^[a-zA-Z0-9_-]+$\x12\x37\n\x14output_segmentations\x18\x05 \x01(\tB\x19\xfa\x42\x16r\x14\x10\x01\x32\x10^[a-zA-Z0-9_-]+$\x12\x37\n\x0csession_info\x18\x06 \x01(\x0b\x32\x1c.inference_graph.SessionInfoH\x00\x88\x01\x01\x42\x0f\n\r_session_info\"\
|
|
29
|
+
DESCRIPTOR = _descriptor_pool.Default().AddSerializedFile(b'\n\x15inference_graph.proto\x12\x0finference_graph\x1a\x12modelfile-v2.proto\x1a\x0evalidate.proto\"\xa5\x01\n\x0bModelSource\x12-\n\nfrom_proto\x18\x01 \x01(\x0b\x32\x17.modelfile.v2.ModelFileH\x00\x12#\n\x0f\x66rom_network_id\x18\x02 \x01(\tB\x08\xfa\x42\x05r\x03\xb0\x01\x01H\x00\x12.\n\x1a\x66rom_network_experiment_id\x18\x03 \x01(\tB\x08\xfa\x42\x05r\x03\xb0\x01\x01H\x00\x42\x12\n\x0bsource_type\x12\x03\xf8\x42\x01\"s\n\x0bSessionInfo\x12H\n\x12\x65xecution_provider\x18\x01 \x01(\x0e\x32\".inference_graph.ExecutionProviderB\x08\xfa\x42\x05\x82\x01\x02\x10\x01\x12\x1a\n\tdevice_id\x18\x02 \x01(\x05\x42\x07\xfa\x42\x04\x1a\x02(\x00\"\xa4\x03\n\x0f\x43onstTensorNode\x12\x15\n\x04name\x18\x01 \x01(\tB\x07\xfa\x42\x04r\x02\x10\x01\x12\r\n\x05shape\x18\x02 \x03(\r\x12\x43\n\x0buint64_data\x18\x03 \x01(\x0b\x32,.inference_graph.ConstTensorNode.Uint64ArrayH\x00\x12\x41\n\nint64_data\x18\x04 \x01(\x0b\x32+.inference_graph.ConstTensorNode.Int64ArrayH\x00\x12\x45\n\x0c\x66loat64_data\x18\x05 \x01(\x0b\x32-.inference_graph.ConstTensorNode.Float64ArrayH\x00\x12\x33\n\x10output_port_name\x18\x06 \x01(\tB\x19\xfa\x42\x16r\x14\x10\x01\x32\x10^[a-zA-Z0-9_-]+$\x1a\x1b\n\x0bUint64Array\x12\x0c\n\x04\x64\x61ta\x18\x01 \x03(\x04\x1a\x1a\n\nInt64Array\x12\x0c\n\x04\x64\x61ta\x18\x01 \x03(\x12\x1a\x1c\n\x0c\x46loat64Array\x12\x0c\n\x04\x64\x61ta\x18\x01 \x03(\x01\x42\x10\n\tdata_type\x12\x03\xf8\x42\x01\"\xc4\x02\n\x0fImageResizeNode\x12\x15\n\x04name\x18\x01 \x01(\tB\x07\xfa\x42\x04r\x02\x10\x01\x12L\n\ninput_size\x18\x02 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12M\n\x0binput_image\x18\x03 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12\x33\n\x10output_port_name\x18\x04 \x01(\tB\x19\xfa\x42\x16r\x14\x10\x01\x32\x10^[a-zA-Z0-9_-]+$\x12\x37\n\x0csession_info\x18\x05 \x01(\x0b\x32\x1c.inference_graph.SessionInfoH\x00\x88\x01\x01\x42\x0f\n\r_session_info\"\xa3\x05\n\x10ImagePatchesNode\x12\x15\n\x04name\x18\x01 \x01(\tB\x07\xfa\x42\x04r\x02\x10\x01\x12M\n\x0binput_image\x18\x02 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12V\n\x14input_bounding_boxes\x18\x03 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12W\n\x11input_target_size\x18\x04 \x01(\x0b\x32\x32.inference_graph.ImagePatchesNode.TargetSizeSourceB\x08\xfa\x42\x05\x8a\x01\x02\x10\x01\x12\x33\n\x10output_port_name\x18\x05 \x01(\tB\x19\xfa\x42\x16r\x14\x10\x01\x32\x10^[a-zA-Z0-9_-]+$\x12\x37\n\x0csession_info\x18\x07 \x01(\x0b\x32\x1c.inference_graph.SessionInfoH\x00\x88\x01\x01\x1a\xf8\x01\n\x10TargetSizeSource\x12I\n\x05topic\x18\x01 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$H\x00\x12L\n\x04size\x18\x02 \x01(\x0b\x32<.inference_graph.ImagePatchesNode.TargetSizeSource.ImageSizeH\x00\x1a<\n\tImageSize\x12\x17\n\x06height\x18\x01 \x01(\x03\x42\x07\xfa\x42\x04\"\x02(\x01\x12\x16\n\x05width\x18\x02 \x01(\x03\x42\x07\xfa\x42\x04\"\x02(\x01\x42\r\n\x06source\x12\x03\xf8\x42\x01\x42\x0f\n\r_session_info\"v\n\x11VirtualCameraNode\x12\x15\n\x04name\x18\x01 \x01(\tB\x07\xfa\x42\x04r\x02\x10\x01\x12\x15\n\x04path\x18\x02 \x01(\tB\x07\xfa\x42\x04r\x02\x10\x01\x12\x33\n\x10output_port_name\x18\x03 \x01(\tB\x19\xfa\x42\x16r\x14\x10\x01\x32\x10^[a-zA-Z0-9_-]+$\"\xb3\x02\n\x17ImageClassificationNode\x12\x0c\n\x04name\x18\x01 \x01(\t\x12M\n\x0binput_image\x18\x02 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12<\n\x0cmodel_source\x18\x03 \x01(\x0b\x32\x1c.inference_graph.ModelSourceB\x08\xfa\x42\x05\x8a\x01\x02\x10\x01\x12\x33\n\x10output_port_name\x18\x04 \x01(\tB\x19\xfa\x42\x16r\x14\x10\x01\x32\x10^[a-zA-Z0-9_-]+$\x12\x37\n\x0csession_info\x18\x05 \x01(\x0b\x32\x1c.inference_graph.SessionInfoH\x00\x88\x01\x01\x42\x0f\n\r_session_info\"\xd2\x02\n\x18ImageObjectDetectionNode\x12\x0c\n\x04name\x18\x01 \x01(\t\x12M\n\x0binput_image\x18\x02 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12<\n\x0cmodel_source\x18\x03 \x01(\x0b\x32\x1c.inference_graph.ModelSourceB\x08\xfa\x42\x05\x8a\x01\x02\x10\x01\x12\x1c\n\x14scale_bounding_boxes\x18\x04 \x01(\x08\x12\x33\n\x10output_port_name\x18\x05 \x01(\tB\x19\xfa\x42\x16r\x14\x10\x01\x32\x10^[a-zA-Z0-9_-]+$\x12\x37\n\x0csession_info\x18\x06 \x01(\x0b\x32\x1c.inference_graph.SessionInfoH\x00\x88\x01\x01\x42\x0f\n\r_session_info\"\xa8\x02\n\x0cImageOcrNode\x12\x0c\n\x04name\x18\x01 \x01(\t\x12M\n\x0binput_image\x18\x02 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12<\n\x0cmodel_source\x18\x03 \x01(\x0b\x32\x1c.inference_graph.ModelSourceB\x08\xfa\x42\x05\x8a\x01\x02\x10\x01\x12\x33\n\x10output_port_name\x18\x04 \x01(\tB\x19\xfa\x42\x16r\x14\x10\x01\x32\x10^[a-zA-Z0-9_-]+$\x12\x37\n\x0csession_info\x18\x05 \x01(\x0b\x32\x1c.inference_graph.SessionInfoH\x00\x88\x01\x01\x42\x0f\n\r_session_info\"\xb1\x02\n\x15ImageSegmentationNode\x12\x0c\n\x04name\x18\x01 \x01(\t\x12M\n\x0binput_image\x18\x02 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12<\n\x0cmodel_source\x18\x03 \x01(\x0b\x32\x1c.inference_graph.ModelSourceB\x08\xfa\x42\x05\x8a\x01\x02\x10\x01\x12\x33\n\x10output_port_name\x18\x04 \x01(\tB\x19\xfa\x42\x16r\x14\x10\x01\x32\x10^[a-zA-Z0-9_-]+$\x12\x37\n\x0csession_info\x18\x05 \x01(\x0b\x32\x1c.inference_graph.SessionInfoH\x00\x88\x01\x01\x42\x0f\n\r_session_info\"\xf7\x02\n\x1dImageInstanceSegmentationNode\x12\x0c\n\x04name\x18\x01 \x01(\t\x12M\n\x0binput_image\x18\x02 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12<\n\x0cmodel_source\x18\x03 \x01(\x0b\x32\x1c.inference_graph.ModelSourceB\x08\xfa\x42\x05\x8a\x01\x02\x10\x01\x12\x38\n\x15output_bounding_boxes\x18\x04 \x01(\tB\x19\xfa\x42\x16r\x14\x10\x01\x32\x10^[a-zA-Z0-9_-]+$\x12\x37\n\x14output_segmentations\x18\x05 \x01(\tB\x19\xfa\x42\x16r\x14\x10\x01\x32\x10^[a-zA-Z0-9_-]+$\x12\x37\n\x0csession_info\x18\x06 \x01(\x0b\x32\x1c.inference_graph.SessionInfoH\x00\x88\x01\x01\x42\x0f\n\r_session_info\"\xf3\x02\n\x19ImageAnomalyDetectionNode\x12\x0c\n\x04name\x18\x01 \x01(\t\x12M\n\x0binput_image\x18\x02 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12<\n\x0cmodel_source\x18\x03 \x01(\x0b\x32\x1c.inference_graph.ModelSourceB\x08\xfa\x42\x05\x8a\x01\x02\x10\x01\x12\x38\n\x15output_anomaly_scores\x18\x04 \x01(\tB\x19\xfa\x42\x16r\x14\x10\x01\x32\x10^[a-zA-Z0-9_-]+$\x12\x37\n\x14output_segmentations\x18\x05 \x01(\tB\x19\xfa\x42\x16r\x14\x10\x01\x32\x10^[a-zA-Z0-9_-]+$\x12\x37\n\x0csession_info\x18\x06 \x01(\x0b\x32\x1c.inference_graph.SessionInfoH\x00\x88\x01\x01\x42\x0f\n\r_session_info\"\xfd\x04\n\x15\x42oundingBoxFilterNode\x12\x15\n\x04name\x18\x01 \x01(\tB\x07\xfa\x42\x04r\x02\x10\x01\x12V\n\x14input_bounding_boxes\x18\x02 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12\x33\n\x10output_port_name\x18\x03 \x01(\tB\x19\xfa\x42\x16r\x14\x10\x01\x32\x10^[a-zA-Z0-9_-]+$\x12Z\n\x15input_score_threshold\x18\x04 \x01(\x0b\x32\x36.inference_graph.BoundingBoxFilterNode.ThresholdSourceH\x00\x88\x01\x01\x12X\n\x13input_iou_threshold\x18\x05 \x01(\x0b\x32\x36.inference_graph.BoundingBoxFilterNode.ThresholdSourceH\x01\x88\x01\x01\x12\x37\n\x0csession_info\x18\x06 \x01(\x0b\x32\x1c.inference_graph.SessionInfoH\x02\x88\x01\x01\x1a\x8d\x01\n\x0fThresholdSource\x12I\n\x05topic\x18\x01 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$H\x00\x12 \n\x05value\x18\x02 \x01(\x02\x42\x0f\xfa\x42\x0c\n\n\x1d\x00\x00\x80?-\x00\x00\x00\x00H\x00\x42\r\n\x06source\x12\x03\xf8\x42\x01\x42\x18\n\x16_input_score_thresholdB\x16\n\x14_input_iou_thresholdB\x0f\n\r_session_info\"\xbb\x06\n\x04Node\x12=\n\x11\x63onst_tensor_node\x18\x01 \x01(\x0b\x32 .inference_graph.ConstTensorNodeH\x00\x12=\n\x11image_resize_node\x18\x02 \x01(\x0b\x32 .inference_graph.ImageResizeNodeH\x00\x12?\n\x12image_patches_node\x18\x03 \x01(\x0b\x32!.inference_graph.ImagePatchesNodeH\x00\x12\x41\n\x13virtual_camera_node\x18\x04 \x01(\x0b\x32\".inference_graph.VirtualCameraNodeH\x00\x12M\n\x19image_classification_node\x18\x05 \x01(\x0b\x32(.inference_graph.ImageClassificationNodeH\x00\x12P\n\x1bimage_object_detection_node\x18\x06 \x01(\x0b\x32).inference_graph.ImageObjectDetectionNodeH\x00\x12\x37\n\x0eimage_ocr_node\x18\x07 \x01(\x0b\x32\x1d.inference_graph.ImageOcrNodeH\x00\x12J\n\x18\x62ounding_box_filter_node\x18\x08 \x01(\x0b\x32&.inference_graph.BoundingBoxFilterNodeH\x00\x12I\n\x17image_segmentation_node\x18\t \x01(\x0b\x32&.inference_graph.ImageSegmentationNodeH\x00\x12Z\n image_instance_segmentation_node\x18\n \x01(\x0b\x32..inference_graph.ImageInstanceSegmentationNodeH\x00\x12R\n\x1cimage_anomaly_detection_node\x18\x0b \x01(\x0b\x32*.inference_graph.ImageAnomalyDetectionNodeH\x00\x42\x10\n\tnode_type\x12\x03\xf8\x42\x01\"_\n\x05Graph\x12$\n\x05nodes\x18\x01 \x03(\x0b\x32\x15.inference_graph.Node\x12\x12\n\ncreated_at\x18\x02 \x01(\x03\x12\x1c\n\nlicense_id\x18\x03 \x01(\tB\x08\xfa\x42\x05r\x03\xb0\x01\x01*B\n\x11\x45xecutionProvider\x12\x07\n\x03\x43PU\x10\x00\x12\x08\n\x04\x43UDA\x10\x01\x12\x0c\n\x08\x44IRECTML\x10\x02\x12\x0c\n\x08TENSORRT\x10\x03\x42NZ0github.com/DENKweit/denkproto-go/inference_graph\xaa\x02\x19\x44\x45NK.Proto.InferenceGraphb\x06proto3')
|
|
30
30
|
|
|
31
31
|
_globals = globals()
|
|
32
32
|
_builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals)
|
|
@@ -118,8 +118,10 @@ if not _descriptor._USE_C_DESCRIPTORS:
|
|
|
118
118
|
_globals['_IMAGEANOMALYDETECTIONNODE'].fields_by_name['input_image']._serialized_options = b'\372B5r3\020\0012/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$'
|
|
119
119
|
_globals['_IMAGEANOMALYDETECTIONNODE'].fields_by_name['model_source']._loaded_options = None
|
|
120
120
|
_globals['_IMAGEANOMALYDETECTIONNODE'].fields_by_name['model_source']._serialized_options = b'\372B\005\212\001\002\020\001'
|
|
121
|
-
_globals['_IMAGEANOMALYDETECTIONNODE'].fields_by_name['
|
|
122
|
-
_globals['_IMAGEANOMALYDETECTIONNODE'].fields_by_name['
|
|
121
|
+
_globals['_IMAGEANOMALYDETECTIONNODE'].fields_by_name['output_anomaly_scores']._loaded_options = None
|
|
122
|
+
_globals['_IMAGEANOMALYDETECTIONNODE'].fields_by_name['output_anomaly_scores']._serialized_options = b'\372B\026r\024\020\0012\020^[a-zA-Z0-9_-]+$'
|
|
123
|
+
_globals['_IMAGEANOMALYDETECTIONNODE'].fields_by_name['output_segmentations']._loaded_options = None
|
|
124
|
+
_globals['_IMAGEANOMALYDETECTIONNODE'].fields_by_name['output_segmentations']._serialized_options = b'\372B\026r\024\020\0012\020^[a-zA-Z0-9_-]+$'
|
|
123
125
|
_globals['_BOUNDINGBOXFILTERNODE_THRESHOLDSOURCE'].oneofs_by_name['source']._loaded_options = None
|
|
124
126
|
_globals['_BOUNDINGBOXFILTERNODE_THRESHOLDSOURCE'].oneofs_by_name['source']._serialized_options = b'\370B\001'
|
|
125
127
|
_globals['_BOUNDINGBOXFILTERNODE_THRESHOLDSOURCE'].fields_by_name['topic']._loaded_options = None
|
|
@@ -136,8 +138,8 @@ if not _descriptor._USE_C_DESCRIPTORS:
|
|
|
136
138
|
_globals['_NODE'].oneofs_by_name['node_type']._serialized_options = b'\370B\001'
|
|
137
139
|
_globals['_GRAPH'].fields_by_name['license_id']._loaded_options = None
|
|
138
140
|
_globals['_GRAPH'].fields_by_name['license_id']._serialized_options = b'\372B\005r\003\260\001\001'
|
|
139
|
-
_globals['_EXECUTIONPROVIDER']._serialized_start=
|
|
140
|
-
_globals['_EXECUTIONPROVIDER']._serialized_end=
|
|
141
|
+
_globals['_EXECUTIONPROVIDER']._serialized_start=5488
|
|
142
|
+
_globals['_EXECUTIONPROVIDER']._serialized_end=5554
|
|
141
143
|
_globals['_MODELSOURCE']._serialized_start=79
|
|
142
144
|
_globals['_MODELSOURCE']._serialized_end=244
|
|
143
145
|
_globals['_SESSIONINFO']._serialized_start=246
|
|
@@ -171,13 +173,13 @@ if not _descriptor._USE_C_DESCRIPTORS:
|
|
|
171
173
|
_globals['_IMAGEINSTANCESEGMENTATIONNODE']._serialized_start=3170
|
|
172
174
|
_globals['_IMAGEINSTANCESEGMENTATIONNODE']._serialized_end=3545
|
|
173
175
|
_globals['_IMAGEANOMALYDETECTIONNODE']._serialized_start=3548
|
|
174
|
-
_globals['_IMAGEANOMALYDETECTIONNODE']._serialized_end=
|
|
175
|
-
_globals['_BOUNDINGBOXFILTERNODE']._serialized_start=
|
|
176
|
-
_globals['_BOUNDINGBOXFILTERNODE']._serialized_end=
|
|
177
|
-
_globals['_BOUNDINGBOXFILTERNODE_THRESHOLDSOURCE']._serialized_start=
|
|
178
|
-
_globals['_BOUNDINGBOXFILTERNODE_THRESHOLDSOURCE']._serialized_end=
|
|
179
|
-
_globals['_NODE']._serialized_start=
|
|
180
|
-
_globals['_NODE']._serialized_end=
|
|
181
|
-
_globals['_GRAPH']._serialized_start=
|
|
182
|
-
_globals['_GRAPH']._serialized_end=
|
|
176
|
+
_globals['_IMAGEANOMALYDETECTIONNODE']._serialized_end=3919
|
|
177
|
+
_globals['_BOUNDINGBOXFILTERNODE']._serialized_start=3922
|
|
178
|
+
_globals['_BOUNDINGBOXFILTERNODE']._serialized_end=4559
|
|
179
|
+
_globals['_BOUNDINGBOXFILTERNODE_THRESHOLDSOURCE']._serialized_start=4351
|
|
180
|
+
_globals['_BOUNDINGBOXFILTERNODE_THRESHOLDSOURCE']._serialized_end=4492
|
|
181
|
+
_globals['_NODE']._serialized_start=4562
|
|
182
|
+
_globals['_NODE']._serialized_end=5389
|
|
183
|
+
_globals['_GRAPH']._serialized_start=5391
|
|
184
|
+
_globals['_GRAPH']._serialized_end=5486
|
|
183
185
|
# @@protoc_insertion_point(module_scope)
|
|
@@ -197,18 +197,20 @@ class ImageInstanceSegmentationNode(_message.Message):
|
|
|
197
197
|
def __init__(self, name: _Optional[str] = ..., input_image: _Optional[str] = ..., model_source: _Optional[_Union[ModelSource, _Mapping]] = ..., output_bounding_boxes: _Optional[str] = ..., output_segmentations: _Optional[str] = ..., session_info: _Optional[_Union[SessionInfo, _Mapping]] = ...) -> None: ...
|
|
198
198
|
|
|
199
199
|
class ImageAnomalyDetectionNode(_message.Message):
|
|
200
|
-
__slots__ = ("name", "input_image", "model_source", "
|
|
200
|
+
__slots__ = ("name", "input_image", "model_source", "output_anomaly_scores", "output_segmentations", "session_info")
|
|
201
201
|
NAME_FIELD_NUMBER: _ClassVar[int]
|
|
202
202
|
INPUT_IMAGE_FIELD_NUMBER: _ClassVar[int]
|
|
203
203
|
MODEL_SOURCE_FIELD_NUMBER: _ClassVar[int]
|
|
204
|
-
|
|
204
|
+
OUTPUT_ANOMALY_SCORES_FIELD_NUMBER: _ClassVar[int]
|
|
205
|
+
OUTPUT_SEGMENTATIONS_FIELD_NUMBER: _ClassVar[int]
|
|
205
206
|
SESSION_INFO_FIELD_NUMBER: _ClassVar[int]
|
|
206
207
|
name: str
|
|
207
208
|
input_image: str
|
|
208
209
|
model_source: ModelSource
|
|
209
|
-
|
|
210
|
+
output_anomaly_scores: str
|
|
211
|
+
output_segmentations: str
|
|
210
212
|
session_info: SessionInfo
|
|
211
|
-
def __init__(self, name: _Optional[str] = ..., input_image: _Optional[str] = ..., model_source: _Optional[_Union[ModelSource, _Mapping]] = ...,
|
|
213
|
+
def __init__(self, name: _Optional[str] = ..., input_image: _Optional[str] = ..., model_source: _Optional[_Union[ModelSource, _Mapping]] = ..., output_anomaly_scores: _Optional[str] = ..., output_segmentations: _Optional[str] = ..., session_info: _Optional[_Union[SessionInfo, _Mapping]] = ...) -> None: ...
|
|
212
214
|
|
|
213
215
|
class BoundingBoxFilterNode(_message.Message):
|
|
214
216
|
__slots__ = ("name", "input_bounding_boxes", "output_port_name", "input_score_threshold", "input_iou_threshold", "session_info")
|
|
@@ -87,7 +87,8 @@ class ImageAnomalyDetectionNode(BaseModel):
|
|
|
87
87
|
name: str
|
|
88
88
|
input_image: str
|
|
89
89
|
model_source: ModelSourceBase
|
|
90
|
-
|
|
90
|
+
output_anomaly_scores: str
|
|
91
|
+
output_segmentations: str
|
|
91
92
|
|
|
92
93
|
class ImagePatchesNode(BaseModel):
|
|
93
94
|
"""Node that extracts patches from an image based on bounding boxes. Base type for all nodes in the graph."""
|
|
@@ -4,13 +4,13 @@ denkproto/DENKbuffer_pb2_grpc.py,sha256=-CPJPM4FOqwvwV8-f1iJlD18UD9juVIIHfdWUecu
|
|
|
4
4
|
denkproto/ImageAnalysis_ProtobufMessages_pb2.py,sha256=iEY0j9ySGUThnqTdYD4uAVr9P3GiC5R02iK53zEOXUQ,21015
|
|
5
5
|
denkproto/ImageAnalysis_ProtobufMessages_pb2.pyi,sha256=5LFtxrmYpJHizDDNGFTkL7-NQ_TkwqCSdq7vcv3lg-c,36243
|
|
6
6
|
denkproto/ImageAnalysis_ProtobufMessages_pb2_grpc.py,sha256=l3agtDjgu4jay6P9TRnHhyhJ-7UdoII27ywhw3k84oo,911
|
|
7
|
-
denkproto/__about__.py,sha256=
|
|
7
|
+
denkproto/__about__.py,sha256=B1iOLIpXYedqoLNGFLT8CrCSzMV5ZMTfScfMNbJ4nNE,23
|
|
8
8
|
denkproto/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
9
9
|
denkproto/denkcache_pb2.py,sha256=u0O26m7t4kfu4R1nx1ZcTst4n6pG32pMbhl2PGYivXE,7161
|
|
10
10
|
denkproto/denkcache_pb2.pyi,sha256=8K_Ebyy4mgXrxqJenN8f8LXLvVKOiaZxhmGeYjFZVpY,6357
|
|
11
11
|
denkproto/denkcache_pb2_grpc.py,sha256=N1y4ZQ58UPaUlOZIpznzAbJJcs9G_n-FmzFoPPeu8UA,15610
|
|
12
|
-
denkproto/inference_graph_pb2.py,sha256=
|
|
13
|
-
denkproto/inference_graph_pb2.pyi,sha256=
|
|
12
|
+
denkproto/inference_graph_pb2.py,sha256=XcGJ1Dbyee1yZdEsDB6ohzQOHMDhRr1i3Hv_W-wFDO4,24963
|
|
13
|
+
denkproto/inference_graph_pb2.pyi,sha256=Hmgq3kiBkOG-1CCUrazKrKXH_-jbiDEoUlqjXRXsk-M,15688
|
|
14
14
|
denkproto/inference_graph_pb2_grpc.py,sha256=aXPf0w7pIfspkKUKGCr--OtJMOaTfE8IbeuBm10g1Xg,896
|
|
15
15
|
denkproto/modelfile_v1_pb2.py,sha256=ulF24nSIspn46DnQKlvR5Po3w-vFCnawuuverAVi3cY,6573
|
|
16
16
|
denkproto/modelfile_v1_pb2.pyi,sha256=gjTbWvg48wqGhyJb5CT0pw3yUZGhO_lSZgL7Ia2aPbY,10685
|
|
@@ -27,10 +27,10 @@ denkproto/validate_pb2.pyi,sha256=fWsdVOR3NJDioCKkCKfxfl4qaEb5xqXXU_WlEbdQx6E,23
|
|
|
27
27
|
denkproto/validate_pb2_grpc.py,sha256=XvjuWEgJFJtH1E7HWm7SKpV10PMpOSbonKa2VPHpYy8,889
|
|
28
28
|
denkproto/json/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
29
29
|
denkproto/json/classification_markup.py,sha256=vTu0H7Cb3gU6UUUSg1vDTRlFUorZrjMbcp_yx6UssZA,2461
|
|
30
|
-
denkproto/json/inference_graph_models_generated.py,sha256=
|
|
30
|
+
denkproto/json/inference_graph_models_generated.py,sha256=GfsGk4bKbL8gyqOScA4x13P8sJrAmv3tEhNU36rbIDs,6313
|
|
31
31
|
denkproto/json/object_detection_markup.py,sha256=T0hcFPq8F_galjDjRC9dbcRVwCSOYtu2jt9wpEeHlQs,4904
|
|
32
32
|
denkproto/json/ocr_markup.py,sha256=KyOpth9evOekyhTJdZSnYyB9EIyoWbY33sqncb_jBgw,7069
|
|
33
33
|
denkproto/json/segmentation_markup.py,sha256=EvniRksF2KaQolm6zZ6UKSiGwnqc8wR2sHB1iv05RTE,19911
|
|
34
|
-
denkproto-1.0.
|
|
35
|
-
denkproto-1.0.
|
|
36
|
-
denkproto-1.0.
|
|
34
|
+
denkproto-1.0.91.dist-info/METADATA,sha256=pvRt_IA1uBvij9Yke6Hqqsh-la0rhs1bvO-GHE67g_I,110
|
|
35
|
+
denkproto-1.0.91.dist-info/WHEEL,sha256=1yFddiXMmvYK7QYTqtRNtX66WJ0Mz8PYEiEUoOUUxRY,87
|
|
36
|
+
denkproto-1.0.91.dist-info/RECORD,,
|
|
File without changes
|