denkproto 1.0.88__py3-none-any.whl → 1.0.90__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of denkproto might be problematic. Click here for more details.
- denkproto/__about__.py +1 -1
- denkproto/inference_graph_pb2.py +18 -16
- denkproto/inference_graph_pb2.pyi +6 -4
- denkproto/json/inference_graph_models_generated.py +2 -1
- denkproto/modelfile_v2_pb2.py +58 -58
- denkproto/modelfile_v2_pb2.pyi +30 -27
- {denkproto-1.0.88.dist-info → denkproto-1.0.90.dist-info}/METADATA +1 -1
- {denkproto-1.0.88.dist-info → denkproto-1.0.90.dist-info}/RECORD +9 -9
- {denkproto-1.0.88.dist-info → denkproto-1.0.90.dist-info}/WHEEL +0 -0
denkproto/__about__.py
CHANGED
|
@@ -1 +1 @@
|
|
|
1
|
-
__version__ = "1.0.
|
|
1
|
+
__version__ = "1.0.90"
|
denkproto/inference_graph_pb2.py
CHANGED
|
@@ -26,7 +26,7 @@ import denkproto.modelfile_v2_pb2 as modelfile__v2__pb2
|
|
|
26
26
|
import denkproto.validate_pb2 as validate__pb2
|
|
27
27
|
|
|
28
28
|
|
|
29
|
-
DESCRIPTOR = _descriptor_pool.Default().AddSerializedFile(b'\n\x15inference_graph.proto\x12\x0finference_graph\x1a\x12modelfile-v2.proto\x1a\x0evalidate.proto\"\xa5\x01\n\x0bModelSource\x12-\n\nfrom_proto\x18\x01 \x01(\x0b\x32\x17.modelfile.v2.ModelFileH\x00\x12#\n\x0f\x66rom_network_id\x18\x02 \x01(\tB\x08\xfa\x42\x05r\x03\xb0\x01\x01H\x00\x12.\n\x1a\x66rom_network_experiment_id\x18\x03 \x01(\tB\x08\xfa\x42\x05r\x03\xb0\x01\x01H\x00\x42\x12\n\x0bsource_type\x12\x03\xf8\x42\x01\"s\n\x0bSessionInfo\x12H\n\x12\x65xecution_provider\x18\x01 \x01(\x0e\x32\".inference_graph.ExecutionProviderB\x08\xfa\x42\x05\x82\x01\x02\x10\x01\x12\x1a\n\tdevice_id\x18\x02 \x01(\x05\x42\x07\xfa\x42\x04\x1a\x02(\x00\"\xa4\x03\n\x0f\x43onstTensorNode\x12\x15\n\x04name\x18\x01 \x01(\tB\x07\xfa\x42\x04r\x02\x10\x01\x12\r\n\x05shape\x18\x02 \x03(\r\x12\x43\n\x0buint64_data\x18\x03 \x01(\x0b\x32,.inference_graph.ConstTensorNode.Uint64ArrayH\x00\x12\x41\n\nint64_data\x18\x04 \x01(\x0b\x32+.inference_graph.ConstTensorNode.Int64ArrayH\x00\x12\x45\n\x0c\x66loat64_data\x18\x05 \x01(\x0b\x32-.inference_graph.ConstTensorNode.Float64ArrayH\x00\x12\x33\n\x10output_port_name\x18\x06 \x01(\tB\x19\xfa\x42\x16r\x14\x10\x01\x32\x10^[a-zA-Z0-9_-]+$\x1a\x1b\n\x0bUint64Array\x12\x0c\n\x04\x64\x61ta\x18\x01 \x03(\x04\x1a\x1a\n\nInt64Array\x12\x0c\n\x04\x64\x61ta\x18\x01 \x03(\x12\x1a\x1c\n\x0c\x46loat64Array\x12\x0c\n\x04\x64\x61ta\x18\x01 \x03(\x01\x42\x10\n\tdata_type\x12\x03\xf8\x42\x01\"\xc4\x02\n\x0fImageResizeNode\x12\x15\n\x04name\x18\x01 \x01(\tB\x07\xfa\x42\x04r\x02\x10\x01\x12L\n\ninput_size\x18\x02 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12M\n\x0binput_image\x18\x03 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12\x33\n\x10output_port_name\x18\x04 \x01(\tB\x19\xfa\x42\x16r\x14\x10\x01\x32\x10^[a-zA-Z0-9_-]+$\x12\x37\n\x0csession_info\x18\x05 \x01(\x0b\x32\x1c.inference_graph.SessionInfoH\x00\x88\x01\x01\x42\x0f\n\r_session_info\"\xa3\x05\n\x10ImagePatchesNode\x12\x15\n\x04name\x18\x01 \x01(\tB\x07\xfa\x42\x04r\x02\x10\x01\x12M\n\x0binput_image\x18\x02 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12V\n\x14input_bounding_boxes\x18\x03 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12W\n\x11input_target_size\x18\x04 \x01(\x0b\x32\x32.inference_graph.ImagePatchesNode.TargetSizeSourceB\x08\xfa\x42\x05\x8a\x01\x02\x10\x01\x12\x33\n\x10output_port_name\x18\x05 \x01(\tB\x19\xfa\x42\x16r\x14\x10\x01\x32\x10^[a-zA-Z0-9_-]+$\x12\x37\n\x0csession_info\x18\x07 \x01(\x0b\x32\x1c.inference_graph.SessionInfoH\x00\x88\x01\x01\x1a\xf8\x01\n\x10TargetSizeSource\x12I\n\x05topic\x18\x01 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$H\x00\x12L\n\x04size\x18\x02 \x01(\x0b\x32<.inference_graph.ImagePatchesNode.TargetSizeSource.ImageSizeH\x00\x1a<\n\tImageSize\x12\x17\n\x06height\x18\x01 \x01(\x03\x42\x07\xfa\x42\x04\"\x02(\x01\x12\x16\n\x05width\x18\x02 \x01(\x03\x42\x07\xfa\x42\x04\"\x02(\x01\x42\r\n\x06source\x12\x03\xf8\x42\x01\x42\x0f\n\r_session_info\"v\n\x11VirtualCameraNode\x12\x15\n\x04name\x18\x01 \x01(\tB\x07\xfa\x42\x04r\x02\x10\x01\x12\x15\n\x04path\x18\x02 \x01(\tB\x07\xfa\x42\x04r\x02\x10\x01\x12\x33\n\x10output_port_name\x18\x03 \x01(\tB\x19\xfa\x42\x16r\x14\x10\x01\x32\x10^[a-zA-Z0-9_-]+$\"\xb3\x02\n\x17ImageClassificationNode\x12\x0c\n\x04name\x18\x01 \x01(\t\x12M\n\x0binput_image\x18\x02 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12<\n\x0cmodel_source\x18\x03 \x01(\x0b\x32\x1c.inference_graph.ModelSourceB\x08\xfa\x42\x05\x8a\x01\x02\x10\x01\x12\x33\n\x10output_port_name\x18\x04 \x01(\tB\x19\xfa\x42\x16r\x14\x10\x01\x32\x10^[a-zA-Z0-9_-]+$\x12\x37\n\x0csession_info\x18\x05 \x01(\x0b\x32\x1c.inference_graph.SessionInfoH\x00\x88\x01\x01\x42\x0f\n\r_session_info\"\xd2\x02\n\x18ImageObjectDetectionNode\x12\x0c\n\x04name\x18\x01 \x01(\t\x12M\n\x0binput_image\x18\x02 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12<\n\x0cmodel_source\x18\x03 \x01(\x0b\x32\x1c.inference_graph.ModelSourceB\x08\xfa\x42\x05\x8a\x01\x02\x10\x01\x12\x1c\n\x14scale_bounding_boxes\x18\x04 \x01(\x08\x12\x33\n\x10output_port_name\x18\x05 \x01(\tB\x19\xfa\x42\x16r\x14\x10\x01\x32\x10^[a-zA-Z0-9_-]+$\x12\x37\n\x0csession_info\x18\x06 \x01(\x0b\x32\x1c.inference_graph.SessionInfoH\x00\x88\x01\x01\x42\x0f\n\r_session_info\"\xa8\x02\n\x0cImageOcrNode\x12\x0c\n\x04name\x18\x01 \x01(\t\x12M\n\x0binput_image\x18\x02 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12<\n\x0cmodel_source\x18\x03 \x01(\x0b\x32\x1c.inference_graph.ModelSourceB\x08\xfa\x42\x05\x8a\x01\x02\x10\x01\x12\x33\n\x10output_port_name\x18\x04 \x01(\tB\x19\xfa\x42\x16r\x14\x10\x01\x32\x10^[a-zA-Z0-9_-]+$\x12\x37\n\x0csession_info\x18\x05 \x01(\x0b\x32\x1c.inference_graph.SessionInfoH\x00\x88\x01\x01\x42\x0f\n\r_session_info\"\xb1\x02\n\x15ImageSegmentationNode\x12\x0c\n\x04name\x18\x01 \x01(\t\x12M\n\x0binput_image\x18\x02 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12<\n\x0cmodel_source\x18\x03 \x01(\x0b\x32\x1c.inference_graph.ModelSourceB\x08\xfa\x42\x05\x8a\x01\x02\x10\x01\x12\x33\n\x10output_port_name\x18\x04 \x01(\tB\x19\xfa\x42\x16r\x14\x10\x01\x32\x10^[a-zA-Z0-9_-]+$\x12\x37\n\x0csession_info\x18\x05 \x01(\x0b\x32\x1c.inference_graph.SessionInfoH\x00\x88\x01\x01\x42\x0f\n\r_session_info\"\
|
|
29
|
+
DESCRIPTOR = _descriptor_pool.Default().AddSerializedFile(b'\n\x15inference_graph.proto\x12\x0finference_graph\x1a\x12modelfile-v2.proto\x1a\x0evalidate.proto\"\xa5\x01\n\x0bModelSource\x12-\n\nfrom_proto\x18\x01 \x01(\x0b\x32\x17.modelfile.v2.ModelFileH\x00\x12#\n\x0f\x66rom_network_id\x18\x02 \x01(\tB\x08\xfa\x42\x05r\x03\xb0\x01\x01H\x00\x12.\n\x1a\x66rom_network_experiment_id\x18\x03 \x01(\tB\x08\xfa\x42\x05r\x03\xb0\x01\x01H\x00\x42\x12\n\x0bsource_type\x12\x03\xf8\x42\x01\"s\n\x0bSessionInfo\x12H\n\x12\x65xecution_provider\x18\x01 \x01(\x0e\x32\".inference_graph.ExecutionProviderB\x08\xfa\x42\x05\x82\x01\x02\x10\x01\x12\x1a\n\tdevice_id\x18\x02 \x01(\x05\x42\x07\xfa\x42\x04\x1a\x02(\x00\"\xa4\x03\n\x0f\x43onstTensorNode\x12\x15\n\x04name\x18\x01 \x01(\tB\x07\xfa\x42\x04r\x02\x10\x01\x12\r\n\x05shape\x18\x02 \x03(\r\x12\x43\n\x0buint64_data\x18\x03 \x01(\x0b\x32,.inference_graph.ConstTensorNode.Uint64ArrayH\x00\x12\x41\n\nint64_data\x18\x04 \x01(\x0b\x32+.inference_graph.ConstTensorNode.Int64ArrayH\x00\x12\x45\n\x0c\x66loat64_data\x18\x05 \x01(\x0b\x32-.inference_graph.ConstTensorNode.Float64ArrayH\x00\x12\x33\n\x10output_port_name\x18\x06 \x01(\tB\x19\xfa\x42\x16r\x14\x10\x01\x32\x10^[a-zA-Z0-9_-]+$\x1a\x1b\n\x0bUint64Array\x12\x0c\n\x04\x64\x61ta\x18\x01 \x03(\x04\x1a\x1a\n\nInt64Array\x12\x0c\n\x04\x64\x61ta\x18\x01 \x03(\x12\x1a\x1c\n\x0c\x46loat64Array\x12\x0c\n\x04\x64\x61ta\x18\x01 \x03(\x01\x42\x10\n\tdata_type\x12\x03\xf8\x42\x01\"\xc4\x02\n\x0fImageResizeNode\x12\x15\n\x04name\x18\x01 \x01(\tB\x07\xfa\x42\x04r\x02\x10\x01\x12L\n\ninput_size\x18\x02 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12M\n\x0binput_image\x18\x03 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12\x33\n\x10output_port_name\x18\x04 \x01(\tB\x19\xfa\x42\x16r\x14\x10\x01\x32\x10^[a-zA-Z0-9_-]+$\x12\x37\n\x0csession_info\x18\x05 \x01(\x0b\x32\x1c.inference_graph.SessionInfoH\x00\x88\x01\x01\x42\x0f\n\r_session_info\"\xa3\x05\n\x10ImagePatchesNode\x12\x15\n\x04name\x18\x01 \x01(\tB\x07\xfa\x42\x04r\x02\x10\x01\x12M\n\x0binput_image\x18\x02 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12V\n\x14input_bounding_boxes\x18\x03 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12W\n\x11input_target_size\x18\x04 \x01(\x0b\x32\x32.inference_graph.ImagePatchesNode.TargetSizeSourceB\x08\xfa\x42\x05\x8a\x01\x02\x10\x01\x12\x33\n\x10output_port_name\x18\x05 \x01(\tB\x19\xfa\x42\x16r\x14\x10\x01\x32\x10^[a-zA-Z0-9_-]+$\x12\x37\n\x0csession_info\x18\x07 \x01(\x0b\x32\x1c.inference_graph.SessionInfoH\x00\x88\x01\x01\x1a\xf8\x01\n\x10TargetSizeSource\x12I\n\x05topic\x18\x01 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$H\x00\x12L\n\x04size\x18\x02 \x01(\x0b\x32<.inference_graph.ImagePatchesNode.TargetSizeSource.ImageSizeH\x00\x1a<\n\tImageSize\x12\x17\n\x06height\x18\x01 \x01(\x03\x42\x07\xfa\x42\x04\"\x02(\x01\x12\x16\n\x05width\x18\x02 \x01(\x03\x42\x07\xfa\x42\x04\"\x02(\x01\x42\r\n\x06source\x12\x03\xf8\x42\x01\x42\x0f\n\r_session_info\"v\n\x11VirtualCameraNode\x12\x15\n\x04name\x18\x01 \x01(\tB\x07\xfa\x42\x04r\x02\x10\x01\x12\x15\n\x04path\x18\x02 \x01(\tB\x07\xfa\x42\x04r\x02\x10\x01\x12\x33\n\x10output_port_name\x18\x03 \x01(\tB\x19\xfa\x42\x16r\x14\x10\x01\x32\x10^[a-zA-Z0-9_-]+$\"\xb3\x02\n\x17ImageClassificationNode\x12\x0c\n\x04name\x18\x01 \x01(\t\x12M\n\x0binput_image\x18\x02 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12<\n\x0cmodel_source\x18\x03 \x01(\x0b\x32\x1c.inference_graph.ModelSourceB\x08\xfa\x42\x05\x8a\x01\x02\x10\x01\x12\x33\n\x10output_port_name\x18\x04 \x01(\tB\x19\xfa\x42\x16r\x14\x10\x01\x32\x10^[a-zA-Z0-9_-]+$\x12\x37\n\x0csession_info\x18\x05 \x01(\x0b\x32\x1c.inference_graph.SessionInfoH\x00\x88\x01\x01\x42\x0f\n\r_session_info\"\xd2\x02\n\x18ImageObjectDetectionNode\x12\x0c\n\x04name\x18\x01 \x01(\t\x12M\n\x0binput_image\x18\x02 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12<\n\x0cmodel_source\x18\x03 \x01(\x0b\x32\x1c.inference_graph.ModelSourceB\x08\xfa\x42\x05\x8a\x01\x02\x10\x01\x12\x1c\n\x14scale_bounding_boxes\x18\x04 \x01(\x08\x12\x33\n\x10output_port_name\x18\x05 \x01(\tB\x19\xfa\x42\x16r\x14\x10\x01\x32\x10^[a-zA-Z0-9_-]+$\x12\x37\n\x0csession_info\x18\x06 \x01(\x0b\x32\x1c.inference_graph.SessionInfoH\x00\x88\x01\x01\x42\x0f\n\r_session_info\"\xa8\x02\n\x0cImageOcrNode\x12\x0c\n\x04name\x18\x01 \x01(\t\x12M\n\x0binput_image\x18\x02 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12<\n\x0cmodel_source\x18\x03 \x01(\x0b\x32\x1c.inference_graph.ModelSourceB\x08\xfa\x42\x05\x8a\x01\x02\x10\x01\x12\x33\n\x10output_port_name\x18\x04 \x01(\tB\x19\xfa\x42\x16r\x14\x10\x01\x32\x10^[a-zA-Z0-9_-]+$\x12\x37\n\x0csession_info\x18\x05 \x01(\x0b\x32\x1c.inference_graph.SessionInfoH\x00\x88\x01\x01\x42\x0f\n\r_session_info\"\xb1\x02\n\x15ImageSegmentationNode\x12\x0c\n\x04name\x18\x01 \x01(\t\x12M\n\x0binput_image\x18\x02 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12<\n\x0cmodel_source\x18\x03 \x01(\x0b\x32\x1c.inference_graph.ModelSourceB\x08\xfa\x42\x05\x8a\x01\x02\x10\x01\x12\x33\n\x10output_port_name\x18\x04 \x01(\tB\x19\xfa\x42\x16r\x14\x10\x01\x32\x10^[a-zA-Z0-9_-]+$\x12\x37\n\x0csession_info\x18\x05 \x01(\x0b\x32\x1c.inference_graph.SessionInfoH\x00\x88\x01\x01\x42\x0f\n\r_session_info\"\xf7\x02\n\x1dImageInstanceSegmentationNode\x12\x0c\n\x04name\x18\x01 \x01(\t\x12M\n\x0binput_image\x18\x02 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12<\n\x0cmodel_source\x18\x03 \x01(\x0b\x32\x1c.inference_graph.ModelSourceB\x08\xfa\x42\x05\x8a\x01\x02\x10\x01\x12\x38\n\x15output_bounding_boxes\x18\x04 \x01(\tB\x19\xfa\x42\x16r\x14\x10\x01\x32\x10^[a-zA-Z0-9_-]+$\x12\x37\n\x14output_segmentations\x18\x05 \x01(\tB\x19\xfa\x42\x16r\x14\x10\x01\x32\x10^[a-zA-Z0-9_-]+$\x12\x37\n\x0csession_info\x18\x06 \x01(\x0b\x32\x1c.inference_graph.SessionInfoH\x00\x88\x01\x01\x42\x0f\n\r_session_info\"\xb5\x02\n\x19ImageAnomalyDetectionNode\x12\x0c\n\x04name\x18\x01 \x01(\t\x12M\n\x0binput_image\x18\x02 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12<\n\x0cmodel_source\x18\x03 \x01(\x0b\x32\x1c.inference_graph.ModelSourceB\x08\xfa\x42\x05\x8a\x01\x02\x10\x01\x12\x33\n\x10output_port_name\x18\x04 \x01(\tB\x19\xfa\x42\x16r\x14\x10\x01\x32\x10^[a-zA-Z0-9_-]+$\x12\x37\n\x0csession_info\x18\x05 \x01(\x0b\x32\x1c.inference_graph.SessionInfoH\x00\x88\x01\x01\x42\x0f\n\r_session_info\"\xfd\x04\n\x15\x42oundingBoxFilterNode\x12\x15\n\x04name\x18\x01 \x01(\tB\x07\xfa\x42\x04r\x02\x10\x01\x12V\n\x14input_bounding_boxes\x18\x02 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12\x33\n\x10output_port_name\x18\x03 \x01(\tB\x19\xfa\x42\x16r\x14\x10\x01\x32\x10^[a-zA-Z0-9_-]+$\x12Z\n\x15input_score_threshold\x18\x04 \x01(\x0b\x32\x36.inference_graph.BoundingBoxFilterNode.ThresholdSourceH\x00\x88\x01\x01\x12X\n\x13input_iou_threshold\x18\x05 \x01(\x0b\x32\x36.inference_graph.BoundingBoxFilterNode.ThresholdSourceH\x01\x88\x01\x01\x12\x37\n\x0csession_info\x18\x06 \x01(\x0b\x32\x1c.inference_graph.SessionInfoH\x02\x88\x01\x01\x1a\x8d\x01\n\x0fThresholdSource\x12I\n\x05topic\x18\x01 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$H\x00\x12 \n\x05value\x18\x02 \x01(\x02\x42\x0f\xfa\x42\x0c\n\n\x1d\x00\x00\x80?-\x00\x00\x00\x00H\x00\x42\r\n\x06source\x12\x03\xf8\x42\x01\x42\x18\n\x16_input_score_thresholdB\x16\n\x14_input_iou_thresholdB\x0f\n\r_session_info\"\xbb\x06\n\x04Node\x12=\n\x11\x63onst_tensor_node\x18\x01 \x01(\x0b\x32 .inference_graph.ConstTensorNodeH\x00\x12=\n\x11image_resize_node\x18\x02 \x01(\x0b\x32 .inference_graph.ImageResizeNodeH\x00\x12?\n\x12image_patches_node\x18\x03 \x01(\x0b\x32!.inference_graph.ImagePatchesNodeH\x00\x12\x41\n\x13virtual_camera_node\x18\x04 \x01(\x0b\x32\".inference_graph.VirtualCameraNodeH\x00\x12M\n\x19image_classification_node\x18\x05 \x01(\x0b\x32(.inference_graph.ImageClassificationNodeH\x00\x12P\n\x1bimage_object_detection_node\x18\x06 \x01(\x0b\x32).inference_graph.ImageObjectDetectionNodeH\x00\x12\x37\n\x0eimage_ocr_node\x18\x07 \x01(\x0b\x32\x1d.inference_graph.ImageOcrNodeH\x00\x12J\n\x18\x62ounding_box_filter_node\x18\x08 \x01(\x0b\x32&.inference_graph.BoundingBoxFilterNodeH\x00\x12I\n\x17image_segmentation_node\x18\t \x01(\x0b\x32&.inference_graph.ImageSegmentationNodeH\x00\x12Z\n image_instance_segmentation_node\x18\n \x01(\x0b\x32..inference_graph.ImageInstanceSegmentationNodeH\x00\x12R\n\x1cimage_anomaly_detection_node\x18\x0b \x01(\x0b\x32*.inference_graph.ImageAnomalyDetectionNodeH\x00\x42\x10\n\tnode_type\x12\x03\xf8\x42\x01\"_\n\x05Graph\x12$\n\x05nodes\x18\x01 \x03(\x0b\x32\x15.inference_graph.Node\x12\x12\n\ncreated_at\x18\x02 \x01(\x03\x12\x1c\n\nlicense_id\x18\x03 \x01(\tB\x08\xfa\x42\x05r\x03\xb0\x01\x01*B\n\x11\x45xecutionProvider\x12\x07\n\x03\x43PU\x10\x00\x12\x08\n\x04\x43UDA\x10\x01\x12\x0c\n\x08\x44IRECTML\x10\x02\x12\x0c\n\x08TENSORRT\x10\x03\x42NZ0github.com/DENKweit/denkproto-go/inference_graph\xaa\x02\x19\x44\x45NK.Proto.InferenceGraphb\x06proto3')
|
|
30
30
|
|
|
31
31
|
_globals = globals()
|
|
32
32
|
_builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals)
|
|
@@ -110,8 +110,10 @@ if not _descriptor._USE_C_DESCRIPTORS:
|
|
|
110
110
|
_globals['_IMAGEINSTANCESEGMENTATIONNODE'].fields_by_name['input_image']._serialized_options = b'\372B5r3\020\0012/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$'
|
|
111
111
|
_globals['_IMAGEINSTANCESEGMENTATIONNODE'].fields_by_name['model_source']._loaded_options = None
|
|
112
112
|
_globals['_IMAGEINSTANCESEGMENTATIONNODE'].fields_by_name['model_source']._serialized_options = b'\372B\005\212\001\002\020\001'
|
|
113
|
-
_globals['_IMAGEINSTANCESEGMENTATIONNODE'].fields_by_name['
|
|
114
|
-
_globals['_IMAGEINSTANCESEGMENTATIONNODE'].fields_by_name['
|
|
113
|
+
_globals['_IMAGEINSTANCESEGMENTATIONNODE'].fields_by_name['output_bounding_boxes']._loaded_options = None
|
|
114
|
+
_globals['_IMAGEINSTANCESEGMENTATIONNODE'].fields_by_name['output_bounding_boxes']._serialized_options = b'\372B\026r\024\020\0012\020^[a-zA-Z0-9_-]+$'
|
|
115
|
+
_globals['_IMAGEINSTANCESEGMENTATIONNODE'].fields_by_name['output_segmentations']._loaded_options = None
|
|
116
|
+
_globals['_IMAGEINSTANCESEGMENTATIONNODE'].fields_by_name['output_segmentations']._serialized_options = b'\372B\026r\024\020\0012\020^[a-zA-Z0-9_-]+$'
|
|
115
117
|
_globals['_IMAGEANOMALYDETECTIONNODE'].fields_by_name['input_image']._loaded_options = None
|
|
116
118
|
_globals['_IMAGEANOMALYDETECTIONNODE'].fields_by_name['input_image']._serialized_options = b'\372B5r3\020\0012/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$'
|
|
117
119
|
_globals['_IMAGEANOMALYDETECTIONNODE'].fields_by_name['model_source']._loaded_options = None
|
|
@@ -134,8 +136,8 @@ if not _descriptor._USE_C_DESCRIPTORS:
|
|
|
134
136
|
_globals['_NODE'].oneofs_by_name['node_type']._serialized_options = b'\370B\001'
|
|
135
137
|
_globals['_GRAPH'].fields_by_name['license_id']._loaded_options = None
|
|
136
138
|
_globals['_GRAPH'].fields_by_name['license_id']._serialized_options = b'\372B\005r\003\260\001\001'
|
|
137
|
-
_globals['_EXECUTIONPROVIDER']._serialized_start=
|
|
138
|
-
_globals['_EXECUTIONPROVIDER']._serialized_end=
|
|
139
|
+
_globals['_EXECUTIONPROVIDER']._serialized_start=5426
|
|
140
|
+
_globals['_EXECUTIONPROVIDER']._serialized_end=5492
|
|
139
141
|
_globals['_MODELSOURCE']._serialized_start=79
|
|
140
142
|
_globals['_MODELSOURCE']._serialized_end=244
|
|
141
143
|
_globals['_SESSIONINFO']._serialized_start=246
|
|
@@ -167,15 +169,15 @@ if not _descriptor._USE_C_DESCRIPTORS:
|
|
|
167
169
|
_globals['_IMAGESEGMENTATIONNODE']._serialized_start=2862
|
|
168
170
|
_globals['_IMAGESEGMENTATIONNODE']._serialized_end=3167
|
|
169
171
|
_globals['_IMAGEINSTANCESEGMENTATIONNODE']._serialized_start=3170
|
|
170
|
-
_globals['_IMAGEINSTANCESEGMENTATIONNODE']._serialized_end=
|
|
171
|
-
_globals['_IMAGEANOMALYDETECTIONNODE']._serialized_start=
|
|
172
|
-
_globals['_IMAGEANOMALYDETECTIONNODE']._serialized_end=
|
|
173
|
-
_globals['_BOUNDINGBOXFILTERNODE']._serialized_start=
|
|
174
|
-
_globals['_BOUNDINGBOXFILTERNODE']._serialized_end=
|
|
175
|
-
_globals['_BOUNDINGBOXFILTERNODE_THRESHOLDSOURCE']._serialized_start=
|
|
176
|
-
_globals['_BOUNDINGBOXFILTERNODE_THRESHOLDSOURCE']._serialized_end=
|
|
177
|
-
_globals['_NODE']._serialized_start=
|
|
178
|
-
_globals['_NODE']._serialized_end=
|
|
179
|
-
_globals['_GRAPH']._serialized_start=
|
|
180
|
-
_globals['_GRAPH']._serialized_end=
|
|
172
|
+
_globals['_IMAGEINSTANCESEGMENTATIONNODE']._serialized_end=3545
|
|
173
|
+
_globals['_IMAGEANOMALYDETECTIONNODE']._serialized_start=3548
|
|
174
|
+
_globals['_IMAGEANOMALYDETECTIONNODE']._serialized_end=3857
|
|
175
|
+
_globals['_BOUNDINGBOXFILTERNODE']._serialized_start=3860
|
|
176
|
+
_globals['_BOUNDINGBOXFILTERNODE']._serialized_end=4497
|
|
177
|
+
_globals['_BOUNDINGBOXFILTERNODE_THRESHOLDSOURCE']._serialized_start=4289
|
|
178
|
+
_globals['_BOUNDINGBOXFILTERNODE_THRESHOLDSOURCE']._serialized_end=4430
|
|
179
|
+
_globals['_NODE']._serialized_start=4500
|
|
180
|
+
_globals['_NODE']._serialized_end=5327
|
|
181
|
+
_globals['_GRAPH']._serialized_start=5329
|
|
182
|
+
_globals['_GRAPH']._serialized_end=5424
|
|
181
183
|
# @@protoc_insertion_point(module_scope)
|
|
@@ -181,18 +181,20 @@ class ImageSegmentationNode(_message.Message):
|
|
|
181
181
|
def __init__(self, name: _Optional[str] = ..., input_image: _Optional[str] = ..., model_source: _Optional[_Union[ModelSource, _Mapping]] = ..., output_port_name: _Optional[str] = ..., session_info: _Optional[_Union[SessionInfo, _Mapping]] = ...) -> None: ...
|
|
182
182
|
|
|
183
183
|
class ImageInstanceSegmentationNode(_message.Message):
|
|
184
|
-
__slots__ = ("name", "input_image", "model_source", "
|
|
184
|
+
__slots__ = ("name", "input_image", "model_source", "output_bounding_boxes", "output_segmentations", "session_info")
|
|
185
185
|
NAME_FIELD_NUMBER: _ClassVar[int]
|
|
186
186
|
INPUT_IMAGE_FIELD_NUMBER: _ClassVar[int]
|
|
187
187
|
MODEL_SOURCE_FIELD_NUMBER: _ClassVar[int]
|
|
188
|
-
|
|
188
|
+
OUTPUT_BOUNDING_BOXES_FIELD_NUMBER: _ClassVar[int]
|
|
189
|
+
OUTPUT_SEGMENTATIONS_FIELD_NUMBER: _ClassVar[int]
|
|
189
190
|
SESSION_INFO_FIELD_NUMBER: _ClassVar[int]
|
|
190
191
|
name: str
|
|
191
192
|
input_image: str
|
|
192
193
|
model_source: ModelSource
|
|
193
|
-
|
|
194
|
+
output_bounding_boxes: str
|
|
195
|
+
output_segmentations: str
|
|
194
196
|
session_info: SessionInfo
|
|
195
|
-
def __init__(self, name: _Optional[str] = ..., input_image: _Optional[str] = ..., model_source: _Optional[_Union[ModelSource, _Mapping]] = ...,
|
|
197
|
+
def __init__(self, name: _Optional[str] = ..., input_image: _Optional[str] = ..., model_source: _Optional[_Union[ModelSource, _Mapping]] = ..., output_bounding_boxes: _Optional[str] = ..., output_segmentations: _Optional[str] = ..., session_info: _Optional[_Union[SessionInfo, _Mapping]] = ...) -> None: ...
|
|
196
198
|
|
|
197
199
|
class ImageAnomalyDetectionNode(_message.Message):
|
|
198
200
|
__slots__ = ("name", "input_image", "model_source", "output_port_name", "session_info")
|
|
@@ -78,7 +78,8 @@ class ImageInstanceSegmentationNode(BaseModel):
|
|
|
78
78
|
name: str
|
|
79
79
|
input_image: str
|
|
80
80
|
model_source: ModelSourceBase
|
|
81
|
-
|
|
81
|
+
output_bounding_boxes: str
|
|
82
|
+
output_segmentations: str
|
|
82
83
|
|
|
83
84
|
class ImageAnomalyDetectionNode(BaseModel):
|
|
84
85
|
"""Node for image anomaly detection. Base type for all nodes in the graph."""
|
denkproto/modelfile_v2_pb2.py
CHANGED
|
@@ -25,7 +25,7 @@ _sym_db = _symbol_database.Default()
|
|
|
25
25
|
import denkproto.validate_pb2 as validate__pb2
|
|
26
26
|
|
|
27
27
|
|
|
28
|
-
DESCRIPTOR = _descriptor_pool.Default().AddSerializedFile(b'\n\x12modelfile-v2.proto\x12\x0cmodelfile.v2\x1a\x0evalidate.proto\"\
|
|
28
|
+
DESCRIPTOR = _descriptor_pool.Default().AddSerializedFile(b'\n\x12modelfile-v2.proto\x12\x0cmodelfile.v2\x1a\x0evalidate.proto\"\xd1\'\n\tModelFile\x12\x39\n\x10protocol_version\x18\x01 \x01(\x0b\x32\x1f.modelfile.v2.ModelFile.Version\x12\x12\n\ncreated_at\x18\x02 \x01(\x03\x12=\n\tfile_info\x18\x03 \x01(\x0b\x32 .modelfile.v2.ModelFile.FileInfoB\x08\xfa\x42\x05\x8a\x01\x02\x10\x01\x12\x43\n\x0c\x66ile_content\x18\x04 \x01(\x0b\x32#.modelfile.v2.ModelFile.FileContentB\x08\xfa\x42\x05\x8a\x01\x02\x10\x01\x12I\n\x0c\x63lass_labels\x18\x05 \x03(\x0b\x32\".modelfile.v2.ModelFile.ClassLabelB\x0f\xfa\x42\x0c\x92\x01\t\x08\x01\"\x05\x8a\x01\x02\x10\x01\x12>\n\x06inputs\x18\x06 \x03(\x0b\x32\x1d.modelfile.v2.ModelFile.InputB\x0f\xfa\x42\x0c\x92\x01\t\x08\x01\"\x05\x8a\x01\x02\x10\x01\x12@\n\x07outputs\x18\x07 \x03(\x0b\x32\x1e.modelfile.v2.ModelFile.OutputB\x0f\xfa\x42\x0c\x92\x01\t\x08\x01\"\x05\x8a\x01\x02\x10\x01\x1a\x36\n\x07Version\x12\r\n\x05major\x18\x01 \x01(\x04\x12\r\n\x05minor\x18\x02 \x01(\x04\x12\r\n\x05patch\x18\x03 \x01(\x04\x1a\xd0\x04\n\x07\x43ontent\x12\x1d\n\x0c\x62yte_content\x18\x01 \x01(\x0c\x42\x07\xfa\x42\x04z\x02\x10\x01\x12\x1c\n\x0bhash_sha256\x18\x02 \x01(\x0c\x42\x07\xfa\x42\x04z\x02\x10\x01\x12W\n\x12\x63ompression_method\x18\x03 \x01(\x0e\x32\x31.modelfile.v2.ModelFile.Content.CompressionMethodB\x08\xfa\x42\x05\x82\x01\x02\x10\x01\x12U\n\x11\x65ncryption_method\x18\x04 \x01(\x0e\x32\x30.modelfile.v2.ModelFile.Content.EncryptionMethodB\x08\xfa\x42\x05\x82\x01\x02\x10\x01\x12@\n\tkey_slots\x18\x05 \x03(\x0b\x32-.modelfile.v2.ModelFile.Content.KeySlotsEntry\x1ai\n\x07KeySlot\x12\x13\n\x0bwrapped_key\x18\x01 \x01(\x0c\x12I\n\x0fwrapping_method\x18\x02 \x01(\x0e\x32\x30.modelfile.v2.ModelFile.Content.EncryptionMethod\x1aX\n\rKeySlotsEntry\x12\x0b\n\x03key\x18\x01 \x01(\t\x12\x36\n\x05value\x18\x02 \x01(\x0b\x32\'.modelfile.v2.ModelFile.Content.KeySlot:\x02\x38\x01\" \n\x11\x43ompressionMethod\x12\x0b\n\x07\x43M_NONE\x10\x00\"/\n\x10\x45ncryptionMethod\x12\x0b\n\x07\x45M_NONE\x10\x00\x12\x0e\n\nEM_AES_GCM\x10\x01\x1a\x80\x01\n\nClassLabel\x12 \n\x0e\x63lass_label_id\x18\x01 \x01(\tB\x08\xfa\x42\x05r\x03\xb0\x01\x01\x12\x0c\n\x04name\x18\x02 \x01(\t\x12\x12\n\nshort_name\x18\x03 \x01(\t\x12.\n\x05\x63olor\x18\x04 \x01(\tB\x1f\xfa\x42\x1cr\x1a\x32\x18^#(?:[0-9a-fA-F]{2}){3}$\x1aW\n\tImageSize\x12\x16\n\x05width\x18\x01 \x01(\x04\x42\x07\xfa\x42\x04\x32\x02 \x00\x12\x17\n\x06height\x18\x02 \x01(\x04\x42\x07\xfa\x42\x04\x32\x02 \x00\x12\x19\n\x08\x63hannels\x18\x03 \x01(\x04\x42\x07\xfa\x42\x04\x32\x02 \x00\x1a\xae\x01\n\x0eRegionFromEdge\x12%\n\x04left\x18\x01 \x01(\x01\x42\x17\xfa\x42\x14\x12\x12\x11\x00\x00\x00\x00\x00\x00\xf0?)\x00\x00\x00\x00\x00\x00\x00\x00\x12&\n\x05right\x18\x02 \x01(\x01\x42\x17\xfa\x42\x14\x12\x12\x11\x00\x00\x00\x00\x00\x00\xf0?)\x00\x00\x00\x00\x00\x00\x00\x00\x12$\n\x03top\x18\x03 \x01(\x01\x42\x17\xfa\x42\x14\x12\x12\x11\x00\x00\x00\x00\x00\x00\xf0?)\x00\x00\x00\x00\x00\x00\x00\x00\x12\'\n\x06\x62ottom\x18\x04 \x01(\x01\x42\x17\xfa\x42\x14\x12\x12\x11\x00\x00\x00\x00\x00\x00\xf0?)\x00\x00\x00\x00\x00\x00\x00\x00\x1a\xf7\x05\n\x05Input\x12\x12\n\ninput_name\x18\x01 \x01(\t\x12\x46\n\x0cimage_format\x18\x02 \x01(\x0b\x32..modelfile.v2.ModelFile.Input.ImageInputFormatH\x00\x1a\xfb\x04\n\x10ImageInputFormat\x12\x64\n\x10\x65xact_image_size\x18\x01 \x01(\x0b\x32H.modelfile.v2.ModelFile.Input.ImageInputFormat.ExactImageSizeRequirementH\x00\x12l\n\x14\x64ivisible_image_size\x18\x02 \x01(\x0b\x32L.modelfile.v2.ModelFile.Input.ImageInputFormat.DivisibleImageSizeRequirementH\x00\x12\x42\n\x12region_of_interest\x18\x03 \x01(\x0b\x32&.modelfile.v2.ModelFile.RegionFromEdge\x1aR\n\x19\x45xactImageSizeRequirement\x12\x35\n\nimage_size\x18\x01 \x01(\x0b\x32!.modelfile.v2.ModelFile.ImageSize\x1a\xdf\x01\n\x1d\x44ivisibleImageSizeRequirement\x12>\n\x13image_size_divisors\x18\x01 \x01(\x0b\x32!.modelfile.v2.ModelFile.ImageSize\x12=\n\x12minimum_image_size\x18\x02 \x01(\x0b\x32!.modelfile.v2.ModelFile.ImageSize\x12?\n\x14suggested_image_size\x18\x03 \x01(\x0b\x32!.modelfile.v2.ModelFile.ImageSizeB\x19\n\x17image_size_requirementsB\x14\n\x12\x66ormat_information\x1a\xfe\n\n\x06Output\x12\x13\n\x0boutput_name\x18\x01 \x01(\t\x12J\n\rscalar_format\x18\x02 \x01(\x0b\x32\x31.modelfile.v2.ModelFile.Output.ScalarOutputFormatH\x00\x12_\n\x18segmentation_maps_format\x18\x03 \x01(\x0b\x32;.modelfile.v2.ModelFile.Output.SegmentationMapsOutputFormatH\x00\x12Y\n\x15\x62ounding_boxes_format\x18\x04 \x01(\x0b\x32\x38.modelfile.v2.ModelFile.Output.BoundingBoxesOutputFormatH\x00\x12p\n!bounding_box_segmentations_format\x18\x05 \x01(\x0b\x32\x43.modelfile.v2.ModelFile.Output.BoundingBoxSegmentationsOutputFormatH\x00\x12\x44\n\nocr_format\x18\x06 \x01(\x0b\x32..modelfile.v2.ModelFile.Output.OcrOutputFormatH\x00\x1a\x14\n\x12ScalarOutputFormat\x1a\x1e\n\x1cSegmentationMapsOutputFormat\x1a\xd0\x01\n\x19\x42oundingBoxesOutputFormat\x12\x11\n\tx1_offset\x18\x01 \x01(\x04\x12\x11\n\ty1_offset\x18\x02 \x01(\x04\x12\x11\n\tx2_offset\x18\x03 \x01(\x04\x12\x11\n\ty2_offset\x18\x04 \x01(\x04\x12\x19\n\x11\x63onfidence_offset\x18\x05 \x01(\x04\x12 \n\x18\x63lass_label_index_offset\x18\x06 \x01(\x04\x12\x19\n\x0c\x61ngle_offset\x18\x07 \x01(\x04H\x00\x88\x01\x01\x42\x0f\n\r_angle_offset\x1aH\n$BoundingBoxSegmentationsOutputFormat\x12 \n\x18relative_to_bounding_box\x18\x01 \x01(\x08\x1a\xb0\x04\n\x0fOcrOutputFormat\x12L\n\ncharacters\x18\x01 \x03(\x0b\x32\x38.modelfile.v2.ModelFile.Output.OcrOutputFormat.Character\x12h\n\x16\x63haracter_restrictions\x18\x02 \x01(\x0b\x32H.modelfile.v2.ModelFile.Output.OcrOutputFormat.OcrFormatRestrictionBlock\x1a\\\n\x19OcrFormatRestrictionBlock\x12\x1c\n\x14number_of_characters\x18\x01 \x01(\x04\x12!\n\x19\x61llowed_character_indexes\x18\x02 \x03(\x04\x1a\x86\x02\n\tCharacter\x12$\n\x13utf8_representation\x18\x01 \x01(\x0c\x42\x07\xfa\x42\x04z\x02\x10\x01\x12h\n\x0e\x63haracter_type\x18\x02 \x01(\x0e\x32\x46.modelfile.v2.ModelFile.Output.OcrOutputFormat.Character.CharacterTypeB\x08\xfa\x42\x05\x82\x01\x02\x10\x01\x12\x0e\n\x06ignore\x18\x03 \x01(\x08\"Y\n\rCharacterType\x12\x0e\n\nCT_REGULAR\x10\x00\x12\x14\n\x10\x43T_START_OF_TEXT\x10\x01\x12\x12\n\x0e\x43T_END_OF_TEXT\x10\x02\x12\x0e\n\nCT_PADDING\x10\x03\x42\x19\n\x12\x66ormat_information\x12\x03\xf8\x42\x01\x1a\xa4\x07\n\x08\x46ileInfo\x12\x14\n\x0cnetwork_name\x18\x01 \x01(\t\x12\x1c\n\nnetwork_id\x18\x02 \x01(\tB\x08\xfa\x42\x05r\x03\xb0\x01\x01\x12\'\n\x15network_experiment_id\x18\x03 \x01(\tB\x08\xfa\x42\x05r\x03\xb0\x01\x01\x12%\n\x13network_snapshot_id\x18\x04 \x01(\tB\x08\xfa\x42\x05r\x03\xb0\x01\x01\x12\x42\n\x0cnetwork_type\x18\x05 \x01(\x0e\x32,.modelfile.v2.ModelFile.FileInfo.NetworkType\x12\x16\n\x0enetwork_flavor\x18\x06 \x01(\t\x12\x38\n\x0fnetwork_version\x18\x07 \x01(\x0b\x32\x1f.modelfile.v2.ModelFile.Version\x12\x38\n\x0fruntime_version\x18\x08 \x01(\x0b\x32\x1f.modelfile.v2.ModelFile.Version\x12=\n\tprecision\x18\t \x01(\x0e\x32*.modelfile.v2.ModelFile.FileInfo.Precision\x12\x44\n\x1bminimum_libdenkflow_version\x18\n \x01(\x0b\x32\x1f.modelfile.v2.ModelFile.Version\"\xc0\x01\n\x0bNetworkType\x12\x0e\n\nNT_UNKNOWN\x10\x00\x12\x15\n\x11NT_CLASSIFICATION\x10\x01\x12\x13\n\x0fNT_SEGMENTATION\x10\x02\x12\x1c\n\x18NT_INSTANCE_SEGMENTATION\x10\x03\x12\x17\n\x13NT_OBJECT_DETECTION\x10\x04\x12\x18\n\x14NT_ANOMALY_DETECTION\x10\x05\x12$\n NT_OPTICAL_CHARACTER_RECOGNITION\x10\x06\"\xfb\x01\n\tPrecision\x12\x0f\n\x0bP_UNDEFINED\x10\x00\x12\x15\n\x11P_MIXED_PRECISION\x10\x01\x12\t\n\x05P_FP8\x10\x02\x12\n\n\x06P_FP16\x10\x03\x12\n\n\x06P_FP32\x10\x04\x12\n\n\x06P_FP64\x10\x05\x12\t\n\x05P_BF8\x10\x06\x12\n\n\x06P_BF16\x10\x07\x12\n\n\x06P_BF32\x10\x08\x12\n\n\x06P_BF64\x10\t\x12\n\n\x06P_INT8\x10\n\x12\x0b\n\x07P_INT16\x10\x0b\x12\x0b\n\x07P_INT32\x10\x0c\x12\x0b\n\x07P_INT64\x10\r\x12\x0b\n\x07P_UINT8\x10\x0e\x12\x0c\n\x08P_UINT16\x10\x0f\x12\x0c\n\x08P_UINT32\x10\x10\x12\x0c\n\x08P_UINT64\x10\x11\x1a\xe9\x03\n\x0b\x46ileContent\x12I\n\rdefault_model\x18\x01 \x01(\x0b\x32\x30.modelfile.v2.ModelFile.FileContent.DefaultModelH\x00\x12K\n\x0etensorrt_model\x18\x02 \x01(\x0b\x32\x31.modelfile.v2.ModelFile.FileContent.TensorRTModelH\x00\x1aM\n\x0c\x44\x65\x66\x61ultModel\x12=\n\nmodel_data\x18\x01 \x01(\x0b\x32\x1f.modelfile.v2.ModelFile.ContentB\x08\xfa\x42\x05\x8a\x01\x02\x10\x01\x1a\xe0\x01\n\rTensorRTModel\x12=\n\nmodel_data\x18\x01 \x01(\x0b\x32\x1f.modelfile.v2.ModelFile.ContentB\x08\xfa\x42\x05\x8a\x01\x02\x10\x01\x12\x44\n\x11\x63\x61libration_cache\x18\x02 \x01(\x0b\x32\x1f.modelfile.v2.ModelFile.ContentB\x08\xfa\x42\x05\x8a\x01\x02\x10\x01\x12J\n\x17\x63\x61libration_flatbuffers\x18\x03 \x01(\x0b\x32\x1f.modelfile.v2.ModelFile.ContentB\x08\xfa\x42\x05\x8a\x01\x02\x10\x01\x42\x10\n\tfile_type\x12\x03\xf8\x42\x01\x42IZ-github.com/DENKweit/denkproto-go/modelfile/v2\xaa\x02\x17\x44\x45NK.Proto.Modelfile.V2b\x06proto3')
|
|
29
29
|
|
|
30
30
|
_globals = globals()
|
|
31
31
|
_builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals)
|
|
@@ -83,8 +83,6 @@ if not _descriptor._USE_C_DESCRIPTORS:
|
|
|
83
83
|
_globals['_MODELFILE_FILECONTENT_TENSORRTMODEL'].fields_by_name['calibration_flatbuffers']._serialized_options = b'\372B\005\212\001\002\020\001'
|
|
84
84
|
_globals['_MODELFILE_FILECONTENT'].oneofs_by_name['file_type']._loaded_options = None
|
|
85
85
|
_globals['_MODELFILE_FILECONTENT'].oneofs_by_name['file_type']._serialized_options = b'\370B\001'
|
|
86
|
-
_globals['_MODELFILE'].fields_by_name['created_at']._loaded_options = None
|
|
87
|
-
_globals['_MODELFILE'].fields_by_name['created_at']._serialized_options = b'\372B\004\"\002(\000'
|
|
88
86
|
_globals['_MODELFILE'].fields_by_name['file_info']._loaded_options = None
|
|
89
87
|
_globals['_MODELFILE'].fields_by_name['file_info']._serialized_options = b'\372B\005\212\001\002\020\001'
|
|
90
88
|
_globals['_MODELFILE'].fields_by_name['file_content']._loaded_options = None
|
|
@@ -96,59 +94,61 @@ if not _descriptor._USE_C_DESCRIPTORS:
|
|
|
96
94
|
_globals['_MODELFILE'].fields_by_name['outputs']._loaded_options = None
|
|
97
95
|
_globals['_MODELFILE'].fields_by_name['outputs']._serialized_options = b'\372B\014\222\001\t\010\001\"\005\212\001\002\020\001'
|
|
98
96
|
_globals['_MODELFILE']._serialized_start=53
|
|
99
|
-
_globals['_MODELFILE']._serialized_end=
|
|
100
|
-
_globals['_MODELFILE_VERSION']._serialized_start=
|
|
101
|
-
_globals['_MODELFILE_VERSION']._serialized_end=
|
|
102
|
-
_globals['_MODELFILE_CONTENT']._serialized_start=
|
|
103
|
-
_globals['_MODELFILE_CONTENT']._serialized_end=
|
|
104
|
-
_globals['_MODELFILE_CONTENT_KEYSLOT']._serialized_start=
|
|
105
|
-
_globals['_MODELFILE_CONTENT_KEYSLOT']._serialized_end=
|
|
106
|
-
_globals['_MODELFILE_CONTENT_KEYSLOTSENTRY']._serialized_start=
|
|
107
|
-
_globals['_MODELFILE_CONTENT_KEYSLOTSENTRY']._serialized_end=
|
|
108
|
-
_globals['_MODELFILE_CONTENT_COMPRESSIONMETHOD']._serialized_start=
|
|
109
|
-
_globals['_MODELFILE_CONTENT_COMPRESSIONMETHOD']._serialized_end=
|
|
110
|
-
_globals['_MODELFILE_CONTENT_ENCRYPTIONMETHOD']._serialized_start=
|
|
111
|
-
_globals['_MODELFILE_CONTENT_ENCRYPTIONMETHOD']._serialized_end=
|
|
112
|
-
_globals['_MODELFILE_CLASSLABEL']._serialized_start=
|
|
113
|
-
_globals['_MODELFILE_CLASSLABEL']._serialized_end=
|
|
114
|
-
_globals['_MODELFILE_IMAGESIZE']._serialized_start=
|
|
115
|
-
_globals['_MODELFILE_IMAGESIZE']._serialized_end=
|
|
116
|
-
_globals['_MODELFILE_REGIONFROMEDGE']._serialized_start=
|
|
117
|
-
_globals['_MODELFILE_REGIONFROMEDGE']._serialized_end=
|
|
118
|
-
_globals['_MODELFILE_INPUT']._serialized_start=
|
|
119
|
-
_globals['_MODELFILE_INPUT']._serialized_end=
|
|
120
|
-
_globals['_MODELFILE_INPUT_IMAGEINPUTFORMAT']._serialized_start=
|
|
121
|
-
_globals['_MODELFILE_INPUT_IMAGEINPUTFORMAT']._serialized_end=
|
|
122
|
-
_globals['_MODELFILE_INPUT_IMAGEINPUTFORMAT_EXACTIMAGESIZEREQUIREMENT']._serialized_start=
|
|
123
|
-
_globals['_MODELFILE_INPUT_IMAGEINPUTFORMAT_EXACTIMAGESIZEREQUIREMENT']._serialized_end=
|
|
124
|
-
_globals['_MODELFILE_INPUT_IMAGEINPUTFORMAT_DIVISIBLEIMAGESIZEREQUIREMENT']._serialized_start=
|
|
125
|
-
_globals['_MODELFILE_INPUT_IMAGEINPUTFORMAT_DIVISIBLEIMAGESIZEREQUIREMENT']._serialized_end=
|
|
126
|
-
_globals['_MODELFILE_OUTPUT']._serialized_start=
|
|
127
|
-
_globals['_MODELFILE_OUTPUT']._serialized_end=
|
|
128
|
-
_globals['
|
|
129
|
-
_globals['
|
|
130
|
-
_globals['_MODELFILE_OUTPUT_SEGMENTATIONMAPSOUTPUTFORMAT']._serialized_start=
|
|
131
|
-
_globals['_MODELFILE_OUTPUT_SEGMENTATIONMAPSOUTPUTFORMAT']._serialized_end=
|
|
132
|
-
_globals['_MODELFILE_OUTPUT_BOUNDINGBOXESOUTPUTFORMAT']._serialized_start=
|
|
133
|
-
_globals['_MODELFILE_OUTPUT_BOUNDINGBOXESOUTPUTFORMAT']._serialized_end=
|
|
134
|
-
_globals['_MODELFILE_OUTPUT_BOUNDINGBOXSEGMENTATIONSOUTPUTFORMAT']._serialized_start=
|
|
135
|
-
_globals['_MODELFILE_OUTPUT_BOUNDINGBOXSEGMENTATIONSOUTPUTFORMAT']._serialized_end=
|
|
136
|
-
_globals['_MODELFILE_OUTPUT_OCROUTPUTFORMAT']._serialized_start=
|
|
137
|
-
_globals['_MODELFILE_OUTPUT_OCROUTPUTFORMAT']._serialized_end=
|
|
138
|
-
_globals['
|
|
139
|
-
_globals['
|
|
140
|
-
_globals['
|
|
141
|
-
_globals['
|
|
142
|
-
_globals['
|
|
143
|
-
_globals['
|
|
144
|
-
_globals['
|
|
145
|
-
_globals['
|
|
146
|
-
_globals['
|
|
147
|
-
_globals['
|
|
148
|
-
_globals['
|
|
149
|
-
_globals['
|
|
150
|
-
_globals['
|
|
151
|
-
_globals['
|
|
152
|
-
_globals['
|
|
153
|
-
_globals['
|
|
97
|
+
_globals['_MODELFILE']._serialized_end=5126
|
|
98
|
+
_globals['_MODELFILE_VERSION']._serialized_start=482
|
|
99
|
+
_globals['_MODELFILE_VERSION']._serialized_end=536
|
|
100
|
+
_globals['_MODELFILE_CONTENT']._serialized_start=539
|
|
101
|
+
_globals['_MODELFILE_CONTENT']._serialized_end=1131
|
|
102
|
+
_globals['_MODELFILE_CONTENT_KEYSLOT']._serialized_start=853
|
|
103
|
+
_globals['_MODELFILE_CONTENT_KEYSLOT']._serialized_end=958
|
|
104
|
+
_globals['_MODELFILE_CONTENT_KEYSLOTSENTRY']._serialized_start=960
|
|
105
|
+
_globals['_MODELFILE_CONTENT_KEYSLOTSENTRY']._serialized_end=1048
|
|
106
|
+
_globals['_MODELFILE_CONTENT_COMPRESSIONMETHOD']._serialized_start=1050
|
|
107
|
+
_globals['_MODELFILE_CONTENT_COMPRESSIONMETHOD']._serialized_end=1082
|
|
108
|
+
_globals['_MODELFILE_CONTENT_ENCRYPTIONMETHOD']._serialized_start=1084
|
|
109
|
+
_globals['_MODELFILE_CONTENT_ENCRYPTIONMETHOD']._serialized_end=1131
|
|
110
|
+
_globals['_MODELFILE_CLASSLABEL']._serialized_start=1134
|
|
111
|
+
_globals['_MODELFILE_CLASSLABEL']._serialized_end=1262
|
|
112
|
+
_globals['_MODELFILE_IMAGESIZE']._serialized_start=1264
|
|
113
|
+
_globals['_MODELFILE_IMAGESIZE']._serialized_end=1351
|
|
114
|
+
_globals['_MODELFILE_REGIONFROMEDGE']._serialized_start=1354
|
|
115
|
+
_globals['_MODELFILE_REGIONFROMEDGE']._serialized_end=1528
|
|
116
|
+
_globals['_MODELFILE_INPUT']._serialized_start=1531
|
|
117
|
+
_globals['_MODELFILE_INPUT']._serialized_end=2290
|
|
118
|
+
_globals['_MODELFILE_INPUT_IMAGEINPUTFORMAT']._serialized_start=1633
|
|
119
|
+
_globals['_MODELFILE_INPUT_IMAGEINPUTFORMAT']._serialized_end=2268
|
|
120
|
+
_globals['_MODELFILE_INPUT_IMAGEINPUTFORMAT_EXACTIMAGESIZEREQUIREMENT']._serialized_start=1933
|
|
121
|
+
_globals['_MODELFILE_INPUT_IMAGEINPUTFORMAT_EXACTIMAGESIZEREQUIREMENT']._serialized_end=2015
|
|
122
|
+
_globals['_MODELFILE_INPUT_IMAGEINPUTFORMAT_DIVISIBLEIMAGESIZEREQUIREMENT']._serialized_start=2018
|
|
123
|
+
_globals['_MODELFILE_INPUT_IMAGEINPUTFORMAT_DIVISIBLEIMAGESIZEREQUIREMENT']._serialized_end=2241
|
|
124
|
+
_globals['_MODELFILE_OUTPUT']._serialized_start=2293
|
|
125
|
+
_globals['_MODELFILE_OUTPUT']._serialized_end=3699
|
|
126
|
+
_globals['_MODELFILE_OUTPUT_SCALAROUTPUTFORMAT']._serialized_start=2772
|
|
127
|
+
_globals['_MODELFILE_OUTPUT_SCALAROUTPUTFORMAT']._serialized_end=2792
|
|
128
|
+
_globals['_MODELFILE_OUTPUT_SEGMENTATIONMAPSOUTPUTFORMAT']._serialized_start=2794
|
|
129
|
+
_globals['_MODELFILE_OUTPUT_SEGMENTATIONMAPSOUTPUTFORMAT']._serialized_end=2824
|
|
130
|
+
_globals['_MODELFILE_OUTPUT_BOUNDINGBOXESOUTPUTFORMAT']._serialized_start=2827
|
|
131
|
+
_globals['_MODELFILE_OUTPUT_BOUNDINGBOXESOUTPUTFORMAT']._serialized_end=3035
|
|
132
|
+
_globals['_MODELFILE_OUTPUT_BOUNDINGBOXSEGMENTATIONSOUTPUTFORMAT']._serialized_start=3037
|
|
133
|
+
_globals['_MODELFILE_OUTPUT_BOUNDINGBOXSEGMENTATIONSOUTPUTFORMAT']._serialized_end=3109
|
|
134
|
+
_globals['_MODELFILE_OUTPUT_OCROUTPUTFORMAT']._serialized_start=3112
|
|
135
|
+
_globals['_MODELFILE_OUTPUT_OCROUTPUTFORMAT']._serialized_end=3672
|
|
136
|
+
_globals['_MODELFILE_OUTPUT_OCROUTPUTFORMAT_OCRFORMATRESTRICTIONBLOCK']._serialized_start=3315
|
|
137
|
+
_globals['_MODELFILE_OUTPUT_OCROUTPUTFORMAT_OCRFORMATRESTRICTIONBLOCK']._serialized_end=3407
|
|
138
|
+
_globals['_MODELFILE_OUTPUT_OCROUTPUTFORMAT_CHARACTER']._serialized_start=3410
|
|
139
|
+
_globals['_MODELFILE_OUTPUT_OCROUTPUTFORMAT_CHARACTER']._serialized_end=3672
|
|
140
|
+
_globals['_MODELFILE_OUTPUT_OCROUTPUTFORMAT_CHARACTER_CHARACTERTYPE']._serialized_start=3583
|
|
141
|
+
_globals['_MODELFILE_OUTPUT_OCROUTPUTFORMAT_CHARACTER_CHARACTERTYPE']._serialized_end=3672
|
|
142
|
+
_globals['_MODELFILE_FILEINFO']._serialized_start=3702
|
|
143
|
+
_globals['_MODELFILE_FILEINFO']._serialized_end=4634
|
|
144
|
+
_globals['_MODELFILE_FILEINFO_NETWORKTYPE']._serialized_start=4188
|
|
145
|
+
_globals['_MODELFILE_FILEINFO_NETWORKTYPE']._serialized_end=4380
|
|
146
|
+
_globals['_MODELFILE_FILEINFO_PRECISION']._serialized_start=4383
|
|
147
|
+
_globals['_MODELFILE_FILEINFO_PRECISION']._serialized_end=4634
|
|
148
|
+
_globals['_MODELFILE_FILECONTENT']._serialized_start=4637
|
|
149
|
+
_globals['_MODELFILE_FILECONTENT']._serialized_end=5126
|
|
150
|
+
_globals['_MODELFILE_FILECONTENT_DEFAULTMODEL']._serialized_start=4804
|
|
151
|
+
_globals['_MODELFILE_FILECONTENT_DEFAULTMODEL']._serialized_end=4881
|
|
152
|
+
_globals['_MODELFILE_FILECONTENT_TENSORRTMODEL']._serialized_start=4884
|
|
153
|
+
_globals['_MODELFILE_FILECONTENT_TENSORRTMODEL']._serialized_end=5108
|
|
154
154
|
# @@protoc_insertion_point(module_scope)
|
denkproto/modelfile_v2_pb2.pyi
CHANGED
|
@@ -87,7 +87,7 @@ class ModelFile(_message.Message):
|
|
|
87
87
|
bottom: float
|
|
88
88
|
def __init__(self, left: _Optional[float] = ..., right: _Optional[float] = ..., top: _Optional[float] = ..., bottom: _Optional[float] = ...) -> None: ...
|
|
89
89
|
class Input(_message.Message):
|
|
90
|
-
__slots__ = ("image_format"
|
|
90
|
+
__slots__ = ("input_name", "image_format")
|
|
91
91
|
class ImageInputFormat(_message.Message):
|
|
92
92
|
__slots__ = ("exact_image_size", "divisible_image_size", "region_of_interest")
|
|
93
93
|
class ExactImageSizeRequirement(_message.Message):
|
|
@@ -111,49 +111,50 @@ class ModelFile(_message.Message):
|
|
|
111
111
|
divisible_image_size: ModelFile.Input.ImageInputFormat.DivisibleImageSizeRequirement
|
|
112
112
|
region_of_interest: ModelFile.RegionFromEdge
|
|
113
113
|
def __init__(self, exact_image_size: _Optional[_Union[ModelFile.Input.ImageInputFormat.ExactImageSizeRequirement, _Mapping]] = ..., divisible_image_size: _Optional[_Union[ModelFile.Input.ImageInputFormat.DivisibleImageSizeRequirement, _Mapping]] = ..., region_of_interest: _Optional[_Union[ModelFile.RegionFromEdge, _Mapping]] = ...) -> None: ...
|
|
114
|
+
INPUT_NAME_FIELD_NUMBER: _ClassVar[int]
|
|
114
115
|
IMAGE_FORMAT_FIELD_NUMBER: _ClassVar[int]
|
|
116
|
+
input_name: str
|
|
115
117
|
image_format: ModelFile.Input.ImageInputFormat
|
|
116
|
-
def __init__(self, image_format: _Optional[_Union[ModelFile.Input.ImageInputFormat, _Mapping]] = ...) -> None: ...
|
|
118
|
+
def __init__(self, input_name: _Optional[str] = ..., image_format: _Optional[_Union[ModelFile.Input.ImageInputFormat, _Mapping]] = ...) -> None: ...
|
|
117
119
|
class Output(_message.Message):
|
|
118
|
-
__slots__ = ("
|
|
119
|
-
class
|
|
120
|
+
__slots__ = ("output_name", "scalar_format", "segmentation_maps_format", "bounding_boxes_format", "bounding_box_segmentations_format", "ocr_format")
|
|
121
|
+
class ScalarOutputFormat(_message.Message):
|
|
120
122
|
__slots__ = ()
|
|
121
123
|
def __init__(self) -> None: ...
|
|
122
124
|
class SegmentationMapsOutputFormat(_message.Message):
|
|
123
|
-
__slots__ = (
|
|
124
|
-
|
|
125
|
-
image_size: ModelFile.ImageSize
|
|
126
|
-
def __init__(self, image_size: _Optional[_Union[ModelFile.ImageSize, _Mapping]] = ...) -> None: ...
|
|
125
|
+
__slots__ = ()
|
|
126
|
+
def __init__(self) -> None: ...
|
|
127
127
|
class BoundingBoxesOutputFormat(_message.Message):
|
|
128
|
-
__slots__ = ("
|
|
129
|
-
NUMBER_OF_BOXES_FIELD_NUMBER: _ClassVar[int]
|
|
130
|
-
STRIDE_FIELD_NUMBER: _ClassVar[int]
|
|
128
|
+
__slots__ = ("x1_offset", "y1_offset", "x2_offset", "y2_offset", "confidence_offset", "class_label_index_offset", "angle_offset")
|
|
131
129
|
X1_OFFSET_FIELD_NUMBER: _ClassVar[int]
|
|
132
130
|
Y1_OFFSET_FIELD_NUMBER: _ClassVar[int]
|
|
133
131
|
X2_OFFSET_FIELD_NUMBER: _ClassVar[int]
|
|
134
132
|
Y2_OFFSET_FIELD_NUMBER: _ClassVar[int]
|
|
135
133
|
CONFIDENCE_OFFSET_FIELD_NUMBER: _ClassVar[int]
|
|
136
134
|
CLASS_LABEL_INDEX_OFFSET_FIELD_NUMBER: _ClassVar[int]
|
|
137
|
-
|
|
138
|
-
number_of_boxes: int
|
|
139
|
-
stride: int
|
|
135
|
+
ANGLE_OFFSET_FIELD_NUMBER: _ClassVar[int]
|
|
140
136
|
x1_offset: int
|
|
141
137
|
y1_offset: int
|
|
142
138
|
x2_offset: int
|
|
143
139
|
y2_offset: int
|
|
144
140
|
confidence_offset: int
|
|
145
141
|
class_label_index_offset: int
|
|
146
|
-
|
|
147
|
-
def __init__(self,
|
|
142
|
+
angle_offset: int
|
|
143
|
+
def __init__(self, x1_offset: _Optional[int] = ..., y1_offset: _Optional[int] = ..., x2_offset: _Optional[int] = ..., y2_offset: _Optional[int] = ..., confidence_offset: _Optional[int] = ..., class_label_index_offset: _Optional[int] = ..., angle_offset: _Optional[int] = ...) -> None: ...
|
|
148
144
|
class BoundingBoxSegmentationsOutputFormat(_message.Message):
|
|
149
|
-
__slots__ = ("
|
|
150
|
-
IMAGE_SIZE_FIELD_NUMBER: _ClassVar[int]
|
|
145
|
+
__slots__ = ("relative_to_bounding_box",)
|
|
151
146
|
RELATIVE_TO_BOUNDING_BOX_FIELD_NUMBER: _ClassVar[int]
|
|
152
|
-
image_size: ModelFile.ImageSize
|
|
153
147
|
relative_to_bounding_box: bool
|
|
154
|
-
def __init__(self,
|
|
148
|
+
def __init__(self, relative_to_bounding_box: bool = ...) -> None: ...
|
|
155
149
|
class OcrOutputFormat(_message.Message):
|
|
156
|
-
__slots__ = ("
|
|
150
|
+
__slots__ = ("characters", "character_restrictions")
|
|
151
|
+
class OcrFormatRestrictionBlock(_message.Message):
|
|
152
|
+
__slots__ = ("number_of_characters", "allowed_character_indexes")
|
|
153
|
+
NUMBER_OF_CHARACTERS_FIELD_NUMBER: _ClassVar[int]
|
|
154
|
+
ALLOWED_CHARACTER_INDEXES_FIELD_NUMBER: _ClassVar[int]
|
|
155
|
+
number_of_characters: int
|
|
156
|
+
allowed_character_indexes: _containers.RepeatedScalarFieldContainer[int]
|
|
157
|
+
def __init__(self, number_of_characters: _Optional[int] = ..., allowed_character_indexes: _Optional[_Iterable[int]] = ...) -> None: ...
|
|
157
158
|
class Character(_message.Message):
|
|
158
159
|
__slots__ = ("utf8_representation", "character_type", "ignore")
|
|
159
160
|
class CharacterType(int, metaclass=_enum_type_wrapper.EnumTypeWrapper):
|
|
@@ -173,22 +174,24 @@ class ModelFile(_message.Message):
|
|
|
173
174
|
character_type: ModelFile.Output.OcrOutputFormat.Character.CharacterType
|
|
174
175
|
ignore: bool
|
|
175
176
|
def __init__(self, utf8_representation: _Optional[bytes] = ..., character_type: _Optional[_Union[ModelFile.Output.OcrOutputFormat.Character.CharacterType, str]] = ..., ignore: bool = ...) -> None: ...
|
|
176
|
-
NUMBER_OF_CHARACTERS_FIELD_NUMBER: _ClassVar[int]
|
|
177
177
|
CHARACTERS_FIELD_NUMBER: _ClassVar[int]
|
|
178
|
-
|
|
178
|
+
CHARACTER_RESTRICTIONS_FIELD_NUMBER: _ClassVar[int]
|
|
179
179
|
characters: _containers.RepeatedCompositeFieldContainer[ModelFile.Output.OcrOutputFormat.Character]
|
|
180
|
-
|
|
181
|
-
|
|
180
|
+
character_restrictions: ModelFile.Output.OcrOutputFormat.OcrFormatRestrictionBlock
|
|
181
|
+
def __init__(self, characters: _Optional[_Iterable[_Union[ModelFile.Output.OcrOutputFormat.Character, _Mapping]]] = ..., character_restrictions: _Optional[_Union[ModelFile.Output.OcrOutputFormat.OcrFormatRestrictionBlock, _Mapping]] = ...) -> None: ...
|
|
182
|
+
OUTPUT_NAME_FIELD_NUMBER: _ClassVar[int]
|
|
183
|
+
SCALAR_FORMAT_FIELD_NUMBER: _ClassVar[int]
|
|
182
184
|
SEGMENTATION_MAPS_FORMAT_FIELD_NUMBER: _ClassVar[int]
|
|
183
185
|
BOUNDING_BOXES_FORMAT_FIELD_NUMBER: _ClassVar[int]
|
|
184
186
|
BOUNDING_BOX_SEGMENTATIONS_FORMAT_FIELD_NUMBER: _ClassVar[int]
|
|
185
187
|
OCR_FORMAT_FIELD_NUMBER: _ClassVar[int]
|
|
186
|
-
|
|
188
|
+
output_name: str
|
|
189
|
+
scalar_format: ModelFile.Output.ScalarOutputFormat
|
|
187
190
|
segmentation_maps_format: ModelFile.Output.SegmentationMapsOutputFormat
|
|
188
191
|
bounding_boxes_format: ModelFile.Output.BoundingBoxesOutputFormat
|
|
189
192
|
bounding_box_segmentations_format: ModelFile.Output.BoundingBoxSegmentationsOutputFormat
|
|
190
193
|
ocr_format: ModelFile.Output.OcrOutputFormat
|
|
191
|
-
def __init__(self,
|
|
194
|
+
def __init__(self, output_name: _Optional[str] = ..., scalar_format: _Optional[_Union[ModelFile.Output.ScalarOutputFormat, _Mapping]] = ..., segmentation_maps_format: _Optional[_Union[ModelFile.Output.SegmentationMapsOutputFormat, _Mapping]] = ..., bounding_boxes_format: _Optional[_Union[ModelFile.Output.BoundingBoxesOutputFormat, _Mapping]] = ..., bounding_box_segmentations_format: _Optional[_Union[ModelFile.Output.BoundingBoxSegmentationsOutputFormat, _Mapping]] = ..., ocr_format: _Optional[_Union[ModelFile.Output.OcrOutputFormat, _Mapping]] = ...) -> None: ...
|
|
192
195
|
class FileInfo(_message.Message):
|
|
193
196
|
__slots__ = ("network_name", "network_id", "network_experiment_id", "network_snapshot_id", "network_type", "network_flavor", "network_version", "runtime_version", "precision", "minimum_libdenkflow_version")
|
|
194
197
|
class NetworkType(int, metaclass=_enum_type_wrapper.EnumTypeWrapper):
|
|
@@ -4,19 +4,19 @@ denkproto/DENKbuffer_pb2_grpc.py,sha256=-CPJPM4FOqwvwV8-f1iJlD18UD9juVIIHfdWUecu
|
|
|
4
4
|
denkproto/ImageAnalysis_ProtobufMessages_pb2.py,sha256=iEY0j9ySGUThnqTdYD4uAVr9P3GiC5R02iK53zEOXUQ,21015
|
|
5
5
|
denkproto/ImageAnalysis_ProtobufMessages_pb2.pyi,sha256=5LFtxrmYpJHizDDNGFTkL7-NQ_TkwqCSdq7vcv3lg-c,36243
|
|
6
6
|
denkproto/ImageAnalysis_ProtobufMessages_pb2_grpc.py,sha256=l3agtDjgu4jay6P9TRnHhyhJ-7UdoII27ywhw3k84oo,911
|
|
7
|
-
denkproto/__about__.py,sha256=
|
|
7
|
+
denkproto/__about__.py,sha256=NvhZnV67qIUxVPQilhaMK7iMf_x_WLckxqzBSw1UWIc,23
|
|
8
8
|
denkproto/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
9
9
|
denkproto/denkcache_pb2.py,sha256=u0O26m7t4kfu4R1nx1ZcTst4n6pG32pMbhl2PGYivXE,7161
|
|
10
10
|
denkproto/denkcache_pb2.pyi,sha256=8K_Ebyy4mgXrxqJenN8f8LXLvVKOiaZxhmGeYjFZVpY,6357
|
|
11
11
|
denkproto/denkcache_pb2_grpc.py,sha256=N1y4ZQ58UPaUlOZIpznzAbJJcs9G_n-FmzFoPPeu8UA,15610
|
|
12
|
-
denkproto/inference_graph_pb2.py,sha256=
|
|
13
|
-
denkproto/inference_graph_pb2.pyi,sha256=
|
|
12
|
+
denkproto/inference_graph_pb2.py,sha256=UL_YTKnFgjrAClXg4evXJJ0YSP26CYPx6UGe3dxb0LU,24592
|
|
13
|
+
denkproto/inference_graph_pb2.pyi,sha256=TfZOyn2p9g1bVzRe7kn9iUxwND1YbC3odNIAopMaUR4,15516
|
|
14
14
|
denkproto/inference_graph_pb2_grpc.py,sha256=aXPf0w7pIfspkKUKGCr--OtJMOaTfE8IbeuBm10g1Xg,896
|
|
15
15
|
denkproto/modelfile_v1_pb2.py,sha256=ulF24nSIspn46DnQKlvR5Po3w-vFCnawuuverAVi3cY,6573
|
|
16
16
|
denkproto/modelfile_v1_pb2.pyi,sha256=gjTbWvg48wqGhyJb5CT0pw3yUZGhO_lSZgL7Ia2aPbY,10685
|
|
17
17
|
denkproto/modelfile_v1_pb2_grpc.py,sha256=ov5B2o4JSYbAfcbbdZr55wEzfGlKI02H-tkvXGXqJVg,893
|
|
18
|
-
denkproto/modelfile_v2_pb2.py,sha256=
|
|
19
|
-
denkproto/modelfile_v2_pb2.pyi,sha256=
|
|
18
|
+
denkproto/modelfile_v2_pb2.py,sha256=s_J1IKxX440vMzdntirHVQ_Y-uZ0RHGQmzovHaNq66Q,20711
|
|
19
|
+
denkproto/modelfile_v2_pb2.pyi,sha256=eCtSEiYpey8Al3dlwJ0Ww3hzaWeba8rTnvFeWlyJ-Sc,21018
|
|
20
20
|
denkproto/modelfile_v2_pb2_grpc.py,sha256=xiC5FeyZDWcucC3uRJ4kllDJmaRayvrzOKIhvg6o1Tc,893
|
|
21
21
|
denkproto/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
22
22
|
denkproto/results_pb2.py,sha256=rBZ4HIHgdKHdASDbF8mTmZ0_xi1ffq3YJ2g_cvzIlhk,14109
|
|
@@ -27,10 +27,10 @@ denkproto/validate_pb2.pyi,sha256=fWsdVOR3NJDioCKkCKfxfl4qaEb5xqXXU_WlEbdQx6E,23
|
|
|
27
27
|
denkproto/validate_pb2_grpc.py,sha256=XvjuWEgJFJtH1E7HWm7SKpV10PMpOSbonKa2VPHpYy8,889
|
|
28
28
|
denkproto/json/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
29
29
|
denkproto/json/classification_markup.py,sha256=vTu0H7Cb3gU6UUUSg1vDTRlFUorZrjMbcp_yx6UssZA,2461
|
|
30
|
-
denkproto/json/inference_graph_models_generated.py,sha256=
|
|
30
|
+
denkproto/json/inference_graph_models_generated.py,sha256=M5hM8MslmmaNx-To9CANJ-f-me9zULojm0TE73ulc4w,6278
|
|
31
31
|
denkproto/json/object_detection_markup.py,sha256=T0hcFPq8F_galjDjRC9dbcRVwCSOYtu2jt9wpEeHlQs,4904
|
|
32
32
|
denkproto/json/ocr_markup.py,sha256=KyOpth9evOekyhTJdZSnYyB9EIyoWbY33sqncb_jBgw,7069
|
|
33
33
|
denkproto/json/segmentation_markup.py,sha256=EvniRksF2KaQolm6zZ6UKSiGwnqc8wR2sHB1iv05RTE,19911
|
|
34
|
-
denkproto-1.0.
|
|
35
|
-
denkproto-1.0.
|
|
36
|
-
denkproto-1.0.
|
|
34
|
+
denkproto-1.0.90.dist-info/METADATA,sha256=BW-TLuws3RdZ31Kxyj7686OIhcaMsd61RX2_el6zqj4,110
|
|
35
|
+
denkproto-1.0.90.dist-info/WHEEL,sha256=1yFddiXMmvYK7QYTqtRNtX66WJ0Mz8PYEiEUoOUUxRY,87
|
|
36
|
+
denkproto-1.0.90.dist-info/RECORD,,
|
|
File without changes
|