denkproto 1.0.86__py3-none-any.whl → 1.0.88__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of denkproto might be problematic. Click here for more details.
- denkproto/__about__.py +1 -1
- denkproto/inference_graph_pb2.py +35 -11
- denkproto/inference_graph_pb2.pyi +50 -2
- denkproto/json/inference_graph_models_generated.py +27 -0
- {denkproto-1.0.86.dist-info → denkproto-1.0.88.dist-info}/METADATA +1 -1
- {denkproto-1.0.86.dist-info → denkproto-1.0.88.dist-info}/RECORD +7 -7
- {denkproto-1.0.86.dist-info → denkproto-1.0.88.dist-info}/WHEEL +0 -0
denkproto/__about__.py
CHANGED
|
@@ -1 +1 @@
|
|
|
1
|
-
__version__ = "1.0.
|
|
1
|
+
__version__ = "1.0.88"
|
denkproto/inference_graph_pb2.py
CHANGED
|
@@ -26,7 +26,7 @@ import denkproto.modelfile_v2_pb2 as modelfile__v2__pb2
|
|
|
26
26
|
import denkproto.validate_pb2 as validate__pb2
|
|
27
27
|
|
|
28
28
|
|
|
29
|
-
DESCRIPTOR = _descriptor_pool.Default().AddSerializedFile(b'\n\x15inference_graph.proto\x12\x0finference_graph\x1a\x12modelfile-v2.proto\x1a\x0evalidate.proto\"\xa5\x01\n\x0bModelSource\x12-\n\nfrom_proto\x18\x01 \x01(\x0b\x32\x17.modelfile.v2.ModelFileH\x00\x12#\n\x0f\x66rom_network_id\x18\x02 \x01(\tB\x08\xfa\x42\x05r\x03\xb0\x01\x01H\x00\x12.\n\x1a\x66rom_network_experiment_id\x18\x03 \x01(\tB\x08\xfa\x42\x05r\x03\xb0\x01\x01H\x00\x42\x12\n\x0bsource_type\x12\x03\xf8\x42\x01\"s\n\x0bSessionInfo\x12H\n\x12\x65xecution_provider\x18\x01 \x01(\x0e\x32\".inference_graph.ExecutionProviderB\x08\xfa\x42\x05\x82\x01\x02\x10\x01\x12\x1a\n\tdevice_id\x18\x02 \x01(\x05\x42\x07\xfa\x42\x04\x1a\x02(\x00\"\xa4\x03\n\x0f\x43onstTensorNode\x12\x15\n\x04name\x18\x01 \x01(\tB\x07\xfa\x42\x04r\x02\x10\x01\x12\r\n\x05shape\x18\x02 \x03(\r\x12\x43\n\x0buint64_data\x18\x03 \x01(\x0b\x32,.inference_graph.ConstTensorNode.Uint64ArrayH\x00\x12\x41\n\nint64_data\x18\x04 \x01(\x0b\x32+.inference_graph.ConstTensorNode.Int64ArrayH\x00\x12\x45\n\x0c\x66loat64_data\x18\x05 \x01(\x0b\x32-.inference_graph.ConstTensorNode.Float64ArrayH\x00\x12\x33\n\x10output_port_name\x18\x06 \x01(\tB\x19\xfa\x42\x16r\x14\x10\x01\x32\x10^[a-zA-Z0-9_-]+$\x1a\x1b\n\x0bUint64Array\x12\x0c\n\x04\x64\x61ta\x18\x01 \x03(\x04\x1a\x1a\n\nInt64Array\x12\x0c\n\x04\x64\x61ta\x18\x01 \x03(\x12\x1a\x1c\n\x0c\x46loat64Array\x12\x0c\n\x04\x64\x61ta\x18\x01 \x03(\x01\x42\x10\n\tdata_type\x12\x03\xf8\x42\x01\"\xc4\x02\n\x0fImageResizeNode\x12\x15\n\x04name\x18\x01 \x01(\tB\x07\xfa\x42\x04r\x02\x10\x01\x12L\n\ninput_size\x18\x02 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12M\n\x0binput_image\x18\x03 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12\x33\n\x10output_port_name\x18\x04 \x01(\tB\x19\xfa\x42\x16r\x14\x10\x01\x32\x10^[a-zA-Z0-9_-]+$\x12\x37\n\x0csession_info\x18\x05 \x01(\x0b\x32\x1c.inference_graph.SessionInfoH\x00\x88\x01\x01\x42\x0f\n\r_session_info\"\xa3\x05\n\x10ImagePatchesNode\x12\x15\n\x04name\x18\x01 \x01(\tB\x07\xfa\x42\x04r\x02\x10\x01\x12M\n\x0binput_image\x18\x02 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12V\n\x14input_bounding_boxes\x18\x03 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12W\n\x11input_target_size\x18\x04 \x01(\x0b\x32\x32.inference_graph.ImagePatchesNode.TargetSizeSourceB\x08\xfa\x42\x05\x8a\x01\x02\x10\x01\x12\x33\n\x10output_port_name\x18\x05 \x01(\tB\x19\xfa\x42\x16r\x14\x10\x01\x32\x10^[a-zA-Z0-9_-]+$\x12\x37\n\x0csession_info\x18\x07 \x01(\x0b\x32\x1c.inference_graph.SessionInfoH\x00\x88\x01\x01\x1a\xf8\x01\n\x10TargetSizeSource\x12I\n\x05topic\x18\x01 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$H\x00\x12L\n\x04size\x18\x02 \x01(\x0b\x32<.inference_graph.ImagePatchesNode.TargetSizeSource.ImageSizeH\x00\x1a<\n\tImageSize\x12\x17\n\x06height\x18\x01 \x01(\x03\x42\x07\xfa\x42\x04\"\x02(\x01\x12\x16\n\x05width\x18\x02 \x01(\x03\x42\x07\xfa\x42\x04\"\x02(\x01\x42\r\n\x06source\x12\x03\xf8\x42\x01\x42\x0f\n\r_session_info\"v\n\x11VirtualCameraNode\x12\x15\n\x04name\x18\x01 \x01(\tB\x07\xfa\x42\x04r\x02\x10\x01\x12\x15\n\x04path\x18\x02 \x01(\tB\x07\xfa\x42\x04r\x02\x10\x01\x12\x33\n\x10output_port_name\x18\x03 \x01(\tB\x19\xfa\x42\x16r\x14\x10\x01\x32\x10^[a-zA-Z0-9_-]+$\"\xb3\x02\n\x17ImageClassificationNode\x12\x0c\n\x04name\x18\x01 \x01(\t\x12M\n\x0binput_image\x18\x02 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12<\n\x0cmodel_source\x18\x03 \x01(\x0b\x32\x1c.inference_graph.ModelSourceB\x08\xfa\x42\x05\x8a\x01\x02\x10\x01\x12\x33\n\x10output_port_name\x18\x04 \x01(\tB\x19\xfa\x42\x16r\x14\x10\x01\x32\x10^[a-zA-Z0-9_-]+$\x12\x37\n\x0csession_info\x18\x05 \x01(\x0b\x32\x1c.inference_graph.SessionInfoH\x00\x88\x01\x01\x42\x0f\n\r_session_info\"\xd2\x02\n\x18ImageObjectDetectionNode\x12\x0c\n\x04name\x18\x01 \x01(\t\x12M\n\x0binput_image\x18\x02 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12<\n\x0cmodel_source\x18\x03 \x01(\x0b\x32\x1c.inference_graph.ModelSourceB\x08\xfa\x42\x05\x8a\x01\x02\x10\x01\x12\x1c\n\x14scale_bounding_boxes\x18\x04 \x01(\x08\x12\x33\n\x10output_port_name\x18\x05 \x01(\tB\x19\xfa\x42\x16r\x14\x10\x01\x32\x10^[a-zA-Z0-9_-]+$\x12\x37\n\x0csession_info\x18\x06 \x01(\x0b\x32\x1c.inference_graph.SessionInfoH\x00\x88\x01\x01\x42\x0f\n\r_session_info\"\xa8\x02\n\x0cImageOcrNode\x12\x0c\n\x04name\x18\x01 \x01(\t\x12M\n\x0binput_image\x18\x02 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12<\n\x0cmodel_source\x18\x03 \x01(\x0b\x32\x1c.inference_graph.ModelSourceB\x08\xfa\x42\x05\x8a\x01\x02\x10\x01\x12\x33\n\x10output_port_name\x18\x04 \x01(\tB\x19\xfa\x42\x16r\x14\x10\x01\x32\x10^[a-zA-Z0-9_-]+$\x12\x37\n\x0csession_info\x18\x05 \x01(\x0b\x32\x1c.inference_graph.SessionInfoH\x00\x88\x01\x01\x42\x0f\n\r_session_info\"\xfd\x04\n\x15\x42oundingBoxFilterNode\x12\x15\n\x04name\x18\x01 \x01(\tB\x07\xfa\x42\x04r\x02\x10\x01\x12V\n\x14input_bounding_boxes\x18\x02 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12\x33\n\x10output_port_name\x18\x03 \x01(\tB\x19\xfa\x42\x16r\x14\x10\x01\x32\x10^[a-zA-Z0-9_-]+$\x12Z\n\x15input_score_threshold\x18\x04 \x01(\x0b\x32\x36.inference_graph.BoundingBoxFilterNode.ThresholdSourceH\x00\x88\x01\x01\x12X\n\x13input_iou_threshold\x18\x05 \x01(\x0b\x32\x36.inference_graph.BoundingBoxFilterNode.ThresholdSourceH\x01\x88\x01\x01\x12\x37\n\x0csession_info\x18\x06 \x01(\x0b\x32\x1c.inference_graph.SessionInfoH\x02\x88\x01\x01\x1a\x8d\x01\n\x0fThresholdSource\x12I\n\x05topic\x18\x01 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$H\x00\x12 \n\x05value\x18\x02 \x01(\x02\x42\x0f\xfa\x42\x0c\n\n\x1d\x00\x00\x80?-\x00\x00\x00\x00H\x00\x42\r\n\x06source\x12\x03\xf8\x42\x01\x42\x18\n\x16_input_score_thresholdB\x16\n\x14_input_iou_thresholdB\x0f\n\r_session_info\"\
|
|
29
|
+
DESCRIPTOR = _descriptor_pool.Default().AddSerializedFile(b'\n\x15inference_graph.proto\x12\x0finference_graph\x1a\x12modelfile-v2.proto\x1a\x0evalidate.proto\"\xa5\x01\n\x0bModelSource\x12-\n\nfrom_proto\x18\x01 \x01(\x0b\x32\x17.modelfile.v2.ModelFileH\x00\x12#\n\x0f\x66rom_network_id\x18\x02 \x01(\tB\x08\xfa\x42\x05r\x03\xb0\x01\x01H\x00\x12.\n\x1a\x66rom_network_experiment_id\x18\x03 \x01(\tB\x08\xfa\x42\x05r\x03\xb0\x01\x01H\x00\x42\x12\n\x0bsource_type\x12\x03\xf8\x42\x01\"s\n\x0bSessionInfo\x12H\n\x12\x65xecution_provider\x18\x01 \x01(\x0e\x32\".inference_graph.ExecutionProviderB\x08\xfa\x42\x05\x82\x01\x02\x10\x01\x12\x1a\n\tdevice_id\x18\x02 \x01(\x05\x42\x07\xfa\x42\x04\x1a\x02(\x00\"\xa4\x03\n\x0f\x43onstTensorNode\x12\x15\n\x04name\x18\x01 \x01(\tB\x07\xfa\x42\x04r\x02\x10\x01\x12\r\n\x05shape\x18\x02 \x03(\r\x12\x43\n\x0buint64_data\x18\x03 \x01(\x0b\x32,.inference_graph.ConstTensorNode.Uint64ArrayH\x00\x12\x41\n\nint64_data\x18\x04 \x01(\x0b\x32+.inference_graph.ConstTensorNode.Int64ArrayH\x00\x12\x45\n\x0c\x66loat64_data\x18\x05 \x01(\x0b\x32-.inference_graph.ConstTensorNode.Float64ArrayH\x00\x12\x33\n\x10output_port_name\x18\x06 \x01(\tB\x19\xfa\x42\x16r\x14\x10\x01\x32\x10^[a-zA-Z0-9_-]+$\x1a\x1b\n\x0bUint64Array\x12\x0c\n\x04\x64\x61ta\x18\x01 \x03(\x04\x1a\x1a\n\nInt64Array\x12\x0c\n\x04\x64\x61ta\x18\x01 \x03(\x12\x1a\x1c\n\x0c\x46loat64Array\x12\x0c\n\x04\x64\x61ta\x18\x01 \x03(\x01\x42\x10\n\tdata_type\x12\x03\xf8\x42\x01\"\xc4\x02\n\x0fImageResizeNode\x12\x15\n\x04name\x18\x01 \x01(\tB\x07\xfa\x42\x04r\x02\x10\x01\x12L\n\ninput_size\x18\x02 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12M\n\x0binput_image\x18\x03 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12\x33\n\x10output_port_name\x18\x04 \x01(\tB\x19\xfa\x42\x16r\x14\x10\x01\x32\x10^[a-zA-Z0-9_-]+$\x12\x37\n\x0csession_info\x18\x05 \x01(\x0b\x32\x1c.inference_graph.SessionInfoH\x00\x88\x01\x01\x42\x0f\n\r_session_info\"\xa3\x05\n\x10ImagePatchesNode\x12\x15\n\x04name\x18\x01 \x01(\tB\x07\xfa\x42\x04r\x02\x10\x01\x12M\n\x0binput_image\x18\x02 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12V\n\x14input_bounding_boxes\x18\x03 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12W\n\x11input_target_size\x18\x04 \x01(\x0b\x32\x32.inference_graph.ImagePatchesNode.TargetSizeSourceB\x08\xfa\x42\x05\x8a\x01\x02\x10\x01\x12\x33\n\x10output_port_name\x18\x05 \x01(\tB\x19\xfa\x42\x16r\x14\x10\x01\x32\x10^[a-zA-Z0-9_-]+$\x12\x37\n\x0csession_info\x18\x07 \x01(\x0b\x32\x1c.inference_graph.SessionInfoH\x00\x88\x01\x01\x1a\xf8\x01\n\x10TargetSizeSource\x12I\n\x05topic\x18\x01 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$H\x00\x12L\n\x04size\x18\x02 \x01(\x0b\x32<.inference_graph.ImagePatchesNode.TargetSizeSource.ImageSizeH\x00\x1a<\n\tImageSize\x12\x17\n\x06height\x18\x01 \x01(\x03\x42\x07\xfa\x42\x04\"\x02(\x01\x12\x16\n\x05width\x18\x02 \x01(\x03\x42\x07\xfa\x42\x04\"\x02(\x01\x42\r\n\x06source\x12\x03\xf8\x42\x01\x42\x0f\n\r_session_info\"v\n\x11VirtualCameraNode\x12\x15\n\x04name\x18\x01 \x01(\tB\x07\xfa\x42\x04r\x02\x10\x01\x12\x15\n\x04path\x18\x02 \x01(\tB\x07\xfa\x42\x04r\x02\x10\x01\x12\x33\n\x10output_port_name\x18\x03 \x01(\tB\x19\xfa\x42\x16r\x14\x10\x01\x32\x10^[a-zA-Z0-9_-]+$\"\xb3\x02\n\x17ImageClassificationNode\x12\x0c\n\x04name\x18\x01 \x01(\t\x12M\n\x0binput_image\x18\x02 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12<\n\x0cmodel_source\x18\x03 \x01(\x0b\x32\x1c.inference_graph.ModelSourceB\x08\xfa\x42\x05\x8a\x01\x02\x10\x01\x12\x33\n\x10output_port_name\x18\x04 \x01(\tB\x19\xfa\x42\x16r\x14\x10\x01\x32\x10^[a-zA-Z0-9_-]+$\x12\x37\n\x0csession_info\x18\x05 \x01(\x0b\x32\x1c.inference_graph.SessionInfoH\x00\x88\x01\x01\x42\x0f\n\r_session_info\"\xd2\x02\n\x18ImageObjectDetectionNode\x12\x0c\n\x04name\x18\x01 \x01(\t\x12M\n\x0binput_image\x18\x02 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12<\n\x0cmodel_source\x18\x03 \x01(\x0b\x32\x1c.inference_graph.ModelSourceB\x08\xfa\x42\x05\x8a\x01\x02\x10\x01\x12\x1c\n\x14scale_bounding_boxes\x18\x04 \x01(\x08\x12\x33\n\x10output_port_name\x18\x05 \x01(\tB\x19\xfa\x42\x16r\x14\x10\x01\x32\x10^[a-zA-Z0-9_-]+$\x12\x37\n\x0csession_info\x18\x06 \x01(\x0b\x32\x1c.inference_graph.SessionInfoH\x00\x88\x01\x01\x42\x0f\n\r_session_info\"\xa8\x02\n\x0cImageOcrNode\x12\x0c\n\x04name\x18\x01 \x01(\t\x12M\n\x0binput_image\x18\x02 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12<\n\x0cmodel_source\x18\x03 \x01(\x0b\x32\x1c.inference_graph.ModelSourceB\x08\xfa\x42\x05\x8a\x01\x02\x10\x01\x12\x33\n\x10output_port_name\x18\x04 \x01(\tB\x19\xfa\x42\x16r\x14\x10\x01\x32\x10^[a-zA-Z0-9_-]+$\x12\x37\n\x0csession_info\x18\x05 \x01(\x0b\x32\x1c.inference_graph.SessionInfoH\x00\x88\x01\x01\x42\x0f\n\r_session_info\"\xb1\x02\n\x15ImageSegmentationNode\x12\x0c\n\x04name\x18\x01 \x01(\t\x12M\n\x0binput_image\x18\x02 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12<\n\x0cmodel_source\x18\x03 \x01(\x0b\x32\x1c.inference_graph.ModelSourceB\x08\xfa\x42\x05\x8a\x01\x02\x10\x01\x12\x33\n\x10output_port_name\x18\x04 \x01(\tB\x19\xfa\x42\x16r\x14\x10\x01\x32\x10^[a-zA-Z0-9_-]+$\x12\x37\n\x0csession_info\x18\x05 \x01(\x0b\x32\x1c.inference_graph.SessionInfoH\x00\x88\x01\x01\x42\x0f\n\r_session_info\"\xb9\x02\n\x1dImageInstanceSegmentationNode\x12\x0c\n\x04name\x18\x01 \x01(\t\x12M\n\x0binput_image\x18\x02 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12<\n\x0cmodel_source\x18\x03 \x01(\x0b\x32\x1c.inference_graph.ModelSourceB\x08\xfa\x42\x05\x8a\x01\x02\x10\x01\x12\x33\n\x10output_port_name\x18\x04 \x01(\tB\x19\xfa\x42\x16r\x14\x10\x01\x32\x10^[a-zA-Z0-9_-]+$\x12\x37\n\x0csession_info\x18\x05 \x01(\x0b\x32\x1c.inference_graph.SessionInfoH\x00\x88\x01\x01\x42\x0f\n\r_session_info\"\xb5\x02\n\x19ImageAnomalyDetectionNode\x12\x0c\n\x04name\x18\x01 \x01(\t\x12M\n\x0binput_image\x18\x02 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12<\n\x0cmodel_source\x18\x03 \x01(\x0b\x32\x1c.inference_graph.ModelSourceB\x08\xfa\x42\x05\x8a\x01\x02\x10\x01\x12\x33\n\x10output_port_name\x18\x04 \x01(\tB\x19\xfa\x42\x16r\x14\x10\x01\x32\x10^[a-zA-Z0-9_-]+$\x12\x37\n\x0csession_info\x18\x05 \x01(\x0b\x32\x1c.inference_graph.SessionInfoH\x00\x88\x01\x01\x42\x0f\n\r_session_info\"\xfd\x04\n\x15\x42oundingBoxFilterNode\x12\x15\n\x04name\x18\x01 \x01(\tB\x07\xfa\x42\x04r\x02\x10\x01\x12V\n\x14input_bounding_boxes\x18\x02 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12\x33\n\x10output_port_name\x18\x03 \x01(\tB\x19\xfa\x42\x16r\x14\x10\x01\x32\x10^[a-zA-Z0-9_-]+$\x12Z\n\x15input_score_threshold\x18\x04 \x01(\x0b\x32\x36.inference_graph.BoundingBoxFilterNode.ThresholdSourceH\x00\x88\x01\x01\x12X\n\x13input_iou_threshold\x18\x05 \x01(\x0b\x32\x36.inference_graph.BoundingBoxFilterNode.ThresholdSourceH\x01\x88\x01\x01\x12\x37\n\x0csession_info\x18\x06 \x01(\x0b\x32\x1c.inference_graph.SessionInfoH\x02\x88\x01\x01\x1a\x8d\x01\n\x0fThresholdSource\x12I\n\x05topic\x18\x01 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$H\x00\x12 \n\x05value\x18\x02 \x01(\x02\x42\x0f\xfa\x42\x0c\n\n\x1d\x00\x00\x80?-\x00\x00\x00\x00H\x00\x42\r\n\x06source\x12\x03\xf8\x42\x01\x42\x18\n\x16_input_score_thresholdB\x16\n\x14_input_iou_thresholdB\x0f\n\r_session_info\"\xbb\x06\n\x04Node\x12=\n\x11\x63onst_tensor_node\x18\x01 \x01(\x0b\x32 .inference_graph.ConstTensorNodeH\x00\x12=\n\x11image_resize_node\x18\x02 \x01(\x0b\x32 .inference_graph.ImageResizeNodeH\x00\x12?\n\x12image_patches_node\x18\x03 \x01(\x0b\x32!.inference_graph.ImagePatchesNodeH\x00\x12\x41\n\x13virtual_camera_node\x18\x04 \x01(\x0b\x32\".inference_graph.VirtualCameraNodeH\x00\x12M\n\x19image_classification_node\x18\x05 \x01(\x0b\x32(.inference_graph.ImageClassificationNodeH\x00\x12P\n\x1bimage_object_detection_node\x18\x06 \x01(\x0b\x32).inference_graph.ImageObjectDetectionNodeH\x00\x12\x37\n\x0eimage_ocr_node\x18\x07 \x01(\x0b\x32\x1d.inference_graph.ImageOcrNodeH\x00\x12J\n\x18\x62ounding_box_filter_node\x18\x08 \x01(\x0b\x32&.inference_graph.BoundingBoxFilterNodeH\x00\x12I\n\x17image_segmentation_node\x18\t \x01(\x0b\x32&.inference_graph.ImageSegmentationNodeH\x00\x12Z\n image_instance_segmentation_node\x18\n \x01(\x0b\x32..inference_graph.ImageInstanceSegmentationNodeH\x00\x12R\n\x1cimage_anomaly_detection_node\x18\x0b \x01(\x0b\x32*.inference_graph.ImageAnomalyDetectionNodeH\x00\x42\x10\n\tnode_type\x12\x03\xf8\x42\x01\"_\n\x05Graph\x12$\n\x05nodes\x18\x01 \x03(\x0b\x32\x15.inference_graph.Node\x12\x12\n\ncreated_at\x18\x02 \x01(\x03\x12\x1c\n\nlicense_id\x18\x03 \x01(\tB\x08\xfa\x42\x05r\x03\xb0\x01\x01*B\n\x11\x45xecutionProvider\x12\x07\n\x03\x43PU\x10\x00\x12\x08\n\x04\x43UDA\x10\x01\x12\x0c\n\x08\x44IRECTML\x10\x02\x12\x0c\n\x08TENSORRT\x10\x03\x42NZ0github.com/DENKweit/denkproto-go/inference_graph\xaa\x02\x19\x44\x45NK.Proto.InferenceGraphb\x06proto3')
|
|
30
30
|
|
|
31
31
|
_globals = globals()
|
|
32
32
|
_builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals)
|
|
@@ -100,6 +100,24 @@ if not _descriptor._USE_C_DESCRIPTORS:
|
|
|
100
100
|
_globals['_IMAGEOCRNODE'].fields_by_name['model_source']._serialized_options = b'\372B\005\212\001\002\020\001'
|
|
101
101
|
_globals['_IMAGEOCRNODE'].fields_by_name['output_port_name']._loaded_options = None
|
|
102
102
|
_globals['_IMAGEOCRNODE'].fields_by_name['output_port_name']._serialized_options = b'\372B\026r\024\020\0012\020^[a-zA-Z0-9_-]+$'
|
|
103
|
+
_globals['_IMAGESEGMENTATIONNODE'].fields_by_name['input_image']._loaded_options = None
|
|
104
|
+
_globals['_IMAGESEGMENTATIONNODE'].fields_by_name['input_image']._serialized_options = b'\372B5r3\020\0012/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$'
|
|
105
|
+
_globals['_IMAGESEGMENTATIONNODE'].fields_by_name['model_source']._loaded_options = None
|
|
106
|
+
_globals['_IMAGESEGMENTATIONNODE'].fields_by_name['model_source']._serialized_options = b'\372B\005\212\001\002\020\001'
|
|
107
|
+
_globals['_IMAGESEGMENTATIONNODE'].fields_by_name['output_port_name']._loaded_options = None
|
|
108
|
+
_globals['_IMAGESEGMENTATIONNODE'].fields_by_name['output_port_name']._serialized_options = b'\372B\026r\024\020\0012\020^[a-zA-Z0-9_-]+$'
|
|
109
|
+
_globals['_IMAGEINSTANCESEGMENTATIONNODE'].fields_by_name['input_image']._loaded_options = None
|
|
110
|
+
_globals['_IMAGEINSTANCESEGMENTATIONNODE'].fields_by_name['input_image']._serialized_options = b'\372B5r3\020\0012/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$'
|
|
111
|
+
_globals['_IMAGEINSTANCESEGMENTATIONNODE'].fields_by_name['model_source']._loaded_options = None
|
|
112
|
+
_globals['_IMAGEINSTANCESEGMENTATIONNODE'].fields_by_name['model_source']._serialized_options = b'\372B\005\212\001\002\020\001'
|
|
113
|
+
_globals['_IMAGEINSTANCESEGMENTATIONNODE'].fields_by_name['output_port_name']._loaded_options = None
|
|
114
|
+
_globals['_IMAGEINSTANCESEGMENTATIONNODE'].fields_by_name['output_port_name']._serialized_options = b'\372B\026r\024\020\0012\020^[a-zA-Z0-9_-]+$'
|
|
115
|
+
_globals['_IMAGEANOMALYDETECTIONNODE'].fields_by_name['input_image']._loaded_options = None
|
|
116
|
+
_globals['_IMAGEANOMALYDETECTIONNODE'].fields_by_name['input_image']._serialized_options = b'\372B5r3\020\0012/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$'
|
|
117
|
+
_globals['_IMAGEANOMALYDETECTIONNODE'].fields_by_name['model_source']._loaded_options = None
|
|
118
|
+
_globals['_IMAGEANOMALYDETECTIONNODE'].fields_by_name['model_source']._serialized_options = b'\372B\005\212\001\002\020\001'
|
|
119
|
+
_globals['_IMAGEANOMALYDETECTIONNODE'].fields_by_name['output_port_name']._loaded_options = None
|
|
120
|
+
_globals['_IMAGEANOMALYDETECTIONNODE'].fields_by_name['output_port_name']._serialized_options = b'\372B\026r\024\020\0012\020^[a-zA-Z0-9_-]+$'
|
|
103
121
|
_globals['_BOUNDINGBOXFILTERNODE_THRESHOLDSOURCE'].oneofs_by_name['source']._loaded_options = None
|
|
104
122
|
_globals['_BOUNDINGBOXFILTERNODE_THRESHOLDSOURCE'].oneofs_by_name['source']._serialized_options = b'\370B\001'
|
|
105
123
|
_globals['_BOUNDINGBOXFILTERNODE_THRESHOLDSOURCE'].fields_by_name['topic']._loaded_options = None
|
|
@@ -116,8 +134,8 @@ if not _descriptor._USE_C_DESCRIPTORS:
|
|
|
116
134
|
_globals['_NODE'].oneofs_by_name['node_type']._serialized_options = b'\370B\001'
|
|
117
135
|
_globals['_GRAPH'].fields_by_name['license_id']._loaded_options = None
|
|
118
136
|
_globals['_GRAPH'].fields_by_name['license_id']._serialized_options = b'\372B\005r\003\260\001\001'
|
|
119
|
-
_globals['_EXECUTIONPROVIDER']._serialized_start=
|
|
120
|
-
_globals['_EXECUTIONPROVIDER']._serialized_end=
|
|
137
|
+
_globals['_EXECUTIONPROVIDER']._serialized_start=5364
|
|
138
|
+
_globals['_EXECUTIONPROVIDER']._serialized_end=5430
|
|
121
139
|
_globals['_MODELSOURCE']._serialized_start=79
|
|
122
140
|
_globals['_MODELSOURCE']._serialized_end=244
|
|
123
141
|
_globals['_SESSIONINFO']._serialized_start=246
|
|
@@ -146,12 +164,18 @@ if not _descriptor._USE_C_DESCRIPTORS:
|
|
|
146
164
|
_globals['_IMAGEOBJECTDETECTIONNODE']._serialized_end=2560
|
|
147
165
|
_globals['_IMAGEOCRNODE']._serialized_start=2563
|
|
148
166
|
_globals['_IMAGEOCRNODE']._serialized_end=2859
|
|
149
|
-
_globals['
|
|
150
|
-
_globals['
|
|
151
|
-
_globals['
|
|
152
|
-
_globals['
|
|
153
|
-
_globals['
|
|
154
|
-
_globals['
|
|
155
|
-
_globals['
|
|
156
|
-
_globals['
|
|
167
|
+
_globals['_IMAGESEGMENTATIONNODE']._serialized_start=2862
|
|
168
|
+
_globals['_IMAGESEGMENTATIONNODE']._serialized_end=3167
|
|
169
|
+
_globals['_IMAGEINSTANCESEGMENTATIONNODE']._serialized_start=3170
|
|
170
|
+
_globals['_IMAGEINSTANCESEGMENTATIONNODE']._serialized_end=3483
|
|
171
|
+
_globals['_IMAGEANOMALYDETECTIONNODE']._serialized_start=3486
|
|
172
|
+
_globals['_IMAGEANOMALYDETECTIONNODE']._serialized_end=3795
|
|
173
|
+
_globals['_BOUNDINGBOXFILTERNODE']._serialized_start=3798
|
|
174
|
+
_globals['_BOUNDINGBOXFILTERNODE']._serialized_end=4435
|
|
175
|
+
_globals['_BOUNDINGBOXFILTERNODE_THRESHOLDSOURCE']._serialized_start=4227
|
|
176
|
+
_globals['_BOUNDINGBOXFILTERNODE_THRESHOLDSOURCE']._serialized_end=4368
|
|
177
|
+
_globals['_NODE']._serialized_start=4438
|
|
178
|
+
_globals['_NODE']._serialized_end=5265
|
|
179
|
+
_globals['_GRAPH']._serialized_start=5267
|
|
180
|
+
_globals['_GRAPH']._serialized_end=5362
|
|
157
181
|
# @@protoc_insertion_point(module_scope)
|
|
@@ -166,6 +166,48 @@ class ImageOcrNode(_message.Message):
|
|
|
166
166
|
session_info: SessionInfo
|
|
167
167
|
def __init__(self, name: _Optional[str] = ..., input_image: _Optional[str] = ..., model_source: _Optional[_Union[ModelSource, _Mapping]] = ..., output_port_name: _Optional[str] = ..., session_info: _Optional[_Union[SessionInfo, _Mapping]] = ...) -> None: ...
|
|
168
168
|
|
|
169
|
+
class ImageSegmentationNode(_message.Message):
|
|
170
|
+
__slots__ = ("name", "input_image", "model_source", "output_port_name", "session_info")
|
|
171
|
+
NAME_FIELD_NUMBER: _ClassVar[int]
|
|
172
|
+
INPUT_IMAGE_FIELD_NUMBER: _ClassVar[int]
|
|
173
|
+
MODEL_SOURCE_FIELD_NUMBER: _ClassVar[int]
|
|
174
|
+
OUTPUT_PORT_NAME_FIELD_NUMBER: _ClassVar[int]
|
|
175
|
+
SESSION_INFO_FIELD_NUMBER: _ClassVar[int]
|
|
176
|
+
name: str
|
|
177
|
+
input_image: str
|
|
178
|
+
model_source: ModelSource
|
|
179
|
+
output_port_name: str
|
|
180
|
+
session_info: SessionInfo
|
|
181
|
+
def __init__(self, name: _Optional[str] = ..., input_image: _Optional[str] = ..., model_source: _Optional[_Union[ModelSource, _Mapping]] = ..., output_port_name: _Optional[str] = ..., session_info: _Optional[_Union[SessionInfo, _Mapping]] = ...) -> None: ...
|
|
182
|
+
|
|
183
|
+
class ImageInstanceSegmentationNode(_message.Message):
|
|
184
|
+
__slots__ = ("name", "input_image", "model_source", "output_port_name", "session_info")
|
|
185
|
+
NAME_FIELD_NUMBER: _ClassVar[int]
|
|
186
|
+
INPUT_IMAGE_FIELD_NUMBER: _ClassVar[int]
|
|
187
|
+
MODEL_SOURCE_FIELD_NUMBER: _ClassVar[int]
|
|
188
|
+
OUTPUT_PORT_NAME_FIELD_NUMBER: _ClassVar[int]
|
|
189
|
+
SESSION_INFO_FIELD_NUMBER: _ClassVar[int]
|
|
190
|
+
name: str
|
|
191
|
+
input_image: str
|
|
192
|
+
model_source: ModelSource
|
|
193
|
+
output_port_name: str
|
|
194
|
+
session_info: SessionInfo
|
|
195
|
+
def __init__(self, name: _Optional[str] = ..., input_image: _Optional[str] = ..., model_source: _Optional[_Union[ModelSource, _Mapping]] = ..., output_port_name: _Optional[str] = ..., session_info: _Optional[_Union[SessionInfo, _Mapping]] = ...) -> None: ...
|
|
196
|
+
|
|
197
|
+
class ImageAnomalyDetectionNode(_message.Message):
|
|
198
|
+
__slots__ = ("name", "input_image", "model_source", "output_port_name", "session_info")
|
|
199
|
+
NAME_FIELD_NUMBER: _ClassVar[int]
|
|
200
|
+
INPUT_IMAGE_FIELD_NUMBER: _ClassVar[int]
|
|
201
|
+
MODEL_SOURCE_FIELD_NUMBER: _ClassVar[int]
|
|
202
|
+
OUTPUT_PORT_NAME_FIELD_NUMBER: _ClassVar[int]
|
|
203
|
+
SESSION_INFO_FIELD_NUMBER: _ClassVar[int]
|
|
204
|
+
name: str
|
|
205
|
+
input_image: str
|
|
206
|
+
model_source: ModelSource
|
|
207
|
+
output_port_name: str
|
|
208
|
+
session_info: SessionInfo
|
|
209
|
+
def __init__(self, name: _Optional[str] = ..., input_image: _Optional[str] = ..., model_source: _Optional[_Union[ModelSource, _Mapping]] = ..., output_port_name: _Optional[str] = ..., session_info: _Optional[_Union[SessionInfo, _Mapping]] = ...) -> None: ...
|
|
210
|
+
|
|
169
211
|
class BoundingBoxFilterNode(_message.Message):
|
|
170
212
|
__slots__ = ("name", "input_bounding_boxes", "output_port_name", "input_score_threshold", "input_iou_threshold", "session_info")
|
|
171
213
|
class ThresholdSource(_message.Message):
|
|
@@ -190,7 +232,7 @@ class BoundingBoxFilterNode(_message.Message):
|
|
|
190
232
|
def __init__(self, name: _Optional[str] = ..., input_bounding_boxes: _Optional[str] = ..., output_port_name: _Optional[str] = ..., input_score_threshold: _Optional[_Union[BoundingBoxFilterNode.ThresholdSource, _Mapping]] = ..., input_iou_threshold: _Optional[_Union[BoundingBoxFilterNode.ThresholdSource, _Mapping]] = ..., session_info: _Optional[_Union[SessionInfo, _Mapping]] = ...) -> None: ...
|
|
191
233
|
|
|
192
234
|
class Node(_message.Message):
|
|
193
|
-
__slots__ = ("const_tensor_node", "image_resize_node", "image_patches_node", "virtual_camera_node", "image_classification_node", "image_object_detection_node", "image_ocr_node", "bounding_box_filter_node")
|
|
235
|
+
__slots__ = ("const_tensor_node", "image_resize_node", "image_patches_node", "virtual_camera_node", "image_classification_node", "image_object_detection_node", "image_ocr_node", "bounding_box_filter_node", "image_segmentation_node", "image_instance_segmentation_node", "image_anomaly_detection_node")
|
|
194
236
|
CONST_TENSOR_NODE_FIELD_NUMBER: _ClassVar[int]
|
|
195
237
|
IMAGE_RESIZE_NODE_FIELD_NUMBER: _ClassVar[int]
|
|
196
238
|
IMAGE_PATCHES_NODE_FIELD_NUMBER: _ClassVar[int]
|
|
@@ -199,6 +241,9 @@ class Node(_message.Message):
|
|
|
199
241
|
IMAGE_OBJECT_DETECTION_NODE_FIELD_NUMBER: _ClassVar[int]
|
|
200
242
|
IMAGE_OCR_NODE_FIELD_NUMBER: _ClassVar[int]
|
|
201
243
|
BOUNDING_BOX_FILTER_NODE_FIELD_NUMBER: _ClassVar[int]
|
|
244
|
+
IMAGE_SEGMENTATION_NODE_FIELD_NUMBER: _ClassVar[int]
|
|
245
|
+
IMAGE_INSTANCE_SEGMENTATION_NODE_FIELD_NUMBER: _ClassVar[int]
|
|
246
|
+
IMAGE_ANOMALY_DETECTION_NODE_FIELD_NUMBER: _ClassVar[int]
|
|
202
247
|
const_tensor_node: ConstTensorNode
|
|
203
248
|
image_resize_node: ImageResizeNode
|
|
204
249
|
image_patches_node: ImagePatchesNode
|
|
@@ -207,7 +252,10 @@ class Node(_message.Message):
|
|
|
207
252
|
image_object_detection_node: ImageObjectDetectionNode
|
|
208
253
|
image_ocr_node: ImageOcrNode
|
|
209
254
|
bounding_box_filter_node: BoundingBoxFilterNode
|
|
210
|
-
|
|
255
|
+
image_segmentation_node: ImageSegmentationNode
|
|
256
|
+
image_instance_segmentation_node: ImageInstanceSegmentationNode
|
|
257
|
+
image_anomaly_detection_node: ImageAnomalyDetectionNode
|
|
258
|
+
def __init__(self, const_tensor_node: _Optional[_Union[ConstTensorNode, _Mapping]] = ..., image_resize_node: _Optional[_Union[ImageResizeNode, _Mapping]] = ..., image_patches_node: _Optional[_Union[ImagePatchesNode, _Mapping]] = ..., virtual_camera_node: _Optional[_Union[VirtualCameraNode, _Mapping]] = ..., image_classification_node: _Optional[_Union[ImageClassificationNode, _Mapping]] = ..., image_object_detection_node: _Optional[_Union[ImageObjectDetectionNode, _Mapping]] = ..., image_ocr_node: _Optional[_Union[ImageOcrNode, _Mapping]] = ..., bounding_box_filter_node: _Optional[_Union[BoundingBoxFilterNode, _Mapping]] = ..., image_segmentation_node: _Optional[_Union[ImageSegmentationNode, _Mapping]] = ..., image_instance_segmentation_node: _Optional[_Union[ImageInstanceSegmentationNode, _Mapping]] = ..., image_anomaly_detection_node: _Optional[_Union[ImageAnomalyDetectionNode, _Mapping]] = ...) -> None: ...
|
|
211
259
|
|
|
212
260
|
class Graph(_message.Message):
|
|
213
261
|
__slots__ = ("nodes", "created_at", "license_id")
|
|
@@ -64,6 +64,30 @@ class OcrNode(BaseModel):
|
|
|
64
64
|
model_source: ModelSourceBase
|
|
65
65
|
output_port_name: str
|
|
66
66
|
|
|
67
|
+
class ImageSegmentationNode(BaseModel):
|
|
68
|
+
"""Node for image segmentation. Base type for all nodes in the graph."""
|
|
69
|
+
node_type: Literal["image_segmentation"]
|
|
70
|
+
name: str
|
|
71
|
+
input_image: str
|
|
72
|
+
model_source: ModelSourceBase
|
|
73
|
+
output_port_name: str
|
|
74
|
+
|
|
75
|
+
class ImageInstanceSegmentationNode(BaseModel):
|
|
76
|
+
"""Node for image instance segmentation. Base type for all nodes in the graph."""
|
|
77
|
+
node_type: Literal["image_instance_segmentation"]
|
|
78
|
+
name: str
|
|
79
|
+
input_image: str
|
|
80
|
+
model_source: ModelSourceBase
|
|
81
|
+
output_port_name: str
|
|
82
|
+
|
|
83
|
+
class ImageAnomalyDetectionNode(BaseModel):
|
|
84
|
+
"""Node for image anomaly detection. Base type for all nodes in the graph."""
|
|
85
|
+
node_type: Literal["image_anomaly_detection"]
|
|
86
|
+
name: str
|
|
87
|
+
input_image: str
|
|
88
|
+
model_source: ModelSourceBase
|
|
89
|
+
output_port_name: str
|
|
90
|
+
|
|
67
91
|
class ImagePatchesNode(BaseModel):
|
|
68
92
|
"""Node that extracts patches from an image based on bounding boxes. Base type for all nodes in the graph."""
|
|
69
93
|
node_type: Literal["image_patches"]
|
|
@@ -148,8 +172,11 @@ Node = Annotated[
|
|
|
148
172
|
BoundingBoxFilterNode,
|
|
149
173
|
ClassificationNode,
|
|
150
174
|
ConstTensorNode,
|
|
175
|
+
ImageAnomalyDetectionNode,
|
|
176
|
+
ImageInstanceSegmentationNode,
|
|
151
177
|
ImagePatchesNode,
|
|
152
178
|
ImageResizeNode,
|
|
179
|
+
ImageSegmentationNode,
|
|
153
180
|
ObjectDetectionNode,
|
|
154
181
|
OcrNode,
|
|
155
182
|
VirtualCameraNode
|
|
@@ -4,13 +4,13 @@ denkproto/DENKbuffer_pb2_grpc.py,sha256=-CPJPM4FOqwvwV8-f1iJlD18UD9juVIIHfdWUecu
|
|
|
4
4
|
denkproto/ImageAnalysis_ProtobufMessages_pb2.py,sha256=iEY0j9ySGUThnqTdYD4uAVr9P3GiC5R02iK53zEOXUQ,21015
|
|
5
5
|
denkproto/ImageAnalysis_ProtobufMessages_pb2.pyi,sha256=5LFtxrmYpJHizDDNGFTkL7-NQ_TkwqCSdq7vcv3lg-c,36243
|
|
6
6
|
denkproto/ImageAnalysis_ProtobufMessages_pb2_grpc.py,sha256=l3agtDjgu4jay6P9TRnHhyhJ-7UdoII27ywhw3k84oo,911
|
|
7
|
-
denkproto/__about__.py,sha256=
|
|
7
|
+
denkproto/__about__.py,sha256=Hy365gQAGO5tUqDYn3ZOk1Fv3ekDTIBy4jMNJlI9lws,23
|
|
8
8
|
denkproto/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
9
9
|
denkproto/denkcache_pb2.py,sha256=u0O26m7t4kfu4R1nx1ZcTst4n6pG32pMbhl2PGYivXE,7161
|
|
10
10
|
denkproto/denkcache_pb2.pyi,sha256=8K_Ebyy4mgXrxqJenN8f8LXLvVKOiaZxhmGeYjFZVpY,6357
|
|
11
11
|
denkproto/denkcache_pb2_grpc.py,sha256=N1y4ZQ58UPaUlOZIpznzAbJJcs9G_n-FmzFoPPeu8UA,15610
|
|
12
|
-
denkproto/inference_graph_pb2.py,sha256=
|
|
13
|
-
denkproto/inference_graph_pb2.pyi,sha256=
|
|
12
|
+
denkproto/inference_graph_pb2.py,sha256=d74gOkXqc0yywAhzvHB0mTBdita0qXJ0h6TicvEidXE,24213
|
|
13
|
+
denkproto/inference_graph_pb2.pyi,sha256=6TuA3weQMwdkZvp61BMEXWxSOrh720kAz-1z6ztyTP8,15344
|
|
14
14
|
denkproto/inference_graph_pb2_grpc.py,sha256=aXPf0w7pIfspkKUKGCr--OtJMOaTfE8IbeuBm10g1Xg,896
|
|
15
15
|
denkproto/modelfile_v1_pb2.py,sha256=ulF24nSIspn46DnQKlvR5Po3w-vFCnawuuverAVi3cY,6573
|
|
16
16
|
denkproto/modelfile_v1_pb2.pyi,sha256=gjTbWvg48wqGhyJb5CT0pw3yUZGhO_lSZgL7Ia2aPbY,10685
|
|
@@ -27,10 +27,10 @@ denkproto/validate_pb2.pyi,sha256=fWsdVOR3NJDioCKkCKfxfl4qaEb5xqXXU_WlEbdQx6E,23
|
|
|
27
27
|
denkproto/validate_pb2_grpc.py,sha256=XvjuWEgJFJtH1E7HWm7SKpV10PMpOSbonKa2VPHpYy8,889
|
|
28
28
|
denkproto/json/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
29
29
|
denkproto/json/classification_markup.py,sha256=vTu0H7Cb3gU6UUUSg1vDTRlFUorZrjMbcp_yx6UssZA,2461
|
|
30
|
-
denkproto/json/inference_graph_models_generated.py,sha256=
|
|
30
|
+
denkproto/json/inference_graph_models_generated.py,sha256=ZGDH9KMjA--Ptq3H80LVwdYd5QDTnrFPPBGVL3QZW0A,6243
|
|
31
31
|
denkproto/json/object_detection_markup.py,sha256=T0hcFPq8F_galjDjRC9dbcRVwCSOYtu2jt9wpEeHlQs,4904
|
|
32
32
|
denkproto/json/ocr_markup.py,sha256=KyOpth9evOekyhTJdZSnYyB9EIyoWbY33sqncb_jBgw,7069
|
|
33
33
|
denkproto/json/segmentation_markup.py,sha256=EvniRksF2KaQolm6zZ6UKSiGwnqc8wR2sHB1iv05RTE,19911
|
|
34
|
-
denkproto-1.0.
|
|
35
|
-
denkproto-1.0.
|
|
36
|
-
denkproto-1.0.
|
|
34
|
+
denkproto-1.0.88.dist-info/METADATA,sha256=4i87OKOh3f74l4RgdBwz7_4cYaP6khB9KGfvvdRuZak,110
|
|
35
|
+
denkproto-1.0.88.dist-info/WHEEL,sha256=1yFddiXMmvYK7QYTqtRNtX66WJ0Mz8PYEiEUoOUUxRY,87
|
|
36
|
+
denkproto-1.0.88.dist-info/RECORD,,
|
|
File without changes
|