denkproto 1.0.86__py3-none-any.whl → 1.0.87__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of denkproto might be problematic. Click here for more details.

denkproto/__about__.py CHANGED
@@ -1 +1 @@
1
- __version__ = "1.0.86"
1
+ __version__ = "1.0.87"
@@ -26,7 +26,7 @@ import denkproto.modelfile_v2_pb2 as modelfile__v2__pb2
26
26
  import denkproto.validate_pb2 as validate__pb2
27
27
 
28
28
 
29
- DESCRIPTOR = _descriptor_pool.Default().AddSerializedFile(b'\n\x15inference_graph.proto\x12\x0finference_graph\x1a\x12modelfile-v2.proto\x1a\x0evalidate.proto\"\xa5\x01\n\x0bModelSource\x12-\n\nfrom_proto\x18\x01 \x01(\x0b\x32\x17.modelfile.v2.ModelFileH\x00\x12#\n\x0f\x66rom_network_id\x18\x02 \x01(\tB\x08\xfa\x42\x05r\x03\xb0\x01\x01H\x00\x12.\n\x1a\x66rom_network_experiment_id\x18\x03 \x01(\tB\x08\xfa\x42\x05r\x03\xb0\x01\x01H\x00\x42\x12\n\x0bsource_type\x12\x03\xf8\x42\x01\"s\n\x0bSessionInfo\x12H\n\x12\x65xecution_provider\x18\x01 \x01(\x0e\x32\".inference_graph.ExecutionProviderB\x08\xfa\x42\x05\x82\x01\x02\x10\x01\x12\x1a\n\tdevice_id\x18\x02 \x01(\x05\x42\x07\xfa\x42\x04\x1a\x02(\x00\"\xa4\x03\n\x0f\x43onstTensorNode\x12\x15\n\x04name\x18\x01 \x01(\tB\x07\xfa\x42\x04r\x02\x10\x01\x12\r\n\x05shape\x18\x02 \x03(\r\x12\x43\n\x0buint64_data\x18\x03 \x01(\x0b\x32,.inference_graph.ConstTensorNode.Uint64ArrayH\x00\x12\x41\n\nint64_data\x18\x04 \x01(\x0b\x32+.inference_graph.ConstTensorNode.Int64ArrayH\x00\x12\x45\n\x0c\x66loat64_data\x18\x05 \x01(\x0b\x32-.inference_graph.ConstTensorNode.Float64ArrayH\x00\x12\x33\n\x10output_port_name\x18\x06 \x01(\tB\x19\xfa\x42\x16r\x14\x10\x01\x32\x10^[a-zA-Z0-9_-]+$\x1a\x1b\n\x0bUint64Array\x12\x0c\n\x04\x64\x61ta\x18\x01 \x03(\x04\x1a\x1a\n\nInt64Array\x12\x0c\n\x04\x64\x61ta\x18\x01 \x03(\x12\x1a\x1c\n\x0c\x46loat64Array\x12\x0c\n\x04\x64\x61ta\x18\x01 \x03(\x01\x42\x10\n\tdata_type\x12\x03\xf8\x42\x01\"\xc4\x02\n\x0fImageResizeNode\x12\x15\n\x04name\x18\x01 \x01(\tB\x07\xfa\x42\x04r\x02\x10\x01\x12L\n\ninput_size\x18\x02 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12M\n\x0binput_image\x18\x03 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12\x33\n\x10output_port_name\x18\x04 \x01(\tB\x19\xfa\x42\x16r\x14\x10\x01\x32\x10^[a-zA-Z0-9_-]+$\x12\x37\n\x0csession_info\x18\x05 \x01(\x0b\x32\x1c.inference_graph.SessionInfoH\x00\x88\x01\x01\x42\x0f\n\r_session_info\"\xa3\x05\n\x10ImagePatchesNode\x12\x15\n\x04name\x18\x01 \x01(\tB\x07\xfa\x42\x04r\x02\x10\x01\x12M\n\x0binput_image\x18\x02 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12V\n\x14input_bounding_boxes\x18\x03 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12W\n\x11input_target_size\x18\x04 \x01(\x0b\x32\x32.inference_graph.ImagePatchesNode.TargetSizeSourceB\x08\xfa\x42\x05\x8a\x01\x02\x10\x01\x12\x33\n\x10output_port_name\x18\x05 \x01(\tB\x19\xfa\x42\x16r\x14\x10\x01\x32\x10^[a-zA-Z0-9_-]+$\x12\x37\n\x0csession_info\x18\x07 \x01(\x0b\x32\x1c.inference_graph.SessionInfoH\x00\x88\x01\x01\x1a\xf8\x01\n\x10TargetSizeSource\x12I\n\x05topic\x18\x01 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$H\x00\x12L\n\x04size\x18\x02 \x01(\x0b\x32<.inference_graph.ImagePatchesNode.TargetSizeSource.ImageSizeH\x00\x1a<\n\tImageSize\x12\x17\n\x06height\x18\x01 \x01(\x03\x42\x07\xfa\x42\x04\"\x02(\x01\x12\x16\n\x05width\x18\x02 \x01(\x03\x42\x07\xfa\x42\x04\"\x02(\x01\x42\r\n\x06source\x12\x03\xf8\x42\x01\x42\x0f\n\r_session_info\"v\n\x11VirtualCameraNode\x12\x15\n\x04name\x18\x01 \x01(\tB\x07\xfa\x42\x04r\x02\x10\x01\x12\x15\n\x04path\x18\x02 \x01(\tB\x07\xfa\x42\x04r\x02\x10\x01\x12\x33\n\x10output_port_name\x18\x03 \x01(\tB\x19\xfa\x42\x16r\x14\x10\x01\x32\x10^[a-zA-Z0-9_-]+$\"\xb3\x02\n\x17ImageClassificationNode\x12\x0c\n\x04name\x18\x01 \x01(\t\x12M\n\x0binput_image\x18\x02 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12<\n\x0cmodel_source\x18\x03 \x01(\x0b\x32\x1c.inference_graph.ModelSourceB\x08\xfa\x42\x05\x8a\x01\x02\x10\x01\x12\x33\n\x10output_port_name\x18\x04 \x01(\tB\x19\xfa\x42\x16r\x14\x10\x01\x32\x10^[a-zA-Z0-9_-]+$\x12\x37\n\x0csession_info\x18\x05 \x01(\x0b\x32\x1c.inference_graph.SessionInfoH\x00\x88\x01\x01\x42\x0f\n\r_session_info\"\xd2\x02\n\x18ImageObjectDetectionNode\x12\x0c\n\x04name\x18\x01 \x01(\t\x12M\n\x0binput_image\x18\x02 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12<\n\x0cmodel_source\x18\x03 \x01(\x0b\x32\x1c.inference_graph.ModelSourceB\x08\xfa\x42\x05\x8a\x01\x02\x10\x01\x12\x1c\n\x14scale_bounding_boxes\x18\x04 \x01(\x08\x12\x33\n\x10output_port_name\x18\x05 \x01(\tB\x19\xfa\x42\x16r\x14\x10\x01\x32\x10^[a-zA-Z0-9_-]+$\x12\x37\n\x0csession_info\x18\x06 \x01(\x0b\x32\x1c.inference_graph.SessionInfoH\x00\x88\x01\x01\x42\x0f\n\r_session_info\"\xa8\x02\n\x0cImageOcrNode\x12\x0c\n\x04name\x18\x01 \x01(\t\x12M\n\x0binput_image\x18\x02 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12<\n\x0cmodel_source\x18\x03 \x01(\x0b\x32\x1c.inference_graph.ModelSourceB\x08\xfa\x42\x05\x8a\x01\x02\x10\x01\x12\x33\n\x10output_port_name\x18\x04 \x01(\tB\x19\xfa\x42\x16r\x14\x10\x01\x32\x10^[a-zA-Z0-9_-]+$\x12\x37\n\x0csession_info\x18\x05 \x01(\x0b\x32\x1c.inference_graph.SessionInfoH\x00\x88\x01\x01\x42\x0f\n\r_session_info\"\xfd\x04\n\x15\x42oundingBoxFilterNode\x12\x15\n\x04name\x18\x01 \x01(\tB\x07\xfa\x42\x04r\x02\x10\x01\x12V\n\x14input_bounding_boxes\x18\x02 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12\x33\n\x10output_port_name\x18\x03 \x01(\tB\x19\xfa\x42\x16r\x14\x10\x01\x32\x10^[a-zA-Z0-9_-]+$\x12Z\n\x15input_score_threshold\x18\x04 \x01(\x0b\x32\x36.inference_graph.BoundingBoxFilterNode.ThresholdSourceH\x00\x88\x01\x01\x12X\n\x13input_iou_threshold\x18\x05 \x01(\x0b\x32\x36.inference_graph.BoundingBoxFilterNode.ThresholdSourceH\x01\x88\x01\x01\x12\x37\n\x0csession_info\x18\x06 \x01(\x0b\x32\x1c.inference_graph.SessionInfoH\x02\x88\x01\x01\x1a\x8d\x01\n\x0fThresholdSource\x12I\n\x05topic\x18\x01 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$H\x00\x12 \n\x05value\x18\x02 \x01(\x02\x42\x0f\xfa\x42\x0c\n\n\x1d\x00\x00\x80?-\x00\x00\x00\x00H\x00\x42\r\n\x06source\x12\x03\xf8\x42\x01\x42\x18\n\x16_input_score_thresholdB\x16\n\x14_input_iou_thresholdB\x0f\n\r_session_info\"\xc0\x04\n\x04Node\x12=\n\x11\x63onst_tensor_node\x18\x01 \x01(\x0b\x32 .inference_graph.ConstTensorNodeH\x00\x12=\n\x11image_resize_node\x18\x02 \x01(\x0b\x32 .inference_graph.ImageResizeNodeH\x00\x12?\n\x12image_patches_node\x18\x03 \x01(\x0b\x32!.inference_graph.ImagePatchesNodeH\x00\x12\x41\n\x13virtual_camera_node\x18\x04 \x01(\x0b\x32\".inference_graph.VirtualCameraNodeH\x00\x12M\n\x19image_classification_node\x18\x05 \x01(\x0b\x32(.inference_graph.ImageClassificationNodeH\x00\x12P\n\x1bimage_object_detection_node\x18\x06 \x01(\x0b\x32).inference_graph.ImageObjectDetectionNodeH\x00\x12\x37\n\x0eimage_ocr_node\x18\x07 \x01(\x0b\x32\x1d.inference_graph.ImageOcrNodeH\x00\x12J\n\x18\x62ounding_box_filter_node\x18\x08 \x01(\x0b\x32&.inference_graph.BoundingBoxFilterNodeH\x00\x42\x10\n\tnode_type\x12\x03\xf8\x42\x01\"_\n\x05Graph\x12$\n\x05nodes\x18\x01 \x03(\x0b\x32\x15.inference_graph.Node\x12\x12\n\ncreated_at\x18\x02 \x01(\x03\x12\x1c\n\nlicense_id\x18\x03 \x01(\tB\x08\xfa\x42\x05r\x03\xb0\x01\x01*B\n\x11\x45xecutionProvider\x12\x07\n\x03\x43PU\x10\x00\x12\x08\n\x04\x43UDA\x10\x01\x12\x0c\n\x08\x44IRECTML\x10\x02\x12\x0c\n\x08TENSORRT\x10\x03\x42NZ0github.com/DENKweit/denkproto-go/inference_graph\xaa\x02\x19\x44\x45NK.Proto.InferenceGraphb\x06proto3')
29
+ DESCRIPTOR = _descriptor_pool.Default().AddSerializedFile(b'\n\x15inference_graph.proto\x12\x0finference_graph\x1a\x12modelfile-v2.proto\x1a\x0evalidate.proto\"\xa5\x01\n\x0bModelSource\x12-\n\nfrom_proto\x18\x01 \x01(\x0b\x32\x17.modelfile.v2.ModelFileH\x00\x12#\n\x0f\x66rom_network_id\x18\x02 \x01(\tB\x08\xfa\x42\x05r\x03\xb0\x01\x01H\x00\x12.\n\x1a\x66rom_network_experiment_id\x18\x03 \x01(\tB\x08\xfa\x42\x05r\x03\xb0\x01\x01H\x00\x42\x12\n\x0bsource_type\x12\x03\xf8\x42\x01\"s\n\x0bSessionInfo\x12H\n\x12\x65xecution_provider\x18\x01 \x01(\x0e\x32\".inference_graph.ExecutionProviderB\x08\xfa\x42\x05\x82\x01\x02\x10\x01\x12\x1a\n\tdevice_id\x18\x02 \x01(\x05\x42\x07\xfa\x42\x04\x1a\x02(\x00\"\xa4\x03\n\x0f\x43onstTensorNode\x12\x15\n\x04name\x18\x01 \x01(\tB\x07\xfa\x42\x04r\x02\x10\x01\x12\r\n\x05shape\x18\x02 \x03(\r\x12\x43\n\x0buint64_data\x18\x03 \x01(\x0b\x32,.inference_graph.ConstTensorNode.Uint64ArrayH\x00\x12\x41\n\nint64_data\x18\x04 \x01(\x0b\x32+.inference_graph.ConstTensorNode.Int64ArrayH\x00\x12\x45\n\x0c\x66loat64_data\x18\x05 \x01(\x0b\x32-.inference_graph.ConstTensorNode.Float64ArrayH\x00\x12\x33\n\x10output_port_name\x18\x06 \x01(\tB\x19\xfa\x42\x16r\x14\x10\x01\x32\x10^[a-zA-Z0-9_-]+$\x1a\x1b\n\x0bUint64Array\x12\x0c\n\x04\x64\x61ta\x18\x01 \x03(\x04\x1a\x1a\n\nInt64Array\x12\x0c\n\x04\x64\x61ta\x18\x01 \x03(\x12\x1a\x1c\n\x0c\x46loat64Array\x12\x0c\n\x04\x64\x61ta\x18\x01 \x03(\x01\x42\x10\n\tdata_type\x12\x03\xf8\x42\x01\"\xc4\x02\n\x0fImageResizeNode\x12\x15\n\x04name\x18\x01 \x01(\tB\x07\xfa\x42\x04r\x02\x10\x01\x12L\n\ninput_size\x18\x02 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12M\n\x0binput_image\x18\x03 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12\x33\n\x10output_port_name\x18\x04 \x01(\tB\x19\xfa\x42\x16r\x14\x10\x01\x32\x10^[a-zA-Z0-9_-]+$\x12\x37\n\x0csession_info\x18\x05 \x01(\x0b\x32\x1c.inference_graph.SessionInfoH\x00\x88\x01\x01\x42\x0f\n\r_session_info\"\xa3\x05\n\x10ImagePatchesNode\x12\x15\n\x04name\x18\x01 \x01(\tB\x07\xfa\x42\x04r\x02\x10\x01\x12M\n\x0binput_image\x18\x02 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12V\n\x14input_bounding_boxes\x18\x03 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12W\n\x11input_target_size\x18\x04 \x01(\x0b\x32\x32.inference_graph.ImagePatchesNode.TargetSizeSourceB\x08\xfa\x42\x05\x8a\x01\x02\x10\x01\x12\x33\n\x10output_port_name\x18\x05 \x01(\tB\x19\xfa\x42\x16r\x14\x10\x01\x32\x10^[a-zA-Z0-9_-]+$\x12\x37\n\x0csession_info\x18\x07 \x01(\x0b\x32\x1c.inference_graph.SessionInfoH\x00\x88\x01\x01\x1a\xf8\x01\n\x10TargetSizeSource\x12I\n\x05topic\x18\x01 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$H\x00\x12L\n\x04size\x18\x02 \x01(\x0b\x32<.inference_graph.ImagePatchesNode.TargetSizeSource.ImageSizeH\x00\x1a<\n\tImageSize\x12\x17\n\x06height\x18\x01 \x01(\x03\x42\x07\xfa\x42\x04\"\x02(\x01\x12\x16\n\x05width\x18\x02 \x01(\x03\x42\x07\xfa\x42\x04\"\x02(\x01\x42\r\n\x06source\x12\x03\xf8\x42\x01\x42\x0f\n\r_session_info\"v\n\x11VirtualCameraNode\x12\x15\n\x04name\x18\x01 \x01(\tB\x07\xfa\x42\x04r\x02\x10\x01\x12\x15\n\x04path\x18\x02 \x01(\tB\x07\xfa\x42\x04r\x02\x10\x01\x12\x33\n\x10output_port_name\x18\x03 \x01(\tB\x19\xfa\x42\x16r\x14\x10\x01\x32\x10^[a-zA-Z0-9_-]+$\"\xb3\x02\n\x17ImageClassificationNode\x12\x0c\n\x04name\x18\x01 \x01(\t\x12M\n\x0binput_image\x18\x02 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12<\n\x0cmodel_source\x18\x03 \x01(\x0b\x32\x1c.inference_graph.ModelSourceB\x08\xfa\x42\x05\x8a\x01\x02\x10\x01\x12\x33\n\x10output_port_name\x18\x04 \x01(\tB\x19\xfa\x42\x16r\x14\x10\x01\x32\x10^[a-zA-Z0-9_-]+$\x12\x37\n\x0csession_info\x18\x05 \x01(\x0b\x32\x1c.inference_graph.SessionInfoH\x00\x88\x01\x01\x42\x0f\n\r_session_info\"\xd2\x02\n\x18ImageObjectDetectionNode\x12\x0c\n\x04name\x18\x01 \x01(\t\x12M\n\x0binput_image\x18\x02 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12<\n\x0cmodel_source\x18\x03 \x01(\x0b\x32\x1c.inference_graph.ModelSourceB\x08\xfa\x42\x05\x8a\x01\x02\x10\x01\x12\x1c\n\x14scale_bounding_boxes\x18\x04 \x01(\x08\x12\x33\n\x10output_port_name\x18\x05 \x01(\tB\x19\xfa\x42\x16r\x14\x10\x01\x32\x10^[a-zA-Z0-9_-]+$\x12\x37\n\x0csession_info\x18\x06 \x01(\x0b\x32\x1c.inference_graph.SessionInfoH\x00\x88\x01\x01\x42\x0f\n\r_session_info\"\xa8\x02\n\x0cImageOcrNode\x12\x0c\n\x04name\x18\x01 \x01(\t\x12M\n\x0binput_image\x18\x02 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12<\n\x0cmodel_source\x18\x03 \x01(\x0b\x32\x1c.inference_graph.ModelSourceB\x08\xfa\x42\x05\x8a\x01\x02\x10\x01\x12\x33\n\x10output_port_name\x18\x04 \x01(\tB\x19\xfa\x42\x16r\x14\x10\x01\x32\x10^[a-zA-Z0-9_-]+$\x12\x37\n\x0csession_info\x18\x05 \x01(\x0b\x32\x1c.inference_graph.SessionInfoH\x00\x88\x01\x01\x42\x0f\n\r_session_info\"\xb1\x02\n\x15ImageSegmentationNode\x12\x0c\n\x04name\x18\x01 \x01(\t\x12M\n\x0binput_image\x18\x02 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12<\n\x0cmodel_source\x18\x03 \x01(\x0b\x32\x1c.inference_graph.ModelSourceB\x08\xfa\x42\x05\x8a\x01\x02\x10\x01\x12\x33\n\x10output_port_name\x18\x04 \x01(\tB\x19\xfa\x42\x16r\x14\x10\x01\x32\x10^[a-zA-Z0-9_-]+$\x12\x37\n\x0csession_info\x18\x05 \x01(\x0b\x32\x1c.inference_graph.SessionInfoH\x00\x88\x01\x01\x42\x0f\n\r_session_info\"\xb9\x02\n\x1dImageInstanceSegmentationNode\x12\x0c\n\x04name\x18\x01 \x01(\t\x12M\n\x0binput_image\x18\x02 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12<\n\x0cmodel_source\x18\x03 \x01(\x0b\x32\x1c.inference_graph.ModelSourceB\x08\xfa\x42\x05\x8a\x01\x02\x10\x01\x12\x33\n\x10output_port_name\x18\x04 \x01(\tB\x19\xfa\x42\x16r\x14\x10\x01\x32\x10^[a-zA-Z0-9_-]+$\x12\x37\n\x0csession_info\x18\x05 \x01(\x0b\x32\x1c.inference_graph.SessionInfoH\x00\x88\x01\x01\x42\x0f\n\r_session_info\"\xb5\x02\n\x19ImageAnomalyDetectionNode\x12\x0c\n\x04name\x18\x01 \x01(\t\x12M\n\x0binput_image\x18\x02 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12<\n\x0cmodel_source\x18\x03 \x01(\x0b\x32\x1c.inference_graph.ModelSourceB\x08\xfa\x42\x05\x8a\x01\x02\x10\x01\x12\x33\n\x10output_port_name\x18\x04 \x01(\tB\x19\xfa\x42\x16r\x14\x10\x01\x32\x10^[a-zA-Z0-9_-]+$\x12\x37\n\x0csession_info\x18\x05 \x01(\x0b\x32\x1c.inference_graph.SessionInfoH\x00\x88\x01\x01\x42\x0f\n\r_session_info\"\xfd\x04\n\x15\x42oundingBoxFilterNode\x12\x15\n\x04name\x18\x01 \x01(\tB\x07\xfa\x42\x04r\x02\x10\x01\x12V\n\x14input_bounding_boxes\x18\x02 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12\x33\n\x10output_port_name\x18\x03 \x01(\tB\x19\xfa\x42\x16r\x14\x10\x01\x32\x10^[a-zA-Z0-9_-]+$\x12Z\n\x15input_score_threshold\x18\x04 \x01(\x0b\x32\x36.inference_graph.BoundingBoxFilterNode.ThresholdSourceH\x00\x88\x01\x01\x12X\n\x13input_iou_threshold\x18\x05 \x01(\x0b\x32\x36.inference_graph.BoundingBoxFilterNode.ThresholdSourceH\x01\x88\x01\x01\x12\x37\n\x0csession_info\x18\x06 \x01(\x0b\x32\x1c.inference_graph.SessionInfoH\x02\x88\x01\x01\x1a\x8d\x01\n\x0fThresholdSource\x12I\n\x05topic\x18\x01 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$H\x00\x12 \n\x05value\x18\x02 \x01(\x02\x42\x0f\xfa\x42\x0c\n\n\x1d\x00\x00\x80?-\x00\x00\x00\x00H\x00\x42\r\n\x06source\x12\x03\xf8\x42\x01\x42\x18\n\x16_input_score_thresholdB\x16\n\x14_input_iou_thresholdB\x0f\n\r_session_info\"\xbb\x06\n\x04Node\x12=\n\x11\x63onst_tensor_node\x18\x01 \x01(\x0b\x32 .inference_graph.ConstTensorNodeH\x00\x12=\n\x11image_resize_node\x18\x02 \x01(\x0b\x32 .inference_graph.ImageResizeNodeH\x00\x12?\n\x12image_patches_node\x18\x03 \x01(\x0b\x32!.inference_graph.ImagePatchesNodeH\x00\x12\x41\n\x13virtual_camera_node\x18\x04 \x01(\x0b\x32\".inference_graph.VirtualCameraNodeH\x00\x12M\n\x19image_classification_node\x18\x05 \x01(\x0b\x32(.inference_graph.ImageClassificationNodeH\x00\x12P\n\x1bimage_object_detection_node\x18\x06 \x01(\x0b\x32).inference_graph.ImageObjectDetectionNodeH\x00\x12\x37\n\x0eimage_ocr_node\x18\x07 \x01(\x0b\x32\x1d.inference_graph.ImageOcrNodeH\x00\x12J\n\x18\x62ounding_box_filter_node\x18\x08 \x01(\x0b\x32&.inference_graph.BoundingBoxFilterNodeH\x00\x12I\n\x17image_segmentation_node\x18\t \x01(\x0b\x32&.inference_graph.ImageSegmentationNodeH\x00\x12Z\n image_instance_segmentation_node\x18\n \x01(\x0b\x32..inference_graph.ImageInstanceSegmentationNodeH\x00\x12R\n\x1cimage_anomaly_detection_node\x18\x0b \x01(\x0b\x32*.inference_graph.ImageAnomalyDetectionNodeH\x00\x42\x10\n\tnode_type\x12\x03\xf8\x42\x01\"_\n\x05Graph\x12$\n\x05nodes\x18\x01 \x03(\x0b\x32\x15.inference_graph.Node\x12\x12\n\ncreated_at\x18\x02 \x01(\x03\x12\x1c\n\nlicense_id\x18\x03 \x01(\tB\x08\xfa\x42\x05r\x03\xb0\x01\x01*B\n\x11\x45xecutionProvider\x12\x07\n\x03\x43PU\x10\x00\x12\x08\n\x04\x43UDA\x10\x01\x12\x0c\n\x08\x44IRECTML\x10\x02\x12\x0c\n\x08TENSORRT\x10\x03\x42NZ0github.com/DENKweit/denkproto-go/inference_graph\xaa\x02\x19\x44\x45NK.Proto.InferenceGraphb\x06proto3')
30
30
 
31
31
  _globals = globals()
32
32
  _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals)
@@ -100,6 +100,24 @@ if not _descriptor._USE_C_DESCRIPTORS:
100
100
  _globals['_IMAGEOCRNODE'].fields_by_name['model_source']._serialized_options = b'\372B\005\212\001\002\020\001'
101
101
  _globals['_IMAGEOCRNODE'].fields_by_name['output_port_name']._loaded_options = None
102
102
  _globals['_IMAGEOCRNODE'].fields_by_name['output_port_name']._serialized_options = b'\372B\026r\024\020\0012\020^[a-zA-Z0-9_-]+$'
103
+ _globals['_IMAGESEGMENTATIONNODE'].fields_by_name['input_image']._loaded_options = None
104
+ _globals['_IMAGESEGMENTATIONNODE'].fields_by_name['input_image']._serialized_options = b'\372B5r3\020\0012/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$'
105
+ _globals['_IMAGESEGMENTATIONNODE'].fields_by_name['model_source']._loaded_options = None
106
+ _globals['_IMAGESEGMENTATIONNODE'].fields_by_name['model_source']._serialized_options = b'\372B\005\212\001\002\020\001'
107
+ _globals['_IMAGESEGMENTATIONNODE'].fields_by_name['output_port_name']._loaded_options = None
108
+ _globals['_IMAGESEGMENTATIONNODE'].fields_by_name['output_port_name']._serialized_options = b'\372B\026r\024\020\0012\020^[a-zA-Z0-9_-]+$'
109
+ _globals['_IMAGEINSTANCESEGMENTATIONNODE'].fields_by_name['input_image']._loaded_options = None
110
+ _globals['_IMAGEINSTANCESEGMENTATIONNODE'].fields_by_name['input_image']._serialized_options = b'\372B5r3\020\0012/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$'
111
+ _globals['_IMAGEINSTANCESEGMENTATIONNODE'].fields_by_name['model_source']._loaded_options = None
112
+ _globals['_IMAGEINSTANCESEGMENTATIONNODE'].fields_by_name['model_source']._serialized_options = b'\372B\005\212\001\002\020\001'
113
+ _globals['_IMAGEINSTANCESEGMENTATIONNODE'].fields_by_name['output_port_name']._loaded_options = None
114
+ _globals['_IMAGEINSTANCESEGMENTATIONNODE'].fields_by_name['output_port_name']._serialized_options = b'\372B\026r\024\020\0012\020^[a-zA-Z0-9_-]+$'
115
+ _globals['_IMAGEANOMALYDETECTIONNODE'].fields_by_name['input_image']._loaded_options = None
116
+ _globals['_IMAGEANOMALYDETECTIONNODE'].fields_by_name['input_image']._serialized_options = b'\372B5r3\020\0012/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$'
117
+ _globals['_IMAGEANOMALYDETECTIONNODE'].fields_by_name['model_source']._loaded_options = None
118
+ _globals['_IMAGEANOMALYDETECTIONNODE'].fields_by_name['model_source']._serialized_options = b'\372B\005\212\001\002\020\001'
119
+ _globals['_IMAGEANOMALYDETECTIONNODE'].fields_by_name['output_port_name']._loaded_options = None
120
+ _globals['_IMAGEANOMALYDETECTIONNODE'].fields_by_name['output_port_name']._serialized_options = b'\372B\026r\024\020\0012\020^[a-zA-Z0-9_-]+$'
103
121
  _globals['_BOUNDINGBOXFILTERNODE_THRESHOLDSOURCE'].oneofs_by_name['source']._loaded_options = None
104
122
  _globals['_BOUNDINGBOXFILTERNODE_THRESHOLDSOURCE'].oneofs_by_name['source']._serialized_options = b'\370B\001'
105
123
  _globals['_BOUNDINGBOXFILTERNODE_THRESHOLDSOURCE'].fields_by_name['topic']._loaded_options = None
@@ -116,8 +134,8 @@ if not _descriptor._USE_C_DESCRIPTORS:
116
134
  _globals['_NODE'].oneofs_by_name['node_type']._serialized_options = b'\370B\001'
117
135
  _globals['_GRAPH'].fields_by_name['license_id']._loaded_options = None
118
136
  _globals['_GRAPH'].fields_by_name['license_id']._serialized_options = b'\372B\005r\003\260\001\001'
119
- _globals['_EXECUTIONPROVIDER']._serialized_start=4177
120
- _globals['_EXECUTIONPROVIDER']._serialized_end=4243
137
+ _globals['_EXECUTIONPROVIDER']._serialized_start=5364
138
+ _globals['_EXECUTIONPROVIDER']._serialized_end=5430
121
139
  _globals['_MODELSOURCE']._serialized_start=79
122
140
  _globals['_MODELSOURCE']._serialized_end=244
123
141
  _globals['_SESSIONINFO']._serialized_start=246
@@ -146,12 +164,18 @@ if not _descriptor._USE_C_DESCRIPTORS:
146
164
  _globals['_IMAGEOBJECTDETECTIONNODE']._serialized_end=2560
147
165
  _globals['_IMAGEOCRNODE']._serialized_start=2563
148
166
  _globals['_IMAGEOCRNODE']._serialized_end=2859
149
- _globals['_BOUNDINGBOXFILTERNODE']._serialized_start=2862
150
- _globals['_BOUNDINGBOXFILTERNODE']._serialized_end=3499
151
- _globals['_BOUNDINGBOXFILTERNODE_THRESHOLDSOURCE']._serialized_start=3291
152
- _globals['_BOUNDINGBOXFILTERNODE_THRESHOLDSOURCE']._serialized_end=3432
153
- _globals['_NODE']._serialized_start=3502
154
- _globals['_NODE']._serialized_end=4078
155
- _globals['_GRAPH']._serialized_start=4080
156
- _globals['_GRAPH']._serialized_end=4175
167
+ _globals['_IMAGESEGMENTATIONNODE']._serialized_start=2862
168
+ _globals['_IMAGESEGMENTATIONNODE']._serialized_end=3167
169
+ _globals['_IMAGEINSTANCESEGMENTATIONNODE']._serialized_start=3170
170
+ _globals['_IMAGEINSTANCESEGMENTATIONNODE']._serialized_end=3483
171
+ _globals['_IMAGEANOMALYDETECTIONNODE']._serialized_start=3486
172
+ _globals['_IMAGEANOMALYDETECTIONNODE']._serialized_end=3795
173
+ _globals['_BOUNDINGBOXFILTERNODE']._serialized_start=3798
174
+ _globals['_BOUNDINGBOXFILTERNODE']._serialized_end=4435
175
+ _globals['_BOUNDINGBOXFILTERNODE_THRESHOLDSOURCE']._serialized_start=4227
176
+ _globals['_BOUNDINGBOXFILTERNODE_THRESHOLDSOURCE']._serialized_end=4368
177
+ _globals['_NODE']._serialized_start=4438
178
+ _globals['_NODE']._serialized_end=5265
179
+ _globals['_GRAPH']._serialized_start=5267
180
+ _globals['_GRAPH']._serialized_end=5362
157
181
  # @@protoc_insertion_point(module_scope)
@@ -166,6 +166,48 @@ class ImageOcrNode(_message.Message):
166
166
  session_info: SessionInfo
167
167
  def __init__(self, name: _Optional[str] = ..., input_image: _Optional[str] = ..., model_source: _Optional[_Union[ModelSource, _Mapping]] = ..., output_port_name: _Optional[str] = ..., session_info: _Optional[_Union[SessionInfo, _Mapping]] = ...) -> None: ...
168
168
 
169
+ class ImageSegmentationNode(_message.Message):
170
+ __slots__ = ("name", "input_image", "model_source", "output_port_name", "session_info")
171
+ NAME_FIELD_NUMBER: _ClassVar[int]
172
+ INPUT_IMAGE_FIELD_NUMBER: _ClassVar[int]
173
+ MODEL_SOURCE_FIELD_NUMBER: _ClassVar[int]
174
+ OUTPUT_PORT_NAME_FIELD_NUMBER: _ClassVar[int]
175
+ SESSION_INFO_FIELD_NUMBER: _ClassVar[int]
176
+ name: str
177
+ input_image: str
178
+ model_source: ModelSource
179
+ output_port_name: str
180
+ session_info: SessionInfo
181
+ def __init__(self, name: _Optional[str] = ..., input_image: _Optional[str] = ..., model_source: _Optional[_Union[ModelSource, _Mapping]] = ..., output_port_name: _Optional[str] = ..., session_info: _Optional[_Union[SessionInfo, _Mapping]] = ...) -> None: ...
182
+
183
+ class ImageInstanceSegmentationNode(_message.Message):
184
+ __slots__ = ("name", "input_image", "model_source", "output_port_name", "session_info")
185
+ NAME_FIELD_NUMBER: _ClassVar[int]
186
+ INPUT_IMAGE_FIELD_NUMBER: _ClassVar[int]
187
+ MODEL_SOURCE_FIELD_NUMBER: _ClassVar[int]
188
+ OUTPUT_PORT_NAME_FIELD_NUMBER: _ClassVar[int]
189
+ SESSION_INFO_FIELD_NUMBER: _ClassVar[int]
190
+ name: str
191
+ input_image: str
192
+ model_source: ModelSource
193
+ output_port_name: str
194
+ session_info: SessionInfo
195
+ def __init__(self, name: _Optional[str] = ..., input_image: _Optional[str] = ..., model_source: _Optional[_Union[ModelSource, _Mapping]] = ..., output_port_name: _Optional[str] = ..., session_info: _Optional[_Union[SessionInfo, _Mapping]] = ...) -> None: ...
196
+
197
+ class ImageAnomalyDetectionNode(_message.Message):
198
+ __slots__ = ("name", "input_image", "model_source", "output_port_name", "session_info")
199
+ NAME_FIELD_NUMBER: _ClassVar[int]
200
+ INPUT_IMAGE_FIELD_NUMBER: _ClassVar[int]
201
+ MODEL_SOURCE_FIELD_NUMBER: _ClassVar[int]
202
+ OUTPUT_PORT_NAME_FIELD_NUMBER: _ClassVar[int]
203
+ SESSION_INFO_FIELD_NUMBER: _ClassVar[int]
204
+ name: str
205
+ input_image: str
206
+ model_source: ModelSource
207
+ output_port_name: str
208
+ session_info: SessionInfo
209
+ def __init__(self, name: _Optional[str] = ..., input_image: _Optional[str] = ..., model_source: _Optional[_Union[ModelSource, _Mapping]] = ..., output_port_name: _Optional[str] = ..., session_info: _Optional[_Union[SessionInfo, _Mapping]] = ...) -> None: ...
210
+
169
211
  class BoundingBoxFilterNode(_message.Message):
170
212
  __slots__ = ("name", "input_bounding_boxes", "output_port_name", "input_score_threshold", "input_iou_threshold", "session_info")
171
213
  class ThresholdSource(_message.Message):
@@ -190,7 +232,7 @@ class BoundingBoxFilterNode(_message.Message):
190
232
  def __init__(self, name: _Optional[str] = ..., input_bounding_boxes: _Optional[str] = ..., output_port_name: _Optional[str] = ..., input_score_threshold: _Optional[_Union[BoundingBoxFilterNode.ThresholdSource, _Mapping]] = ..., input_iou_threshold: _Optional[_Union[BoundingBoxFilterNode.ThresholdSource, _Mapping]] = ..., session_info: _Optional[_Union[SessionInfo, _Mapping]] = ...) -> None: ...
191
233
 
192
234
  class Node(_message.Message):
193
- __slots__ = ("const_tensor_node", "image_resize_node", "image_patches_node", "virtual_camera_node", "image_classification_node", "image_object_detection_node", "image_ocr_node", "bounding_box_filter_node")
235
+ __slots__ = ("const_tensor_node", "image_resize_node", "image_patches_node", "virtual_camera_node", "image_classification_node", "image_object_detection_node", "image_ocr_node", "bounding_box_filter_node", "image_segmentation_node", "image_instance_segmentation_node", "image_anomaly_detection_node")
194
236
  CONST_TENSOR_NODE_FIELD_NUMBER: _ClassVar[int]
195
237
  IMAGE_RESIZE_NODE_FIELD_NUMBER: _ClassVar[int]
196
238
  IMAGE_PATCHES_NODE_FIELD_NUMBER: _ClassVar[int]
@@ -199,6 +241,9 @@ class Node(_message.Message):
199
241
  IMAGE_OBJECT_DETECTION_NODE_FIELD_NUMBER: _ClassVar[int]
200
242
  IMAGE_OCR_NODE_FIELD_NUMBER: _ClassVar[int]
201
243
  BOUNDING_BOX_FILTER_NODE_FIELD_NUMBER: _ClassVar[int]
244
+ IMAGE_SEGMENTATION_NODE_FIELD_NUMBER: _ClassVar[int]
245
+ IMAGE_INSTANCE_SEGMENTATION_NODE_FIELD_NUMBER: _ClassVar[int]
246
+ IMAGE_ANOMALY_DETECTION_NODE_FIELD_NUMBER: _ClassVar[int]
202
247
  const_tensor_node: ConstTensorNode
203
248
  image_resize_node: ImageResizeNode
204
249
  image_patches_node: ImagePatchesNode
@@ -207,7 +252,10 @@ class Node(_message.Message):
207
252
  image_object_detection_node: ImageObjectDetectionNode
208
253
  image_ocr_node: ImageOcrNode
209
254
  bounding_box_filter_node: BoundingBoxFilterNode
210
- def __init__(self, const_tensor_node: _Optional[_Union[ConstTensorNode, _Mapping]] = ..., image_resize_node: _Optional[_Union[ImageResizeNode, _Mapping]] = ..., image_patches_node: _Optional[_Union[ImagePatchesNode, _Mapping]] = ..., virtual_camera_node: _Optional[_Union[VirtualCameraNode, _Mapping]] = ..., image_classification_node: _Optional[_Union[ImageClassificationNode, _Mapping]] = ..., image_object_detection_node: _Optional[_Union[ImageObjectDetectionNode, _Mapping]] = ..., image_ocr_node: _Optional[_Union[ImageOcrNode, _Mapping]] = ..., bounding_box_filter_node: _Optional[_Union[BoundingBoxFilterNode, _Mapping]] = ...) -> None: ...
255
+ image_segmentation_node: ImageSegmentationNode
256
+ image_instance_segmentation_node: ImageInstanceSegmentationNode
257
+ image_anomaly_detection_node: ImageAnomalyDetectionNode
258
+ def __init__(self, const_tensor_node: _Optional[_Union[ConstTensorNode, _Mapping]] = ..., image_resize_node: _Optional[_Union[ImageResizeNode, _Mapping]] = ..., image_patches_node: _Optional[_Union[ImagePatchesNode, _Mapping]] = ..., virtual_camera_node: _Optional[_Union[VirtualCameraNode, _Mapping]] = ..., image_classification_node: _Optional[_Union[ImageClassificationNode, _Mapping]] = ..., image_object_detection_node: _Optional[_Union[ImageObjectDetectionNode, _Mapping]] = ..., image_ocr_node: _Optional[_Union[ImageOcrNode, _Mapping]] = ..., bounding_box_filter_node: _Optional[_Union[BoundingBoxFilterNode, _Mapping]] = ..., image_segmentation_node: _Optional[_Union[ImageSegmentationNode, _Mapping]] = ..., image_instance_segmentation_node: _Optional[_Union[ImageInstanceSegmentationNode, _Mapping]] = ..., image_anomaly_detection_node: _Optional[_Union[ImageAnomalyDetectionNode, _Mapping]] = ...) -> None: ...
211
259
 
212
260
  class Graph(_message.Message):
213
261
  __slots__ = ("nodes", "created_at", "license_id")
@@ -64,6 +64,30 @@ class OcrNode(BaseModel):
64
64
  model_source: ModelSourceBase
65
65
  output_port_name: str
66
66
 
67
+ class ImageSegmentationNode(BaseModel):
68
+ """Node for image segmentation. Base type for all nodes in the graph."""
69
+ node_type: Literal["image_segmentation"]
70
+ name: str
71
+ input_image: str
72
+ model_source: ModelSourceBase
73
+ output_port_name: str
74
+
75
+ class ImageInstanceSegmentationNode(BaseModel):
76
+ """Node for image instance segmentation. Base type for all nodes in the graph."""
77
+ node_type: Literal["image_instance_segmentation"]
78
+ name: str
79
+ input_image: str
80
+ model_source: ModelSourceBase
81
+ output_port_name: str
82
+
83
+ class ImageAnomalyDetectionNode(BaseModel):
84
+ """Node for image anomaly detection. Base type for all nodes in the graph."""
85
+ node_type: Literal["image_anomaly_detection"]
86
+ name: str
87
+ input_image: str
88
+ model_source: ModelSourceBase
89
+ output_port_name: str
90
+
67
91
  class ImagePatchesNode(BaseModel):
68
92
  """Node that extracts patches from an image based on bounding boxes. Base type for all nodes in the graph."""
69
93
  node_type: Literal["image_patches"]
@@ -148,8 +172,11 @@ Node = Annotated[
148
172
  BoundingBoxFilterNode,
149
173
  ClassificationNode,
150
174
  ConstTensorNode,
175
+ ImageAnomalyDetectionNode,
176
+ ImageInstanceSegmentationNode,
151
177
  ImagePatchesNode,
152
178
  ImageResizeNode,
179
+ ImageSegmentationNode,
153
180
  ObjectDetectionNode,
154
181
  OcrNode,
155
182
  VirtualCameraNode
@@ -1,5 +1,5 @@
1
1
  Metadata-Version: 2.3
2
2
  Name: denkproto
3
- Version: 1.0.86
3
+ Version: 1.0.87
4
4
  Requires-Python: >=3.10
5
5
  Requires-Dist: protobuf>=3.20.3
@@ -4,13 +4,13 @@ denkproto/DENKbuffer_pb2_grpc.py,sha256=-CPJPM4FOqwvwV8-f1iJlD18UD9juVIIHfdWUecu
4
4
  denkproto/ImageAnalysis_ProtobufMessages_pb2.py,sha256=iEY0j9ySGUThnqTdYD4uAVr9P3GiC5R02iK53zEOXUQ,21015
5
5
  denkproto/ImageAnalysis_ProtobufMessages_pb2.pyi,sha256=5LFtxrmYpJHizDDNGFTkL7-NQ_TkwqCSdq7vcv3lg-c,36243
6
6
  denkproto/ImageAnalysis_ProtobufMessages_pb2_grpc.py,sha256=l3agtDjgu4jay6P9TRnHhyhJ-7UdoII27ywhw3k84oo,911
7
- denkproto/__about__.py,sha256=nkC34X7AIf8dSXGR-Qno5kHNZq00e6MuZ-w_QP3ES_I,23
7
+ denkproto/__about__.py,sha256=7o6Co_CDaiMHTx4KwCki9mrWaaTeZ5eDU71c_v31nd0,23
8
8
  denkproto/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
9
9
  denkproto/denkcache_pb2.py,sha256=u0O26m7t4kfu4R1nx1ZcTst4n6pG32pMbhl2PGYivXE,7161
10
10
  denkproto/denkcache_pb2.pyi,sha256=8K_Ebyy4mgXrxqJenN8f8LXLvVKOiaZxhmGeYjFZVpY,6357
11
11
  denkproto/denkcache_pb2_grpc.py,sha256=N1y4ZQ58UPaUlOZIpznzAbJJcs9G_n-FmzFoPPeu8UA,15610
12
- denkproto/inference_graph_pb2.py,sha256=D62R4uecncs1t1eHpKGu5t7tRg26mqT2SityGqjzTCg,19763
13
- denkproto/inference_graph_pb2.pyi,sha256=By1A5iEmCVG4rMRAAPLGN5d7KIFqcpl4jZvKL8OYNlc,12351
12
+ denkproto/inference_graph_pb2.py,sha256=d74gOkXqc0yywAhzvHB0mTBdita0qXJ0h6TicvEidXE,24213
13
+ denkproto/inference_graph_pb2.pyi,sha256=6TuA3weQMwdkZvp61BMEXWxSOrh720kAz-1z6ztyTP8,15344
14
14
  denkproto/inference_graph_pb2_grpc.py,sha256=aXPf0w7pIfspkKUKGCr--OtJMOaTfE8IbeuBm10g1Xg,896
15
15
  denkproto/modelfile_v1_pb2.py,sha256=ulF24nSIspn46DnQKlvR5Po3w-vFCnawuuverAVi3cY,6573
16
16
  denkproto/modelfile_v1_pb2.pyi,sha256=gjTbWvg48wqGhyJb5CT0pw3yUZGhO_lSZgL7Ia2aPbY,10685
@@ -27,10 +27,10 @@ denkproto/validate_pb2.pyi,sha256=fWsdVOR3NJDioCKkCKfxfl4qaEb5xqXXU_WlEbdQx6E,23
27
27
  denkproto/validate_pb2_grpc.py,sha256=XvjuWEgJFJtH1E7HWm7SKpV10PMpOSbonKa2VPHpYy8,889
28
28
  denkproto/json/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
29
29
  denkproto/json/classification_markup.py,sha256=vTu0H7Cb3gU6UUUSg1vDTRlFUorZrjMbcp_yx6UssZA,2461
30
- denkproto/json/inference_graph_models_generated.py,sha256=k1uS0wfk8_ZBLEdskan6HJnbGJsZUrNGAAi-3qHgjF8,5324
30
+ denkproto/json/inference_graph_models_generated.py,sha256=ZGDH9KMjA--Ptq3H80LVwdYd5QDTnrFPPBGVL3QZW0A,6243
31
31
  denkproto/json/object_detection_markup.py,sha256=T0hcFPq8F_galjDjRC9dbcRVwCSOYtu2jt9wpEeHlQs,4904
32
32
  denkproto/json/ocr_markup.py,sha256=KyOpth9evOekyhTJdZSnYyB9EIyoWbY33sqncb_jBgw,7069
33
33
  denkproto/json/segmentation_markup.py,sha256=EvniRksF2KaQolm6zZ6UKSiGwnqc8wR2sHB1iv05RTE,19911
34
- denkproto-1.0.86.dist-info/METADATA,sha256=o1JAcBZbNpJZpHOzUDneIz482-1yxdbVRp_bLLyhhzA,110
35
- denkproto-1.0.86.dist-info/WHEEL,sha256=1yFddiXMmvYK7QYTqtRNtX66WJ0Mz8PYEiEUoOUUxRY,87
36
- denkproto-1.0.86.dist-info/RECORD,,
34
+ denkproto-1.0.87.dist-info/METADATA,sha256=xn9xp-i3hNlk2Kps_c8PYL8ilF6Xk9ackkN0wTsoALM,110
35
+ denkproto-1.0.87.dist-info/WHEEL,sha256=1yFddiXMmvYK7QYTqtRNtX66WJ0Mz8PYEiEUoOUUxRY,87
36
+ denkproto-1.0.87.dist-info/RECORD,,