denkproto 1.0.69__py3-none-any.whl → 1.0.73__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of denkproto might be problematic. Click here for more details.

denkproto/__about__.py CHANGED
@@ -1 +1 @@
1
- __version__ = "1.0.69"
1
+ __version__ = "1.0.73"
@@ -26,7 +26,7 @@ import denkproto.modelfile_v2_pb2 as modelfile__v2__pb2
26
26
  import denkproto.validate_pb2 as validate__pb2
27
27
 
28
28
 
29
- DESCRIPTOR = _descriptor_pool.Default().AddSerializedFile(b'\n\x15inference_graph.proto\x12\x0finference_graph\x1a\x12modelfile-v2.proto\x1a\x0evalidate.proto\"\xa5\x01\n\x0bModelSource\x12-\n\nfrom_proto\x18\x01 \x01(\x0b\x32\x17.modelfile.v2.ModelFileH\x00\x12#\n\x0f\x66rom_network_id\x18\x02 \x01(\tB\x08\xfa\x42\x05r\x03\xb0\x01\x01H\x00\x12.\n\x1a\x66rom_network_experiment_id\x18\x03 \x01(\tB\x08\xfa\x42\x05r\x03\xb0\x01\x01H\x00\x42\x12\n\x0bsource_type\x12\x03\xf8\x42\x01\"s\n\x0bSessionInfo\x12H\n\x12\x65xecution_provider\x18\x01 \x01(\x0e\x32\".inference_graph.ExecutionProviderB\x08\xfa\x42\x05\x82\x01\x02\x10\x01\x12\x1a\n\tdevice_id\x18\x02 \x01(\x05\x42\x07\xfa\x42\x04\x1a\x02(\x00\"\xb3\x03\n\x0f\x43onstTensorNode\x12\x15\n\x04name\x18\x01 \x01(\tB\x07\xfa\x42\x04r\x02\x10\x01\x12\r\n\x05shape\x18\x02 \x03(\r\x12\x43\n\x0buint64_data\x18\x03 \x01(\x0b\x32,.inference_graph.ConstTensorNode.Uint64ArrayH\x00\x12\x41\n\nint64_data\x18\x04 \x01(\x0b\x32+.inference_graph.ConstTensorNode.Int64ArrayH\x00\x12\x45\n\x0c\x66loat64_data\x18\x05 \x01(\x0b\x32-.inference_graph.ConstTensorNode.Float64ArrayH\x00\x12\x42\n\x10output_port_name\x18\x06 \x01(\tB(\xfa\x42%r#\x10\x01\x32\x1f^[a-zA-Z0-9_-]+/[a-zA-Z0-9_-]+$\x1a\x1b\n\x0bUint64Array\x12\x0c\n\x04\x64\x61ta\x18\x01 \x03(\x04\x1a\x1a\n\nInt64Array\x12\x0c\n\x04\x64\x61ta\x18\x01 \x03(\x12\x1a\x1c\n\x0c\x46loat64Array\x12\x0c\n\x04\x64\x61ta\x18\x01 \x03(\x01\x42\x10\n\tdata_type\x12\x03\xf8\x42\x01\"\xd3\x02\n\x0fImageResizeNode\x12\x15\n\x04name\x18\x01 \x01(\tB\x07\xfa\x42\x04r\x02\x10\x01\x12L\n\ninput_size\x18\x02 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12M\n\x0binput_image\x18\x03 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12\x42\n\x10output_port_name\x18\x04 \x01(\tB(\xfa\x42%r#\x10\x01\x32\x1f^[a-zA-Z0-9_-]+/[a-zA-Z0-9_-]+$\x12\x37\n\x0csession_info\x18\x05 \x01(\x0b\x32\x1c.inference_graph.SessionInfoH\x00\x88\x01\x01\x42\x0f\n\r_session_info\"\xcd\x07\n\x10ImagePatchesNode\x12\x15\n\x04name\x18\x01 \x01(\tB\x07\xfa\x42\x04r\x02\x10\x01\x12M\n\x0binput_image\x18\x02 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12V\n\x14input_bounding_boxes\x18\x03 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12W\n\x11input_target_size\x18\x04 \x01(\x0b\x32\x32.inference_graph.ImagePatchesNode.TargetSizeSourceB\x08\xfa\x42\x05\x8a\x01\x02\x10\x01\x12\x42\n\x10output_port_name\x18\x05 \x01(\tB(\xfa\x42%r#\x10\x01\x32\x1f^[a-zA-Z0-9_-]+/[a-zA-Z0-9_-]+$\x12k\n\x18input_maximum_iterations\x18\x06 \x01(\x0b\x32:.inference_graph.ImagePatchesNode.MaxIterationsCountSourceB\x08\xfa\x42\x05\x8a\x01\x02\x10\x01H\x00\x88\x01\x01\x12\x37\n\x0csession_info\x18\x07 \x01(\x0b\x32\x1c.inference_graph.SessionInfoH\x01\x88\x01\x01\x1a\xf8\x01\n\x10TargetSizeSource\x12I\n\x05topic\x18\x01 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$H\x00\x12L\n\x04size\x18\x02 \x01(\x0b\x32<.inference_graph.ImagePatchesNode.TargetSizeSource.ImageSizeH\x00\x1a<\n\tImageSize\x12\x17\n\x06height\x18\x01 \x01(\x04\x42\x07\xfa\x42\x04\x32\x02(\x00\x12\x16\n\x05width\x18\x02 \x01(\x04\x42\x07\xfa\x42\x04\x32\x02(\x00\x42\r\n\x06source\x12\x03\xf8\x42\x01\x1a\x8e\x01\n\x18MaxIterationsCountSource\x12I\n\x05topic\x18\x01 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$H\x00\x12\x18\n\x05value\x18\x02 \x01(\x04\x42\x07\xfa\x42\x04\x32\x02(\x00H\x00\x42\r\n\x06source\x12\x03\xf8\x42\x01\x42\x1b\n\x19_input_maximum_iterationsB\x0f\n\r_session_info\"\x85\x01\n\x11VirtualCameraNode\x12\x15\n\x04name\x18\x01 \x01(\tB\x07\xfa\x42\x04r\x02\x10\x01\x12\x15\n\x04path\x18\x02 \x01(\tB\x07\xfa\x42\x04r\x02\x10\x01\x12\x42\n\x10output_port_name\x18\x03 \x01(\tB(\xfa\x42%r#\x10\x01\x32\x1f^[a-zA-Z0-9_-]+/[a-zA-Z0-9_-]+$\"\xc2\x02\n\x17ImageClassificationNode\x12\x0c\n\x04name\x18\x01 \x01(\t\x12M\n\x0binput_image\x18\x02 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12<\n\x0cmodel_source\x18\x03 \x01(\x0b\x32\x1c.inference_graph.ModelSourceB\x08\xfa\x42\x05\x8a\x01\x02\x10\x01\x12\x42\n\x10output_port_name\x18\x04 \x01(\tB(\xfa\x42%r#\x10\x01\x32\x1f^[a-zA-Z0-9_-]+/[a-zA-Z0-9_-]+$\x12\x37\n\x0csession_info\x18\x05 \x01(\x0b\x32\x1c.inference_graph.SessionInfoH\x00\x88\x01\x01\x42\x0f\n\r_session_info\"\xe1\x02\n\x18ImageObjectDetectionNode\x12\x0c\n\x04name\x18\x01 \x01(\t\x12M\n\x0binput_image\x18\x02 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12<\n\x0cmodel_source\x18\x03 \x01(\x0b\x32\x1c.inference_graph.ModelSourceB\x08\xfa\x42\x05\x8a\x01\x02\x10\x01\x12\x1c\n\x14scale_bounding_boxes\x18\x04 \x01(\x08\x12\x42\n\x10output_port_name\x18\x05 \x01(\tB(\xfa\x42%r#\x10\x01\x32\x1f^[a-zA-Z0-9_-]+/[a-zA-Z0-9_-]+$\x12\x37\n\x0csession_info\x18\x06 \x01(\x0b\x32\x1c.inference_graph.SessionInfoH\x00\x88\x01\x01\x42\x0f\n\r_session_info\"\xb7\x02\n\x0cImageOcrNode\x12\x0c\n\x04name\x18\x01 \x01(\t\x12M\n\x0binput_image\x18\x02 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12<\n\x0cmodel_source\x18\x03 \x01(\x0b\x32\x1c.inference_graph.ModelSourceB\x08\xfa\x42\x05\x8a\x01\x02\x10\x01\x12\x42\n\x10output_port_name\x18\x04 \x01(\tB(\xfa\x42%r#\x10\x01\x32\x1f^[a-zA-Z0-9_-]+/[a-zA-Z0-9_-]+$\x12\x37\n\x0csession_info\x18\x05 \x01(\x0b\x32\x1c.inference_graph.SessionInfoH\x00\x88\x01\x01\x42\x0f\n\r_session_info\"\x8c\x05\n\x15\x42oundingBoxFilterNode\x12\x15\n\x04name\x18\x01 \x01(\tB\x07\xfa\x42\x04r\x02\x10\x01\x12V\n\x14input_bounding_boxes\x18\x02 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12\x42\n\x10output_port_name\x18\x03 \x01(\tB(\xfa\x42%r#\x10\x01\x32\x1f^[a-zA-Z0-9_-]+/[a-zA-Z0-9_-]+$\x12Z\n\x15input_score_threshold\x18\x04 \x01(\x0b\x32\x36.inference_graph.BoundingBoxFilterNode.ThresholdSourceH\x00\x88\x01\x01\x12X\n\x13input_iou_threshold\x18\x05 \x01(\x0b\x32\x36.inference_graph.BoundingBoxFilterNode.ThresholdSourceH\x01\x88\x01\x01\x12\x37\n\x0csession_info\x18\x06 \x01(\x0b\x32\x1c.inference_graph.SessionInfoH\x02\x88\x01\x01\x1a\x8d\x01\n\x0fThresholdSource\x12I\n\x05topic\x18\x01 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$H\x00\x12 \n\x05value\x18\x02 \x01(\x02\x42\x0f\xfa\x42\x0c\n\n\x1d\x00\x00\x80?-\x00\x00\x00\x00H\x00\x42\r\n\x06source\x12\x03\xf8\x42\x01\x42\x18\n\x16_input_score_thresholdB\x16\n\x14_input_iou_thresholdB\x0f\n\r_session_info\"\xc0\x04\n\x04Node\x12=\n\x11\x63onst_tensor_node\x18\x01 \x01(\x0b\x32 .inference_graph.ConstTensorNodeH\x00\x12=\n\x11image_resize_node\x18\x02 \x01(\x0b\x32 .inference_graph.ImageResizeNodeH\x00\x12?\n\x12image_patches_node\x18\x03 \x01(\x0b\x32!.inference_graph.ImagePatchesNodeH\x00\x12\x41\n\x13virtual_camera_node\x18\x04 \x01(\x0b\x32\".inference_graph.VirtualCameraNodeH\x00\x12M\n\x19image_classification_node\x18\x05 \x01(\x0b\x32(.inference_graph.ImageClassificationNodeH\x00\x12P\n\x1bimage_object_detection_node\x18\x06 \x01(\x0b\x32).inference_graph.ImageObjectDetectionNodeH\x00\x12\x37\n\x0eimage_ocr_node\x18\x07 \x01(\x0b\x32\x1d.inference_graph.ImageOcrNodeH\x00\x12J\n\x18\x62ounding_box_filter_node\x18\x08 \x01(\x0b\x32&.inference_graph.BoundingBoxFilterNodeH\x00\x42\x10\n\tnode_type\x12\x03\xf8\x42\x01\"_\n\x05Graph\x12$\n\x05nodes\x18\x01 \x03(\x0b\x32\x15.inference_graph.Node\x12\x12\n\ncreated_at\x18\x02 \x01(\x03\x12\x1c\n\nlicense_id\x18\x03 \x01(\tB\x08\xfa\x42\x05r\x03\xb0\x01\x01*B\n\x11\x45xecutionProvider\x12\x07\n\x03\x43PU\x10\x00\x12\x08\n\x04\x43UDA\x10\x01\x12\x0c\n\x08\x44IRECTML\x10\x02\x12\x0c\n\x08TENSORRT\x10\x03\x42NZ0github.com/DENKweit/denkproto-go/inference_graph\xaa\x02\x19\x44\x45NK.Proto.InferenceGraphb\x06proto3')
29
+ DESCRIPTOR = _descriptor_pool.Default().AddSerializedFile(b'\n\x15inference_graph.proto\x12\x0finference_graph\x1a\x12modelfile-v2.proto\x1a\x0evalidate.proto\"\xa5\x01\n\x0bModelSource\x12-\n\nfrom_proto\x18\x01 \x01(\x0b\x32\x17.modelfile.v2.ModelFileH\x00\x12#\n\x0f\x66rom_network_id\x18\x02 \x01(\tB\x08\xfa\x42\x05r\x03\xb0\x01\x01H\x00\x12.\n\x1a\x66rom_network_experiment_id\x18\x03 \x01(\tB\x08\xfa\x42\x05r\x03\xb0\x01\x01H\x00\x42\x12\n\x0bsource_type\x12\x03\xf8\x42\x01\"s\n\x0bSessionInfo\x12H\n\x12\x65xecution_provider\x18\x01 \x01(\x0e\x32\".inference_graph.ExecutionProviderB\x08\xfa\x42\x05\x82\x01\x02\x10\x01\x12\x1a\n\tdevice_id\x18\x02 \x01(\x05\x42\x07\xfa\x42\x04\x1a\x02(\x00\"\xa4\x03\n\x0f\x43onstTensorNode\x12\x15\n\x04name\x18\x01 \x01(\tB\x07\xfa\x42\x04r\x02\x10\x01\x12\r\n\x05shape\x18\x02 \x03(\r\x12\x43\n\x0buint64_data\x18\x03 \x01(\x0b\x32,.inference_graph.ConstTensorNode.Uint64ArrayH\x00\x12\x41\n\nint64_data\x18\x04 \x01(\x0b\x32+.inference_graph.ConstTensorNode.Int64ArrayH\x00\x12\x45\n\x0c\x66loat64_data\x18\x05 \x01(\x0b\x32-.inference_graph.ConstTensorNode.Float64ArrayH\x00\x12\x33\n\x10output_port_name\x18\x06 \x01(\tB\x19\xfa\x42\x16r\x14\x10\x01\x32\x10^[a-zA-Z0-9_-]+$\x1a\x1b\n\x0bUint64Array\x12\x0c\n\x04\x64\x61ta\x18\x01 \x03(\x04\x1a\x1a\n\nInt64Array\x12\x0c\n\x04\x64\x61ta\x18\x01 \x03(\x12\x1a\x1c\n\x0c\x46loat64Array\x12\x0c\n\x04\x64\x61ta\x18\x01 \x03(\x01\x42\x10\n\tdata_type\x12\x03\xf8\x42\x01\"\xc4\x02\n\x0fImageResizeNode\x12\x15\n\x04name\x18\x01 \x01(\tB\x07\xfa\x42\x04r\x02\x10\x01\x12L\n\ninput_size\x18\x02 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12M\n\x0binput_image\x18\x03 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12\x33\n\x10output_port_name\x18\x04 \x01(\tB\x19\xfa\x42\x16r\x14\x10\x01\x32\x10^[a-zA-Z0-9_-]+$\x12\x37\n\x0csession_info\x18\x05 \x01(\x0b\x32\x1c.inference_graph.SessionInfoH\x00\x88\x01\x01\x42\x0f\n\r_session_info\"\xa3\x05\n\x10ImagePatchesNode\x12\x15\n\x04name\x18\x01 \x01(\tB\x07\xfa\x42\x04r\x02\x10\x01\x12M\n\x0binput_image\x18\x02 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12V\n\x14input_bounding_boxes\x18\x03 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12W\n\x11input_target_size\x18\x04 \x01(\x0b\x32\x32.inference_graph.ImagePatchesNode.TargetSizeSourceB\x08\xfa\x42\x05\x8a\x01\x02\x10\x01\x12\x33\n\x10output_port_name\x18\x05 \x01(\tB\x19\xfa\x42\x16r\x14\x10\x01\x32\x10^[a-zA-Z0-9_-]+$\x12\x37\n\x0csession_info\x18\x07 \x01(\x0b\x32\x1c.inference_graph.SessionInfoH\x00\x88\x01\x01\x1a\xf8\x01\n\x10TargetSizeSource\x12I\n\x05topic\x18\x01 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$H\x00\x12L\n\x04size\x18\x02 \x01(\x0b\x32<.inference_graph.ImagePatchesNode.TargetSizeSource.ImageSizeH\x00\x1a<\n\tImageSize\x12\x17\n\x06height\x18\x01 \x01(\x04\x42\x07\xfa\x42\x04\x32\x02(\x00\x12\x16\n\x05width\x18\x02 \x01(\x04\x42\x07\xfa\x42\x04\x32\x02(\x00\x42\r\n\x06source\x12\x03\xf8\x42\x01\x42\x0f\n\r_session_info\"v\n\x11VirtualCameraNode\x12\x15\n\x04name\x18\x01 \x01(\tB\x07\xfa\x42\x04r\x02\x10\x01\x12\x15\n\x04path\x18\x02 \x01(\tB\x07\xfa\x42\x04r\x02\x10\x01\x12\x33\n\x10output_port_name\x18\x03 \x01(\tB\x19\xfa\x42\x16r\x14\x10\x01\x32\x10^[a-zA-Z0-9_-]+$\"\xb3\x02\n\x17ImageClassificationNode\x12\x0c\n\x04name\x18\x01 \x01(\t\x12M\n\x0binput_image\x18\x02 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12<\n\x0cmodel_source\x18\x03 \x01(\x0b\x32\x1c.inference_graph.ModelSourceB\x08\xfa\x42\x05\x8a\x01\x02\x10\x01\x12\x33\n\x10output_port_name\x18\x04 \x01(\tB\x19\xfa\x42\x16r\x14\x10\x01\x32\x10^[a-zA-Z0-9_-]+$\x12\x37\n\x0csession_info\x18\x05 \x01(\x0b\x32\x1c.inference_graph.SessionInfoH\x00\x88\x01\x01\x42\x0f\n\r_session_info\"\xd2\x02\n\x18ImageObjectDetectionNode\x12\x0c\n\x04name\x18\x01 \x01(\t\x12M\n\x0binput_image\x18\x02 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12<\n\x0cmodel_source\x18\x03 \x01(\x0b\x32\x1c.inference_graph.ModelSourceB\x08\xfa\x42\x05\x8a\x01\x02\x10\x01\x12\x1c\n\x14scale_bounding_boxes\x18\x04 \x01(\x08\x12\x33\n\x10output_port_name\x18\x05 \x01(\tB\x19\xfa\x42\x16r\x14\x10\x01\x32\x10^[a-zA-Z0-9_-]+$\x12\x37\n\x0csession_info\x18\x06 \x01(\x0b\x32\x1c.inference_graph.SessionInfoH\x00\x88\x01\x01\x42\x0f\n\r_session_info\"\xa8\x02\n\x0cImageOcrNode\x12\x0c\n\x04name\x18\x01 \x01(\t\x12M\n\x0binput_image\x18\x02 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12<\n\x0cmodel_source\x18\x03 \x01(\x0b\x32\x1c.inference_graph.ModelSourceB\x08\xfa\x42\x05\x8a\x01\x02\x10\x01\x12\x33\n\x10output_port_name\x18\x04 \x01(\tB\x19\xfa\x42\x16r\x14\x10\x01\x32\x10^[a-zA-Z0-9_-]+$\x12\x37\n\x0csession_info\x18\x05 \x01(\x0b\x32\x1c.inference_graph.SessionInfoH\x00\x88\x01\x01\x42\x0f\n\r_session_info\"\xfd\x04\n\x15\x42oundingBoxFilterNode\x12\x15\n\x04name\x18\x01 \x01(\tB\x07\xfa\x42\x04r\x02\x10\x01\x12V\n\x14input_bounding_boxes\x18\x02 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12\x33\n\x10output_port_name\x18\x03 \x01(\tB\x19\xfa\x42\x16r\x14\x10\x01\x32\x10^[a-zA-Z0-9_-]+$\x12Z\n\x15input_score_threshold\x18\x04 \x01(\x0b\x32\x36.inference_graph.BoundingBoxFilterNode.ThresholdSourceH\x00\x88\x01\x01\x12X\n\x13input_iou_threshold\x18\x05 \x01(\x0b\x32\x36.inference_graph.BoundingBoxFilterNode.ThresholdSourceH\x01\x88\x01\x01\x12\x37\n\x0csession_info\x18\x06 \x01(\x0b\x32\x1c.inference_graph.SessionInfoH\x02\x88\x01\x01\x1a\x8d\x01\n\x0fThresholdSource\x12I\n\x05topic\x18\x01 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$H\x00\x12 \n\x05value\x18\x02 \x01(\x02\x42\x0f\xfa\x42\x0c\n\n\x1d\x00\x00\x80?-\x00\x00\x00\x00H\x00\x42\r\n\x06source\x12\x03\xf8\x42\x01\x42\x18\n\x16_input_score_thresholdB\x16\n\x14_input_iou_thresholdB\x0f\n\r_session_info\"\xc0\x04\n\x04Node\x12=\n\x11\x63onst_tensor_node\x18\x01 \x01(\x0b\x32 .inference_graph.ConstTensorNodeH\x00\x12=\n\x11image_resize_node\x18\x02 \x01(\x0b\x32 .inference_graph.ImageResizeNodeH\x00\x12?\n\x12image_patches_node\x18\x03 \x01(\x0b\x32!.inference_graph.ImagePatchesNodeH\x00\x12\x41\n\x13virtual_camera_node\x18\x04 \x01(\x0b\x32\".inference_graph.VirtualCameraNodeH\x00\x12M\n\x19image_classification_node\x18\x05 \x01(\x0b\x32(.inference_graph.ImageClassificationNodeH\x00\x12P\n\x1bimage_object_detection_node\x18\x06 \x01(\x0b\x32).inference_graph.ImageObjectDetectionNodeH\x00\x12\x37\n\x0eimage_ocr_node\x18\x07 \x01(\x0b\x32\x1d.inference_graph.ImageOcrNodeH\x00\x12J\n\x18\x62ounding_box_filter_node\x18\x08 \x01(\x0b\x32&.inference_graph.BoundingBoxFilterNodeH\x00\x42\x10\n\tnode_type\x12\x03\xf8\x42\x01\"_\n\x05Graph\x12$\n\x05nodes\x18\x01 \x03(\x0b\x32\x15.inference_graph.Node\x12\x12\n\ncreated_at\x18\x02 \x01(\x03\x12\x1c\n\nlicense_id\x18\x03 \x01(\tB\x08\xfa\x42\x05r\x03\xb0\x01\x01*B\n\x11\x45xecutionProvider\x12\x07\n\x03\x43PU\x10\x00\x12\x08\n\x04\x43UDA\x10\x01\x12\x0c\n\x08\x44IRECTML\x10\x02\x12\x0c\n\x08TENSORRT\x10\x03\x42NZ0github.com/DENKweit/denkproto-go/inference_graph\xaa\x02\x19\x44\x45NK.Proto.InferenceGraphb\x06proto3')
30
30
 
31
31
  _globals = globals()
32
32
  _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals)
@@ -49,7 +49,7 @@ if not _descriptor._USE_C_DESCRIPTORS:
49
49
  _globals['_CONSTTENSORNODE'].fields_by_name['name']._loaded_options = None
50
50
  _globals['_CONSTTENSORNODE'].fields_by_name['name']._serialized_options = b'\372B\004r\002\020\001'
51
51
  _globals['_CONSTTENSORNODE'].fields_by_name['output_port_name']._loaded_options = None
52
- _globals['_CONSTTENSORNODE'].fields_by_name['output_port_name']._serialized_options = b'\372B%r#\020\0012\037^[a-zA-Z0-9_-]+/[a-zA-Z0-9_-]+$'
52
+ _globals['_CONSTTENSORNODE'].fields_by_name['output_port_name']._serialized_options = b'\372B\026r\024\020\0012\020^[a-zA-Z0-9_-]+$'
53
53
  _globals['_IMAGERESIZENODE'].fields_by_name['name']._loaded_options = None
54
54
  _globals['_IMAGERESIZENODE'].fields_by_name['name']._serialized_options = b'\372B\004r\002\020\001'
55
55
  _globals['_IMAGERESIZENODE'].fields_by_name['input_size']._loaded_options = None
@@ -57,7 +57,7 @@ if not _descriptor._USE_C_DESCRIPTORS:
57
57
  _globals['_IMAGERESIZENODE'].fields_by_name['input_image']._loaded_options = None
58
58
  _globals['_IMAGERESIZENODE'].fields_by_name['input_image']._serialized_options = b'\372B5r3\020\0012/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$'
59
59
  _globals['_IMAGERESIZENODE'].fields_by_name['output_port_name']._loaded_options = None
60
- _globals['_IMAGERESIZENODE'].fields_by_name['output_port_name']._serialized_options = b'\372B%r#\020\0012\037^[a-zA-Z0-9_-]+/[a-zA-Z0-9_-]+$'
60
+ _globals['_IMAGERESIZENODE'].fields_by_name['output_port_name']._serialized_options = b'\372B\026r\024\020\0012\020^[a-zA-Z0-9_-]+$'
61
61
  _globals['_IMAGEPATCHESNODE_TARGETSIZESOURCE_IMAGESIZE'].fields_by_name['height']._loaded_options = None
62
62
  _globals['_IMAGEPATCHESNODE_TARGETSIZESOURCE_IMAGESIZE'].fields_by_name['height']._serialized_options = b'\372B\0042\002(\000'
63
63
  _globals['_IMAGEPATCHESNODE_TARGETSIZESOURCE_IMAGESIZE'].fields_by_name['width']._loaded_options = None
@@ -66,12 +66,6 @@ if not _descriptor._USE_C_DESCRIPTORS:
66
66
  _globals['_IMAGEPATCHESNODE_TARGETSIZESOURCE'].oneofs_by_name['source']._serialized_options = b'\370B\001'
67
67
  _globals['_IMAGEPATCHESNODE_TARGETSIZESOURCE'].fields_by_name['topic']._loaded_options = None
68
68
  _globals['_IMAGEPATCHESNODE_TARGETSIZESOURCE'].fields_by_name['topic']._serialized_options = b'\372B5r3\020\0012/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$'
69
- _globals['_IMAGEPATCHESNODE_MAXITERATIONSCOUNTSOURCE'].oneofs_by_name['source']._loaded_options = None
70
- _globals['_IMAGEPATCHESNODE_MAXITERATIONSCOUNTSOURCE'].oneofs_by_name['source']._serialized_options = b'\370B\001'
71
- _globals['_IMAGEPATCHESNODE_MAXITERATIONSCOUNTSOURCE'].fields_by_name['topic']._loaded_options = None
72
- _globals['_IMAGEPATCHESNODE_MAXITERATIONSCOUNTSOURCE'].fields_by_name['topic']._serialized_options = b'\372B5r3\020\0012/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$'
73
- _globals['_IMAGEPATCHESNODE_MAXITERATIONSCOUNTSOURCE'].fields_by_name['value']._loaded_options = None
74
- _globals['_IMAGEPATCHESNODE_MAXITERATIONSCOUNTSOURCE'].fields_by_name['value']._serialized_options = b'\372B\0042\002(\000'
75
69
  _globals['_IMAGEPATCHESNODE'].fields_by_name['name']._loaded_options = None
76
70
  _globals['_IMAGEPATCHESNODE'].fields_by_name['name']._serialized_options = b'\372B\004r\002\020\001'
77
71
  _globals['_IMAGEPATCHESNODE'].fields_by_name['input_image']._loaded_options = None
@@ -81,33 +75,31 @@ if not _descriptor._USE_C_DESCRIPTORS:
81
75
  _globals['_IMAGEPATCHESNODE'].fields_by_name['input_target_size']._loaded_options = None
82
76
  _globals['_IMAGEPATCHESNODE'].fields_by_name['input_target_size']._serialized_options = b'\372B\005\212\001\002\020\001'
83
77
  _globals['_IMAGEPATCHESNODE'].fields_by_name['output_port_name']._loaded_options = None
84
- _globals['_IMAGEPATCHESNODE'].fields_by_name['output_port_name']._serialized_options = b'\372B%r#\020\0012\037^[a-zA-Z0-9_-]+/[a-zA-Z0-9_-]+$'
85
- _globals['_IMAGEPATCHESNODE'].fields_by_name['input_maximum_iterations']._loaded_options = None
86
- _globals['_IMAGEPATCHESNODE'].fields_by_name['input_maximum_iterations']._serialized_options = b'\372B\005\212\001\002\020\001'
78
+ _globals['_IMAGEPATCHESNODE'].fields_by_name['output_port_name']._serialized_options = b'\372B\026r\024\020\0012\020^[a-zA-Z0-9_-]+$'
87
79
  _globals['_VIRTUALCAMERANODE'].fields_by_name['name']._loaded_options = None
88
80
  _globals['_VIRTUALCAMERANODE'].fields_by_name['name']._serialized_options = b'\372B\004r\002\020\001'
89
81
  _globals['_VIRTUALCAMERANODE'].fields_by_name['path']._loaded_options = None
90
82
  _globals['_VIRTUALCAMERANODE'].fields_by_name['path']._serialized_options = b'\372B\004r\002\020\001'
91
83
  _globals['_VIRTUALCAMERANODE'].fields_by_name['output_port_name']._loaded_options = None
92
- _globals['_VIRTUALCAMERANODE'].fields_by_name['output_port_name']._serialized_options = b'\372B%r#\020\0012\037^[a-zA-Z0-9_-]+/[a-zA-Z0-9_-]+$'
84
+ _globals['_VIRTUALCAMERANODE'].fields_by_name['output_port_name']._serialized_options = b'\372B\026r\024\020\0012\020^[a-zA-Z0-9_-]+$'
93
85
  _globals['_IMAGECLASSIFICATIONNODE'].fields_by_name['input_image']._loaded_options = None
94
86
  _globals['_IMAGECLASSIFICATIONNODE'].fields_by_name['input_image']._serialized_options = b'\372B5r3\020\0012/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$'
95
87
  _globals['_IMAGECLASSIFICATIONNODE'].fields_by_name['model_source']._loaded_options = None
96
88
  _globals['_IMAGECLASSIFICATIONNODE'].fields_by_name['model_source']._serialized_options = b'\372B\005\212\001\002\020\001'
97
89
  _globals['_IMAGECLASSIFICATIONNODE'].fields_by_name['output_port_name']._loaded_options = None
98
- _globals['_IMAGECLASSIFICATIONNODE'].fields_by_name['output_port_name']._serialized_options = b'\372B%r#\020\0012\037^[a-zA-Z0-9_-]+/[a-zA-Z0-9_-]+$'
90
+ _globals['_IMAGECLASSIFICATIONNODE'].fields_by_name['output_port_name']._serialized_options = b'\372B\026r\024\020\0012\020^[a-zA-Z0-9_-]+$'
99
91
  _globals['_IMAGEOBJECTDETECTIONNODE'].fields_by_name['input_image']._loaded_options = None
100
92
  _globals['_IMAGEOBJECTDETECTIONNODE'].fields_by_name['input_image']._serialized_options = b'\372B5r3\020\0012/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$'
101
93
  _globals['_IMAGEOBJECTDETECTIONNODE'].fields_by_name['model_source']._loaded_options = None
102
94
  _globals['_IMAGEOBJECTDETECTIONNODE'].fields_by_name['model_source']._serialized_options = b'\372B\005\212\001\002\020\001'
103
95
  _globals['_IMAGEOBJECTDETECTIONNODE'].fields_by_name['output_port_name']._loaded_options = None
104
- _globals['_IMAGEOBJECTDETECTIONNODE'].fields_by_name['output_port_name']._serialized_options = b'\372B%r#\020\0012\037^[a-zA-Z0-9_-]+/[a-zA-Z0-9_-]+$'
96
+ _globals['_IMAGEOBJECTDETECTIONNODE'].fields_by_name['output_port_name']._serialized_options = b'\372B\026r\024\020\0012\020^[a-zA-Z0-9_-]+$'
105
97
  _globals['_IMAGEOCRNODE'].fields_by_name['input_image']._loaded_options = None
106
98
  _globals['_IMAGEOCRNODE'].fields_by_name['input_image']._serialized_options = b'\372B5r3\020\0012/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$'
107
99
  _globals['_IMAGEOCRNODE'].fields_by_name['model_source']._loaded_options = None
108
100
  _globals['_IMAGEOCRNODE'].fields_by_name['model_source']._serialized_options = b'\372B\005\212\001\002\020\001'
109
101
  _globals['_IMAGEOCRNODE'].fields_by_name['output_port_name']._loaded_options = None
110
- _globals['_IMAGEOCRNODE'].fields_by_name['output_port_name']._serialized_options = b'\372B%r#\020\0012\037^[a-zA-Z0-9_-]+/[a-zA-Z0-9_-]+$'
102
+ _globals['_IMAGEOCRNODE'].fields_by_name['output_port_name']._serialized_options = b'\372B\026r\024\020\0012\020^[a-zA-Z0-9_-]+$'
111
103
  _globals['_BOUNDINGBOXFILTERNODE_THRESHOLDSOURCE'].oneofs_by_name['source']._loaded_options = None
112
104
  _globals['_BOUNDINGBOXFILTERNODE_THRESHOLDSOURCE'].oneofs_by_name['source']._serialized_options = b'\370B\001'
113
105
  _globals['_BOUNDINGBOXFILTERNODE_THRESHOLDSOURCE'].fields_by_name['topic']._loaded_options = None
@@ -119,49 +111,47 @@ if not _descriptor._USE_C_DESCRIPTORS:
119
111
  _globals['_BOUNDINGBOXFILTERNODE'].fields_by_name['input_bounding_boxes']._loaded_options = None
120
112
  _globals['_BOUNDINGBOXFILTERNODE'].fields_by_name['input_bounding_boxes']._serialized_options = b'\372B5r3\020\0012/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$'
121
113
  _globals['_BOUNDINGBOXFILTERNODE'].fields_by_name['output_port_name']._loaded_options = None
122
- _globals['_BOUNDINGBOXFILTERNODE'].fields_by_name['output_port_name']._serialized_options = b'\372B%r#\020\0012\037^[a-zA-Z0-9_-]+/[a-zA-Z0-9_-]+$'
114
+ _globals['_BOUNDINGBOXFILTERNODE'].fields_by_name['output_port_name']._serialized_options = b'\372B\026r\024\020\0012\020^[a-zA-Z0-9_-]+$'
123
115
  _globals['_NODE'].oneofs_by_name['node_type']._loaded_options = None
124
116
  _globals['_NODE'].oneofs_by_name['node_type']._serialized_options = b'\370B\001'
125
117
  _globals['_GRAPH'].fields_by_name['license_id']._loaded_options = None
126
118
  _globals['_GRAPH'].fields_by_name['license_id']._serialized_options = b'\372B\005r\003\260\001\001'
127
- _globals['_EXECUTIONPROVIDER']._serialized_start=4581
128
- _globals['_EXECUTIONPROVIDER']._serialized_end=4647
119
+ _globals['_EXECUTIONPROVIDER']._serialized_start=4177
120
+ _globals['_EXECUTIONPROVIDER']._serialized_end=4243
129
121
  _globals['_MODELSOURCE']._serialized_start=79
130
122
  _globals['_MODELSOURCE']._serialized_end=244
131
123
  _globals['_SESSIONINFO']._serialized_start=246
132
124
  _globals['_SESSIONINFO']._serialized_end=361
133
125
  _globals['_CONSTTENSORNODE']._serialized_start=364
134
- _globals['_CONSTTENSORNODE']._serialized_end=799
135
- _globals['_CONSTTENSORNODE_UINT64ARRAY']._serialized_start=696
136
- _globals['_CONSTTENSORNODE_UINT64ARRAY']._serialized_end=723
137
- _globals['_CONSTTENSORNODE_INT64ARRAY']._serialized_start=725
138
- _globals['_CONSTTENSORNODE_INT64ARRAY']._serialized_end=751
139
- _globals['_CONSTTENSORNODE_FLOAT64ARRAY']._serialized_start=753
140
- _globals['_CONSTTENSORNODE_FLOAT64ARRAY']._serialized_end=781
141
- _globals['_IMAGERESIZENODE']._serialized_start=802
142
- _globals['_IMAGERESIZENODE']._serialized_end=1141
143
- _globals['_IMAGEPATCHESNODE']._serialized_start=1144
144
- _globals['_IMAGEPATCHESNODE']._serialized_end=2117
145
- _globals['_IMAGEPATCHESNODE_TARGETSIZESOURCE']._serialized_start=1678
146
- _globals['_IMAGEPATCHESNODE_TARGETSIZESOURCE']._serialized_end=1926
147
- _globals['_IMAGEPATCHESNODE_TARGETSIZESOURCE_IMAGESIZE']._serialized_start=1851
148
- _globals['_IMAGEPATCHESNODE_TARGETSIZESOURCE_IMAGESIZE']._serialized_end=1911
149
- _globals['_IMAGEPATCHESNODE_MAXITERATIONSCOUNTSOURCE']._serialized_start=1929
150
- _globals['_IMAGEPATCHESNODE_MAXITERATIONSCOUNTSOURCE']._serialized_end=2071
151
- _globals['_VIRTUALCAMERANODE']._serialized_start=2120
152
- _globals['_VIRTUALCAMERANODE']._serialized_end=2253
153
- _globals['_IMAGECLASSIFICATIONNODE']._serialized_start=2256
154
- _globals['_IMAGECLASSIFICATIONNODE']._serialized_end=2578
155
- _globals['_IMAGEOBJECTDETECTIONNODE']._serialized_start=2581
156
- _globals['_IMAGEOBJECTDETECTIONNODE']._serialized_end=2934
157
- _globals['_IMAGEOCRNODE']._serialized_start=2937
158
- _globals['_IMAGEOCRNODE']._serialized_end=3248
159
- _globals['_BOUNDINGBOXFILTERNODE']._serialized_start=3251
160
- _globals['_BOUNDINGBOXFILTERNODE']._serialized_end=3903
161
- _globals['_BOUNDINGBOXFILTERNODE_THRESHOLDSOURCE']._serialized_start=3695
162
- _globals['_BOUNDINGBOXFILTERNODE_THRESHOLDSOURCE']._serialized_end=3836
163
- _globals['_NODE']._serialized_start=3906
164
- _globals['_NODE']._serialized_end=4482
165
- _globals['_GRAPH']._serialized_start=4484
166
- _globals['_GRAPH']._serialized_end=4579
126
+ _globals['_CONSTTENSORNODE']._serialized_end=784
127
+ _globals['_CONSTTENSORNODE_UINT64ARRAY']._serialized_start=681
128
+ _globals['_CONSTTENSORNODE_UINT64ARRAY']._serialized_end=708
129
+ _globals['_CONSTTENSORNODE_INT64ARRAY']._serialized_start=710
130
+ _globals['_CONSTTENSORNODE_INT64ARRAY']._serialized_end=736
131
+ _globals['_CONSTTENSORNODE_FLOAT64ARRAY']._serialized_start=738
132
+ _globals['_CONSTTENSORNODE_FLOAT64ARRAY']._serialized_end=766
133
+ _globals['_IMAGERESIZENODE']._serialized_start=787
134
+ _globals['_IMAGERESIZENODE']._serialized_end=1111
135
+ _globals['_IMAGEPATCHESNODE']._serialized_start=1114
136
+ _globals['_IMAGEPATCHESNODE']._serialized_end=1789
137
+ _globals['_IMAGEPATCHESNODE_TARGETSIZESOURCE']._serialized_start=1524
138
+ _globals['_IMAGEPATCHESNODE_TARGETSIZESOURCE']._serialized_end=1772
139
+ _globals['_IMAGEPATCHESNODE_TARGETSIZESOURCE_IMAGESIZE']._serialized_start=1697
140
+ _globals['_IMAGEPATCHESNODE_TARGETSIZESOURCE_IMAGESIZE']._serialized_end=1757
141
+ _globals['_VIRTUALCAMERANODE']._serialized_start=1791
142
+ _globals['_VIRTUALCAMERANODE']._serialized_end=1909
143
+ _globals['_IMAGECLASSIFICATIONNODE']._serialized_start=1912
144
+ _globals['_IMAGECLASSIFICATIONNODE']._serialized_end=2219
145
+ _globals['_IMAGEOBJECTDETECTIONNODE']._serialized_start=2222
146
+ _globals['_IMAGEOBJECTDETECTIONNODE']._serialized_end=2560
147
+ _globals['_IMAGEOCRNODE']._serialized_start=2563
148
+ _globals['_IMAGEOCRNODE']._serialized_end=2859
149
+ _globals['_BOUNDINGBOXFILTERNODE']._serialized_start=2862
150
+ _globals['_BOUNDINGBOXFILTERNODE']._serialized_end=3499
151
+ _globals['_BOUNDINGBOXFILTERNODE_THRESHOLDSOURCE']._serialized_start=3291
152
+ _globals['_BOUNDINGBOXFILTERNODE_THRESHOLDSOURCE']._serialized_end=3432
153
+ _globals['_NODE']._serialized_start=3502
154
+ _globals['_NODE']._serialized_end=4078
155
+ _globals['_GRAPH']._serialized_start=4080
156
+ _globals['_GRAPH']._serialized_end=4175
167
157
  # @@protoc_insertion_point(module_scope)
@@ -83,7 +83,7 @@ class ImageResizeNode(_message.Message):
83
83
  def __init__(self, name: _Optional[str] = ..., input_size: _Optional[str] = ..., input_image: _Optional[str] = ..., output_port_name: _Optional[str] = ..., session_info: _Optional[_Union[SessionInfo, _Mapping]] = ...) -> None: ...
84
84
 
85
85
  class ImagePatchesNode(_message.Message):
86
- __slots__ = ("name", "input_image", "input_bounding_boxes", "input_target_size", "output_port_name", "input_maximum_iterations", "session_info")
86
+ __slots__ = ("name", "input_image", "input_bounding_boxes", "input_target_size", "output_port_name", "session_info")
87
87
  class TargetSizeSource(_message.Message):
88
88
  __slots__ = ("topic", "size")
89
89
  class ImageSize(_message.Message):
@@ -98,28 +98,19 @@ class ImagePatchesNode(_message.Message):
98
98
  topic: str
99
99
  size: ImagePatchesNode.TargetSizeSource.ImageSize
100
100
  def __init__(self, topic: _Optional[str] = ..., size: _Optional[_Union[ImagePatchesNode.TargetSizeSource.ImageSize, _Mapping]] = ...) -> None: ...
101
- class MaxIterationsCountSource(_message.Message):
102
- __slots__ = ("topic", "value")
103
- TOPIC_FIELD_NUMBER: _ClassVar[int]
104
- VALUE_FIELD_NUMBER: _ClassVar[int]
105
- topic: str
106
- value: int
107
- def __init__(self, topic: _Optional[str] = ..., value: _Optional[int] = ...) -> None: ...
108
101
  NAME_FIELD_NUMBER: _ClassVar[int]
109
102
  INPUT_IMAGE_FIELD_NUMBER: _ClassVar[int]
110
103
  INPUT_BOUNDING_BOXES_FIELD_NUMBER: _ClassVar[int]
111
104
  INPUT_TARGET_SIZE_FIELD_NUMBER: _ClassVar[int]
112
105
  OUTPUT_PORT_NAME_FIELD_NUMBER: _ClassVar[int]
113
- INPUT_MAXIMUM_ITERATIONS_FIELD_NUMBER: _ClassVar[int]
114
106
  SESSION_INFO_FIELD_NUMBER: _ClassVar[int]
115
107
  name: str
116
108
  input_image: str
117
109
  input_bounding_boxes: str
118
110
  input_target_size: ImagePatchesNode.TargetSizeSource
119
111
  output_port_name: str
120
- input_maximum_iterations: ImagePatchesNode.MaxIterationsCountSource
121
112
  session_info: SessionInfo
122
- def __init__(self, name: _Optional[str] = ..., input_image: _Optional[str] = ..., input_bounding_boxes: _Optional[str] = ..., input_target_size: _Optional[_Union[ImagePatchesNode.TargetSizeSource, _Mapping]] = ..., output_port_name: _Optional[str] = ..., input_maximum_iterations: _Optional[_Union[ImagePatchesNode.MaxIterationsCountSource, _Mapping]] = ..., session_info: _Optional[_Union[SessionInfo, _Mapping]] = ...) -> None: ...
113
+ def __init__(self, name: _Optional[str] = ..., input_image: _Optional[str] = ..., input_bounding_boxes: _Optional[str] = ..., input_target_size: _Optional[_Union[ImagePatchesNode.TargetSizeSource, _Mapping]] = ..., output_port_name: _Optional[str] = ..., session_info: _Optional[_Union[SessionInfo, _Mapping]] = ...) -> None: ...
123
114
 
124
115
  class VirtualCameraNode(_message.Message):
125
116
  __slots__ = ("name", "path", "output_port_name")
@@ -1,11 +1,3 @@
1
- # To use this code, make sure you
2
- #
3
- # import json
4
- #
5
- # and then, to convert JSON from a string, do
6
- #
7
- # result = classification_markup_from_dict(json.loads(json_string))
8
-
9
1
  from uuid import UUID
10
2
  from typing import Any, List, TypeVar, Callable, Type, cast
11
3
 
@@ -19,7 +11,7 @@ def from_float(x: Any) -> float:
19
11
 
20
12
 
21
13
  def to_float(x: Any) -> float:
22
- assert isinstance(x, float)
14
+ assert isinstance(x, (int, float))
23
15
  return x
24
16
 
25
17
 
@@ -71,7 +71,6 @@ class ImagePatchesNode(BaseModel):
71
71
  input_image: str
72
72
  input_bounding_boxes: str
73
73
  input_target_size: TargetSizeSource
74
- input_maximum_iterations: Optional[MaxIterationsCountSource] = None
75
74
  output_port_name: str
76
75
 
77
76
  class ImageResizeNode(BaseModel):
@@ -100,16 +99,6 @@ class VirtualCameraNode(BaseModel):
100
99
  output_port_name: str
101
100
 
102
101
  # --- Inline Option Classes ---
103
- class MaxIterationsCountSourceTopicOption(BaseModel):
104
- """Auto-generated class for inline option 'topic' of MaxIterationsCountSource"""
105
- source_type: Literal["topic"]
106
- topic: str
107
-
108
- class MaxIterationsCountSourceValueOption(BaseModel):
109
- """Auto-generated class for inline option 'value' of MaxIterationsCountSource"""
110
- source_type: Literal["value"]
111
- value: int
112
-
113
102
  class TargetSizeSourceImageSizeOption(BaseModel):
114
103
  """Auto-generated class for inline option 'image_size' of TargetSizeSource"""
115
104
  source_type: Literal["image_size"]
@@ -146,14 +135,6 @@ ConstTensorDataBase = Annotated[
146
135
  Field(discriminator='data_type')
147
136
  ]
148
137
 
149
- MaxIterationsCountSource = Annotated[
150
- Union[
151
- MaxIterationsCountSourceTopicOption,
152
- MaxIterationsCountSourceValueOption
153
- ],
154
- Field(discriminator='source_type')
155
- ]
156
-
157
138
  ModelSourceBase = Annotated[
158
139
  Union[
159
140
  ModelSourceFromNetworkExperimentId,
@@ -1,11 +1,3 @@
1
- # To use this code, make sure you
2
- #
3
- # import json
4
- #
5
- # and then, to convert JSON from a string, do
6
- #
7
- # result = object_detection_markup_from_dict(json.loads(json_string))
8
-
9
1
  from enum import Enum
10
2
  from typing import Optional, Any, List, TypeVar, Type, Callable, cast
11
3
  from uuid import UUID
@@ -40,7 +32,7 @@ def from_bool(x: Any) -> bool:
40
32
 
41
33
 
42
34
  def to_float(x: Any) -> float:
43
- assert isinstance(x, float)
35
+ assert isinstance(x, (int, float))
44
36
  return x
45
37
 
46
38
 
@@ -112,12 +104,14 @@ class Annotation:
112
104
 
113
105
  def to_dict(self) -> dict:
114
106
  result: dict = {}
115
- result["angle"] = from_union([to_float, from_none], self.angle)
107
+ if self.angle is not None:
108
+ result["angle"] = from_union([to_float, from_none], self.angle)
116
109
  result["annotation_type"] = to_enum(AnnotationType, self.annotation_type)
117
110
  result["average_width"] = to_float(self.average_width)
118
111
  result["bottom_right_x"] = to_float(self.bottom_right_x)
119
112
  result["bottom_right_y"] = to_float(self.bottom_right_y)
120
- result["full_orientation"] = from_union([from_bool, from_none], self.full_orientation)
113
+ if self.full_orientation is not None:
114
+ result["full_orientation"] = from_union([from_bool, from_none], self.full_orientation)
121
115
  result["id"] = str(self.id)
122
116
  result["label_id"] = str(self.label_id)
123
117
  result["top_left_x"] = to_float(self.top_left_x)
@@ -1,11 +1,3 @@
1
- # To use this code, make sure you
2
- #
3
- # import json
4
- #
5
- # and then, to convert JSON from a string, do
6
- #
7
- # result = ocr_markup_from_dict(json.loads(json_string))
8
-
9
1
  from typing import Any, List, Optional, TypeVar, Callable, Type, cast
10
2
  from uuid import UUID
11
3
 
@@ -19,7 +11,7 @@ def from_float(x: Any) -> float:
19
11
 
20
12
 
21
13
  def to_float(x: Any) -> float:
22
- assert isinstance(x, float)
14
+ assert isinstance(x, (int, float))
23
15
  return x
24
16
 
25
17
 
@@ -111,12 +103,13 @@ class Point:
111
103
 
112
104
  class OcrMarkupSchema:
113
105
  """A single closed loop (ring) of a polygon, defining either an outer boundary or a hole."""
106
+
107
+ hierarchy: int
114
108
  """Nesting level: 0=outer, 1=hole in level 0, 2=poly in level 1 hole, etc. Even levels are
115
109
  filled areas, odd levels are holes.
116
110
  """
117
- hierarchy: int
118
- """Vertices of the ring."""
119
111
  points: List[Point]
112
+ """Vertices of the ring."""
120
113
 
121
114
  def __init__(self, hierarchy: int, points: List[Point]) -> None:
122
115
  self.hierarchy = hierarchy
@@ -138,10 +131,11 @@ class OcrMarkupSchema:
138
131
 
139
132
  class Polygon:
140
133
  """A polygon defined by one or more rings, allowing for holes and nested structures."""
134
+
135
+ rings: List[OcrMarkupSchema]
141
136
  """Array of polygon rings. The hierarchy field within each ring determines nesting and
142
137
  fill/hole status.
143
138
  """
144
- rings: List[OcrMarkupSchema]
145
139
 
146
140
  def __init__(self, rings: List[OcrMarkupSchema]) -> None:
147
141
  self.rings = rings
@@ -162,8 +156,9 @@ class Annotation:
162
156
  bounding_box: Optional[BoundingBox]
163
157
  id: UUID
164
158
  label_id: UUID
165
- """A polygon defined by one or more rings, allowing for holes and nested structures."""
166
159
  polygon: Optional[Polygon]
160
+ """A polygon defined by one or more rings, allowing for holes and nested structures."""
161
+
167
162
  text: str
168
163
 
169
164
  def __init__(self, bounding_box: Optional[BoundingBox], id: UUID, label_id: UUID, polygon: Optional[Polygon], text: str) -> None:
@@ -185,10 +180,12 @@ class Annotation:
185
180
 
186
181
  def to_dict(self) -> dict:
187
182
  result: dict = {}
188
- result["bounding_box"] = from_union([lambda x: to_class(BoundingBox, x), from_none], self.bounding_box)
183
+ if self.bounding_box is not None:
184
+ result["bounding_box"] = from_union([lambda x: to_class(BoundingBox, x), from_none], self.bounding_box)
189
185
  result["id"] = str(self.id)
190
186
  result["label_id"] = str(self.label_id)
191
- result["polygon"] = from_union([lambda x: to_class(Polygon, x), from_none], self.polygon)
187
+ if self.polygon is not None:
188
+ result["polygon"] = from_union([lambda x: to_class(Polygon, x), from_none], self.polygon)
192
189
  result["text"] = from_str(self.text)
193
190
  return result
194
191
 
@@ -1,11 +1,3 @@
1
- # To use this code, make sure you
2
- #
3
- # import json
4
- #
5
- # and then, to convert JSON from a string, do
6
- #
7
- # result = segmentation_markup_from_dict(json.loads(json_string))
8
-
9
1
  from enum import Enum
10
2
  from typing import Any, List, Optional, TypeVar, Callable, Type, cast
11
3
  from uuid import UUID
@@ -21,7 +13,7 @@ def from_float(x: Any) -> float:
21
13
 
22
14
 
23
15
  def to_float(x: Any) -> float:
24
- assert isinstance(x, float)
16
+ assert isinstance(x, (int, float))
25
17
  return x
26
18
 
27
19
 
@@ -291,12 +283,13 @@ class RingPoint:
291
283
 
292
284
  class SegmentationMarkupSchema:
293
285
  """A single closed loop (ring) of a polygon, defining either an outer boundary or a hole."""
286
+
287
+ hierarchy: int
294
288
  """Nesting level: 0=outer, 1=hole in level 0, 2=poly in level 1 hole, etc. Even levels are
295
289
  filled areas, odd levels are holes.
296
290
  """
297
- hierarchy: int
298
- """Vertices of the ring."""
299
291
  points: List[RingPoint]
292
+ """Vertices of the ring."""
300
293
 
301
294
  def __init__(self, hierarchy: int, points: List[RingPoint]) -> None:
302
295
  self.hierarchy = hierarchy
@@ -318,10 +311,11 @@ class SegmentationMarkupSchema:
318
311
 
319
312
  class PolygonAnnotation:
320
313
  """A polygon defined by one or more rings, allowing for holes and nested structures."""
314
+
315
+ rings: List[SegmentationMarkupSchema]
321
316
  """Array of polygon rings. The hierarchy field within each ring determines nesting and
322
317
  fill/hole status.
323
318
  """
324
- rings: List[SegmentationMarkupSchema]
325
319
 
326
320
  def __init__(self, rings: List[SegmentationMarkupSchema]) -> None:
327
321
  self.rings = rings
@@ -478,15 +472,22 @@ class Annotation:
478
472
  result: dict = {}
479
473
  result["annotation_type"] = to_enum(AnnotationType, self.annotation_type)
480
474
  result["average_width"] = to_float(self.average_width)
481
- result["circle_annotation"] = from_union([lambda x: to_class(CircleAnnotation, x), from_none], self.circle_annotation)
475
+ if self.circle_annotation is not None:
476
+ result["circle_annotation"] = from_union([lambda x: to_class(CircleAnnotation, x), from_none], self.circle_annotation)
482
477
  result["id"] = str(self.id)
483
478
  result["label_id"] = str(self.label_id)
484
- result["magicwand_annotation"] = from_union([lambda x: to_class(MagicwandAnnotation, x), from_none], self.magicwand_annotation)
485
- result["pen_annotation"] = from_union([lambda x: to_class(PenAnnotation, x), from_none], self.pen_annotation)
486
- result["pixel_annotation"] = from_union([lambda x: to_class(PixelAnnotation, x), from_none], self.pixel_annotation)
487
- result["polygon_annotation"] = from_union([lambda x: to_class(PolygonAnnotation, x), from_none], self.polygon_annotation)
488
- result["rectangle_annotation"] = from_union([lambda x: to_class(RectangleAnnotation, x), from_none], self.rectangle_annotation)
489
- result["sausage_annotation"] = from_union([lambda x: to_class(SausageAnnotation, x), from_none], self.sausage_annotation)
479
+ if self.magicwand_annotation is not None:
480
+ result["magicwand_annotation"] = from_union([lambda x: to_class(MagicwandAnnotation, x), from_none], self.magicwand_annotation)
481
+ if self.pen_annotation is not None:
482
+ result["pen_annotation"] = from_union([lambda x: to_class(PenAnnotation, x), from_none], self.pen_annotation)
483
+ if self.pixel_annotation is not None:
484
+ result["pixel_annotation"] = from_union([lambda x: to_class(PixelAnnotation, x), from_none], self.pixel_annotation)
485
+ if self.polygon_annotation is not None:
486
+ result["polygon_annotation"] = from_union([lambda x: to_class(PolygonAnnotation, x), from_none], self.polygon_annotation)
487
+ if self.rectangle_annotation is not None:
488
+ result["rectangle_annotation"] = from_union([lambda x: to_class(RectangleAnnotation, x), from_none], self.rectangle_annotation)
489
+ if self.sausage_annotation is not None:
490
+ result["sausage_annotation"] = from_union([lambda x: to_class(SausageAnnotation, x), from_none], self.sausage_annotation)
490
491
  return result
491
492
 
492
493
 
@@ -1,5 +1,5 @@
1
1
  Metadata-Version: 2.3
2
2
  Name: denkproto
3
- Version: 1.0.69
3
+ Version: 1.0.73
4
4
  Requires-Python: >=3.10
5
5
  Requires-Dist: protobuf>=3.20.3
@@ -4,13 +4,13 @@ denkproto/DENKbuffer_pb2_grpc.py,sha256=-CPJPM4FOqwvwV8-f1iJlD18UD9juVIIHfdWUecu
4
4
  denkproto/ImageAnalysis_ProtobufMessages_pb2.py,sha256=iEY0j9ySGUThnqTdYD4uAVr9P3GiC5R02iK53zEOXUQ,21015
5
5
  denkproto/ImageAnalysis_ProtobufMessages_pb2.pyi,sha256=5LFtxrmYpJHizDDNGFTkL7-NQ_TkwqCSdq7vcv3lg-c,36243
6
6
  denkproto/ImageAnalysis_ProtobufMessages_pb2_grpc.py,sha256=l3agtDjgu4jay6P9TRnHhyhJ-7UdoII27ywhw3k84oo,911
7
- denkproto/__about__.py,sha256=eGMX1UwE3pB5G1WzwpHw2yAVpnoW_EE4qggDeo15Quw,23
7
+ denkproto/__about__.py,sha256=r6-ps7MQsQNU0pMITOBqwX9KlREmbLUrhkOkxnpZw20,23
8
8
  denkproto/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
9
9
  denkproto/denkcache_pb2.py,sha256=G3EEZY-IBVJpThkkXEmhoG7Y3aSLvraKckqTwsXCbUI,6414
10
10
  denkproto/denkcache_pb2.pyi,sha256=qOzFOkddUapSJZz5d_mqcfHvWDAmM-70m_7FeM7n5fI,5595
11
11
  denkproto/denkcache_pb2_grpc.py,sha256=N1y4ZQ58UPaUlOZIpznzAbJJcs9G_n-FmzFoPPeu8UA,15610
12
- denkproto/inference_graph_pb2.py,sha256=BPd_AoxPDmzq9JDJh1manXSMKgy8Dicwv9ogMNX5ULg,21484
13
- denkproto/inference_graph_pb2.pyi,sha256=pUTospFsX-8R10hNTrnPUOjjjsZFQdDisV36vrIpQhk,12928
12
+ denkproto/inference_graph_pb2.py,sha256=UxgLewNmtRvlTxr14bssErNvkAhw7TW_fL7KUWL1ebc,19765
13
+ denkproto/inference_graph_pb2.pyi,sha256=By1A5iEmCVG4rMRAAPLGN5d7KIFqcpl4jZvKL8OYNlc,12351
14
14
  denkproto/inference_graph_pb2_grpc.py,sha256=aXPf0w7pIfspkKUKGCr--OtJMOaTfE8IbeuBm10g1Xg,896
15
15
  denkproto/modelfile_v1_pb2.py,sha256=ulF24nSIspn46DnQKlvR5Po3w-vFCnawuuverAVi3cY,6573
16
16
  denkproto/modelfile_v1_pb2.pyi,sha256=gjTbWvg48wqGhyJb5CT0pw3yUZGhO_lSZgL7Ia2aPbY,10685
@@ -26,11 +26,11 @@ denkproto/validate_pb2.py,sha256=CuGAaHir9X9jniW3QsRKAESjYzoS2U6dLk_J55XmNqU,136
26
26
  denkproto/validate_pb2.pyi,sha256=fWsdVOR3NJDioCKkCKfxfl4qaEb5xqXXU_WlEbdQx6E,23077
27
27
  denkproto/validate_pb2_grpc.py,sha256=XvjuWEgJFJtH1E7HWm7SKpV10PMpOSbonKa2VPHpYy8,889
28
28
  denkproto/json/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
29
- denkproto/json/classification_markup.py,sha256=xN6OY67BuW0dx2GiFjTf8lG-KTbPVAJq-dWcrw9HJIU,2631
30
- denkproto/json/inference_graph_models_generated.py,sha256=lX5L5kU8dVxx3R9USQIiqSqMPY12OIWmHkjK5yX_4W4,5960
31
- denkproto/json/object_detection_markup.py,sha256=FSpAvn-GTgVAdzV7RtG-GVCHlwyuRqDdH_18mdyyIl0,4987
32
- denkproto/json/ocr_markup.py,sha256=zVmB3SGT3NFwYEF0WowZmHo7m57TeN5LJ54rzNtPTKg,7138
33
- denkproto/json/segmentation_markup.py,sha256=48XvxKI9NkxcIfYv3tkrS8eIbYif4wotj3I8ih3CHQ8,19716
34
- denkproto-1.0.69.dist-info/METADATA,sha256=uc57h3ZKuwWRdTFDFuIVl0ydUj1P3eUMW03kYpm6P9o,110
35
- denkproto-1.0.69.dist-info/WHEEL,sha256=1yFddiXMmvYK7QYTqtRNtX66WJ0Mz8PYEiEUoOUUxRY,87
36
- denkproto-1.0.69.dist-info/RECORD,,
29
+ denkproto/json/classification_markup.py,sha256=vTu0H7Cb3gU6UUUSg1vDTRlFUorZrjMbcp_yx6UssZA,2461
30
+ denkproto/json/inference_graph_models_generated.py,sha256=AMY46G3izSmhf6fkBVaPutOJxCdP0mnAdr_UxPa8Ss4,5323
31
+ denkproto/json/object_detection_markup.py,sha256=T0hcFPq8F_galjDjRC9dbcRVwCSOYtu2jt9wpEeHlQs,4904
32
+ denkproto/json/ocr_markup.py,sha256=KyOpth9evOekyhTJdZSnYyB9EIyoWbY33sqncb_jBgw,7069
33
+ denkproto/json/segmentation_markup.py,sha256=EvniRksF2KaQolm6zZ6UKSiGwnqc8wR2sHB1iv05RTE,19911
34
+ denkproto-1.0.73.dist-info/METADATA,sha256=_aJyVPpYho6p_BSu-rL-nGUYZbGUzs-X8EGZGMixZ14,110
35
+ denkproto-1.0.73.dist-info/WHEEL,sha256=1yFddiXMmvYK7QYTqtRNtX66WJ0Mz8PYEiEUoOUUxRY,87
36
+ denkproto-1.0.73.dist-info/RECORD,,