denkproto 1.0.69__py3-none-any.whl → 1.0.70__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of denkproto might be problematic. Click here for more details.
- denkproto/__about__.py +1 -1
- denkproto/inference_graph_pb2.py +44 -44
- denkproto/json/classification_markup.py +1 -9
- denkproto/json/object_detection_markup.py +5 -11
- denkproto/json/ocr_markup.py +12 -15
- denkproto/json/segmentation_markup.py +20 -19
- {denkproto-1.0.69.dist-info → denkproto-1.0.70.dist-info}/METADATA +1 -1
- {denkproto-1.0.69.dist-info → denkproto-1.0.70.dist-info}/RECORD +9 -9
- {denkproto-1.0.69.dist-info → denkproto-1.0.70.dist-info}/WHEEL +0 -0
denkproto/__about__.py
CHANGED
|
@@ -1 +1 @@
|
|
|
1
|
-
__version__ = "1.0.
|
|
1
|
+
__version__ = "1.0.70"
|
denkproto/inference_graph_pb2.py
CHANGED
|
@@ -26,7 +26,7 @@ import denkproto.modelfile_v2_pb2 as modelfile__v2__pb2
|
|
|
26
26
|
import denkproto.validate_pb2 as validate__pb2
|
|
27
27
|
|
|
28
28
|
|
|
29
|
-
DESCRIPTOR = _descriptor_pool.Default().AddSerializedFile(b'\n\x15inference_graph.proto\x12\x0finference_graph\x1a\x12modelfile-v2.proto\x1a\x0evalidate.proto\"\xa5\x01\n\x0bModelSource\x12-\n\nfrom_proto\x18\x01 \x01(\x0b\x32\x17.modelfile.v2.ModelFileH\x00\x12#\n\x0f\x66rom_network_id\x18\x02 \x01(\tB\x08\xfa\x42\x05r\x03\xb0\x01\x01H\x00\x12.\n\x1a\x66rom_network_experiment_id\x18\x03 \x01(\tB\x08\xfa\x42\x05r\x03\xb0\x01\x01H\x00\x42\x12\n\x0bsource_type\x12\x03\xf8\x42\x01\"s\n\x0bSessionInfo\x12H\n\x12\x65xecution_provider\x18\x01 \x01(\x0e\x32\".inference_graph.ExecutionProviderB\x08\xfa\x42\x05\x82\x01\x02\x10\x01\x12\x1a\n\tdevice_id\x18\x02 \x01(\x05\x42\x07\xfa\x42\x04\x1a\x02(\x00\"\
|
|
29
|
+
DESCRIPTOR = _descriptor_pool.Default().AddSerializedFile(b'\n\x15inference_graph.proto\x12\x0finference_graph\x1a\x12modelfile-v2.proto\x1a\x0evalidate.proto\"\xa5\x01\n\x0bModelSource\x12-\n\nfrom_proto\x18\x01 \x01(\x0b\x32\x17.modelfile.v2.ModelFileH\x00\x12#\n\x0f\x66rom_network_id\x18\x02 \x01(\tB\x08\xfa\x42\x05r\x03\xb0\x01\x01H\x00\x12.\n\x1a\x66rom_network_experiment_id\x18\x03 \x01(\tB\x08\xfa\x42\x05r\x03\xb0\x01\x01H\x00\x42\x12\n\x0bsource_type\x12\x03\xf8\x42\x01\"s\n\x0bSessionInfo\x12H\n\x12\x65xecution_provider\x18\x01 \x01(\x0e\x32\".inference_graph.ExecutionProviderB\x08\xfa\x42\x05\x82\x01\x02\x10\x01\x12\x1a\n\tdevice_id\x18\x02 \x01(\x05\x42\x07\xfa\x42\x04\x1a\x02(\x00\"\xa4\x03\n\x0f\x43onstTensorNode\x12\x15\n\x04name\x18\x01 \x01(\tB\x07\xfa\x42\x04r\x02\x10\x01\x12\r\n\x05shape\x18\x02 \x03(\r\x12\x43\n\x0buint64_data\x18\x03 \x01(\x0b\x32,.inference_graph.ConstTensorNode.Uint64ArrayH\x00\x12\x41\n\nint64_data\x18\x04 \x01(\x0b\x32+.inference_graph.ConstTensorNode.Int64ArrayH\x00\x12\x45\n\x0c\x66loat64_data\x18\x05 \x01(\x0b\x32-.inference_graph.ConstTensorNode.Float64ArrayH\x00\x12\x33\n\x10output_port_name\x18\x06 \x01(\tB\x19\xfa\x42\x16r\x14\x10\x01\x32\x10^[a-zA-Z0-9_-]+$\x1a\x1b\n\x0bUint64Array\x12\x0c\n\x04\x64\x61ta\x18\x01 \x03(\x04\x1a\x1a\n\nInt64Array\x12\x0c\n\x04\x64\x61ta\x18\x01 \x03(\x12\x1a\x1c\n\x0c\x46loat64Array\x12\x0c\n\x04\x64\x61ta\x18\x01 \x03(\x01\x42\x10\n\tdata_type\x12\x03\xf8\x42\x01\"\xc4\x02\n\x0fImageResizeNode\x12\x15\n\x04name\x18\x01 \x01(\tB\x07\xfa\x42\x04r\x02\x10\x01\x12L\n\ninput_size\x18\x02 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12M\n\x0binput_image\x18\x03 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12\x33\n\x10output_port_name\x18\x04 \x01(\tB\x19\xfa\x42\x16r\x14\x10\x01\x32\x10^[a-zA-Z0-9_-]+$\x12\x37\n\x0csession_info\x18\x05 \x01(\x0b\x32\x1c.inference_graph.SessionInfoH\x00\x88\x01\x01\x42\x0f\n\r_session_info\"\xbe\x07\n\x10ImagePatchesNode\x12\x15\n\x04name\x18\x01 \x01(\tB\x07\xfa\x42\x04r\x02\x10\x01\x12M\n\x0binput_image\x18\x02 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12V\n\x14input_bounding_boxes\x18\x03 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12W\n\x11input_target_size\x18\x04 \x01(\x0b\x32\x32.inference_graph.ImagePatchesNode.TargetSizeSourceB\x08\xfa\x42\x05\x8a\x01\x02\x10\x01\x12\x33\n\x10output_port_name\x18\x05 \x01(\tB\x19\xfa\x42\x16r\x14\x10\x01\x32\x10^[a-zA-Z0-9_-]+$\x12k\n\x18input_maximum_iterations\x18\x06 \x01(\x0b\x32:.inference_graph.ImagePatchesNode.MaxIterationsCountSourceB\x08\xfa\x42\x05\x8a\x01\x02\x10\x01H\x00\x88\x01\x01\x12\x37\n\x0csession_info\x18\x07 \x01(\x0b\x32\x1c.inference_graph.SessionInfoH\x01\x88\x01\x01\x1a\xf8\x01\n\x10TargetSizeSource\x12I\n\x05topic\x18\x01 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$H\x00\x12L\n\x04size\x18\x02 \x01(\x0b\x32<.inference_graph.ImagePatchesNode.TargetSizeSource.ImageSizeH\x00\x1a<\n\tImageSize\x12\x17\n\x06height\x18\x01 \x01(\x04\x42\x07\xfa\x42\x04\x32\x02(\x00\x12\x16\n\x05width\x18\x02 \x01(\x04\x42\x07\xfa\x42\x04\x32\x02(\x00\x42\r\n\x06source\x12\x03\xf8\x42\x01\x1a\x8e\x01\n\x18MaxIterationsCountSource\x12I\n\x05topic\x18\x01 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$H\x00\x12\x18\n\x05value\x18\x02 \x01(\x04\x42\x07\xfa\x42\x04\x32\x02(\x00H\x00\x42\r\n\x06source\x12\x03\xf8\x42\x01\x42\x1b\n\x19_input_maximum_iterationsB\x0f\n\r_session_info\"v\n\x11VirtualCameraNode\x12\x15\n\x04name\x18\x01 \x01(\tB\x07\xfa\x42\x04r\x02\x10\x01\x12\x15\n\x04path\x18\x02 \x01(\tB\x07\xfa\x42\x04r\x02\x10\x01\x12\x33\n\x10output_port_name\x18\x03 \x01(\tB\x19\xfa\x42\x16r\x14\x10\x01\x32\x10^[a-zA-Z0-9_-]+$\"\xb3\x02\n\x17ImageClassificationNode\x12\x0c\n\x04name\x18\x01 \x01(\t\x12M\n\x0binput_image\x18\x02 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12<\n\x0cmodel_source\x18\x03 \x01(\x0b\x32\x1c.inference_graph.ModelSourceB\x08\xfa\x42\x05\x8a\x01\x02\x10\x01\x12\x33\n\x10output_port_name\x18\x04 \x01(\tB\x19\xfa\x42\x16r\x14\x10\x01\x32\x10^[a-zA-Z0-9_-]+$\x12\x37\n\x0csession_info\x18\x05 \x01(\x0b\x32\x1c.inference_graph.SessionInfoH\x00\x88\x01\x01\x42\x0f\n\r_session_info\"\xd2\x02\n\x18ImageObjectDetectionNode\x12\x0c\n\x04name\x18\x01 \x01(\t\x12M\n\x0binput_image\x18\x02 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12<\n\x0cmodel_source\x18\x03 \x01(\x0b\x32\x1c.inference_graph.ModelSourceB\x08\xfa\x42\x05\x8a\x01\x02\x10\x01\x12\x1c\n\x14scale_bounding_boxes\x18\x04 \x01(\x08\x12\x33\n\x10output_port_name\x18\x05 \x01(\tB\x19\xfa\x42\x16r\x14\x10\x01\x32\x10^[a-zA-Z0-9_-]+$\x12\x37\n\x0csession_info\x18\x06 \x01(\x0b\x32\x1c.inference_graph.SessionInfoH\x00\x88\x01\x01\x42\x0f\n\r_session_info\"\xa8\x02\n\x0cImageOcrNode\x12\x0c\n\x04name\x18\x01 \x01(\t\x12M\n\x0binput_image\x18\x02 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12<\n\x0cmodel_source\x18\x03 \x01(\x0b\x32\x1c.inference_graph.ModelSourceB\x08\xfa\x42\x05\x8a\x01\x02\x10\x01\x12\x33\n\x10output_port_name\x18\x04 \x01(\tB\x19\xfa\x42\x16r\x14\x10\x01\x32\x10^[a-zA-Z0-9_-]+$\x12\x37\n\x0csession_info\x18\x05 \x01(\x0b\x32\x1c.inference_graph.SessionInfoH\x00\x88\x01\x01\x42\x0f\n\r_session_info\"\xfd\x04\n\x15\x42oundingBoxFilterNode\x12\x15\n\x04name\x18\x01 \x01(\tB\x07\xfa\x42\x04r\x02\x10\x01\x12V\n\x14input_bounding_boxes\x18\x02 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12\x33\n\x10output_port_name\x18\x03 \x01(\tB\x19\xfa\x42\x16r\x14\x10\x01\x32\x10^[a-zA-Z0-9_-]+$\x12Z\n\x15input_score_threshold\x18\x04 \x01(\x0b\x32\x36.inference_graph.BoundingBoxFilterNode.ThresholdSourceH\x00\x88\x01\x01\x12X\n\x13input_iou_threshold\x18\x05 \x01(\x0b\x32\x36.inference_graph.BoundingBoxFilterNode.ThresholdSourceH\x01\x88\x01\x01\x12\x37\n\x0csession_info\x18\x06 \x01(\x0b\x32\x1c.inference_graph.SessionInfoH\x02\x88\x01\x01\x1a\x8d\x01\n\x0fThresholdSource\x12I\n\x05topic\x18\x01 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$H\x00\x12 \n\x05value\x18\x02 \x01(\x02\x42\x0f\xfa\x42\x0c\n\n\x1d\x00\x00\x80?-\x00\x00\x00\x00H\x00\x42\r\n\x06source\x12\x03\xf8\x42\x01\x42\x18\n\x16_input_score_thresholdB\x16\n\x14_input_iou_thresholdB\x0f\n\r_session_info\"\xc0\x04\n\x04Node\x12=\n\x11\x63onst_tensor_node\x18\x01 \x01(\x0b\x32 .inference_graph.ConstTensorNodeH\x00\x12=\n\x11image_resize_node\x18\x02 \x01(\x0b\x32 .inference_graph.ImageResizeNodeH\x00\x12?\n\x12image_patches_node\x18\x03 \x01(\x0b\x32!.inference_graph.ImagePatchesNodeH\x00\x12\x41\n\x13virtual_camera_node\x18\x04 \x01(\x0b\x32\".inference_graph.VirtualCameraNodeH\x00\x12M\n\x19image_classification_node\x18\x05 \x01(\x0b\x32(.inference_graph.ImageClassificationNodeH\x00\x12P\n\x1bimage_object_detection_node\x18\x06 \x01(\x0b\x32).inference_graph.ImageObjectDetectionNodeH\x00\x12\x37\n\x0eimage_ocr_node\x18\x07 \x01(\x0b\x32\x1d.inference_graph.ImageOcrNodeH\x00\x12J\n\x18\x62ounding_box_filter_node\x18\x08 \x01(\x0b\x32&.inference_graph.BoundingBoxFilterNodeH\x00\x42\x10\n\tnode_type\x12\x03\xf8\x42\x01\"_\n\x05Graph\x12$\n\x05nodes\x18\x01 \x03(\x0b\x32\x15.inference_graph.Node\x12\x12\n\ncreated_at\x18\x02 \x01(\x03\x12\x1c\n\nlicense_id\x18\x03 \x01(\tB\x08\xfa\x42\x05r\x03\xb0\x01\x01*B\n\x11\x45xecutionProvider\x12\x07\n\x03\x43PU\x10\x00\x12\x08\n\x04\x43UDA\x10\x01\x12\x0c\n\x08\x44IRECTML\x10\x02\x12\x0c\n\x08TENSORRT\x10\x03\x42NZ0github.com/DENKweit/denkproto-go/inference_graph\xaa\x02\x19\x44\x45NK.Proto.InferenceGraphb\x06proto3')
|
|
30
30
|
|
|
31
31
|
_globals = globals()
|
|
32
32
|
_builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals)
|
|
@@ -49,7 +49,7 @@ if not _descriptor._USE_C_DESCRIPTORS:
|
|
|
49
49
|
_globals['_CONSTTENSORNODE'].fields_by_name['name']._loaded_options = None
|
|
50
50
|
_globals['_CONSTTENSORNODE'].fields_by_name['name']._serialized_options = b'\372B\004r\002\020\001'
|
|
51
51
|
_globals['_CONSTTENSORNODE'].fields_by_name['output_port_name']._loaded_options = None
|
|
52
|
-
_globals['_CONSTTENSORNODE'].fields_by_name['output_port_name']._serialized_options = b'\372B
|
|
52
|
+
_globals['_CONSTTENSORNODE'].fields_by_name['output_port_name']._serialized_options = b'\372B\026r\024\020\0012\020^[a-zA-Z0-9_-]+$'
|
|
53
53
|
_globals['_IMAGERESIZENODE'].fields_by_name['name']._loaded_options = None
|
|
54
54
|
_globals['_IMAGERESIZENODE'].fields_by_name['name']._serialized_options = b'\372B\004r\002\020\001'
|
|
55
55
|
_globals['_IMAGERESIZENODE'].fields_by_name['input_size']._loaded_options = None
|
|
@@ -57,7 +57,7 @@ if not _descriptor._USE_C_DESCRIPTORS:
|
|
|
57
57
|
_globals['_IMAGERESIZENODE'].fields_by_name['input_image']._loaded_options = None
|
|
58
58
|
_globals['_IMAGERESIZENODE'].fields_by_name['input_image']._serialized_options = b'\372B5r3\020\0012/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$'
|
|
59
59
|
_globals['_IMAGERESIZENODE'].fields_by_name['output_port_name']._loaded_options = None
|
|
60
|
-
_globals['_IMAGERESIZENODE'].fields_by_name['output_port_name']._serialized_options = b'\372B
|
|
60
|
+
_globals['_IMAGERESIZENODE'].fields_by_name['output_port_name']._serialized_options = b'\372B\026r\024\020\0012\020^[a-zA-Z0-9_-]+$'
|
|
61
61
|
_globals['_IMAGEPATCHESNODE_TARGETSIZESOURCE_IMAGESIZE'].fields_by_name['height']._loaded_options = None
|
|
62
62
|
_globals['_IMAGEPATCHESNODE_TARGETSIZESOURCE_IMAGESIZE'].fields_by_name['height']._serialized_options = b'\372B\0042\002(\000'
|
|
63
63
|
_globals['_IMAGEPATCHESNODE_TARGETSIZESOURCE_IMAGESIZE'].fields_by_name['width']._loaded_options = None
|
|
@@ -81,7 +81,7 @@ if not _descriptor._USE_C_DESCRIPTORS:
|
|
|
81
81
|
_globals['_IMAGEPATCHESNODE'].fields_by_name['input_target_size']._loaded_options = None
|
|
82
82
|
_globals['_IMAGEPATCHESNODE'].fields_by_name['input_target_size']._serialized_options = b'\372B\005\212\001\002\020\001'
|
|
83
83
|
_globals['_IMAGEPATCHESNODE'].fields_by_name['output_port_name']._loaded_options = None
|
|
84
|
-
_globals['_IMAGEPATCHESNODE'].fields_by_name['output_port_name']._serialized_options = b'\372B
|
|
84
|
+
_globals['_IMAGEPATCHESNODE'].fields_by_name['output_port_name']._serialized_options = b'\372B\026r\024\020\0012\020^[a-zA-Z0-9_-]+$'
|
|
85
85
|
_globals['_IMAGEPATCHESNODE'].fields_by_name['input_maximum_iterations']._loaded_options = None
|
|
86
86
|
_globals['_IMAGEPATCHESNODE'].fields_by_name['input_maximum_iterations']._serialized_options = b'\372B\005\212\001\002\020\001'
|
|
87
87
|
_globals['_VIRTUALCAMERANODE'].fields_by_name['name']._loaded_options = None
|
|
@@ -89,25 +89,25 @@ if not _descriptor._USE_C_DESCRIPTORS:
|
|
|
89
89
|
_globals['_VIRTUALCAMERANODE'].fields_by_name['path']._loaded_options = None
|
|
90
90
|
_globals['_VIRTUALCAMERANODE'].fields_by_name['path']._serialized_options = b'\372B\004r\002\020\001'
|
|
91
91
|
_globals['_VIRTUALCAMERANODE'].fields_by_name['output_port_name']._loaded_options = None
|
|
92
|
-
_globals['_VIRTUALCAMERANODE'].fields_by_name['output_port_name']._serialized_options = b'\372B
|
|
92
|
+
_globals['_VIRTUALCAMERANODE'].fields_by_name['output_port_name']._serialized_options = b'\372B\026r\024\020\0012\020^[a-zA-Z0-9_-]+$'
|
|
93
93
|
_globals['_IMAGECLASSIFICATIONNODE'].fields_by_name['input_image']._loaded_options = None
|
|
94
94
|
_globals['_IMAGECLASSIFICATIONNODE'].fields_by_name['input_image']._serialized_options = b'\372B5r3\020\0012/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$'
|
|
95
95
|
_globals['_IMAGECLASSIFICATIONNODE'].fields_by_name['model_source']._loaded_options = None
|
|
96
96
|
_globals['_IMAGECLASSIFICATIONNODE'].fields_by_name['model_source']._serialized_options = b'\372B\005\212\001\002\020\001'
|
|
97
97
|
_globals['_IMAGECLASSIFICATIONNODE'].fields_by_name['output_port_name']._loaded_options = None
|
|
98
|
-
_globals['_IMAGECLASSIFICATIONNODE'].fields_by_name['output_port_name']._serialized_options = b'\372B
|
|
98
|
+
_globals['_IMAGECLASSIFICATIONNODE'].fields_by_name['output_port_name']._serialized_options = b'\372B\026r\024\020\0012\020^[a-zA-Z0-9_-]+$'
|
|
99
99
|
_globals['_IMAGEOBJECTDETECTIONNODE'].fields_by_name['input_image']._loaded_options = None
|
|
100
100
|
_globals['_IMAGEOBJECTDETECTIONNODE'].fields_by_name['input_image']._serialized_options = b'\372B5r3\020\0012/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$'
|
|
101
101
|
_globals['_IMAGEOBJECTDETECTIONNODE'].fields_by_name['model_source']._loaded_options = None
|
|
102
102
|
_globals['_IMAGEOBJECTDETECTIONNODE'].fields_by_name['model_source']._serialized_options = b'\372B\005\212\001\002\020\001'
|
|
103
103
|
_globals['_IMAGEOBJECTDETECTIONNODE'].fields_by_name['output_port_name']._loaded_options = None
|
|
104
|
-
_globals['_IMAGEOBJECTDETECTIONNODE'].fields_by_name['output_port_name']._serialized_options = b'\372B
|
|
104
|
+
_globals['_IMAGEOBJECTDETECTIONNODE'].fields_by_name['output_port_name']._serialized_options = b'\372B\026r\024\020\0012\020^[a-zA-Z0-9_-]+$'
|
|
105
105
|
_globals['_IMAGEOCRNODE'].fields_by_name['input_image']._loaded_options = None
|
|
106
106
|
_globals['_IMAGEOCRNODE'].fields_by_name['input_image']._serialized_options = b'\372B5r3\020\0012/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$'
|
|
107
107
|
_globals['_IMAGEOCRNODE'].fields_by_name['model_source']._loaded_options = None
|
|
108
108
|
_globals['_IMAGEOCRNODE'].fields_by_name['model_source']._serialized_options = b'\372B\005\212\001\002\020\001'
|
|
109
109
|
_globals['_IMAGEOCRNODE'].fields_by_name['output_port_name']._loaded_options = None
|
|
110
|
-
_globals['_IMAGEOCRNODE'].fields_by_name['output_port_name']._serialized_options = b'\372B
|
|
110
|
+
_globals['_IMAGEOCRNODE'].fields_by_name['output_port_name']._serialized_options = b'\372B\026r\024\020\0012\020^[a-zA-Z0-9_-]+$'
|
|
111
111
|
_globals['_BOUNDINGBOXFILTERNODE_THRESHOLDSOURCE'].oneofs_by_name['source']._loaded_options = None
|
|
112
112
|
_globals['_BOUNDINGBOXFILTERNODE_THRESHOLDSOURCE'].oneofs_by_name['source']._serialized_options = b'\370B\001'
|
|
113
113
|
_globals['_BOUNDINGBOXFILTERNODE_THRESHOLDSOURCE'].fields_by_name['topic']._loaded_options = None
|
|
@@ -119,49 +119,49 @@ if not _descriptor._USE_C_DESCRIPTORS:
|
|
|
119
119
|
_globals['_BOUNDINGBOXFILTERNODE'].fields_by_name['input_bounding_boxes']._loaded_options = None
|
|
120
120
|
_globals['_BOUNDINGBOXFILTERNODE'].fields_by_name['input_bounding_boxes']._serialized_options = b'\372B5r3\020\0012/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$'
|
|
121
121
|
_globals['_BOUNDINGBOXFILTERNODE'].fields_by_name['output_port_name']._loaded_options = None
|
|
122
|
-
_globals['_BOUNDINGBOXFILTERNODE'].fields_by_name['output_port_name']._serialized_options = b'\372B
|
|
122
|
+
_globals['_BOUNDINGBOXFILTERNODE'].fields_by_name['output_port_name']._serialized_options = b'\372B\026r\024\020\0012\020^[a-zA-Z0-9_-]+$'
|
|
123
123
|
_globals['_NODE'].oneofs_by_name['node_type']._loaded_options = None
|
|
124
124
|
_globals['_NODE'].oneofs_by_name['node_type']._serialized_options = b'\370B\001'
|
|
125
125
|
_globals['_GRAPH'].fields_by_name['license_id']._loaded_options = None
|
|
126
126
|
_globals['_GRAPH'].fields_by_name['license_id']._serialized_options = b'\372B\005r\003\260\001\001'
|
|
127
|
-
_globals['_EXECUTIONPROVIDER']._serialized_start=
|
|
128
|
-
_globals['_EXECUTIONPROVIDER']._serialized_end=
|
|
127
|
+
_globals['_EXECUTIONPROVIDER']._serialized_start=4460
|
|
128
|
+
_globals['_EXECUTIONPROVIDER']._serialized_end=4526
|
|
129
129
|
_globals['_MODELSOURCE']._serialized_start=79
|
|
130
130
|
_globals['_MODELSOURCE']._serialized_end=244
|
|
131
131
|
_globals['_SESSIONINFO']._serialized_start=246
|
|
132
132
|
_globals['_SESSIONINFO']._serialized_end=361
|
|
133
133
|
_globals['_CONSTTENSORNODE']._serialized_start=364
|
|
134
|
-
_globals['_CONSTTENSORNODE']._serialized_end=
|
|
135
|
-
_globals['_CONSTTENSORNODE_UINT64ARRAY']._serialized_start=
|
|
136
|
-
_globals['_CONSTTENSORNODE_UINT64ARRAY']._serialized_end=
|
|
137
|
-
_globals['_CONSTTENSORNODE_INT64ARRAY']._serialized_start=
|
|
138
|
-
_globals['_CONSTTENSORNODE_INT64ARRAY']._serialized_end=
|
|
139
|
-
_globals['_CONSTTENSORNODE_FLOAT64ARRAY']._serialized_start=
|
|
140
|
-
_globals['_CONSTTENSORNODE_FLOAT64ARRAY']._serialized_end=
|
|
141
|
-
_globals['_IMAGERESIZENODE']._serialized_start=
|
|
142
|
-
_globals['_IMAGERESIZENODE']._serialized_end=
|
|
143
|
-
_globals['_IMAGEPATCHESNODE']._serialized_start=
|
|
144
|
-
_globals['_IMAGEPATCHESNODE']._serialized_end=
|
|
145
|
-
_globals['_IMAGEPATCHESNODE_TARGETSIZESOURCE']._serialized_start=
|
|
146
|
-
_globals['_IMAGEPATCHESNODE_TARGETSIZESOURCE']._serialized_end=
|
|
147
|
-
_globals['_IMAGEPATCHESNODE_TARGETSIZESOURCE_IMAGESIZE']._serialized_start=
|
|
148
|
-
_globals['_IMAGEPATCHESNODE_TARGETSIZESOURCE_IMAGESIZE']._serialized_end=
|
|
149
|
-
_globals['_IMAGEPATCHESNODE_MAXITERATIONSCOUNTSOURCE']._serialized_start=
|
|
150
|
-
_globals['_IMAGEPATCHESNODE_MAXITERATIONSCOUNTSOURCE']._serialized_end=
|
|
151
|
-
_globals['_VIRTUALCAMERANODE']._serialized_start=
|
|
152
|
-
_globals['_VIRTUALCAMERANODE']._serialized_end=
|
|
153
|
-
_globals['_IMAGECLASSIFICATIONNODE']._serialized_start=
|
|
154
|
-
_globals['_IMAGECLASSIFICATIONNODE']._serialized_end=
|
|
155
|
-
_globals['_IMAGEOBJECTDETECTIONNODE']._serialized_start=
|
|
156
|
-
_globals['_IMAGEOBJECTDETECTIONNODE']._serialized_end=
|
|
157
|
-
_globals['_IMAGEOCRNODE']._serialized_start=
|
|
158
|
-
_globals['_IMAGEOCRNODE']._serialized_end=
|
|
159
|
-
_globals['_BOUNDINGBOXFILTERNODE']._serialized_start=
|
|
160
|
-
_globals['_BOUNDINGBOXFILTERNODE']._serialized_end=
|
|
161
|
-
_globals['_BOUNDINGBOXFILTERNODE_THRESHOLDSOURCE']._serialized_start=
|
|
162
|
-
_globals['_BOUNDINGBOXFILTERNODE_THRESHOLDSOURCE']._serialized_end=
|
|
163
|
-
_globals['_NODE']._serialized_start=
|
|
164
|
-
_globals['_NODE']._serialized_end=
|
|
165
|
-
_globals['_GRAPH']._serialized_start=
|
|
166
|
-
_globals['_GRAPH']._serialized_end=
|
|
134
|
+
_globals['_CONSTTENSORNODE']._serialized_end=784
|
|
135
|
+
_globals['_CONSTTENSORNODE_UINT64ARRAY']._serialized_start=681
|
|
136
|
+
_globals['_CONSTTENSORNODE_UINT64ARRAY']._serialized_end=708
|
|
137
|
+
_globals['_CONSTTENSORNODE_INT64ARRAY']._serialized_start=710
|
|
138
|
+
_globals['_CONSTTENSORNODE_INT64ARRAY']._serialized_end=736
|
|
139
|
+
_globals['_CONSTTENSORNODE_FLOAT64ARRAY']._serialized_start=738
|
|
140
|
+
_globals['_CONSTTENSORNODE_FLOAT64ARRAY']._serialized_end=766
|
|
141
|
+
_globals['_IMAGERESIZENODE']._serialized_start=787
|
|
142
|
+
_globals['_IMAGERESIZENODE']._serialized_end=1111
|
|
143
|
+
_globals['_IMAGEPATCHESNODE']._serialized_start=1114
|
|
144
|
+
_globals['_IMAGEPATCHESNODE']._serialized_end=2072
|
|
145
|
+
_globals['_IMAGEPATCHESNODE_TARGETSIZESOURCE']._serialized_start=1633
|
|
146
|
+
_globals['_IMAGEPATCHESNODE_TARGETSIZESOURCE']._serialized_end=1881
|
|
147
|
+
_globals['_IMAGEPATCHESNODE_TARGETSIZESOURCE_IMAGESIZE']._serialized_start=1806
|
|
148
|
+
_globals['_IMAGEPATCHESNODE_TARGETSIZESOURCE_IMAGESIZE']._serialized_end=1866
|
|
149
|
+
_globals['_IMAGEPATCHESNODE_MAXITERATIONSCOUNTSOURCE']._serialized_start=1884
|
|
150
|
+
_globals['_IMAGEPATCHESNODE_MAXITERATIONSCOUNTSOURCE']._serialized_end=2026
|
|
151
|
+
_globals['_VIRTUALCAMERANODE']._serialized_start=2074
|
|
152
|
+
_globals['_VIRTUALCAMERANODE']._serialized_end=2192
|
|
153
|
+
_globals['_IMAGECLASSIFICATIONNODE']._serialized_start=2195
|
|
154
|
+
_globals['_IMAGECLASSIFICATIONNODE']._serialized_end=2502
|
|
155
|
+
_globals['_IMAGEOBJECTDETECTIONNODE']._serialized_start=2505
|
|
156
|
+
_globals['_IMAGEOBJECTDETECTIONNODE']._serialized_end=2843
|
|
157
|
+
_globals['_IMAGEOCRNODE']._serialized_start=2846
|
|
158
|
+
_globals['_IMAGEOCRNODE']._serialized_end=3142
|
|
159
|
+
_globals['_BOUNDINGBOXFILTERNODE']._serialized_start=3145
|
|
160
|
+
_globals['_BOUNDINGBOXFILTERNODE']._serialized_end=3782
|
|
161
|
+
_globals['_BOUNDINGBOXFILTERNODE_THRESHOLDSOURCE']._serialized_start=3574
|
|
162
|
+
_globals['_BOUNDINGBOXFILTERNODE_THRESHOLDSOURCE']._serialized_end=3715
|
|
163
|
+
_globals['_NODE']._serialized_start=3785
|
|
164
|
+
_globals['_NODE']._serialized_end=4361
|
|
165
|
+
_globals['_GRAPH']._serialized_start=4363
|
|
166
|
+
_globals['_GRAPH']._serialized_end=4458
|
|
167
167
|
# @@protoc_insertion_point(module_scope)
|
|
@@ -1,11 +1,3 @@
|
|
|
1
|
-
# To use this code, make sure you
|
|
2
|
-
#
|
|
3
|
-
# import json
|
|
4
|
-
#
|
|
5
|
-
# and then, to convert JSON from a string, do
|
|
6
|
-
#
|
|
7
|
-
# result = classification_markup_from_dict(json.loads(json_string))
|
|
8
|
-
|
|
9
1
|
from uuid import UUID
|
|
10
2
|
from typing import Any, List, TypeVar, Callable, Type, cast
|
|
11
3
|
|
|
@@ -19,7 +11,7 @@ def from_float(x: Any) -> float:
|
|
|
19
11
|
|
|
20
12
|
|
|
21
13
|
def to_float(x: Any) -> float:
|
|
22
|
-
assert isinstance(x, float)
|
|
14
|
+
assert isinstance(x, (int, float))
|
|
23
15
|
return x
|
|
24
16
|
|
|
25
17
|
|
|
@@ -1,11 +1,3 @@
|
|
|
1
|
-
# To use this code, make sure you
|
|
2
|
-
#
|
|
3
|
-
# import json
|
|
4
|
-
#
|
|
5
|
-
# and then, to convert JSON from a string, do
|
|
6
|
-
#
|
|
7
|
-
# result = object_detection_markup_from_dict(json.loads(json_string))
|
|
8
|
-
|
|
9
1
|
from enum import Enum
|
|
10
2
|
from typing import Optional, Any, List, TypeVar, Type, Callable, cast
|
|
11
3
|
from uuid import UUID
|
|
@@ -40,7 +32,7 @@ def from_bool(x: Any) -> bool:
|
|
|
40
32
|
|
|
41
33
|
|
|
42
34
|
def to_float(x: Any) -> float:
|
|
43
|
-
assert isinstance(x, float)
|
|
35
|
+
assert isinstance(x, (int, float))
|
|
44
36
|
return x
|
|
45
37
|
|
|
46
38
|
|
|
@@ -112,12 +104,14 @@ class Annotation:
|
|
|
112
104
|
|
|
113
105
|
def to_dict(self) -> dict:
|
|
114
106
|
result: dict = {}
|
|
115
|
-
|
|
107
|
+
if self.angle is not None:
|
|
108
|
+
result["angle"] = from_union([to_float, from_none], self.angle)
|
|
116
109
|
result["annotation_type"] = to_enum(AnnotationType, self.annotation_type)
|
|
117
110
|
result["average_width"] = to_float(self.average_width)
|
|
118
111
|
result["bottom_right_x"] = to_float(self.bottom_right_x)
|
|
119
112
|
result["bottom_right_y"] = to_float(self.bottom_right_y)
|
|
120
|
-
|
|
113
|
+
if self.full_orientation is not None:
|
|
114
|
+
result["full_orientation"] = from_union([from_bool, from_none], self.full_orientation)
|
|
121
115
|
result["id"] = str(self.id)
|
|
122
116
|
result["label_id"] = str(self.label_id)
|
|
123
117
|
result["top_left_x"] = to_float(self.top_left_x)
|
denkproto/json/ocr_markup.py
CHANGED
|
@@ -1,11 +1,3 @@
|
|
|
1
|
-
# To use this code, make sure you
|
|
2
|
-
#
|
|
3
|
-
# import json
|
|
4
|
-
#
|
|
5
|
-
# and then, to convert JSON from a string, do
|
|
6
|
-
#
|
|
7
|
-
# result = ocr_markup_from_dict(json.loads(json_string))
|
|
8
|
-
|
|
9
1
|
from typing import Any, List, Optional, TypeVar, Callable, Type, cast
|
|
10
2
|
from uuid import UUID
|
|
11
3
|
|
|
@@ -19,7 +11,7 @@ def from_float(x: Any) -> float:
|
|
|
19
11
|
|
|
20
12
|
|
|
21
13
|
def to_float(x: Any) -> float:
|
|
22
|
-
assert isinstance(x, float)
|
|
14
|
+
assert isinstance(x, (int, float))
|
|
23
15
|
return x
|
|
24
16
|
|
|
25
17
|
|
|
@@ -111,12 +103,13 @@ class Point:
|
|
|
111
103
|
|
|
112
104
|
class OcrMarkupSchema:
|
|
113
105
|
"""A single closed loop (ring) of a polygon, defining either an outer boundary or a hole."""
|
|
106
|
+
|
|
107
|
+
hierarchy: int
|
|
114
108
|
"""Nesting level: 0=outer, 1=hole in level 0, 2=poly in level 1 hole, etc. Even levels are
|
|
115
109
|
filled areas, odd levels are holes.
|
|
116
110
|
"""
|
|
117
|
-
hierarchy: int
|
|
118
|
-
"""Vertices of the ring."""
|
|
119
111
|
points: List[Point]
|
|
112
|
+
"""Vertices of the ring."""
|
|
120
113
|
|
|
121
114
|
def __init__(self, hierarchy: int, points: List[Point]) -> None:
|
|
122
115
|
self.hierarchy = hierarchy
|
|
@@ -138,10 +131,11 @@ class OcrMarkupSchema:
|
|
|
138
131
|
|
|
139
132
|
class Polygon:
|
|
140
133
|
"""A polygon defined by one or more rings, allowing for holes and nested structures."""
|
|
134
|
+
|
|
135
|
+
rings: List[OcrMarkupSchema]
|
|
141
136
|
"""Array of polygon rings. The hierarchy field within each ring determines nesting and
|
|
142
137
|
fill/hole status.
|
|
143
138
|
"""
|
|
144
|
-
rings: List[OcrMarkupSchema]
|
|
145
139
|
|
|
146
140
|
def __init__(self, rings: List[OcrMarkupSchema]) -> None:
|
|
147
141
|
self.rings = rings
|
|
@@ -162,8 +156,9 @@ class Annotation:
|
|
|
162
156
|
bounding_box: Optional[BoundingBox]
|
|
163
157
|
id: UUID
|
|
164
158
|
label_id: UUID
|
|
165
|
-
"""A polygon defined by one or more rings, allowing for holes and nested structures."""
|
|
166
159
|
polygon: Optional[Polygon]
|
|
160
|
+
"""A polygon defined by one or more rings, allowing for holes and nested structures."""
|
|
161
|
+
|
|
167
162
|
text: str
|
|
168
163
|
|
|
169
164
|
def __init__(self, bounding_box: Optional[BoundingBox], id: UUID, label_id: UUID, polygon: Optional[Polygon], text: str) -> None:
|
|
@@ -185,10 +180,12 @@ class Annotation:
|
|
|
185
180
|
|
|
186
181
|
def to_dict(self) -> dict:
|
|
187
182
|
result: dict = {}
|
|
188
|
-
|
|
183
|
+
if self.bounding_box is not None:
|
|
184
|
+
result["bounding_box"] = from_union([lambda x: to_class(BoundingBox, x), from_none], self.bounding_box)
|
|
189
185
|
result["id"] = str(self.id)
|
|
190
186
|
result["label_id"] = str(self.label_id)
|
|
191
|
-
|
|
187
|
+
if self.polygon is not None:
|
|
188
|
+
result["polygon"] = from_union([lambda x: to_class(Polygon, x), from_none], self.polygon)
|
|
192
189
|
result["text"] = from_str(self.text)
|
|
193
190
|
return result
|
|
194
191
|
|
|
@@ -1,11 +1,3 @@
|
|
|
1
|
-
# To use this code, make sure you
|
|
2
|
-
#
|
|
3
|
-
# import json
|
|
4
|
-
#
|
|
5
|
-
# and then, to convert JSON from a string, do
|
|
6
|
-
#
|
|
7
|
-
# result = segmentation_markup_from_dict(json.loads(json_string))
|
|
8
|
-
|
|
9
1
|
from enum import Enum
|
|
10
2
|
from typing import Any, List, Optional, TypeVar, Callable, Type, cast
|
|
11
3
|
from uuid import UUID
|
|
@@ -21,7 +13,7 @@ def from_float(x: Any) -> float:
|
|
|
21
13
|
|
|
22
14
|
|
|
23
15
|
def to_float(x: Any) -> float:
|
|
24
|
-
assert isinstance(x, float)
|
|
16
|
+
assert isinstance(x, (int, float))
|
|
25
17
|
return x
|
|
26
18
|
|
|
27
19
|
|
|
@@ -291,12 +283,13 @@ class RingPoint:
|
|
|
291
283
|
|
|
292
284
|
class SegmentationMarkupSchema:
|
|
293
285
|
"""A single closed loop (ring) of a polygon, defining either an outer boundary or a hole."""
|
|
286
|
+
|
|
287
|
+
hierarchy: int
|
|
294
288
|
"""Nesting level: 0=outer, 1=hole in level 0, 2=poly in level 1 hole, etc. Even levels are
|
|
295
289
|
filled areas, odd levels are holes.
|
|
296
290
|
"""
|
|
297
|
-
hierarchy: int
|
|
298
|
-
"""Vertices of the ring."""
|
|
299
291
|
points: List[RingPoint]
|
|
292
|
+
"""Vertices of the ring."""
|
|
300
293
|
|
|
301
294
|
def __init__(self, hierarchy: int, points: List[RingPoint]) -> None:
|
|
302
295
|
self.hierarchy = hierarchy
|
|
@@ -318,10 +311,11 @@ class SegmentationMarkupSchema:
|
|
|
318
311
|
|
|
319
312
|
class PolygonAnnotation:
|
|
320
313
|
"""A polygon defined by one or more rings, allowing for holes and nested structures."""
|
|
314
|
+
|
|
315
|
+
rings: List[SegmentationMarkupSchema]
|
|
321
316
|
"""Array of polygon rings. The hierarchy field within each ring determines nesting and
|
|
322
317
|
fill/hole status.
|
|
323
318
|
"""
|
|
324
|
-
rings: List[SegmentationMarkupSchema]
|
|
325
319
|
|
|
326
320
|
def __init__(self, rings: List[SegmentationMarkupSchema]) -> None:
|
|
327
321
|
self.rings = rings
|
|
@@ -478,15 +472,22 @@ class Annotation:
|
|
|
478
472
|
result: dict = {}
|
|
479
473
|
result["annotation_type"] = to_enum(AnnotationType, self.annotation_type)
|
|
480
474
|
result["average_width"] = to_float(self.average_width)
|
|
481
|
-
|
|
475
|
+
if self.circle_annotation is not None:
|
|
476
|
+
result["circle_annotation"] = from_union([lambda x: to_class(CircleAnnotation, x), from_none], self.circle_annotation)
|
|
482
477
|
result["id"] = str(self.id)
|
|
483
478
|
result["label_id"] = str(self.label_id)
|
|
484
|
-
|
|
485
|
-
|
|
486
|
-
|
|
487
|
-
|
|
488
|
-
|
|
489
|
-
|
|
479
|
+
if self.magicwand_annotation is not None:
|
|
480
|
+
result["magicwand_annotation"] = from_union([lambda x: to_class(MagicwandAnnotation, x), from_none], self.magicwand_annotation)
|
|
481
|
+
if self.pen_annotation is not None:
|
|
482
|
+
result["pen_annotation"] = from_union([lambda x: to_class(PenAnnotation, x), from_none], self.pen_annotation)
|
|
483
|
+
if self.pixel_annotation is not None:
|
|
484
|
+
result["pixel_annotation"] = from_union([lambda x: to_class(PixelAnnotation, x), from_none], self.pixel_annotation)
|
|
485
|
+
if self.polygon_annotation is not None:
|
|
486
|
+
result["polygon_annotation"] = from_union([lambda x: to_class(PolygonAnnotation, x), from_none], self.polygon_annotation)
|
|
487
|
+
if self.rectangle_annotation is not None:
|
|
488
|
+
result["rectangle_annotation"] = from_union([lambda x: to_class(RectangleAnnotation, x), from_none], self.rectangle_annotation)
|
|
489
|
+
if self.sausage_annotation is not None:
|
|
490
|
+
result["sausage_annotation"] = from_union([lambda x: to_class(SausageAnnotation, x), from_none], self.sausage_annotation)
|
|
490
491
|
return result
|
|
491
492
|
|
|
492
493
|
|
|
@@ -4,12 +4,12 @@ denkproto/DENKbuffer_pb2_grpc.py,sha256=-CPJPM4FOqwvwV8-f1iJlD18UD9juVIIHfdWUecu
|
|
|
4
4
|
denkproto/ImageAnalysis_ProtobufMessages_pb2.py,sha256=iEY0j9ySGUThnqTdYD4uAVr9P3GiC5R02iK53zEOXUQ,21015
|
|
5
5
|
denkproto/ImageAnalysis_ProtobufMessages_pb2.pyi,sha256=5LFtxrmYpJHizDDNGFTkL7-NQ_TkwqCSdq7vcv3lg-c,36243
|
|
6
6
|
denkproto/ImageAnalysis_ProtobufMessages_pb2_grpc.py,sha256=l3agtDjgu4jay6P9TRnHhyhJ-7UdoII27ywhw3k84oo,911
|
|
7
|
-
denkproto/__about__.py,sha256=
|
|
7
|
+
denkproto/__about__.py,sha256=QG9et13ZT7y7piR-vlbotczTxZ5RYv6Rnp-6emA5184,23
|
|
8
8
|
denkproto/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
9
9
|
denkproto/denkcache_pb2.py,sha256=G3EEZY-IBVJpThkkXEmhoG7Y3aSLvraKckqTwsXCbUI,6414
|
|
10
10
|
denkproto/denkcache_pb2.pyi,sha256=qOzFOkddUapSJZz5d_mqcfHvWDAmM-70m_7FeM7n5fI,5595
|
|
11
11
|
denkproto/denkcache_pb2_grpc.py,sha256=N1y4ZQ58UPaUlOZIpznzAbJJcs9G_n-FmzFoPPeu8UA,15610
|
|
12
|
-
denkproto/inference_graph_pb2.py,sha256=
|
|
12
|
+
denkproto/inference_graph_pb2.py,sha256=cE7LVLuxajzWu2XwDLQOacWOEkFGDXJskvxeiCF8rhU,21357
|
|
13
13
|
denkproto/inference_graph_pb2.pyi,sha256=pUTospFsX-8R10hNTrnPUOjjjsZFQdDisV36vrIpQhk,12928
|
|
14
14
|
denkproto/inference_graph_pb2_grpc.py,sha256=aXPf0w7pIfspkKUKGCr--OtJMOaTfE8IbeuBm10g1Xg,896
|
|
15
15
|
denkproto/modelfile_v1_pb2.py,sha256=ulF24nSIspn46DnQKlvR5Po3w-vFCnawuuverAVi3cY,6573
|
|
@@ -26,11 +26,11 @@ denkproto/validate_pb2.py,sha256=CuGAaHir9X9jniW3QsRKAESjYzoS2U6dLk_J55XmNqU,136
|
|
|
26
26
|
denkproto/validate_pb2.pyi,sha256=fWsdVOR3NJDioCKkCKfxfl4qaEb5xqXXU_WlEbdQx6E,23077
|
|
27
27
|
denkproto/validate_pb2_grpc.py,sha256=XvjuWEgJFJtH1E7HWm7SKpV10PMpOSbonKa2VPHpYy8,889
|
|
28
28
|
denkproto/json/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
29
|
-
denkproto/json/classification_markup.py,sha256=
|
|
29
|
+
denkproto/json/classification_markup.py,sha256=vTu0H7Cb3gU6UUUSg1vDTRlFUorZrjMbcp_yx6UssZA,2461
|
|
30
30
|
denkproto/json/inference_graph_models_generated.py,sha256=lX5L5kU8dVxx3R9USQIiqSqMPY12OIWmHkjK5yX_4W4,5960
|
|
31
|
-
denkproto/json/object_detection_markup.py,sha256=
|
|
32
|
-
denkproto/json/ocr_markup.py,sha256=
|
|
33
|
-
denkproto/json/segmentation_markup.py,sha256=
|
|
34
|
-
denkproto-1.0.
|
|
35
|
-
denkproto-1.0.
|
|
36
|
-
denkproto-1.0.
|
|
31
|
+
denkproto/json/object_detection_markup.py,sha256=T0hcFPq8F_galjDjRC9dbcRVwCSOYtu2jt9wpEeHlQs,4904
|
|
32
|
+
denkproto/json/ocr_markup.py,sha256=KyOpth9evOekyhTJdZSnYyB9EIyoWbY33sqncb_jBgw,7069
|
|
33
|
+
denkproto/json/segmentation_markup.py,sha256=EvniRksF2KaQolm6zZ6UKSiGwnqc8wR2sHB1iv05RTE,19911
|
|
34
|
+
denkproto-1.0.70.dist-info/METADATA,sha256=SpiKdja2oy6Gh9zorI2NXGaELPCI9b3VHkuior6t1cQ,110
|
|
35
|
+
denkproto-1.0.70.dist-info/WHEEL,sha256=1yFddiXMmvYK7QYTqtRNtX66WJ0Mz8PYEiEUoOUUxRY,87
|
|
36
|
+
denkproto-1.0.70.dist-info/RECORD,,
|
|
File without changes
|