denkproto 1.0.67__py3-none-any.whl → 1.0.69__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of denkproto might be problematic. Click here for more details.
- denkproto/__about__.py +1 -1
- denkproto/denkcache_pb2_grpc.py +1 -1
- denkproto/inference_graph_pb2.py +4 -4
- denkproto/inference_graph_pb2.pyi +2 -2
- denkproto/json/classification_markup.py +9 -1
- denkproto/json/object_detection_markup.py +11 -5
- denkproto/json/ocr_markup.py +15 -12
- denkproto/json/segmentation_markup.py +19 -20
- denkproto/modelfile_v2_pb2.py +1 -1
- {denkproto-1.0.67.dist-info → denkproto-1.0.69.dist-info}/METADATA +1 -1
- {denkproto-1.0.67.dist-info → denkproto-1.0.69.dist-info}/RECORD +12 -12
- {denkproto-1.0.67.dist-info → denkproto-1.0.69.dist-info}/WHEEL +0 -0
denkproto/__about__.py
CHANGED
|
@@ -1 +1 @@
|
|
|
1
|
-
__version__ = "1.0.
|
|
1
|
+
__version__ = "1.0.69"
|
denkproto/denkcache_pb2_grpc.py
CHANGED
denkproto/inference_graph_pb2.py
CHANGED
|
@@ -22,11 +22,11 @@ _runtime_version.ValidateProtobufRuntimeVersion(
|
|
|
22
22
|
_sym_db = _symbol_database.Default()
|
|
23
23
|
|
|
24
24
|
|
|
25
|
-
import modelfile_v2_pb2 as modelfile__v2__pb2
|
|
26
|
-
import validate_pb2 as validate__pb2
|
|
25
|
+
import denkproto.modelfile_v2_pb2 as modelfile__v2__pb2
|
|
26
|
+
import denkproto.validate_pb2 as validate__pb2
|
|
27
27
|
|
|
28
28
|
|
|
29
|
-
DESCRIPTOR = _descriptor_pool.Default().AddSerializedFile(b'\n\x15inference_graph.proto\x12\x0finference_graph\x1a\x12modelfile-v2.proto\x1a\x0evalidate.proto\"\xa5\x01\n\x0bModelSource\x12-\n\nfrom_proto\x18\x01 \x01(\x0b\x32\x17.modelfile.v2.ModelFileH\x00\x12#\n\x0f\x66rom_network_id\x18\x02 \x01(\tB\x08\xfa\x42\x05r\x03\xb0\x01\x01H\x00\x12.\n\x1a\x66rom_network_experiment_id\x18\x03 \x01(\tB\x08\xfa\x42\x05r\x03\xb0\x01\x01H\x00\x42\x12\n\x0bsource_type\x12\x03\xf8\x42\x01\"s\n\x0bSessionInfo\x12H\n\x12\x65xecution_provider\x18\x01 \x01(\x0e\x32\".inference_graph.ExecutionProviderB\x08\xfa\x42\x05\x82\x01\x02\x10\x01\x12\x1a\n\tdevice_id\x18\x02 \x01(\x05\x42\x07\xfa\x42\x04\x1a\x02(\x00\"\xb3\x03\n\x0f\x43onstTensorNode\x12\x15\n\x04name\x18\x01 \x01(\tB\x07\xfa\x42\x04r\x02\x10\x01\x12\r\n\x05shape\x18\x02 \x03(\r\x12\x43\n\x0buint64_data\x18\x03 \x01(\x0b\x32,.inference_graph.ConstTensorNode.Uint64ArrayH\x00\x12\x41\n\nint64_data\x18\x04 \x01(\x0b\x32+.inference_graph.ConstTensorNode.Int64ArrayH\x00\x12\x45\n\x0c\x66loat64_data\x18\x05 \x01(\x0b\x32-.inference_graph.ConstTensorNode.Float64ArrayH\x00\x12\x42\n\x10output_port_name\x18\x06 \x01(\tB(\xfa\x42%r#\x10\x01\x32\x1f^[a-zA-Z0-9_-]+/[a-zA-Z0-9_-]+$\x1a\x1b\n\x0bUint64Array\x12\x0c\n\x04\x64\x61ta\x18\x01 \x03(\x04\x1a\x1a\n\nInt64Array\x12\x0c\n\x04\x64\x61ta\x18\x01 \x03(\x12\x1a\x1c\n\x0c\x46loat64Array\x12\x0c\n\x04\x64\x61ta\x18\x01 \x03(\x01\x42\x10\n\tdata_type\x12\x03\xf8\x42\x01\"\xd3\x02\n\x0fImageResizeNode\x12\x15\n\x04name\x18\x01 \x01(\tB\x07\xfa\x42\x04r\x02\x10\x01\x12L\n\ninput_size\x18\x02 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12M\n\x0binput_image\x18\x03 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12\x42\n\x10output_port_name\x18\x04 \x01(\tB(\xfa\x42%r#\x10\x01\x32\x1f^[a-zA-Z0-9_-]+/[a-zA-Z0-9_-]+$\x12\x37\n\x0csession_info\x18\x05 \x01(\x0b\x32\x1c.inference_graph.SessionInfoH\x00\x88\x01\x01\x42\x0f\n\r_session_info\"\xcd\x07\n\x10ImagePatchesNode\x12\x15\n\x04name\x18\x01 \x01(\tB\x07\xfa\x42\x04r\x02\x10\x01\x12M\n\x0binput_image\x18\x02 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12V\n\x14input_bounding_boxes\x18\x03 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12W\n\x11input_target_size\x18\x04 \x01(\x0b\x32\x32.inference_graph.ImagePatchesNode.TargetSizeSourceB\x08\xfa\x42\x05\x8a\x01\x02\x10\x01\x12\x42\n\x10output_port_name\x18\x05 \x01(\tB(\xfa\x42%r#\x10\x01\x32\x1f^[a-zA-Z0-9_-]+/[a-zA-Z0-9_-]+$\x12k\n\x18input_maximum_iterations\x18\x06 \x01(\x0b\x32:.inference_graph.ImagePatchesNode.MaxIterationsCountSourceB\x08\xfa\x42\x05\x8a\x01\x02\x10\x01H\x00\x88\x01\x01\x12\x37\n\x0csession_info\x18\x07 \x01(\x0b\x32\x1c.inference_graph.SessionInfoH\x01\x88\x01\x01\x1a\xf8\x01\n\x10TargetSizeSource\x12I\n\x05topic\x18\x01 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$H\x00\x12L\n\x04size\x18\x02 \x01(\x0b\x32<.inference_graph.ImagePatchesNode.TargetSizeSource.ImageSizeH\x00\x1a<\n\tImageSize\x12\x17\n\x06height\x18\x01 \x01(\x04\x42\x07\xfa\x42\x04\x32\x02(\x00\x12\x16\n\x05width\x18\x02 \x01(\x04\x42\x07\xfa\x42\x04\x32\x02(\x00\x42\r\n\x06source\x12\x03\xf8\x42\x01\x1a\x8e\x01\n\x18MaxIterationsCountSource\x12I\n\x05topic\x18\x01 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$H\x00\x12\x18\n\x05value\x18\x02 \x01(\x04\x42\x07\xfa\x42\x04\x32\x02(\x00H\x00\x42\r\n\x06source\x12\x03\xf8\x42\x01\x42\x1b\n\x19_input_maximum_iterationsB\x0f\n\r_session_info\"\x85\x01\n\x11VirtualCameraNode\x12\x15\n\x04name\x18\x01 \x01(\tB\x07\xfa\x42\x04r\x02\x10\x01\x12\x15\n\x04path\x18\x02 \x01(\tB\x07\xfa\x42\x04r\x02\x10\x01\x12\x42\n\x10output_port_name\x18\x03 \x01(\tB(\xfa\x42%r#\x10\x01\x32\x1f^[a-zA-Z0-9_-]+/[a-zA-Z0-9_-]+$\"\xc2\x02\n\x17ImageClassificationNode\x12\x0c\n\x04name\x18\x01 \x01(\t\x12M\n\x0binput_image\x18\x02 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12<\n\x0cmodel_source\x18\x03 \x01(\x0b\x32\x1c.inference_graph.ModelSourceB\x08\xfa\x42\x05\x8a\x01\x02\x10\x01\x12\x42\n\x10output_port_name\x18\x04 \x01(\tB(\xfa\x42%r#\x10\x01\x32\x1f^[a-zA-Z0-9_-]+/[a-zA-Z0-9_-]+$\x12\x37\n\x0csession_info\x18\x05 \x01(\x0b\x32\x1c.inference_graph.SessionInfoH\x00\x88\x01\x01\x42\x0f\n\r_session_info\"\xe1\x02\n\x18ImageObjectDetectionNode\x12\x0c\n\x04name\x18\x01 \x01(\t\x12M\n\x0binput_image\x18\x02 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12<\n\x0cmodel_source\x18\x03 \x01(\x0b\x32\x1c.inference_graph.ModelSourceB\x08\xfa\x42\x05\x8a\x01\x02\x10\x01\x12\x1c\n\x14scale_bounding_boxes\x18\x04 \x01(\x08\x12\x42\n\x10output_port_name\x18\x05 \x01(\tB(\xfa\x42%r#\x10\x01\x32\x1f^[a-zA-Z0-9_-]+/[a-zA-Z0-9_-]+$\x12\x37\n\x0csession_info\x18\x06 \x01(\x0b\x32\x1c.inference_graph.SessionInfoH\x00\x88\x01\x01\x42\x0f\n\r_session_info\"\xb7\x02\n\x0cImageOcrNode\x12\x0c\n\x04name\x18\x01 \x01(\t\x12M\n\x0binput_image\x18\x02 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12<\n\x0cmodel_source\x18\x03 \x01(\x0b\x32\x1c.inference_graph.ModelSourceB\x08\xfa\x42\x05\x8a\x01\x02\x10\x01\x12\x42\n\x10output_port_name\x18\x04 \x01(\tB(\xfa\x42%r#\x10\x01\x32\x1f^[a-zA-Z0-9_-]+/[a-zA-Z0-9_-]+$\x12\x37\n\x0csession_info\x18\x05 \x01(\x0b\x32\x1c.inference_graph.SessionInfoH\x00\x88\x01\x01\x42\x0f\n\r_session_info\"\x8c\x05\n\x15\x42oundingBoxFilterNode\x12\x15\n\x04name\x18\x01 \x01(\tB\x07\xfa\x42\x04r\x02\x10\x01\x12V\n\x14input_bounding_boxes\x18\x02 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12\x42\n\x10output_port_name\x18\x03 \x01(\tB(\xfa\x42%r#\x10\x01\x32\x1f^[a-zA-Z0-9_-]+/[a-zA-Z0-9_-]+$\x12Z\n\x15input_score_threshold\x18\x04 \x01(\x0b\x32\x36.inference_graph.BoundingBoxFilterNode.ThresholdSourceH\x00\x88\x01\x01\x12X\n\x13input_iou_threshold\x18\x05 \x01(\x0b\x32\x36.inference_graph.BoundingBoxFilterNode.ThresholdSourceH\x01\x88\x01\x01\x12\x37\n\x0csession_info\x18\x06 \x01(\x0b\x32\x1c.inference_graph.SessionInfoH\x02\x88\x01\x01\x1a\x8d\x01\n\x0fThresholdSource\x12I\n\x05topic\x18\x01 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$H\x00\x12 \n\x05value\x18\x02 \x01(\x02\x42\x0f\xfa\x42\x0c\n\n\x1d\x00\x00\x80?-\x00\x00\x00\x00H\x00\x42\r\n\x06source\x12\x03\xf8\x42\x01\x42\x18\n\x16_input_score_thresholdB\x16\n\x14_input_iou_thresholdB\x0f\n\r_session_info\"\xc0\x04\n\x04Node\x12=\n\x11\x63onst_tensor_node\x18\x01 \x01(\x0b\x32 .inference_graph.ConstTensorNodeH\x00\x12=\n\x11image_resize_node\x18\x02 \x01(\x0b\x32 .inference_graph.ImageResizeNodeH\x00\x12?\n\x12image_patches_node\x18\x03 \x01(\x0b\x32!.inference_graph.ImagePatchesNodeH\x00\x12\x41\n\x13virtual_camera_node\x18\x04 \x01(\x0b\x32\".inference_graph.VirtualCameraNodeH\x00\x12M\n\x19image_classification_node\x18\x05 \x01(\x0b\x32(.inference_graph.ImageClassificationNodeH\x00\x12P\n\x1bimage_object_detection_node\x18\x06 \x01(\x0b\x32).inference_graph.ImageObjectDetectionNodeH\x00\x12\x37\n\x0eimage_ocr_node\x18\x07 \x01(\x0b\x32\x1d.inference_graph.ImageOcrNodeH\x00\x12J\n\x18\x62ounding_box_filter_node\x18\x08 \x01(\x0b\x32&.inference_graph.BoundingBoxFilterNodeH\x00\x42\x10\n\tnode_type\x12\x03\xf8\x42\x01\"_\n\x05Graph\x12$\n\x05nodes\x18\x01 \x03(\x0b\x32\x15.inference_graph.Node\x12\x12\n\ncreated_at\x18\x02 \x01(\x03\x12\x1c\n\nlicense_id\x18\x03 \x01(\tB\x08\xfa\x42\x05r\x03\xb0\x01\x01
|
|
29
|
+
DESCRIPTOR = _descriptor_pool.Default().AddSerializedFile(b'\n\x15inference_graph.proto\x12\x0finference_graph\x1a\x12modelfile-v2.proto\x1a\x0evalidate.proto\"\xa5\x01\n\x0bModelSource\x12-\n\nfrom_proto\x18\x01 \x01(\x0b\x32\x17.modelfile.v2.ModelFileH\x00\x12#\n\x0f\x66rom_network_id\x18\x02 \x01(\tB\x08\xfa\x42\x05r\x03\xb0\x01\x01H\x00\x12.\n\x1a\x66rom_network_experiment_id\x18\x03 \x01(\tB\x08\xfa\x42\x05r\x03\xb0\x01\x01H\x00\x42\x12\n\x0bsource_type\x12\x03\xf8\x42\x01\"s\n\x0bSessionInfo\x12H\n\x12\x65xecution_provider\x18\x01 \x01(\x0e\x32\".inference_graph.ExecutionProviderB\x08\xfa\x42\x05\x82\x01\x02\x10\x01\x12\x1a\n\tdevice_id\x18\x02 \x01(\x05\x42\x07\xfa\x42\x04\x1a\x02(\x00\"\xb3\x03\n\x0f\x43onstTensorNode\x12\x15\n\x04name\x18\x01 \x01(\tB\x07\xfa\x42\x04r\x02\x10\x01\x12\r\n\x05shape\x18\x02 \x03(\r\x12\x43\n\x0buint64_data\x18\x03 \x01(\x0b\x32,.inference_graph.ConstTensorNode.Uint64ArrayH\x00\x12\x41\n\nint64_data\x18\x04 \x01(\x0b\x32+.inference_graph.ConstTensorNode.Int64ArrayH\x00\x12\x45\n\x0c\x66loat64_data\x18\x05 \x01(\x0b\x32-.inference_graph.ConstTensorNode.Float64ArrayH\x00\x12\x42\n\x10output_port_name\x18\x06 \x01(\tB(\xfa\x42%r#\x10\x01\x32\x1f^[a-zA-Z0-9_-]+/[a-zA-Z0-9_-]+$\x1a\x1b\n\x0bUint64Array\x12\x0c\n\x04\x64\x61ta\x18\x01 \x03(\x04\x1a\x1a\n\nInt64Array\x12\x0c\n\x04\x64\x61ta\x18\x01 \x03(\x12\x1a\x1c\n\x0c\x46loat64Array\x12\x0c\n\x04\x64\x61ta\x18\x01 \x03(\x01\x42\x10\n\tdata_type\x12\x03\xf8\x42\x01\"\xd3\x02\n\x0fImageResizeNode\x12\x15\n\x04name\x18\x01 \x01(\tB\x07\xfa\x42\x04r\x02\x10\x01\x12L\n\ninput_size\x18\x02 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12M\n\x0binput_image\x18\x03 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12\x42\n\x10output_port_name\x18\x04 \x01(\tB(\xfa\x42%r#\x10\x01\x32\x1f^[a-zA-Z0-9_-]+/[a-zA-Z0-9_-]+$\x12\x37\n\x0csession_info\x18\x05 \x01(\x0b\x32\x1c.inference_graph.SessionInfoH\x00\x88\x01\x01\x42\x0f\n\r_session_info\"\xcd\x07\n\x10ImagePatchesNode\x12\x15\n\x04name\x18\x01 \x01(\tB\x07\xfa\x42\x04r\x02\x10\x01\x12M\n\x0binput_image\x18\x02 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12V\n\x14input_bounding_boxes\x18\x03 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12W\n\x11input_target_size\x18\x04 \x01(\x0b\x32\x32.inference_graph.ImagePatchesNode.TargetSizeSourceB\x08\xfa\x42\x05\x8a\x01\x02\x10\x01\x12\x42\n\x10output_port_name\x18\x05 \x01(\tB(\xfa\x42%r#\x10\x01\x32\x1f^[a-zA-Z0-9_-]+/[a-zA-Z0-9_-]+$\x12k\n\x18input_maximum_iterations\x18\x06 \x01(\x0b\x32:.inference_graph.ImagePatchesNode.MaxIterationsCountSourceB\x08\xfa\x42\x05\x8a\x01\x02\x10\x01H\x00\x88\x01\x01\x12\x37\n\x0csession_info\x18\x07 \x01(\x0b\x32\x1c.inference_graph.SessionInfoH\x01\x88\x01\x01\x1a\xf8\x01\n\x10TargetSizeSource\x12I\n\x05topic\x18\x01 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$H\x00\x12L\n\x04size\x18\x02 \x01(\x0b\x32<.inference_graph.ImagePatchesNode.TargetSizeSource.ImageSizeH\x00\x1a<\n\tImageSize\x12\x17\n\x06height\x18\x01 \x01(\x04\x42\x07\xfa\x42\x04\x32\x02(\x00\x12\x16\n\x05width\x18\x02 \x01(\x04\x42\x07\xfa\x42\x04\x32\x02(\x00\x42\r\n\x06source\x12\x03\xf8\x42\x01\x1a\x8e\x01\n\x18MaxIterationsCountSource\x12I\n\x05topic\x18\x01 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$H\x00\x12\x18\n\x05value\x18\x02 \x01(\x04\x42\x07\xfa\x42\x04\x32\x02(\x00H\x00\x42\r\n\x06source\x12\x03\xf8\x42\x01\x42\x1b\n\x19_input_maximum_iterationsB\x0f\n\r_session_info\"\x85\x01\n\x11VirtualCameraNode\x12\x15\n\x04name\x18\x01 \x01(\tB\x07\xfa\x42\x04r\x02\x10\x01\x12\x15\n\x04path\x18\x02 \x01(\tB\x07\xfa\x42\x04r\x02\x10\x01\x12\x42\n\x10output_port_name\x18\x03 \x01(\tB(\xfa\x42%r#\x10\x01\x32\x1f^[a-zA-Z0-9_-]+/[a-zA-Z0-9_-]+$\"\xc2\x02\n\x17ImageClassificationNode\x12\x0c\n\x04name\x18\x01 \x01(\t\x12M\n\x0binput_image\x18\x02 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12<\n\x0cmodel_source\x18\x03 \x01(\x0b\x32\x1c.inference_graph.ModelSourceB\x08\xfa\x42\x05\x8a\x01\x02\x10\x01\x12\x42\n\x10output_port_name\x18\x04 \x01(\tB(\xfa\x42%r#\x10\x01\x32\x1f^[a-zA-Z0-9_-]+/[a-zA-Z0-9_-]+$\x12\x37\n\x0csession_info\x18\x05 \x01(\x0b\x32\x1c.inference_graph.SessionInfoH\x00\x88\x01\x01\x42\x0f\n\r_session_info\"\xe1\x02\n\x18ImageObjectDetectionNode\x12\x0c\n\x04name\x18\x01 \x01(\t\x12M\n\x0binput_image\x18\x02 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12<\n\x0cmodel_source\x18\x03 \x01(\x0b\x32\x1c.inference_graph.ModelSourceB\x08\xfa\x42\x05\x8a\x01\x02\x10\x01\x12\x1c\n\x14scale_bounding_boxes\x18\x04 \x01(\x08\x12\x42\n\x10output_port_name\x18\x05 \x01(\tB(\xfa\x42%r#\x10\x01\x32\x1f^[a-zA-Z0-9_-]+/[a-zA-Z0-9_-]+$\x12\x37\n\x0csession_info\x18\x06 \x01(\x0b\x32\x1c.inference_graph.SessionInfoH\x00\x88\x01\x01\x42\x0f\n\r_session_info\"\xb7\x02\n\x0cImageOcrNode\x12\x0c\n\x04name\x18\x01 \x01(\t\x12M\n\x0binput_image\x18\x02 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12<\n\x0cmodel_source\x18\x03 \x01(\x0b\x32\x1c.inference_graph.ModelSourceB\x08\xfa\x42\x05\x8a\x01\x02\x10\x01\x12\x42\n\x10output_port_name\x18\x04 \x01(\tB(\xfa\x42%r#\x10\x01\x32\x1f^[a-zA-Z0-9_-]+/[a-zA-Z0-9_-]+$\x12\x37\n\x0csession_info\x18\x05 \x01(\x0b\x32\x1c.inference_graph.SessionInfoH\x00\x88\x01\x01\x42\x0f\n\r_session_info\"\x8c\x05\n\x15\x42oundingBoxFilterNode\x12\x15\n\x04name\x18\x01 \x01(\tB\x07\xfa\x42\x04r\x02\x10\x01\x12V\n\x14input_bounding_boxes\x18\x02 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12\x42\n\x10output_port_name\x18\x03 \x01(\tB(\xfa\x42%r#\x10\x01\x32\x1f^[a-zA-Z0-9_-]+/[a-zA-Z0-9_-]+$\x12Z\n\x15input_score_threshold\x18\x04 \x01(\x0b\x32\x36.inference_graph.BoundingBoxFilterNode.ThresholdSourceH\x00\x88\x01\x01\x12X\n\x13input_iou_threshold\x18\x05 \x01(\x0b\x32\x36.inference_graph.BoundingBoxFilterNode.ThresholdSourceH\x01\x88\x01\x01\x12\x37\n\x0csession_info\x18\x06 \x01(\x0b\x32\x1c.inference_graph.SessionInfoH\x02\x88\x01\x01\x1a\x8d\x01\n\x0fThresholdSource\x12I\n\x05topic\x18\x01 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$H\x00\x12 \n\x05value\x18\x02 \x01(\x02\x42\x0f\xfa\x42\x0c\n\n\x1d\x00\x00\x80?-\x00\x00\x00\x00H\x00\x42\r\n\x06source\x12\x03\xf8\x42\x01\x42\x18\n\x16_input_score_thresholdB\x16\n\x14_input_iou_thresholdB\x0f\n\r_session_info\"\xc0\x04\n\x04Node\x12=\n\x11\x63onst_tensor_node\x18\x01 \x01(\x0b\x32 .inference_graph.ConstTensorNodeH\x00\x12=\n\x11image_resize_node\x18\x02 \x01(\x0b\x32 .inference_graph.ImageResizeNodeH\x00\x12?\n\x12image_patches_node\x18\x03 \x01(\x0b\x32!.inference_graph.ImagePatchesNodeH\x00\x12\x41\n\x13virtual_camera_node\x18\x04 \x01(\x0b\x32\".inference_graph.VirtualCameraNodeH\x00\x12M\n\x19image_classification_node\x18\x05 \x01(\x0b\x32(.inference_graph.ImageClassificationNodeH\x00\x12P\n\x1bimage_object_detection_node\x18\x06 \x01(\x0b\x32).inference_graph.ImageObjectDetectionNodeH\x00\x12\x37\n\x0eimage_ocr_node\x18\x07 \x01(\x0b\x32\x1d.inference_graph.ImageOcrNodeH\x00\x12J\n\x18\x62ounding_box_filter_node\x18\x08 \x01(\x0b\x32&.inference_graph.BoundingBoxFilterNodeH\x00\x42\x10\n\tnode_type\x12\x03\xf8\x42\x01\"_\n\x05Graph\x12$\n\x05nodes\x18\x01 \x03(\x0b\x32\x15.inference_graph.Node\x12\x12\n\ncreated_at\x18\x02 \x01(\x03\x12\x1c\n\nlicense_id\x18\x03 \x01(\tB\x08\xfa\x42\x05r\x03\xb0\x01\x01*B\n\x11\x45xecutionProvider\x12\x07\n\x03\x43PU\x10\x00\x12\x08\n\x04\x43UDA\x10\x01\x12\x0c\n\x08\x44IRECTML\x10\x02\x12\x0c\n\x08TENSORRT\x10\x03\x42NZ0github.com/DENKweit/denkproto-go/inference_graph\xaa\x02\x19\x44\x45NK.Proto.InferenceGraphb\x06proto3')
|
|
30
30
|
|
|
31
31
|
_globals = globals()
|
|
32
32
|
_builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals)
|
|
@@ -125,7 +125,7 @@ if not _descriptor._USE_C_DESCRIPTORS:
|
|
|
125
125
|
_globals['_GRAPH'].fields_by_name['license_id']._loaded_options = None
|
|
126
126
|
_globals['_GRAPH'].fields_by_name['license_id']._serialized_options = b'\372B\005r\003\260\001\001'
|
|
127
127
|
_globals['_EXECUTIONPROVIDER']._serialized_start=4581
|
|
128
|
-
_globals['_EXECUTIONPROVIDER']._serialized_end=
|
|
128
|
+
_globals['_EXECUTIONPROVIDER']._serialized_end=4647
|
|
129
129
|
_globals['_MODELSOURCE']._serialized_start=79
|
|
130
130
|
_globals['_MODELSOURCE']._serialized_end=244
|
|
131
131
|
_globals['_SESSIONINFO']._serialized_start=246
|
|
@@ -12,11 +12,11 @@ class ExecutionProvider(int, metaclass=_enum_type_wrapper.EnumTypeWrapper):
|
|
|
12
12
|
__slots__ = ()
|
|
13
13
|
CPU: _ClassVar[ExecutionProvider]
|
|
14
14
|
CUDA: _ClassVar[ExecutionProvider]
|
|
15
|
-
|
|
15
|
+
DIRECTML: _ClassVar[ExecutionProvider]
|
|
16
16
|
TENSORRT: _ClassVar[ExecutionProvider]
|
|
17
17
|
CPU: ExecutionProvider
|
|
18
18
|
CUDA: ExecutionProvider
|
|
19
|
-
|
|
19
|
+
DIRECTML: ExecutionProvider
|
|
20
20
|
TENSORRT: ExecutionProvider
|
|
21
21
|
|
|
22
22
|
class ModelSource(_message.Message):
|
|
@@ -1,3 +1,11 @@
|
|
|
1
|
+
# To use this code, make sure you
|
|
2
|
+
#
|
|
3
|
+
# import json
|
|
4
|
+
#
|
|
5
|
+
# and then, to convert JSON from a string, do
|
|
6
|
+
#
|
|
7
|
+
# result = classification_markup_from_dict(json.loads(json_string))
|
|
8
|
+
|
|
1
9
|
from uuid import UUID
|
|
2
10
|
from typing import Any, List, TypeVar, Callable, Type, cast
|
|
3
11
|
|
|
@@ -11,7 +19,7 @@ def from_float(x: Any) -> float:
|
|
|
11
19
|
|
|
12
20
|
|
|
13
21
|
def to_float(x: Any) -> float:
|
|
14
|
-
assert isinstance(x,
|
|
22
|
+
assert isinstance(x, float)
|
|
15
23
|
return x
|
|
16
24
|
|
|
17
25
|
|
|
@@ -1,3 +1,11 @@
|
|
|
1
|
+
# To use this code, make sure you
|
|
2
|
+
#
|
|
3
|
+
# import json
|
|
4
|
+
#
|
|
5
|
+
# and then, to convert JSON from a string, do
|
|
6
|
+
#
|
|
7
|
+
# result = object_detection_markup_from_dict(json.loads(json_string))
|
|
8
|
+
|
|
1
9
|
from enum import Enum
|
|
2
10
|
from typing import Optional, Any, List, TypeVar, Type, Callable, cast
|
|
3
11
|
from uuid import UUID
|
|
@@ -32,7 +40,7 @@ def from_bool(x: Any) -> bool:
|
|
|
32
40
|
|
|
33
41
|
|
|
34
42
|
def to_float(x: Any) -> float:
|
|
35
|
-
assert isinstance(x,
|
|
43
|
+
assert isinstance(x, float)
|
|
36
44
|
return x
|
|
37
45
|
|
|
38
46
|
|
|
@@ -104,14 +112,12 @@ class Annotation:
|
|
|
104
112
|
|
|
105
113
|
def to_dict(self) -> dict:
|
|
106
114
|
result: dict = {}
|
|
107
|
-
|
|
108
|
-
result["angle"] = from_union([to_float, from_none], self.angle)
|
|
115
|
+
result["angle"] = from_union([to_float, from_none], self.angle)
|
|
109
116
|
result["annotation_type"] = to_enum(AnnotationType, self.annotation_type)
|
|
110
117
|
result["average_width"] = to_float(self.average_width)
|
|
111
118
|
result["bottom_right_x"] = to_float(self.bottom_right_x)
|
|
112
119
|
result["bottom_right_y"] = to_float(self.bottom_right_y)
|
|
113
|
-
|
|
114
|
-
result["full_orientation"] = from_union([from_bool, from_none], self.full_orientation)
|
|
120
|
+
result["full_orientation"] = from_union([from_bool, from_none], self.full_orientation)
|
|
115
121
|
result["id"] = str(self.id)
|
|
116
122
|
result["label_id"] = str(self.label_id)
|
|
117
123
|
result["top_left_x"] = to_float(self.top_left_x)
|
denkproto/json/ocr_markup.py
CHANGED
|
@@ -1,3 +1,11 @@
|
|
|
1
|
+
# To use this code, make sure you
|
|
2
|
+
#
|
|
3
|
+
# import json
|
|
4
|
+
#
|
|
5
|
+
# and then, to convert JSON from a string, do
|
|
6
|
+
#
|
|
7
|
+
# result = ocr_markup_from_dict(json.loads(json_string))
|
|
8
|
+
|
|
1
9
|
from typing import Any, List, Optional, TypeVar, Callable, Type, cast
|
|
2
10
|
from uuid import UUID
|
|
3
11
|
|
|
@@ -11,7 +19,7 @@ def from_float(x: Any) -> float:
|
|
|
11
19
|
|
|
12
20
|
|
|
13
21
|
def to_float(x: Any) -> float:
|
|
14
|
-
assert isinstance(x,
|
|
22
|
+
assert isinstance(x, float)
|
|
15
23
|
return x
|
|
16
24
|
|
|
17
25
|
|
|
@@ -103,13 +111,12 @@ class Point:
|
|
|
103
111
|
|
|
104
112
|
class OcrMarkupSchema:
|
|
105
113
|
"""A single closed loop (ring) of a polygon, defining either an outer boundary or a hole."""
|
|
106
|
-
|
|
107
|
-
hierarchy: int
|
|
108
114
|
"""Nesting level: 0=outer, 1=hole in level 0, 2=poly in level 1 hole, etc. Even levels are
|
|
109
115
|
filled areas, odd levels are holes.
|
|
110
116
|
"""
|
|
111
|
-
|
|
117
|
+
hierarchy: int
|
|
112
118
|
"""Vertices of the ring."""
|
|
119
|
+
points: List[Point]
|
|
113
120
|
|
|
114
121
|
def __init__(self, hierarchy: int, points: List[Point]) -> None:
|
|
115
122
|
self.hierarchy = hierarchy
|
|
@@ -131,11 +138,10 @@ class OcrMarkupSchema:
|
|
|
131
138
|
|
|
132
139
|
class Polygon:
|
|
133
140
|
"""A polygon defined by one or more rings, allowing for holes and nested structures."""
|
|
134
|
-
|
|
135
|
-
rings: List[OcrMarkupSchema]
|
|
136
141
|
"""Array of polygon rings. The hierarchy field within each ring determines nesting and
|
|
137
142
|
fill/hole status.
|
|
138
143
|
"""
|
|
144
|
+
rings: List[OcrMarkupSchema]
|
|
139
145
|
|
|
140
146
|
def __init__(self, rings: List[OcrMarkupSchema]) -> None:
|
|
141
147
|
self.rings = rings
|
|
@@ -156,9 +162,8 @@ class Annotation:
|
|
|
156
162
|
bounding_box: Optional[BoundingBox]
|
|
157
163
|
id: UUID
|
|
158
164
|
label_id: UUID
|
|
159
|
-
polygon: Optional[Polygon]
|
|
160
165
|
"""A polygon defined by one or more rings, allowing for holes and nested structures."""
|
|
161
|
-
|
|
166
|
+
polygon: Optional[Polygon]
|
|
162
167
|
text: str
|
|
163
168
|
|
|
164
169
|
def __init__(self, bounding_box: Optional[BoundingBox], id: UUID, label_id: UUID, polygon: Optional[Polygon], text: str) -> None:
|
|
@@ -180,12 +185,10 @@ class Annotation:
|
|
|
180
185
|
|
|
181
186
|
def to_dict(self) -> dict:
|
|
182
187
|
result: dict = {}
|
|
183
|
-
|
|
184
|
-
result["bounding_box"] = from_union([lambda x: to_class(BoundingBox, x), from_none], self.bounding_box)
|
|
188
|
+
result["bounding_box"] = from_union([lambda x: to_class(BoundingBox, x), from_none], self.bounding_box)
|
|
185
189
|
result["id"] = str(self.id)
|
|
186
190
|
result["label_id"] = str(self.label_id)
|
|
187
|
-
|
|
188
|
-
result["polygon"] = from_union([lambda x: to_class(Polygon, x), from_none], self.polygon)
|
|
191
|
+
result["polygon"] = from_union([lambda x: to_class(Polygon, x), from_none], self.polygon)
|
|
189
192
|
result["text"] = from_str(self.text)
|
|
190
193
|
return result
|
|
191
194
|
|
|
@@ -1,3 +1,11 @@
|
|
|
1
|
+
# To use this code, make sure you
|
|
2
|
+
#
|
|
3
|
+
# import json
|
|
4
|
+
#
|
|
5
|
+
# and then, to convert JSON from a string, do
|
|
6
|
+
#
|
|
7
|
+
# result = segmentation_markup_from_dict(json.loads(json_string))
|
|
8
|
+
|
|
1
9
|
from enum import Enum
|
|
2
10
|
from typing import Any, List, Optional, TypeVar, Callable, Type, cast
|
|
3
11
|
from uuid import UUID
|
|
@@ -13,7 +21,7 @@ def from_float(x: Any) -> float:
|
|
|
13
21
|
|
|
14
22
|
|
|
15
23
|
def to_float(x: Any) -> float:
|
|
16
|
-
assert isinstance(x,
|
|
24
|
+
assert isinstance(x, float)
|
|
17
25
|
return x
|
|
18
26
|
|
|
19
27
|
|
|
@@ -283,13 +291,12 @@ class RingPoint:
|
|
|
283
291
|
|
|
284
292
|
class SegmentationMarkupSchema:
|
|
285
293
|
"""A single closed loop (ring) of a polygon, defining either an outer boundary or a hole."""
|
|
286
|
-
|
|
287
|
-
hierarchy: int
|
|
288
294
|
"""Nesting level: 0=outer, 1=hole in level 0, 2=poly in level 1 hole, etc. Even levels are
|
|
289
295
|
filled areas, odd levels are holes.
|
|
290
296
|
"""
|
|
291
|
-
|
|
297
|
+
hierarchy: int
|
|
292
298
|
"""Vertices of the ring."""
|
|
299
|
+
points: List[RingPoint]
|
|
293
300
|
|
|
294
301
|
def __init__(self, hierarchy: int, points: List[RingPoint]) -> None:
|
|
295
302
|
self.hierarchy = hierarchy
|
|
@@ -311,11 +318,10 @@ class SegmentationMarkupSchema:
|
|
|
311
318
|
|
|
312
319
|
class PolygonAnnotation:
|
|
313
320
|
"""A polygon defined by one or more rings, allowing for holes and nested structures."""
|
|
314
|
-
|
|
315
|
-
rings: List[SegmentationMarkupSchema]
|
|
316
321
|
"""Array of polygon rings. The hierarchy field within each ring determines nesting and
|
|
317
322
|
fill/hole status.
|
|
318
323
|
"""
|
|
324
|
+
rings: List[SegmentationMarkupSchema]
|
|
319
325
|
|
|
320
326
|
def __init__(self, rings: List[SegmentationMarkupSchema]) -> None:
|
|
321
327
|
self.rings = rings
|
|
@@ -472,22 +478,15 @@ class Annotation:
|
|
|
472
478
|
result: dict = {}
|
|
473
479
|
result["annotation_type"] = to_enum(AnnotationType, self.annotation_type)
|
|
474
480
|
result["average_width"] = to_float(self.average_width)
|
|
475
|
-
|
|
476
|
-
result["circle_annotation"] = from_union([lambda x: to_class(CircleAnnotation, x), from_none], self.circle_annotation)
|
|
481
|
+
result["circle_annotation"] = from_union([lambda x: to_class(CircleAnnotation, x), from_none], self.circle_annotation)
|
|
477
482
|
result["id"] = str(self.id)
|
|
478
483
|
result["label_id"] = str(self.label_id)
|
|
479
|
-
|
|
480
|
-
|
|
481
|
-
|
|
482
|
-
|
|
483
|
-
|
|
484
|
-
|
|
485
|
-
if self.polygon_annotation is not None:
|
|
486
|
-
result["polygon_annotation"] = from_union([lambda x: to_class(PolygonAnnotation, x), from_none], self.polygon_annotation)
|
|
487
|
-
if self.rectangle_annotation is not None:
|
|
488
|
-
result["rectangle_annotation"] = from_union([lambda x: to_class(RectangleAnnotation, x), from_none], self.rectangle_annotation)
|
|
489
|
-
if self.sausage_annotation is not None:
|
|
490
|
-
result["sausage_annotation"] = from_union([lambda x: to_class(SausageAnnotation, x), from_none], self.sausage_annotation)
|
|
484
|
+
result["magicwand_annotation"] = from_union([lambda x: to_class(MagicwandAnnotation, x), from_none], self.magicwand_annotation)
|
|
485
|
+
result["pen_annotation"] = from_union([lambda x: to_class(PenAnnotation, x), from_none], self.pen_annotation)
|
|
486
|
+
result["pixel_annotation"] = from_union([lambda x: to_class(PixelAnnotation, x), from_none], self.pixel_annotation)
|
|
487
|
+
result["polygon_annotation"] = from_union([lambda x: to_class(PolygonAnnotation, x), from_none], self.polygon_annotation)
|
|
488
|
+
result["rectangle_annotation"] = from_union([lambda x: to_class(RectangleAnnotation, x), from_none], self.rectangle_annotation)
|
|
489
|
+
result["sausage_annotation"] = from_union([lambda x: to_class(SausageAnnotation, x), from_none], self.sausage_annotation)
|
|
491
490
|
return result
|
|
492
491
|
|
|
493
492
|
|
denkproto/modelfile_v2_pb2.py
CHANGED
|
@@ -22,7 +22,7 @@ _runtime_version.ValidateProtobufRuntimeVersion(
|
|
|
22
22
|
_sym_db = _symbol_database.Default()
|
|
23
23
|
|
|
24
24
|
|
|
25
|
-
import validate_pb2 as validate__pb2
|
|
25
|
+
import denkproto.validate_pb2 as validate__pb2
|
|
26
26
|
|
|
27
27
|
|
|
28
28
|
DESCRIPTOR = _descriptor_pool.Default().AddSerializedFile(b'\n\x12modelfile-v2.proto\x12\x0cmodelfile.v2\x1a\x0evalidate.proto\"\xb8$\n\tModelFile\x12\x39\n\x10protocol_version\x18\x01 \x01(\x0b\x32\x1f.modelfile.v2.ModelFile.Version\x12\x12\n\ncreated_at\x18\x02 \x01(\x03\x12=\n\tfile_info\x18\x03 \x01(\x0b\x32 .modelfile.v2.ModelFile.FileInfoB\x08\xfa\x42\x05\x8a\x01\x02\x10\x01\x12\x30\n\x07\x63ontent\x18\x04 \x01(\x0b\x32\x1f.modelfile.v2.ModelFile.Content\x12\x38\n\x0c\x63lass_labels\x18\x05 \x03(\x0b\x32\".modelfile.v2.ModelFile.ClassLabel\x12-\n\x06inputs\x18\x06 \x03(\x0b\x32\x1d.modelfile.v2.ModelFile.Input\x12/\n\x07outputs\x18\x07 \x03(\x0b\x32\x1e.modelfile.v2.ModelFile.Output\x12J\n\x12\x61\x64\x64itional_content\x18\x08 \x03(\x0b\x32..modelfile.v2.ModelFile.AdditionalContentEntry\x1a\x36\n\x07Version\x12\r\n\x05major\x18\x01 \x01(\x04\x12\r\n\x05minor\x18\x02 \x01(\x04\x12\r\n\x05patch\x18\x03 \x01(\x04\x1a\xaa\x04\n\x07\x43ontent\x12\x14\n\x0c\x62yte_content\x18\x01 \x01(\x0c\x12\x13\n\x0bhash_sha256\x18\x02 \x01(\x0c\x12M\n\x12\x63ompression_method\x18\x03 \x01(\x0e\x32\x31.modelfile.v2.ModelFile.Content.CompressionMethod\x12K\n\x11\x65ncryption_method\x18\x04 \x01(\x0e\x32\x30.modelfile.v2.ModelFile.Content.EncryptionMethod\x12@\n\tkey_slots\x18\x05 \x03(\x0b\x32-.modelfile.v2.ModelFile.Content.KeySlotsEntry\x1ai\n\x07KeySlot\x12\x13\n\x0bwrapped_key\x18\x01 \x01(\x0c\x12I\n\x0fwrapping_method\x18\x02 \x01(\x0e\x32\x30.modelfile.v2.ModelFile.Content.EncryptionMethod\x1aX\n\rKeySlotsEntry\x12\x0b\n\x03key\x18\x01 \x01(\t\x12\x36\n\x05value\x18\x02 \x01(\x0b\x32\'.modelfile.v2.ModelFile.Content.KeySlot:\x02\x38\x01\" \n\x11\x43ompressionMethod\x12\x0b\n\x07\x43M_NONE\x10\x00\"/\n\x10\x45ncryptionMethod\x12\x0b\n\x07\x45M_NONE\x10\x00\x12\x0e\n\nEM_AES_GCM\x10\x01\x1aU\n\nClassLabel\x12\x16\n\x0e\x63lass_label_id\x18\x01 \x01(\t\x12\x0c\n\x04name\x18\x02 \x01(\t\x12\x12\n\nshort_name\x18\x03 \x01(\t\x12\r\n\x05\x63olor\x18\x04 \x01(\t\x1a<\n\tImageSize\x12\r\n\x05width\x18\x01 \x01(\x04\x12\x0e\n\x06height\x18\x02 \x01(\x04\x12\x10\n\x08\x63hannels\x18\x03 \x01(\x04\x1aJ\n\x0eRegionFromEdge\x12\x0c\n\x04left\x18\x01 \x01(\x01\x12\r\n\x05right\x18\x02 \x01(\x01\x12\x0b\n\x03top\x18\x03 \x01(\x01\x12\x0e\n\x06\x62ottom\x18\x04 \x01(\x01\x1a\xe2\x05\n\x05Input\x12\x46\n\x0cimage_format\x18\x01 \x01(\x0b\x32..modelfile.v2.ModelFile.Input.ImageInputFormatH\x00\x1a\xfb\x04\n\x10ImageInputFormat\x12\x64\n\x10\x65xact_image_size\x18\x01 \x01(\x0b\x32H.modelfile.v2.ModelFile.Input.ImageInputFormat.ExactImageSizeRequirementH\x00\x12l\n\x14\x64ivisible_image_size\x18\x02 \x01(\x0b\x32L.modelfile.v2.ModelFile.Input.ImageInputFormat.DivisibleImageSizeRequirementH\x00\x12\x42\n\x12region_of_interest\x18\x03 \x01(\x0b\x32&.modelfile.v2.ModelFile.RegionFromEdge\x1aR\n\x19\x45xactImageSizeRequirement\x12\x35\n\nimage_size\x18\x01 \x01(\x0b\x32!.modelfile.v2.ModelFile.ImageSize\x1a\xdf\x01\n\x1d\x44ivisibleImageSizeRequirement\x12>\n\x13image_size_divisors\x18\x01 \x01(\x0b\x32!.modelfile.v2.ModelFile.ImageSize\x12=\n\x12minimum_image_size\x18\x02 \x01(\x0b\x32!.modelfile.v2.ModelFile.ImageSize\x12?\n\x14suggested_image_size\x18\x03 \x01(\x0b\x32!.modelfile.v2.ModelFile.ImageSizeB\x19\n\x17image_size_requirementsB\x13\n\x11\x46ormatInformation\x1a\xcc\n\n\x06Output\x12_\n\x18image_classifiers_format\x18\x01 \x01(\x0b\x32;.modelfile.v2.ModelFile.Output.ImageClassifiersOutputFormatH\x00\x12_\n\x18segmentation_maps_format\x18\x02 \x01(\x0b\x32;.modelfile.v2.ModelFile.Output.SegmentationMapsOutputFormatH\x00\x12Y\n\x15\x62ounding_boxes_format\x18\x03 \x01(\x0b\x32\x38.modelfile.v2.ModelFile.Output.BoundingBoxesOutputFormatH\x00\x12p\n!bounding_box_segmentations_format\x18\x04 \x01(\x0b\x32\x43.modelfile.v2.ModelFile.Output.BoundingBoxSegmentationsOutputFormatH\x00\x12\x44\n\nocr_format\x18\x05 \x01(\x0b\x32..modelfile.v2.ModelFile.Output.OcrOutputFormatH\x00\x1a\x1e\n\x1cImageClassifiersOutputFormat\x1aU\n\x1cSegmentationMapsOutputFormat\x12\x35\n\nimage_size\x18\x01 \x01(\x0b\x32!.modelfile.v2.ModelFile.ImageSize\x1a\xe9\x01\n\x19\x42oundingBoxesOutputFormat\x12\x17\n\x0fnumber_of_boxes\x18\x01 \x01(\x04\x12\x0e\n\x06stride\x18\x02 \x01(\x04\x12\x11\n\tx1_offset\x18\x03 \x01(\x04\x12\x11\n\ty1_offset\x18\x04 \x01(\x04\x12\x11\n\tx2_offset\x18\x05 \x01(\x04\x12\x11\n\ty2_offset\x18\x06 \x01(\x04\x12\x19\n\x11\x63onfidence_offset\x18\x07 \x01(\x04\x12 \n\x18\x63lass_label_index_offset\x18\x08 \x01(\x04\x12\x1a\n\x12\x62\x61tch_index_offset\x18\t \x01(\x04\x1a\x7f\n$BoundingBoxSegmentationsOutputFormat\x12\x35\n\nimage_size\x18\x01 \x01(\x0b\x32!.modelfile.v2.ModelFile.ImageSize\x12 \n\x18relative_to_bounding_box\x18\x02 \x01(\x08\x1a\xf3\x02\n\x0fOcrOutputFormat\x12\x1c\n\x14number_of_characters\x18\x01 \x01(\x04\x12L\n\ncharacters\x18\x02 \x03(\x0b\x32\x38.modelfile.v2.ModelFile.Output.OcrOutputFormat.Character\x1a\xf3\x01\n\tCharacter\x12\x1b\n\x13utf8_representation\x18\x01 \x01(\x0c\x12^\n\x0e\x63haracter_type\x18\x02 \x01(\x0e\x32\x46.modelfile.v2.ModelFile.Output.OcrOutputFormat.Character.CharacterType\x12\x0e\n\x06ignore\x18\x03 \x01(\x08\"Y\n\rCharacterType\x12\x0e\n\nCT_REGULAR\x10\x00\x12\x14\n\x10\x43T_START_OF_TEXT\x10\x01\x12\x12\n\x0e\x43T_END_OF_TEXT\x10\x02\x12\x0e\n\nCT_PADDING\x10\x03\x42\x13\n\x11\x46ormatInformation\x1a\xaf\t\n\x08\x46ileInfo\x12<\n\tfile_type\x18\x01 \x01(\x0e\x32).modelfile.v2.ModelFile.FileInfo.FileType\x12\x14\n\x0cnetwork_name\x18\x02 \x01(\t\x12\x12\n\nnetwork_id\x18\x03 \x01(\t\x12\x1d\n\x15network_experiment_id\x18\x04 \x01(\t\x12\x1b\n\x13network_snapshot_id\x18\x05 \x01(\t\x12\x42\n\x0cnetwork_type\x18\x06 \x01(\x0e\x32,.modelfile.v2.ModelFile.FileInfo.NetworkType\x12\x16\n\x0enetwork_flavor\x18\x07 \x01(\t\x12\x38\n\x0fnetwork_version\x18\x08 \x01(\x0b\x32\x1f.modelfile.v2.ModelFile.Version\x12\x38\n\x0fruntime_version\x18\t \x01(\x0b\x32\x1f.modelfile.v2.ModelFile.Version\x12=\n\tprecision\x18\n \x01(\x0e\x32*.modelfile.v2.ModelFile.FileInfo.Precision\x12\x44\n\x1bminimum_libdenkflow_version\x18\x0b \x01(\x0b\x32\x1f.modelfile.v2.ModelFile.Version\x12H\n\x0fhardware_target\x18\x0c \x01(\x0e\x32/.modelfile.v2.ModelFile.FileInfo.HardwareTarget\"?\n\x08\x46ileType\x12\x0c\n\x08\x46T_MODEL\x10\x00\x12\x10\n\x0c\x46T_ZXING_KEY\x10\x01\x12\x13\n\x0f\x46T_VIZIOTIX_KEY\x10\x02\"\xc0\x01\n\x0bNetworkType\x12\x0e\n\nNT_UNKNOWN\x10\x00\x12\x15\n\x11NT_CLASSIFICATION\x10\x01\x12\x13\n\x0fNT_SEGMENTATION\x10\x02\x12\x1c\n\x18NT_INSTANCE_SEGMENTATION\x10\x03\x12\x17\n\x13NT_OBJECT_DETECTION\x10\x04\x12\x18\n\x14NT_ANOMALY_DETECTION\x10\x05\x12$\n NT_OPTICAL_CHARACTER_RECOGNITION\x10\x06\"\xa8\x02\n\tPrecision\x12\x0f\n\x0bP_UNDEFINED\x10\x00\x12\x15\n\x11P_MIXED_PRECISION\x10\x01\x12\t\n\x05P_FP8\x10\x02\x12\n\n\x06P_FP16\x10\x03\x12\n\n\x06P_FP32\x10\x04\x12\n\n\x06P_FP64\x10\x05\x12\t\n\x05P_BF8\x10\x06\x12\n\n\x06P_BF16\x10\x07\x12\n\n\x06P_BF32\x10\x08\x12\n\n\x06P_BF64\x10\t\x12\n\n\x06P_INT8\x10\n\x12\x0b\n\x07P_INT16\x10\x0b\x12\x0b\n\x07P_INT32\x10\x0c\x12\x0b\n\x07P_INT64\x10\r\x12\x0b\n\x07P_UINT8\x10\x0e\x12\x0c\n\x08P_UINT16\x10\x0f\x12\x0c\n\x08P_UINT32\x10\x10\x12\x0c\n\x08P_UINT64\x10\x11\x12\r\n\tP_2_STATE\x10\x12\x12\r\n\tP_3_STATE\x10\x13\x12\r\n\tP_4_STATE\x10\x14\"1\n\x0eHardwareTarget\x12\x0e\n\nHT_DEFAULT\x10\x00\x12\x0f\n\x0bHT_TENSORRT\x10\x01\x1aY\n\x16\x41\x64\x64itionalContentEntry\x12\x0b\n\x03key\x18\x01 \x01(\t\x12.\n\x05value\x18\x02 \x01(\x0b\x32\x1f.modelfile.v2.ModelFile.Content:\x02\x38\x01\x42IZ-github.com/DENKweit/denkproto-go/modelfile/v2\xaa\x02\x17\x44\x45NK.Proto.Modelfile.V2b\x06proto3')
|
|
@@ -4,18 +4,18 @@ denkproto/DENKbuffer_pb2_grpc.py,sha256=-CPJPM4FOqwvwV8-f1iJlD18UD9juVIIHfdWUecu
|
|
|
4
4
|
denkproto/ImageAnalysis_ProtobufMessages_pb2.py,sha256=iEY0j9ySGUThnqTdYD4uAVr9P3GiC5R02iK53zEOXUQ,21015
|
|
5
5
|
denkproto/ImageAnalysis_ProtobufMessages_pb2.pyi,sha256=5LFtxrmYpJHizDDNGFTkL7-NQ_TkwqCSdq7vcv3lg-c,36243
|
|
6
6
|
denkproto/ImageAnalysis_ProtobufMessages_pb2_grpc.py,sha256=l3agtDjgu4jay6P9TRnHhyhJ-7UdoII27ywhw3k84oo,911
|
|
7
|
-
denkproto/__about__.py,sha256=
|
|
7
|
+
denkproto/__about__.py,sha256=eGMX1UwE3pB5G1WzwpHw2yAVpnoW_EE4qggDeo15Quw,23
|
|
8
8
|
denkproto/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
9
9
|
denkproto/denkcache_pb2.py,sha256=G3EEZY-IBVJpThkkXEmhoG7Y3aSLvraKckqTwsXCbUI,6414
|
|
10
10
|
denkproto/denkcache_pb2.pyi,sha256=qOzFOkddUapSJZz5d_mqcfHvWDAmM-70m_7FeM7n5fI,5595
|
|
11
|
-
denkproto/denkcache_pb2_grpc.py,sha256=
|
|
12
|
-
denkproto/inference_graph_pb2.py,sha256=
|
|
13
|
-
denkproto/inference_graph_pb2.pyi,sha256=
|
|
11
|
+
denkproto/denkcache_pb2_grpc.py,sha256=N1y4ZQ58UPaUlOZIpznzAbJJcs9G_n-FmzFoPPeu8UA,15610
|
|
12
|
+
denkproto/inference_graph_pb2.py,sha256=BPd_AoxPDmzq9JDJh1manXSMKgy8Dicwv9ogMNX5ULg,21484
|
|
13
|
+
denkproto/inference_graph_pb2.pyi,sha256=pUTospFsX-8R10hNTrnPUOjjjsZFQdDisV36vrIpQhk,12928
|
|
14
14
|
denkproto/inference_graph_pb2_grpc.py,sha256=aXPf0w7pIfspkKUKGCr--OtJMOaTfE8IbeuBm10g1Xg,896
|
|
15
15
|
denkproto/modelfile_v1_pb2.py,sha256=ulF24nSIspn46DnQKlvR5Po3w-vFCnawuuverAVi3cY,6573
|
|
16
16
|
denkproto/modelfile_v1_pb2.pyi,sha256=gjTbWvg48wqGhyJb5CT0pw3yUZGhO_lSZgL7Ia2aPbY,10685
|
|
17
17
|
denkproto/modelfile_v1_pb2_grpc.py,sha256=ov5B2o4JSYbAfcbbdZr55wEzfGlKI02H-tkvXGXqJVg,893
|
|
18
|
-
denkproto/modelfile_v2_pb2.py,sha256=
|
|
18
|
+
denkproto/modelfile_v2_pb2.py,sha256=B9nOFLp5kZM87RtzFidZLjmVBH8zOFpjHdSrY0MBOV8,13209
|
|
19
19
|
denkproto/modelfile_v2_pb2.pyi,sha256=9enN5CRvdGNUv-C5T0Lh5j9U1I0-TWar2mpYTW9NfnI,21309
|
|
20
20
|
denkproto/modelfile_v2_pb2_grpc.py,sha256=xiC5FeyZDWcucC3uRJ4kllDJmaRayvrzOKIhvg6o1Tc,893
|
|
21
21
|
denkproto/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
@@ -26,11 +26,11 @@ denkproto/validate_pb2.py,sha256=CuGAaHir9X9jniW3QsRKAESjYzoS2U6dLk_J55XmNqU,136
|
|
|
26
26
|
denkproto/validate_pb2.pyi,sha256=fWsdVOR3NJDioCKkCKfxfl4qaEb5xqXXU_WlEbdQx6E,23077
|
|
27
27
|
denkproto/validate_pb2_grpc.py,sha256=XvjuWEgJFJtH1E7HWm7SKpV10PMpOSbonKa2VPHpYy8,889
|
|
28
28
|
denkproto/json/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
29
|
-
denkproto/json/classification_markup.py,sha256=
|
|
29
|
+
denkproto/json/classification_markup.py,sha256=xN6OY67BuW0dx2GiFjTf8lG-KTbPVAJq-dWcrw9HJIU,2631
|
|
30
30
|
denkproto/json/inference_graph_models_generated.py,sha256=lX5L5kU8dVxx3R9USQIiqSqMPY12OIWmHkjK5yX_4W4,5960
|
|
31
|
-
denkproto/json/object_detection_markup.py,sha256=
|
|
32
|
-
denkproto/json/ocr_markup.py,sha256=
|
|
33
|
-
denkproto/json/segmentation_markup.py,sha256=
|
|
34
|
-
denkproto-1.0.
|
|
35
|
-
denkproto-1.0.
|
|
36
|
-
denkproto-1.0.
|
|
31
|
+
denkproto/json/object_detection_markup.py,sha256=FSpAvn-GTgVAdzV7RtG-GVCHlwyuRqDdH_18mdyyIl0,4987
|
|
32
|
+
denkproto/json/ocr_markup.py,sha256=zVmB3SGT3NFwYEF0WowZmHo7m57TeN5LJ54rzNtPTKg,7138
|
|
33
|
+
denkproto/json/segmentation_markup.py,sha256=48XvxKI9NkxcIfYv3tkrS8eIbYif4wotj3I8ih3CHQ8,19716
|
|
34
|
+
denkproto-1.0.69.dist-info/METADATA,sha256=uc57h3ZKuwWRdTFDFuIVl0ydUj1P3eUMW03kYpm6P9o,110
|
|
35
|
+
denkproto-1.0.69.dist-info/WHEEL,sha256=1yFddiXMmvYK7QYTqtRNtX66WJ0Mz8PYEiEUoOUUxRY,87
|
|
36
|
+
denkproto-1.0.69.dist-info/RECORD,,
|
|
File without changes
|