denkproto 1.0.67__py3-none-any.whl → 1.0.69__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of denkproto might be problematic. Click here for more details.

denkproto/__about__.py CHANGED
@@ -1 +1 @@
1
- __version__ = "1.0.67"
1
+ __version__ = "1.0.69"
@@ -3,7 +3,7 @@
3
3
  import grpc
4
4
  import warnings
5
5
 
6
- from . import denkcache_pb2 as denkcache__pb2
6
+ import denkproto.denkcache_pb2 as denkcache__pb2
7
7
 
8
8
  GRPC_GENERATED_VERSION = '1.68.0'
9
9
  GRPC_VERSION = grpc.__version__
@@ -22,11 +22,11 @@ _runtime_version.ValidateProtobufRuntimeVersion(
22
22
  _sym_db = _symbol_database.Default()
23
23
 
24
24
 
25
- import modelfile_v2_pb2 as modelfile__v2__pb2
26
- import validate_pb2 as validate__pb2
25
+ import denkproto.modelfile_v2_pb2 as modelfile__v2__pb2
26
+ import denkproto.validate_pb2 as validate__pb2
27
27
 
28
28
 
29
- DESCRIPTOR = _descriptor_pool.Default().AddSerializedFile(b'\n\x15inference_graph.proto\x12\x0finference_graph\x1a\x12modelfile-v2.proto\x1a\x0evalidate.proto\"\xa5\x01\n\x0bModelSource\x12-\n\nfrom_proto\x18\x01 \x01(\x0b\x32\x17.modelfile.v2.ModelFileH\x00\x12#\n\x0f\x66rom_network_id\x18\x02 \x01(\tB\x08\xfa\x42\x05r\x03\xb0\x01\x01H\x00\x12.\n\x1a\x66rom_network_experiment_id\x18\x03 \x01(\tB\x08\xfa\x42\x05r\x03\xb0\x01\x01H\x00\x42\x12\n\x0bsource_type\x12\x03\xf8\x42\x01\"s\n\x0bSessionInfo\x12H\n\x12\x65xecution_provider\x18\x01 \x01(\x0e\x32\".inference_graph.ExecutionProviderB\x08\xfa\x42\x05\x82\x01\x02\x10\x01\x12\x1a\n\tdevice_id\x18\x02 \x01(\x05\x42\x07\xfa\x42\x04\x1a\x02(\x00\"\xb3\x03\n\x0f\x43onstTensorNode\x12\x15\n\x04name\x18\x01 \x01(\tB\x07\xfa\x42\x04r\x02\x10\x01\x12\r\n\x05shape\x18\x02 \x03(\r\x12\x43\n\x0buint64_data\x18\x03 \x01(\x0b\x32,.inference_graph.ConstTensorNode.Uint64ArrayH\x00\x12\x41\n\nint64_data\x18\x04 \x01(\x0b\x32+.inference_graph.ConstTensorNode.Int64ArrayH\x00\x12\x45\n\x0c\x66loat64_data\x18\x05 \x01(\x0b\x32-.inference_graph.ConstTensorNode.Float64ArrayH\x00\x12\x42\n\x10output_port_name\x18\x06 \x01(\tB(\xfa\x42%r#\x10\x01\x32\x1f^[a-zA-Z0-9_-]+/[a-zA-Z0-9_-]+$\x1a\x1b\n\x0bUint64Array\x12\x0c\n\x04\x64\x61ta\x18\x01 \x03(\x04\x1a\x1a\n\nInt64Array\x12\x0c\n\x04\x64\x61ta\x18\x01 \x03(\x12\x1a\x1c\n\x0c\x46loat64Array\x12\x0c\n\x04\x64\x61ta\x18\x01 \x03(\x01\x42\x10\n\tdata_type\x12\x03\xf8\x42\x01\"\xd3\x02\n\x0fImageResizeNode\x12\x15\n\x04name\x18\x01 \x01(\tB\x07\xfa\x42\x04r\x02\x10\x01\x12L\n\ninput_size\x18\x02 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12M\n\x0binput_image\x18\x03 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12\x42\n\x10output_port_name\x18\x04 \x01(\tB(\xfa\x42%r#\x10\x01\x32\x1f^[a-zA-Z0-9_-]+/[a-zA-Z0-9_-]+$\x12\x37\n\x0csession_info\x18\x05 \x01(\x0b\x32\x1c.inference_graph.SessionInfoH\x00\x88\x01\x01\x42\x0f\n\r_session_info\"\xcd\x07\n\x10ImagePatchesNode\x12\x15\n\x04name\x18\x01 \x01(\tB\x07\xfa\x42\x04r\x02\x10\x01\x12M\n\x0binput_image\x18\x02 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12V\n\x14input_bounding_boxes\x18\x03 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12W\n\x11input_target_size\x18\x04 \x01(\x0b\x32\x32.inference_graph.ImagePatchesNode.TargetSizeSourceB\x08\xfa\x42\x05\x8a\x01\x02\x10\x01\x12\x42\n\x10output_port_name\x18\x05 \x01(\tB(\xfa\x42%r#\x10\x01\x32\x1f^[a-zA-Z0-9_-]+/[a-zA-Z0-9_-]+$\x12k\n\x18input_maximum_iterations\x18\x06 \x01(\x0b\x32:.inference_graph.ImagePatchesNode.MaxIterationsCountSourceB\x08\xfa\x42\x05\x8a\x01\x02\x10\x01H\x00\x88\x01\x01\x12\x37\n\x0csession_info\x18\x07 \x01(\x0b\x32\x1c.inference_graph.SessionInfoH\x01\x88\x01\x01\x1a\xf8\x01\n\x10TargetSizeSource\x12I\n\x05topic\x18\x01 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$H\x00\x12L\n\x04size\x18\x02 \x01(\x0b\x32<.inference_graph.ImagePatchesNode.TargetSizeSource.ImageSizeH\x00\x1a<\n\tImageSize\x12\x17\n\x06height\x18\x01 \x01(\x04\x42\x07\xfa\x42\x04\x32\x02(\x00\x12\x16\n\x05width\x18\x02 \x01(\x04\x42\x07\xfa\x42\x04\x32\x02(\x00\x42\r\n\x06source\x12\x03\xf8\x42\x01\x1a\x8e\x01\n\x18MaxIterationsCountSource\x12I\n\x05topic\x18\x01 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$H\x00\x12\x18\n\x05value\x18\x02 \x01(\x04\x42\x07\xfa\x42\x04\x32\x02(\x00H\x00\x42\r\n\x06source\x12\x03\xf8\x42\x01\x42\x1b\n\x19_input_maximum_iterationsB\x0f\n\r_session_info\"\x85\x01\n\x11VirtualCameraNode\x12\x15\n\x04name\x18\x01 \x01(\tB\x07\xfa\x42\x04r\x02\x10\x01\x12\x15\n\x04path\x18\x02 \x01(\tB\x07\xfa\x42\x04r\x02\x10\x01\x12\x42\n\x10output_port_name\x18\x03 \x01(\tB(\xfa\x42%r#\x10\x01\x32\x1f^[a-zA-Z0-9_-]+/[a-zA-Z0-9_-]+$\"\xc2\x02\n\x17ImageClassificationNode\x12\x0c\n\x04name\x18\x01 \x01(\t\x12M\n\x0binput_image\x18\x02 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12<\n\x0cmodel_source\x18\x03 \x01(\x0b\x32\x1c.inference_graph.ModelSourceB\x08\xfa\x42\x05\x8a\x01\x02\x10\x01\x12\x42\n\x10output_port_name\x18\x04 \x01(\tB(\xfa\x42%r#\x10\x01\x32\x1f^[a-zA-Z0-9_-]+/[a-zA-Z0-9_-]+$\x12\x37\n\x0csession_info\x18\x05 \x01(\x0b\x32\x1c.inference_graph.SessionInfoH\x00\x88\x01\x01\x42\x0f\n\r_session_info\"\xe1\x02\n\x18ImageObjectDetectionNode\x12\x0c\n\x04name\x18\x01 \x01(\t\x12M\n\x0binput_image\x18\x02 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12<\n\x0cmodel_source\x18\x03 \x01(\x0b\x32\x1c.inference_graph.ModelSourceB\x08\xfa\x42\x05\x8a\x01\x02\x10\x01\x12\x1c\n\x14scale_bounding_boxes\x18\x04 \x01(\x08\x12\x42\n\x10output_port_name\x18\x05 \x01(\tB(\xfa\x42%r#\x10\x01\x32\x1f^[a-zA-Z0-9_-]+/[a-zA-Z0-9_-]+$\x12\x37\n\x0csession_info\x18\x06 \x01(\x0b\x32\x1c.inference_graph.SessionInfoH\x00\x88\x01\x01\x42\x0f\n\r_session_info\"\xb7\x02\n\x0cImageOcrNode\x12\x0c\n\x04name\x18\x01 \x01(\t\x12M\n\x0binput_image\x18\x02 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12<\n\x0cmodel_source\x18\x03 \x01(\x0b\x32\x1c.inference_graph.ModelSourceB\x08\xfa\x42\x05\x8a\x01\x02\x10\x01\x12\x42\n\x10output_port_name\x18\x04 \x01(\tB(\xfa\x42%r#\x10\x01\x32\x1f^[a-zA-Z0-9_-]+/[a-zA-Z0-9_-]+$\x12\x37\n\x0csession_info\x18\x05 \x01(\x0b\x32\x1c.inference_graph.SessionInfoH\x00\x88\x01\x01\x42\x0f\n\r_session_info\"\x8c\x05\n\x15\x42oundingBoxFilterNode\x12\x15\n\x04name\x18\x01 \x01(\tB\x07\xfa\x42\x04r\x02\x10\x01\x12V\n\x14input_bounding_boxes\x18\x02 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12\x42\n\x10output_port_name\x18\x03 \x01(\tB(\xfa\x42%r#\x10\x01\x32\x1f^[a-zA-Z0-9_-]+/[a-zA-Z0-9_-]+$\x12Z\n\x15input_score_threshold\x18\x04 \x01(\x0b\x32\x36.inference_graph.BoundingBoxFilterNode.ThresholdSourceH\x00\x88\x01\x01\x12X\n\x13input_iou_threshold\x18\x05 \x01(\x0b\x32\x36.inference_graph.BoundingBoxFilterNode.ThresholdSourceH\x01\x88\x01\x01\x12\x37\n\x0csession_info\x18\x06 \x01(\x0b\x32\x1c.inference_graph.SessionInfoH\x02\x88\x01\x01\x1a\x8d\x01\n\x0fThresholdSource\x12I\n\x05topic\x18\x01 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$H\x00\x12 \n\x05value\x18\x02 \x01(\x02\x42\x0f\xfa\x42\x0c\n\n\x1d\x00\x00\x80?-\x00\x00\x00\x00H\x00\x42\r\n\x06source\x12\x03\xf8\x42\x01\x42\x18\n\x16_input_score_thresholdB\x16\n\x14_input_iou_thresholdB\x0f\n\r_session_info\"\xc0\x04\n\x04Node\x12=\n\x11\x63onst_tensor_node\x18\x01 \x01(\x0b\x32 .inference_graph.ConstTensorNodeH\x00\x12=\n\x11image_resize_node\x18\x02 \x01(\x0b\x32 .inference_graph.ImageResizeNodeH\x00\x12?\n\x12image_patches_node\x18\x03 \x01(\x0b\x32!.inference_graph.ImagePatchesNodeH\x00\x12\x41\n\x13virtual_camera_node\x18\x04 \x01(\x0b\x32\".inference_graph.VirtualCameraNodeH\x00\x12M\n\x19image_classification_node\x18\x05 \x01(\x0b\x32(.inference_graph.ImageClassificationNodeH\x00\x12P\n\x1bimage_object_detection_node\x18\x06 \x01(\x0b\x32).inference_graph.ImageObjectDetectionNodeH\x00\x12\x37\n\x0eimage_ocr_node\x18\x07 \x01(\x0b\x32\x1d.inference_graph.ImageOcrNodeH\x00\x12J\n\x18\x62ounding_box_filter_node\x18\x08 \x01(\x0b\x32&.inference_graph.BoundingBoxFilterNodeH\x00\x42\x10\n\tnode_type\x12\x03\xf8\x42\x01\"_\n\x05Graph\x12$\n\x05nodes\x18\x01 \x03(\x0b\x32\x15.inference_graph.Node\x12\x12\n\ncreated_at\x18\x02 \x01(\x03\x12\x1c\n\nlicense_id\x18\x03 \x01(\tB\x08\xfa\x42\x05r\x03\xb0\x01\x01*=\n\x11\x45xecutionProvider\x12\x07\n\x03\x43PU\x10\x00\x12\x08\n\x04\x43UDA\x10\x01\x12\x07\n\x03\x44ML\x10\x02\x12\x0c\n\x08TENSORRT\x10\x03\x42NZ0github.com/DENKweit/denkproto-go/inference_graph\xaa\x02\x19\x44\x45NK.Proto.InferenceGraphb\x06proto3')
29
+ DESCRIPTOR = _descriptor_pool.Default().AddSerializedFile(b'\n\x15inference_graph.proto\x12\x0finference_graph\x1a\x12modelfile-v2.proto\x1a\x0evalidate.proto\"\xa5\x01\n\x0bModelSource\x12-\n\nfrom_proto\x18\x01 \x01(\x0b\x32\x17.modelfile.v2.ModelFileH\x00\x12#\n\x0f\x66rom_network_id\x18\x02 \x01(\tB\x08\xfa\x42\x05r\x03\xb0\x01\x01H\x00\x12.\n\x1a\x66rom_network_experiment_id\x18\x03 \x01(\tB\x08\xfa\x42\x05r\x03\xb0\x01\x01H\x00\x42\x12\n\x0bsource_type\x12\x03\xf8\x42\x01\"s\n\x0bSessionInfo\x12H\n\x12\x65xecution_provider\x18\x01 \x01(\x0e\x32\".inference_graph.ExecutionProviderB\x08\xfa\x42\x05\x82\x01\x02\x10\x01\x12\x1a\n\tdevice_id\x18\x02 \x01(\x05\x42\x07\xfa\x42\x04\x1a\x02(\x00\"\xb3\x03\n\x0f\x43onstTensorNode\x12\x15\n\x04name\x18\x01 \x01(\tB\x07\xfa\x42\x04r\x02\x10\x01\x12\r\n\x05shape\x18\x02 \x03(\r\x12\x43\n\x0buint64_data\x18\x03 \x01(\x0b\x32,.inference_graph.ConstTensorNode.Uint64ArrayH\x00\x12\x41\n\nint64_data\x18\x04 \x01(\x0b\x32+.inference_graph.ConstTensorNode.Int64ArrayH\x00\x12\x45\n\x0c\x66loat64_data\x18\x05 \x01(\x0b\x32-.inference_graph.ConstTensorNode.Float64ArrayH\x00\x12\x42\n\x10output_port_name\x18\x06 \x01(\tB(\xfa\x42%r#\x10\x01\x32\x1f^[a-zA-Z0-9_-]+/[a-zA-Z0-9_-]+$\x1a\x1b\n\x0bUint64Array\x12\x0c\n\x04\x64\x61ta\x18\x01 \x03(\x04\x1a\x1a\n\nInt64Array\x12\x0c\n\x04\x64\x61ta\x18\x01 \x03(\x12\x1a\x1c\n\x0c\x46loat64Array\x12\x0c\n\x04\x64\x61ta\x18\x01 \x03(\x01\x42\x10\n\tdata_type\x12\x03\xf8\x42\x01\"\xd3\x02\n\x0fImageResizeNode\x12\x15\n\x04name\x18\x01 \x01(\tB\x07\xfa\x42\x04r\x02\x10\x01\x12L\n\ninput_size\x18\x02 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12M\n\x0binput_image\x18\x03 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12\x42\n\x10output_port_name\x18\x04 \x01(\tB(\xfa\x42%r#\x10\x01\x32\x1f^[a-zA-Z0-9_-]+/[a-zA-Z0-9_-]+$\x12\x37\n\x0csession_info\x18\x05 \x01(\x0b\x32\x1c.inference_graph.SessionInfoH\x00\x88\x01\x01\x42\x0f\n\r_session_info\"\xcd\x07\n\x10ImagePatchesNode\x12\x15\n\x04name\x18\x01 \x01(\tB\x07\xfa\x42\x04r\x02\x10\x01\x12M\n\x0binput_image\x18\x02 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12V\n\x14input_bounding_boxes\x18\x03 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12W\n\x11input_target_size\x18\x04 \x01(\x0b\x32\x32.inference_graph.ImagePatchesNode.TargetSizeSourceB\x08\xfa\x42\x05\x8a\x01\x02\x10\x01\x12\x42\n\x10output_port_name\x18\x05 \x01(\tB(\xfa\x42%r#\x10\x01\x32\x1f^[a-zA-Z0-9_-]+/[a-zA-Z0-9_-]+$\x12k\n\x18input_maximum_iterations\x18\x06 \x01(\x0b\x32:.inference_graph.ImagePatchesNode.MaxIterationsCountSourceB\x08\xfa\x42\x05\x8a\x01\x02\x10\x01H\x00\x88\x01\x01\x12\x37\n\x0csession_info\x18\x07 \x01(\x0b\x32\x1c.inference_graph.SessionInfoH\x01\x88\x01\x01\x1a\xf8\x01\n\x10TargetSizeSource\x12I\n\x05topic\x18\x01 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$H\x00\x12L\n\x04size\x18\x02 \x01(\x0b\x32<.inference_graph.ImagePatchesNode.TargetSizeSource.ImageSizeH\x00\x1a<\n\tImageSize\x12\x17\n\x06height\x18\x01 \x01(\x04\x42\x07\xfa\x42\x04\x32\x02(\x00\x12\x16\n\x05width\x18\x02 \x01(\x04\x42\x07\xfa\x42\x04\x32\x02(\x00\x42\r\n\x06source\x12\x03\xf8\x42\x01\x1a\x8e\x01\n\x18MaxIterationsCountSource\x12I\n\x05topic\x18\x01 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$H\x00\x12\x18\n\x05value\x18\x02 \x01(\x04\x42\x07\xfa\x42\x04\x32\x02(\x00H\x00\x42\r\n\x06source\x12\x03\xf8\x42\x01\x42\x1b\n\x19_input_maximum_iterationsB\x0f\n\r_session_info\"\x85\x01\n\x11VirtualCameraNode\x12\x15\n\x04name\x18\x01 \x01(\tB\x07\xfa\x42\x04r\x02\x10\x01\x12\x15\n\x04path\x18\x02 \x01(\tB\x07\xfa\x42\x04r\x02\x10\x01\x12\x42\n\x10output_port_name\x18\x03 \x01(\tB(\xfa\x42%r#\x10\x01\x32\x1f^[a-zA-Z0-9_-]+/[a-zA-Z0-9_-]+$\"\xc2\x02\n\x17ImageClassificationNode\x12\x0c\n\x04name\x18\x01 \x01(\t\x12M\n\x0binput_image\x18\x02 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12<\n\x0cmodel_source\x18\x03 \x01(\x0b\x32\x1c.inference_graph.ModelSourceB\x08\xfa\x42\x05\x8a\x01\x02\x10\x01\x12\x42\n\x10output_port_name\x18\x04 \x01(\tB(\xfa\x42%r#\x10\x01\x32\x1f^[a-zA-Z0-9_-]+/[a-zA-Z0-9_-]+$\x12\x37\n\x0csession_info\x18\x05 \x01(\x0b\x32\x1c.inference_graph.SessionInfoH\x00\x88\x01\x01\x42\x0f\n\r_session_info\"\xe1\x02\n\x18ImageObjectDetectionNode\x12\x0c\n\x04name\x18\x01 \x01(\t\x12M\n\x0binput_image\x18\x02 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12<\n\x0cmodel_source\x18\x03 \x01(\x0b\x32\x1c.inference_graph.ModelSourceB\x08\xfa\x42\x05\x8a\x01\x02\x10\x01\x12\x1c\n\x14scale_bounding_boxes\x18\x04 \x01(\x08\x12\x42\n\x10output_port_name\x18\x05 \x01(\tB(\xfa\x42%r#\x10\x01\x32\x1f^[a-zA-Z0-9_-]+/[a-zA-Z0-9_-]+$\x12\x37\n\x0csession_info\x18\x06 \x01(\x0b\x32\x1c.inference_graph.SessionInfoH\x00\x88\x01\x01\x42\x0f\n\r_session_info\"\xb7\x02\n\x0cImageOcrNode\x12\x0c\n\x04name\x18\x01 \x01(\t\x12M\n\x0binput_image\x18\x02 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12<\n\x0cmodel_source\x18\x03 \x01(\x0b\x32\x1c.inference_graph.ModelSourceB\x08\xfa\x42\x05\x8a\x01\x02\x10\x01\x12\x42\n\x10output_port_name\x18\x04 \x01(\tB(\xfa\x42%r#\x10\x01\x32\x1f^[a-zA-Z0-9_-]+/[a-zA-Z0-9_-]+$\x12\x37\n\x0csession_info\x18\x05 \x01(\x0b\x32\x1c.inference_graph.SessionInfoH\x00\x88\x01\x01\x42\x0f\n\r_session_info\"\x8c\x05\n\x15\x42oundingBoxFilterNode\x12\x15\n\x04name\x18\x01 \x01(\tB\x07\xfa\x42\x04r\x02\x10\x01\x12V\n\x14input_bounding_boxes\x18\x02 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12\x42\n\x10output_port_name\x18\x03 \x01(\tB(\xfa\x42%r#\x10\x01\x32\x1f^[a-zA-Z0-9_-]+/[a-zA-Z0-9_-]+$\x12Z\n\x15input_score_threshold\x18\x04 \x01(\x0b\x32\x36.inference_graph.BoundingBoxFilterNode.ThresholdSourceH\x00\x88\x01\x01\x12X\n\x13input_iou_threshold\x18\x05 \x01(\x0b\x32\x36.inference_graph.BoundingBoxFilterNode.ThresholdSourceH\x01\x88\x01\x01\x12\x37\n\x0csession_info\x18\x06 \x01(\x0b\x32\x1c.inference_graph.SessionInfoH\x02\x88\x01\x01\x1a\x8d\x01\n\x0fThresholdSource\x12I\n\x05topic\x18\x01 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$H\x00\x12 \n\x05value\x18\x02 \x01(\x02\x42\x0f\xfa\x42\x0c\n\n\x1d\x00\x00\x80?-\x00\x00\x00\x00H\x00\x42\r\n\x06source\x12\x03\xf8\x42\x01\x42\x18\n\x16_input_score_thresholdB\x16\n\x14_input_iou_thresholdB\x0f\n\r_session_info\"\xc0\x04\n\x04Node\x12=\n\x11\x63onst_tensor_node\x18\x01 \x01(\x0b\x32 .inference_graph.ConstTensorNodeH\x00\x12=\n\x11image_resize_node\x18\x02 \x01(\x0b\x32 .inference_graph.ImageResizeNodeH\x00\x12?\n\x12image_patches_node\x18\x03 \x01(\x0b\x32!.inference_graph.ImagePatchesNodeH\x00\x12\x41\n\x13virtual_camera_node\x18\x04 \x01(\x0b\x32\".inference_graph.VirtualCameraNodeH\x00\x12M\n\x19image_classification_node\x18\x05 \x01(\x0b\x32(.inference_graph.ImageClassificationNodeH\x00\x12P\n\x1bimage_object_detection_node\x18\x06 \x01(\x0b\x32).inference_graph.ImageObjectDetectionNodeH\x00\x12\x37\n\x0eimage_ocr_node\x18\x07 \x01(\x0b\x32\x1d.inference_graph.ImageOcrNodeH\x00\x12J\n\x18\x62ounding_box_filter_node\x18\x08 \x01(\x0b\x32&.inference_graph.BoundingBoxFilterNodeH\x00\x42\x10\n\tnode_type\x12\x03\xf8\x42\x01\"_\n\x05Graph\x12$\n\x05nodes\x18\x01 \x03(\x0b\x32\x15.inference_graph.Node\x12\x12\n\ncreated_at\x18\x02 \x01(\x03\x12\x1c\n\nlicense_id\x18\x03 \x01(\tB\x08\xfa\x42\x05r\x03\xb0\x01\x01*B\n\x11\x45xecutionProvider\x12\x07\n\x03\x43PU\x10\x00\x12\x08\n\x04\x43UDA\x10\x01\x12\x0c\n\x08\x44IRECTML\x10\x02\x12\x0c\n\x08TENSORRT\x10\x03\x42NZ0github.com/DENKweit/denkproto-go/inference_graph\xaa\x02\x19\x44\x45NK.Proto.InferenceGraphb\x06proto3')
30
30
 
31
31
  _globals = globals()
32
32
  _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals)
@@ -125,7 +125,7 @@ if not _descriptor._USE_C_DESCRIPTORS:
125
125
  _globals['_GRAPH'].fields_by_name['license_id']._loaded_options = None
126
126
  _globals['_GRAPH'].fields_by_name['license_id']._serialized_options = b'\372B\005r\003\260\001\001'
127
127
  _globals['_EXECUTIONPROVIDER']._serialized_start=4581
128
- _globals['_EXECUTIONPROVIDER']._serialized_end=4642
128
+ _globals['_EXECUTIONPROVIDER']._serialized_end=4647
129
129
  _globals['_MODELSOURCE']._serialized_start=79
130
130
  _globals['_MODELSOURCE']._serialized_end=244
131
131
  _globals['_SESSIONINFO']._serialized_start=246
@@ -12,11 +12,11 @@ class ExecutionProvider(int, metaclass=_enum_type_wrapper.EnumTypeWrapper):
12
12
  __slots__ = ()
13
13
  CPU: _ClassVar[ExecutionProvider]
14
14
  CUDA: _ClassVar[ExecutionProvider]
15
- DML: _ClassVar[ExecutionProvider]
15
+ DIRECTML: _ClassVar[ExecutionProvider]
16
16
  TENSORRT: _ClassVar[ExecutionProvider]
17
17
  CPU: ExecutionProvider
18
18
  CUDA: ExecutionProvider
19
- DML: ExecutionProvider
19
+ DIRECTML: ExecutionProvider
20
20
  TENSORRT: ExecutionProvider
21
21
 
22
22
  class ModelSource(_message.Message):
@@ -1,3 +1,11 @@
1
+ # To use this code, make sure you
2
+ #
3
+ # import json
4
+ #
5
+ # and then, to convert JSON from a string, do
6
+ #
7
+ # result = classification_markup_from_dict(json.loads(json_string))
8
+
1
9
  from uuid import UUID
2
10
  from typing import Any, List, TypeVar, Callable, Type, cast
3
11
 
@@ -11,7 +19,7 @@ def from_float(x: Any) -> float:
11
19
 
12
20
 
13
21
  def to_float(x: Any) -> float:
14
- assert isinstance(x, (int, float))
22
+ assert isinstance(x, float)
15
23
  return x
16
24
 
17
25
 
@@ -1,3 +1,11 @@
1
+ # To use this code, make sure you
2
+ #
3
+ # import json
4
+ #
5
+ # and then, to convert JSON from a string, do
6
+ #
7
+ # result = object_detection_markup_from_dict(json.loads(json_string))
8
+
1
9
  from enum import Enum
2
10
  from typing import Optional, Any, List, TypeVar, Type, Callable, cast
3
11
  from uuid import UUID
@@ -32,7 +40,7 @@ def from_bool(x: Any) -> bool:
32
40
 
33
41
 
34
42
  def to_float(x: Any) -> float:
35
- assert isinstance(x, (int, float))
43
+ assert isinstance(x, float)
36
44
  return x
37
45
 
38
46
 
@@ -104,14 +112,12 @@ class Annotation:
104
112
 
105
113
  def to_dict(self) -> dict:
106
114
  result: dict = {}
107
- if self.angle is not None:
108
- result["angle"] = from_union([to_float, from_none], self.angle)
115
+ result["angle"] = from_union([to_float, from_none], self.angle)
109
116
  result["annotation_type"] = to_enum(AnnotationType, self.annotation_type)
110
117
  result["average_width"] = to_float(self.average_width)
111
118
  result["bottom_right_x"] = to_float(self.bottom_right_x)
112
119
  result["bottom_right_y"] = to_float(self.bottom_right_y)
113
- if self.full_orientation is not None:
114
- result["full_orientation"] = from_union([from_bool, from_none], self.full_orientation)
120
+ result["full_orientation"] = from_union([from_bool, from_none], self.full_orientation)
115
121
  result["id"] = str(self.id)
116
122
  result["label_id"] = str(self.label_id)
117
123
  result["top_left_x"] = to_float(self.top_left_x)
@@ -1,3 +1,11 @@
1
+ # To use this code, make sure you
2
+ #
3
+ # import json
4
+ #
5
+ # and then, to convert JSON from a string, do
6
+ #
7
+ # result = ocr_markup_from_dict(json.loads(json_string))
8
+
1
9
  from typing import Any, List, Optional, TypeVar, Callable, Type, cast
2
10
  from uuid import UUID
3
11
 
@@ -11,7 +19,7 @@ def from_float(x: Any) -> float:
11
19
 
12
20
 
13
21
  def to_float(x: Any) -> float:
14
- assert isinstance(x, (int, float))
22
+ assert isinstance(x, float)
15
23
  return x
16
24
 
17
25
 
@@ -103,13 +111,12 @@ class Point:
103
111
 
104
112
  class OcrMarkupSchema:
105
113
  """A single closed loop (ring) of a polygon, defining either an outer boundary or a hole."""
106
-
107
- hierarchy: int
108
114
  """Nesting level: 0=outer, 1=hole in level 0, 2=poly in level 1 hole, etc. Even levels are
109
115
  filled areas, odd levels are holes.
110
116
  """
111
- points: List[Point]
117
+ hierarchy: int
112
118
  """Vertices of the ring."""
119
+ points: List[Point]
113
120
 
114
121
  def __init__(self, hierarchy: int, points: List[Point]) -> None:
115
122
  self.hierarchy = hierarchy
@@ -131,11 +138,10 @@ class OcrMarkupSchema:
131
138
 
132
139
  class Polygon:
133
140
  """A polygon defined by one or more rings, allowing for holes and nested structures."""
134
-
135
- rings: List[OcrMarkupSchema]
136
141
  """Array of polygon rings. The hierarchy field within each ring determines nesting and
137
142
  fill/hole status.
138
143
  """
144
+ rings: List[OcrMarkupSchema]
139
145
 
140
146
  def __init__(self, rings: List[OcrMarkupSchema]) -> None:
141
147
  self.rings = rings
@@ -156,9 +162,8 @@ class Annotation:
156
162
  bounding_box: Optional[BoundingBox]
157
163
  id: UUID
158
164
  label_id: UUID
159
- polygon: Optional[Polygon]
160
165
  """A polygon defined by one or more rings, allowing for holes and nested structures."""
161
-
166
+ polygon: Optional[Polygon]
162
167
  text: str
163
168
 
164
169
  def __init__(self, bounding_box: Optional[BoundingBox], id: UUID, label_id: UUID, polygon: Optional[Polygon], text: str) -> None:
@@ -180,12 +185,10 @@ class Annotation:
180
185
 
181
186
  def to_dict(self) -> dict:
182
187
  result: dict = {}
183
- if self.bounding_box is not None:
184
- result["bounding_box"] = from_union([lambda x: to_class(BoundingBox, x), from_none], self.bounding_box)
188
+ result["bounding_box"] = from_union([lambda x: to_class(BoundingBox, x), from_none], self.bounding_box)
185
189
  result["id"] = str(self.id)
186
190
  result["label_id"] = str(self.label_id)
187
- if self.polygon is not None:
188
- result["polygon"] = from_union([lambda x: to_class(Polygon, x), from_none], self.polygon)
191
+ result["polygon"] = from_union([lambda x: to_class(Polygon, x), from_none], self.polygon)
189
192
  result["text"] = from_str(self.text)
190
193
  return result
191
194
 
@@ -1,3 +1,11 @@
1
+ # To use this code, make sure you
2
+ #
3
+ # import json
4
+ #
5
+ # and then, to convert JSON from a string, do
6
+ #
7
+ # result = segmentation_markup_from_dict(json.loads(json_string))
8
+
1
9
  from enum import Enum
2
10
  from typing import Any, List, Optional, TypeVar, Callable, Type, cast
3
11
  from uuid import UUID
@@ -13,7 +21,7 @@ def from_float(x: Any) -> float:
13
21
 
14
22
 
15
23
  def to_float(x: Any) -> float:
16
- assert isinstance(x, (int, float))
24
+ assert isinstance(x, float)
17
25
  return x
18
26
 
19
27
 
@@ -283,13 +291,12 @@ class RingPoint:
283
291
 
284
292
  class SegmentationMarkupSchema:
285
293
  """A single closed loop (ring) of a polygon, defining either an outer boundary or a hole."""
286
-
287
- hierarchy: int
288
294
  """Nesting level: 0=outer, 1=hole in level 0, 2=poly in level 1 hole, etc. Even levels are
289
295
  filled areas, odd levels are holes.
290
296
  """
291
- points: List[RingPoint]
297
+ hierarchy: int
292
298
  """Vertices of the ring."""
299
+ points: List[RingPoint]
293
300
 
294
301
  def __init__(self, hierarchy: int, points: List[RingPoint]) -> None:
295
302
  self.hierarchy = hierarchy
@@ -311,11 +318,10 @@ class SegmentationMarkupSchema:
311
318
 
312
319
  class PolygonAnnotation:
313
320
  """A polygon defined by one or more rings, allowing for holes and nested structures."""
314
-
315
- rings: List[SegmentationMarkupSchema]
316
321
  """Array of polygon rings. The hierarchy field within each ring determines nesting and
317
322
  fill/hole status.
318
323
  """
324
+ rings: List[SegmentationMarkupSchema]
319
325
 
320
326
  def __init__(self, rings: List[SegmentationMarkupSchema]) -> None:
321
327
  self.rings = rings
@@ -472,22 +478,15 @@ class Annotation:
472
478
  result: dict = {}
473
479
  result["annotation_type"] = to_enum(AnnotationType, self.annotation_type)
474
480
  result["average_width"] = to_float(self.average_width)
475
- if self.circle_annotation is not None:
476
- result["circle_annotation"] = from_union([lambda x: to_class(CircleAnnotation, x), from_none], self.circle_annotation)
481
+ result["circle_annotation"] = from_union([lambda x: to_class(CircleAnnotation, x), from_none], self.circle_annotation)
477
482
  result["id"] = str(self.id)
478
483
  result["label_id"] = str(self.label_id)
479
- if self.magicwand_annotation is not None:
480
- result["magicwand_annotation"] = from_union([lambda x: to_class(MagicwandAnnotation, x), from_none], self.magicwand_annotation)
481
- if self.pen_annotation is not None:
482
- result["pen_annotation"] = from_union([lambda x: to_class(PenAnnotation, x), from_none], self.pen_annotation)
483
- if self.pixel_annotation is not None:
484
- result["pixel_annotation"] = from_union([lambda x: to_class(PixelAnnotation, x), from_none], self.pixel_annotation)
485
- if self.polygon_annotation is not None:
486
- result["polygon_annotation"] = from_union([lambda x: to_class(PolygonAnnotation, x), from_none], self.polygon_annotation)
487
- if self.rectangle_annotation is not None:
488
- result["rectangle_annotation"] = from_union([lambda x: to_class(RectangleAnnotation, x), from_none], self.rectangle_annotation)
489
- if self.sausage_annotation is not None:
490
- result["sausage_annotation"] = from_union([lambda x: to_class(SausageAnnotation, x), from_none], self.sausage_annotation)
484
+ result["magicwand_annotation"] = from_union([lambda x: to_class(MagicwandAnnotation, x), from_none], self.magicwand_annotation)
485
+ result["pen_annotation"] = from_union([lambda x: to_class(PenAnnotation, x), from_none], self.pen_annotation)
486
+ result["pixel_annotation"] = from_union([lambda x: to_class(PixelAnnotation, x), from_none], self.pixel_annotation)
487
+ result["polygon_annotation"] = from_union([lambda x: to_class(PolygonAnnotation, x), from_none], self.polygon_annotation)
488
+ result["rectangle_annotation"] = from_union([lambda x: to_class(RectangleAnnotation, x), from_none], self.rectangle_annotation)
489
+ result["sausage_annotation"] = from_union([lambda x: to_class(SausageAnnotation, x), from_none], self.sausage_annotation)
491
490
  return result
492
491
 
493
492
 
@@ -22,7 +22,7 @@ _runtime_version.ValidateProtobufRuntimeVersion(
22
22
  _sym_db = _symbol_database.Default()
23
23
 
24
24
 
25
- import validate_pb2 as validate__pb2
25
+ import denkproto.validate_pb2 as validate__pb2
26
26
 
27
27
 
28
28
  DESCRIPTOR = _descriptor_pool.Default().AddSerializedFile(b'\n\x12modelfile-v2.proto\x12\x0cmodelfile.v2\x1a\x0evalidate.proto\"\xb8$\n\tModelFile\x12\x39\n\x10protocol_version\x18\x01 \x01(\x0b\x32\x1f.modelfile.v2.ModelFile.Version\x12\x12\n\ncreated_at\x18\x02 \x01(\x03\x12=\n\tfile_info\x18\x03 \x01(\x0b\x32 .modelfile.v2.ModelFile.FileInfoB\x08\xfa\x42\x05\x8a\x01\x02\x10\x01\x12\x30\n\x07\x63ontent\x18\x04 \x01(\x0b\x32\x1f.modelfile.v2.ModelFile.Content\x12\x38\n\x0c\x63lass_labels\x18\x05 \x03(\x0b\x32\".modelfile.v2.ModelFile.ClassLabel\x12-\n\x06inputs\x18\x06 \x03(\x0b\x32\x1d.modelfile.v2.ModelFile.Input\x12/\n\x07outputs\x18\x07 \x03(\x0b\x32\x1e.modelfile.v2.ModelFile.Output\x12J\n\x12\x61\x64\x64itional_content\x18\x08 \x03(\x0b\x32..modelfile.v2.ModelFile.AdditionalContentEntry\x1a\x36\n\x07Version\x12\r\n\x05major\x18\x01 \x01(\x04\x12\r\n\x05minor\x18\x02 \x01(\x04\x12\r\n\x05patch\x18\x03 \x01(\x04\x1a\xaa\x04\n\x07\x43ontent\x12\x14\n\x0c\x62yte_content\x18\x01 \x01(\x0c\x12\x13\n\x0bhash_sha256\x18\x02 \x01(\x0c\x12M\n\x12\x63ompression_method\x18\x03 \x01(\x0e\x32\x31.modelfile.v2.ModelFile.Content.CompressionMethod\x12K\n\x11\x65ncryption_method\x18\x04 \x01(\x0e\x32\x30.modelfile.v2.ModelFile.Content.EncryptionMethod\x12@\n\tkey_slots\x18\x05 \x03(\x0b\x32-.modelfile.v2.ModelFile.Content.KeySlotsEntry\x1ai\n\x07KeySlot\x12\x13\n\x0bwrapped_key\x18\x01 \x01(\x0c\x12I\n\x0fwrapping_method\x18\x02 \x01(\x0e\x32\x30.modelfile.v2.ModelFile.Content.EncryptionMethod\x1aX\n\rKeySlotsEntry\x12\x0b\n\x03key\x18\x01 \x01(\t\x12\x36\n\x05value\x18\x02 \x01(\x0b\x32\'.modelfile.v2.ModelFile.Content.KeySlot:\x02\x38\x01\" \n\x11\x43ompressionMethod\x12\x0b\n\x07\x43M_NONE\x10\x00\"/\n\x10\x45ncryptionMethod\x12\x0b\n\x07\x45M_NONE\x10\x00\x12\x0e\n\nEM_AES_GCM\x10\x01\x1aU\n\nClassLabel\x12\x16\n\x0e\x63lass_label_id\x18\x01 \x01(\t\x12\x0c\n\x04name\x18\x02 \x01(\t\x12\x12\n\nshort_name\x18\x03 \x01(\t\x12\r\n\x05\x63olor\x18\x04 \x01(\t\x1a<\n\tImageSize\x12\r\n\x05width\x18\x01 \x01(\x04\x12\x0e\n\x06height\x18\x02 \x01(\x04\x12\x10\n\x08\x63hannels\x18\x03 \x01(\x04\x1aJ\n\x0eRegionFromEdge\x12\x0c\n\x04left\x18\x01 \x01(\x01\x12\r\n\x05right\x18\x02 \x01(\x01\x12\x0b\n\x03top\x18\x03 \x01(\x01\x12\x0e\n\x06\x62ottom\x18\x04 \x01(\x01\x1a\xe2\x05\n\x05Input\x12\x46\n\x0cimage_format\x18\x01 \x01(\x0b\x32..modelfile.v2.ModelFile.Input.ImageInputFormatH\x00\x1a\xfb\x04\n\x10ImageInputFormat\x12\x64\n\x10\x65xact_image_size\x18\x01 \x01(\x0b\x32H.modelfile.v2.ModelFile.Input.ImageInputFormat.ExactImageSizeRequirementH\x00\x12l\n\x14\x64ivisible_image_size\x18\x02 \x01(\x0b\x32L.modelfile.v2.ModelFile.Input.ImageInputFormat.DivisibleImageSizeRequirementH\x00\x12\x42\n\x12region_of_interest\x18\x03 \x01(\x0b\x32&.modelfile.v2.ModelFile.RegionFromEdge\x1aR\n\x19\x45xactImageSizeRequirement\x12\x35\n\nimage_size\x18\x01 \x01(\x0b\x32!.modelfile.v2.ModelFile.ImageSize\x1a\xdf\x01\n\x1d\x44ivisibleImageSizeRequirement\x12>\n\x13image_size_divisors\x18\x01 \x01(\x0b\x32!.modelfile.v2.ModelFile.ImageSize\x12=\n\x12minimum_image_size\x18\x02 \x01(\x0b\x32!.modelfile.v2.ModelFile.ImageSize\x12?\n\x14suggested_image_size\x18\x03 \x01(\x0b\x32!.modelfile.v2.ModelFile.ImageSizeB\x19\n\x17image_size_requirementsB\x13\n\x11\x46ormatInformation\x1a\xcc\n\n\x06Output\x12_\n\x18image_classifiers_format\x18\x01 \x01(\x0b\x32;.modelfile.v2.ModelFile.Output.ImageClassifiersOutputFormatH\x00\x12_\n\x18segmentation_maps_format\x18\x02 \x01(\x0b\x32;.modelfile.v2.ModelFile.Output.SegmentationMapsOutputFormatH\x00\x12Y\n\x15\x62ounding_boxes_format\x18\x03 \x01(\x0b\x32\x38.modelfile.v2.ModelFile.Output.BoundingBoxesOutputFormatH\x00\x12p\n!bounding_box_segmentations_format\x18\x04 \x01(\x0b\x32\x43.modelfile.v2.ModelFile.Output.BoundingBoxSegmentationsOutputFormatH\x00\x12\x44\n\nocr_format\x18\x05 \x01(\x0b\x32..modelfile.v2.ModelFile.Output.OcrOutputFormatH\x00\x1a\x1e\n\x1cImageClassifiersOutputFormat\x1aU\n\x1cSegmentationMapsOutputFormat\x12\x35\n\nimage_size\x18\x01 \x01(\x0b\x32!.modelfile.v2.ModelFile.ImageSize\x1a\xe9\x01\n\x19\x42oundingBoxesOutputFormat\x12\x17\n\x0fnumber_of_boxes\x18\x01 \x01(\x04\x12\x0e\n\x06stride\x18\x02 \x01(\x04\x12\x11\n\tx1_offset\x18\x03 \x01(\x04\x12\x11\n\ty1_offset\x18\x04 \x01(\x04\x12\x11\n\tx2_offset\x18\x05 \x01(\x04\x12\x11\n\ty2_offset\x18\x06 \x01(\x04\x12\x19\n\x11\x63onfidence_offset\x18\x07 \x01(\x04\x12 \n\x18\x63lass_label_index_offset\x18\x08 \x01(\x04\x12\x1a\n\x12\x62\x61tch_index_offset\x18\t \x01(\x04\x1a\x7f\n$BoundingBoxSegmentationsOutputFormat\x12\x35\n\nimage_size\x18\x01 \x01(\x0b\x32!.modelfile.v2.ModelFile.ImageSize\x12 \n\x18relative_to_bounding_box\x18\x02 \x01(\x08\x1a\xf3\x02\n\x0fOcrOutputFormat\x12\x1c\n\x14number_of_characters\x18\x01 \x01(\x04\x12L\n\ncharacters\x18\x02 \x03(\x0b\x32\x38.modelfile.v2.ModelFile.Output.OcrOutputFormat.Character\x1a\xf3\x01\n\tCharacter\x12\x1b\n\x13utf8_representation\x18\x01 \x01(\x0c\x12^\n\x0e\x63haracter_type\x18\x02 \x01(\x0e\x32\x46.modelfile.v2.ModelFile.Output.OcrOutputFormat.Character.CharacterType\x12\x0e\n\x06ignore\x18\x03 \x01(\x08\"Y\n\rCharacterType\x12\x0e\n\nCT_REGULAR\x10\x00\x12\x14\n\x10\x43T_START_OF_TEXT\x10\x01\x12\x12\n\x0e\x43T_END_OF_TEXT\x10\x02\x12\x0e\n\nCT_PADDING\x10\x03\x42\x13\n\x11\x46ormatInformation\x1a\xaf\t\n\x08\x46ileInfo\x12<\n\tfile_type\x18\x01 \x01(\x0e\x32).modelfile.v2.ModelFile.FileInfo.FileType\x12\x14\n\x0cnetwork_name\x18\x02 \x01(\t\x12\x12\n\nnetwork_id\x18\x03 \x01(\t\x12\x1d\n\x15network_experiment_id\x18\x04 \x01(\t\x12\x1b\n\x13network_snapshot_id\x18\x05 \x01(\t\x12\x42\n\x0cnetwork_type\x18\x06 \x01(\x0e\x32,.modelfile.v2.ModelFile.FileInfo.NetworkType\x12\x16\n\x0enetwork_flavor\x18\x07 \x01(\t\x12\x38\n\x0fnetwork_version\x18\x08 \x01(\x0b\x32\x1f.modelfile.v2.ModelFile.Version\x12\x38\n\x0fruntime_version\x18\t \x01(\x0b\x32\x1f.modelfile.v2.ModelFile.Version\x12=\n\tprecision\x18\n \x01(\x0e\x32*.modelfile.v2.ModelFile.FileInfo.Precision\x12\x44\n\x1bminimum_libdenkflow_version\x18\x0b \x01(\x0b\x32\x1f.modelfile.v2.ModelFile.Version\x12H\n\x0fhardware_target\x18\x0c \x01(\x0e\x32/.modelfile.v2.ModelFile.FileInfo.HardwareTarget\"?\n\x08\x46ileType\x12\x0c\n\x08\x46T_MODEL\x10\x00\x12\x10\n\x0c\x46T_ZXING_KEY\x10\x01\x12\x13\n\x0f\x46T_VIZIOTIX_KEY\x10\x02\"\xc0\x01\n\x0bNetworkType\x12\x0e\n\nNT_UNKNOWN\x10\x00\x12\x15\n\x11NT_CLASSIFICATION\x10\x01\x12\x13\n\x0fNT_SEGMENTATION\x10\x02\x12\x1c\n\x18NT_INSTANCE_SEGMENTATION\x10\x03\x12\x17\n\x13NT_OBJECT_DETECTION\x10\x04\x12\x18\n\x14NT_ANOMALY_DETECTION\x10\x05\x12$\n NT_OPTICAL_CHARACTER_RECOGNITION\x10\x06\"\xa8\x02\n\tPrecision\x12\x0f\n\x0bP_UNDEFINED\x10\x00\x12\x15\n\x11P_MIXED_PRECISION\x10\x01\x12\t\n\x05P_FP8\x10\x02\x12\n\n\x06P_FP16\x10\x03\x12\n\n\x06P_FP32\x10\x04\x12\n\n\x06P_FP64\x10\x05\x12\t\n\x05P_BF8\x10\x06\x12\n\n\x06P_BF16\x10\x07\x12\n\n\x06P_BF32\x10\x08\x12\n\n\x06P_BF64\x10\t\x12\n\n\x06P_INT8\x10\n\x12\x0b\n\x07P_INT16\x10\x0b\x12\x0b\n\x07P_INT32\x10\x0c\x12\x0b\n\x07P_INT64\x10\r\x12\x0b\n\x07P_UINT8\x10\x0e\x12\x0c\n\x08P_UINT16\x10\x0f\x12\x0c\n\x08P_UINT32\x10\x10\x12\x0c\n\x08P_UINT64\x10\x11\x12\r\n\tP_2_STATE\x10\x12\x12\r\n\tP_3_STATE\x10\x13\x12\r\n\tP_4_STATE\x10\x14\"1\n\x0eHardwareTarget\x12\x0e\n\nHT_DEFAULT\x10\x00\x12\x0f\n\x0bHT_TENSORRT\x10\x01\x1aY\n\x16\x41\x64\x64itionalContentEntry\x12\x0b\n\x03key\x18\x01 \x01(\t\x12.\n\x05value\x18\x02 \x01(\x0b\x32\x1f.modelfile.v2.ModelFile.Content:\x02\x38\x01\x42IZ-github.com/DENKweit/denkproto-go/modelfile/v2\xaa\x02\x17\x44\x45NK.Proto.Modelfile.V2b\x06proto3')
@@ -1,5 +1,5 @@
1
1
  Metadata-Version: 2.3
2
2
  Name: denkproto
3
- Version: 1.0.67
3
+ Version: 1.0.69
4
4
  Requires-Python: >=3.10
5
5
  Requires-Dist: protobuf>=3.20.3
@@ -4,18 +4,18 @@ denkproto/DENKbuffer_pb2_grpc.py,sha256=-CPJPM4FOqwvwV8-f1iJlD18UD9juVIIHfdWUecu
4
4
  denkproto/ImageAnalysis_ProtobufMessages_pb2.py,sha256=iEY0j9ySGUThnqTdYD4uAVr9P3GiC5R02iK53zEOXUQ,21015
5
5
  denkproto/ImageAnalysis_ProtobufMessages_pb2.pyi,sha256=5LFtxrmYpJHizDDNGFTkL7-NQ_TkwqCSdq7vcv3lg-c,36243
6
6
  denkproto/ImageAnalysis_ProtobufMessages_pb2_grpc.py,sha256=l3agtDjgu4jay6P9TRnHhyhJ-7UdoII27ywhw3k84oo,911
7
- denkproto/__about__.py,sha256=AjGOAFzdEMyNJ602JwrwyuL3XO692ebHb18ffAc676g,23
7
+ denkproto/__about__.py,sha256=eGMX1UwE3pB5G1WzwpHw2yAVpnoW_EE4qggDeo15Quw,23
8
8
  denkproto/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
9
9
  denkproto/denkcache_pb2.py,sha256=G3EEZY-IBVJpThkkXEmhoG7Y3aSLvraKckqTwsXCbUI,6414
10
10
  denkproto/denkcache_pb2.pyi,sha256=qOzFOkddUapSJZz5d_mqcfHvWDAmM-70m_7FeM7n5fI,5595
11
- denkproto/denkcache_pb2_grpc.py,sha256=tKt4dGD5IkSJ8Ff9pSsZr2vcOEXuBpEGY3azihjvOxU,15607
12
- denkproto/inference_graph_pb2.py,sha256=sFYB70NsQM7xXNK0dTGzrsf4icY8wvPHJqEvYFfziTU,21459
13
- denkproto/inference_graph_pb2.pyi,sha256=si2CoYE4btohHFHfMU3YbMRDkm1eDsci0cw8Lr2qJSE,12918
11
+ denkproto/denkcache_pb2_grpc.py,sha256=N1y4ZQ58UPaUlOZIpznzAbJJcs9G_n-FmzFoPPeu8UA,15610
12
+ denkproto/inference_graph_pb2.py,sha256=BPd_AoxPDmzq9JDJh1manXSMKgy8Dicwv9ogMNX5ULg,21484
13
+ denkproto/inference_graph_pb2.pyi,sha256=pUTospFsX-8R10hNTrnPUOjjjsZFQdDisV36vrIpQhk,12928
14
14
  denkproto/inference_graph_pb2_grpc.py,sha256=aXPf0w7pIfspkKUKGCr--OtJMOaTfE8IbeuBm10g1Xg,896
15
15
  denkproto/modelfile_v1_pb2.py,sha256=ulF24nSIspn46DnQKlvR5Po3w-vFCnawuuverAVi3cY,6573
16
16
  denkproto/modelfile_v1_pb2.pyi,sha256=gjTbWvg48wqGhyJb5CT0pw3yUZGhO_lSZgL7Ia2aPbY,10685
17
17
  denkproto/modelfile_v1_pb2_grpc.py,sha256=ov5B2o4JSYbAfcbbdZr55wEzfGlKI02H-tkvXGXqJVg,893
18
- denkproto/modelfile_v2_pb2.py,sha256=1ldz8jktT-AXv00pyhTcuVgEvC8xYwwRS4AOW25-yDs,13199
18
+ denkproto/modelfile_v2_pb2.py,sha256=B9nOFLp5kZM87RtzFidZLjmVBH8zOFpjHdSrY0MBOV8,13209
19
19
  denkproto/modelfile_v2_pb2.pyi,sha256=9enN5CRvdGNUv-C5T0Lh5j9U1I0-TWar2mpYTW9NfnI,21309
20
20
  denkproto/modelfile_v2_pb2_grpc.py,sha256=xiC5FeyZDWcucC3uRJ4kllDJmaRayvrzOKIhvg6o1Tc,893
21
21
  denkproto/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
@@ -26,11 +26,11 @@ denkproto/validate_pb2.py,sha256=CuGAaHir9X9jniW3QsRKAESjYzoS2U6dLk_J55XmNqU,136
26
26
  denkproto/validate_pb2.pyi,sha256=fWsdVOR3NJDioCKkCKfxfl4qaEb5xqXXU_WlEbdQx6E,23077
27
27
  denkproto/validate_pb2_grpc.py,sha256=XvjuWEgJFJtH1E7HWm7SKpV10PMpOSbonKa2VPHpYy8,889
28
28
  denkproto/json/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
29
- denkproto/json/classification_markup.py,sha256=vTu0H7Cb3gU6UUUSg1vDTRlFUorZrjMbcp_yx6UssZA,2461
29
+ denkproto/json/classification_markup.py,sha256=xN6OY67BuW0dx2GiFjTf8lG-KTbPVAJq-dWcrw9HJIU,2631
30
30
  denkproto/json/inference_graph_models_generated.py,sha256=lX5L5kU8dVxx3R9USQIiqSqMPY12OIWmHkjK5yX_4W4,5960
31
- denkproto/json/object_detection_markup.py,sha256=T0hcFPq8F_galjDjRC9dbcRVwCSOYtu2jt9wpEeHlQs,4904
32
- denkproto/json/ocr_markup.py,sha256=KyOpth9evOekyhTJdZSnYyB9EIyoWbY33sqncb_jBgw,7069
33
- denkproto/json/segmentation_markup.py,sha256=EvniRksF2KaQolm6zZ6UKSiGwnqc8wR2sHB1iv05RTE,19911
34
- denkproto-1.0.67.dist-info/METADATA,sha256=M44qurT5fEH4l5qsgPwPbhiKjOGbOyUJbuCLgksMPTg,110
35
- denkproto-1.0.67.dist-info/WHEEL,sha256=1yFddiXMmvYK7QYTqtRNtX66WJ0Mz8PYEiEUoOUUxRY,87
36
- denkproto-1.0.67.dist-info/RECORD,,
31
+ denkproto/json/object_detection_markup.py,sha256=FSpAvn-GTgVAdzV7RtG-GVCHlwyuRqDdH_18mdyyIl0,4987
32
+ denkproto/json/ocr_markup.py,sha256=zVmB3SGT3NFwYEF0WowZmHo7m57TeN5LJ54rzNtPTKg,7138
33
+ denkproto/json/segmentation_markup.py,sha256=48XvxKI9NkxcIfYv3tkrS8eIbYif4wotj3I8ih3CHQ8,19716
34
+ denkproto-1.0.69.dist-info/METADATA,sha256=uc57h3ZKuwWRdTFDFuIVl0ydUj1P3eUMW03kYpm6P9o,110
35
+ denkproto-1.0.69.dist-info/WHEEL,sha256=1yFddiXMmvYK7QYTqtRNtX66WJ0Mz8PYEiEUoOUUxRY,87
36
+ denkproto-1.0.69.dist-info/RECORD,,