denkproto 1.0.65__py3-none-any.whl → 1.0.69__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of denkproto might be problematic. Click here for more details.

denkproto/__about__.py CHANGED
@@ -1 +1 @@
1
- __version__ = "1.0.65"
1
+ __version__ = "1.0.69"
@@ -3,7 +3,7 @@
3
3
  import grpc
4
4
  import warnings
5
5
 
6
- from . import denkcache_pb2 as denkcache__pb2
6
+ import denkproto.denkcache_pb2 as denkcache__pb2
7
7
 
8
8
  GRPC_GENERATED_VERSION = '1.68.0'
9
9
  GRPC_VERSION = grpc.__version__
@@ -22,11 +22,11 @@ _runtime_version.ValidateProtobufRuntimeVersion(
22
22
  _sym_db = _symbol_database.Default()
23
23
 
24
24
 
25
- import modelfile_v2_pb2 as modelfile__v2__pb2
26
- import validate_pb2 as validate__pb2
25
+ import denkproto.modelfile_v2_pb2 as modelfile__v2__pb2
26
+ import denkproto.validate_pb2 as validate__pb2
27
27
 
28
28
 
29
- DESCRIPTOR = _descriptor_pool.Default().AddSerializedFile(b'\n\x15inference_graph.proto\x12\x0finference_graph\x1a\x12modelfile-v2.proto\x1a\x0evalidate.proto\"\xa5\x01\n\x0bModelSource\x12-\n\nfrom_proto\x18\x01 \x01(\x0b\x32\x17.modelfile.v2.ModelFileH\x00\x12#\n\x0f\x66rom_network_id\x18\x02 \x01(\tB\x08\xfa\x42\x05r\x03\xb0\x01\x01H\x00\x12.\n\x1a\x66rom_network_experiment_id\x18\x03 \x01(\tB\x08\xfa\x42\x05r\x03\xb0\x01\x01H\x00\x42\x12\n\x0bsource_type\x12\x03\xf8\x42\x01\"\xb1\x03\n\x0f\x43onstTensorNode\x12\x15\n\x04name\x18\x01 \x01(\tB\x07\xfa\x42\x04r\x02\x10\x01\x12\r\n\x05shape\x18\x02 \x03(\r\x12\x43\n\x0buint64_data\x18\x03 \x01(\x0b\x32,.inference_graph.ConstTensorNode.Uint64ArrayH\x00\x12\x41\n\nint64_data\x18\x04 \x01(\x0b\x32+.inference_graph.ConstTensorNode.Int64ArrayH\x00\x12\x45\n\x0c\x66loat64_data\x18\x05 \x01(\x0b\x32-.inference_graph.ConstTensorNode.Float64ArrayH\x00\x12@\n\x10output_port_name\x18\x63 \x01(\tB&\xfa\x42#r!2\x1f^[a-zA-Z0-9_-]+/[a-zA-Z0-9_-]+$\x1a\x1b\n\x0bUint64Array\x12\x0c\n\x04\x64\x61ta\x18\x01 \x03(\x04\x1a\x1a\n\nInt64Array\x12\x0c\n\x04\x64\x61ta\x18\x01 \x03(\x12\x1a\x1c\n\x0c\x46loat64Array\x12\x0c\n\x04\x64\x61ta\x18\x01 \x03(\x01\x42\x10\n\tdata_type\x12\x03\xf8\x42\x01\"\x87\x02\n\x0fImageResizeNode\x12\x15\n\x04name\x18\x01 \x01(\tB\x07\xfa\x42\x04r\x02\x10\x01\x12L\n\ninput_size\x18\x02 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12M\n\x0binput_image\x18\x03 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12@\n\x10output_port_name\x18\x63 \x01(\tB&\xfa\x42#r!2\x1f^[a-zA-Z0-9_-]+/[a-zA-Z0-9_-]+$\"\xdf\x06\n\x10ImagePatchesNode\x12\x15\n\x04name\x18\x01 \x01(\tB\x07\xfa\x42\x04r\x02\x10\x01\x12M\n\x0binput_image\x18\x02 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12V\n\x14input_bounding_boxes\x18\x03 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12W\n\x11input_target_size\x18\x04 \x01(\x0b\x32\x32.inference_graph.ImagePatchesNode.TargetSizeSourceB\x08\xfa\x42\x05\x8a\x01\x02\x10\x01\x12\x66\n\x18input_maximum_iterations\x18\x05 \x01(\x0b\x32:.inference_graph.ImagePatchesNode.MaxIterationsCountSourceB\x08\xfa\x42\x05\x8a\x01\x02\x10\x01\x12@\n\x10output_port_name\x18\x63 \x01(\tB&\xfa\x42#r!2\x1f^[a-zA-Z0-9_-]+/[a-zA-Z0-9_-]+$\x1a\xf8\x01\n\x10TargetSizeSource\x12I\n\x05topic\x18\x01 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$H\x00\x12L\n\x04size\x18\x02 \x01(\x0b\x32<.inference_graph.ImagePatchesNode.TargetSizeSource.ImageSizeH\x00\x1a<\n\tImageSize\x12\x17\n\x06height\x18\x01 \x01(\x04\x42\x07\xfa\x42\x04\x32\x02(\x00\x12\x16\n\x05width\x18\x02 \x01(\x04\x42\x07\xfa\x42\x04\x32\x02(\x00\x42\r\n\x06source\x12\x03\xf8\x42\x01\x1a\x8e\x01\n\x18MaxIterationsCountSource\x12I\n\x05topic\x18\x01 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$H\x00\x12\x18\n\x05value\x18\x02 \x01(\x04\x42\x07\xfa\x42\x04\x32\x02(\x00H\x00\x42\r\n\x06source\x12\x03\xf8\x42\x01\"\x83\x01\n\x11VirtualCameraNode\x12\x15\n\x04name\x18\x01 \x01(\tB\x07\xfa\x42\x04r\x02\x10\x01\x12\x15\n\x04path\x18\x02 \x01(\tB\x07\xfa\x42\x04r\x02\x10\x01\x12@\n\x10output_port_name\x18\x63 \x01(\tB&\xfa\x42#r!2\x1f^[a-zA-Z0-9_-]+/[a-zA-Z0-9_-]+$\"\xec\x01\n\x17ImageClassificationNode\x12\x0c\n\x04name\x18\x01 \x01(\t\x12M\n\x0binput_image\x18\x02 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12\x32\n\x0cmodel_source\x18\x03 \x01(\x0b\x32\x1c.inference_graph.ModelSource\x12@\n\x10output_port_name\x18\x63 \x01(\tB&\xfa\x42#r!2\x1f^[a-zA-Z0-9_-]+/[a-zA-Z0-9_-]+$\"\x8b\x02\n\x18ImageObjectDetectionNode\x12\x0c\n\x04name\x18\x01 \x01(\t\x12M\n\x0binput_image\x18\x02 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12\x32\n\x0cmodel_source\x18\x03 \x01(\x0b\x32\x1c.inference_graph.ModelSource\x12@\n\x10output_port_name\x18\x63 \x01(\tB&\xfa\x42#r!2\x1f^[a-zA-Z0-9_-]+/[a-zA-Z0-9_-]+$\x12\x1c\n\x14scale_bounding_boxes\x18\x05 \x01(\x08\"\xe1\x01\n\x0cImageOcrNode\x12\x0c\n\x04name\x18\x01 \x01(\t\x12M\n\x0binput_image\x18\x02 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12\x32\n\x0cmodel_source\x18\x03 \x01(\x0b\x32\x1c.inference_graph.ModelSource\x12@\n\x10output_port_name\x18\x63 \x01(\tB&\xfa\x42#r!2\x1f^[a-zA-Z0-9_-]+/[a-zA-Z0-9_-]+$\"\x84\x04\n\x15\x42oundingBoxFilterNode\x12\x15\n\x04name\x18\x01 \x01(\tB\x07\xfa\x42\x04r\x02\x10\x01\x12V\n\x14input_bounding_boxes\x18\x02 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12U\n\x15input_score_threshold\x18\x03 \x01(\x0b\x32\x36.inference_graph.BoundingBoxFilterNode.ThresholdSource\x12S\n\x13input_iou_threshold\x18\x04 \x01(\x0b\x32\x36.inference_graph.BoundingBoxFilterNode.ThresholdSource\x12@\n\x10output_port_name\x18\x63 \x01(\tB&\xfa\x42#r!2\x1f^[a-zA-Z0-9_-]+/[a-zA-Z0-9_-]+$\x1a\x8d\x01\n\x0fThresholdSource\x12I\n\x05topic\x18\x01 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$H\x00\x12 \n\x05value\x18\x02 \x01(\x02\x42\x0f\xfa\x42\x0c\n\n\x1d\x00\x00\x80?-\x00\x00\x00\x00H\x00\x42\r\n\x06source\x12\x03\xf8\x42\x01\"\xc0\x04\n\x04Node\x12=\n\x11\x63onst_tensor_node\x18\x01 \x01(\x0b\x32 .inference_graph.ConstTensorNodeH\x00\x12=\n\x11image_resize_node\x18\x02 \x01(\x0b\x32 .inference_graph.ImageResizeNodeH\x00\x12?\n\x12image_patches_node\x18\x03 \x01(\x0b\x32!.inference_graph.ImagePatchesNodeH\x00\x12\x41\n\x13virtual_camera_node\x18\x04 \x01(\x0b\x32\".inference_graph.VirtualCameraNodeH\x00\x12M\n\x19image_classification_node\x18\x05 \x01(\x0b\x32(.inference_graph.ImageClassificationNodeH\x00\x12P\n\x1bimage_object_detection_node\x18\x06 \x01(\x0b\x32).inference_graph.ImageObjectDetectionNodeH\x00\x12\x37\n\x0eimage_ocr_node\x18\x07 \x01(\x0b\x32\x1d.inference_graph.ImageOcrNodeH\x00\x12J\n\x18\x62ounding_box_filter_node\x18\x08 \x01(\x0b\x32&.inference_graph.BoundingBoxFilterNodeH\x00\x42\x10\n\tnode_type\x12\x03\xf8\x42\x01\"_\n\x05Graph\x12$\n\x05nodes\x18\x01 \x03(\x0b\x32\x15.inference_graph.Node\x12\x12\n\ncreated_at\x18\x02 \x01(\x03\x12\x1c\n\nlicense_id\x18\x03 \x01(\tB\x08\xfa\x42\x05r\x03\xb0\x01\x01\x42NZ0github.com/DENKweit/denkproto-go/inference_graph\xaa\x02\x19\x44\x45NK.Proto.InferenceGraphb\x06proto3')
29
+ DESCRIPTOR = _descriptor_pool.Default().AddSerializedFile(b'\n\x15inference_graph.proto\x12\x0finference_graph\x1a\x12modelfile-v2.proto\x1a\x0evalidate.proto\"\xa5\x01\n\x0bModelSource\x12-\n\nfrom_proto\x18\x01 \x01(\x0b\x32\x17.modelfile.v2.ModelFileH\x00\x12#\n\x0f\x66rom_network_id\x18\x02 \x01(\tB\x08\xfa\x42\x05r\x03\xb0\x01\x01H\x00\x12.\n\x1a\x66rom_network_experiment_id\x18\x03 \x01(\tB\x08\xfa\x42\x05r\x03\xb0\x01\x01H\x00\x42\x12\n\x0bsource_type\x12\x03\xf8\x42\x01\"s\n\x0bSessionInfo\x12H\n\x12\x65xecution_provider\x18\x01 \x01(\x0e\x32\".inference_graph.ExecutionProviderB\x08\xfa\x42\x05\x82\x01\x02\x10\x01\x12\x1a\n\tdevice_id\x18\x02 \x01(\x05\x42\x07\xfa\x42\x04\x1a\x02(\x00\"\xb3\x03\n\x0f\x43onstTensorNode\x12\x15\n\x04name\x18\x01 \x01(\tB\x07\xfa\x42\x04r\x02\x10\x01\x12\r\n\x05shape\x18\x02 \x03(\r\x12\x43\n\x0buint64_data\x18\x03 \x01(\x0b\x32,.inference_graph.ConstTensorNode.Uint64ArrayH\x00\x12\x41\n\nint64_data\x18\x04 \x01(\x0b\x32+.inference_graph.ConstTensorNode.Int64ArrayH\x00\x12\x45\n\x0c\x66loat64_data\x18\x05 \x01(\x0b\x32-.inference_graph.ConstTensorNode.Float64ArrayH\x00\x12\x42\n\x10output_port_name\x18\x06 \x01(\tB(\xfa\x42%r#\x10\x01\x32\x1f^[a-zA-Z0-9_-]+/[a-zA-Z0-9_-]+$\x1a\x1b\n\x0bUint64Array\x12\x0c\n\x04\x64\x61ta\x18\x01 \x03(\x04\x1a\x1a\n\nInt64Array\x12\x0c\n\x04\x64\x61ta\x18\x01 \x03(\x12\x1a\x1c\n\x0c\x46loat64Array\x12\x0c\n\x04\x64\x61ta\x18\x01 \x03(\x01\x42\x10\n\tdata_type\x12\x03\xf8\x42\x01\"\xd3\x02\n\x0fImageResizeNode\x12\x15\n\x04name\x18\x01 \x01(\tB\x07\xfa\x42\x04r\x02\x10\x01\x12L\n\ninput_size\x18\x02 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12M\n\x0binput_image\x18\x03 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12\x42\n\x10output_port_name\x18\x04 \x01(\tB(\xfa\x42%r#\x10\x01\x32\x1f^[a-zA-Z0-9_-]+/[a-zA-Z0-9_-]+$\x12\x37\n\x0csession_info\x18\x05 \x01(\x0b\x32\x1c.inference_graph.SessionInfoH\x00\x88\x01\x01\x42\x0f\n\r_session_info\"\xcd\x07\n\x10ImagePatchesNode\x12\x15\n\x04name\x18\x01 \x01(\tB\x07\xfa\x42\x04r\x02\x10\x01\x12M\n\x0binput_image\x18\x02 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12V\n\x14input_bounding_boxes\x18\x03 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12W\n\x11input_target_size\x18\x04 \x01(\x0b\x32\x32.inference_graph.ImagePatchesNode.TargetSizeSourceB\x08\xfa\x42\x05\x8a\x01\x02\x10\x01\x12\x42\n\x10output_port_name\x18\x05 \x01(\tB(\xfa\x42%r#\x10\x01\x32\x1f^[a-zA-Z0-9_-]+/[a-zA-Z0-9_-]+$\x12k\n\x18input_maximum_iterations\x18\x06 \x01(\x0b\x32:.inference_graph.ImagePatchesNode.MaxIterationsCountSourceB\x08\xfa\x42\x05\x8a\x01\x02\x10\x01H\x00\x88\x01\x01\x12\x37\n\x0csession_info\x18\x07 \x01(\x0b\x32\x1c.inference_graph.SessionInfoH\x01\x88\x01\x01\x1a\xf8\x01\n\x10TargetSizeSource\x12I\n\x05topic\x18\x01 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$H\x00\x12L\n\x04size\x18\x02 \x01(\x0b\x32<.inference_graph.ImagePatchesNode.TargetSizeSource.ImageSizeH\x00\x1a<\n\tImageSize\x12\x17\n\x06height\x18\x01 \x01(\x04\x42\x07\xfa\x42\x04\x32\x02(\x00\x12\x16\n\x05width\x18\x02 \x01(\x04\x42\x07\xfa\x42\x04\x32\x02(\x00\x42\r\n\x06source\x12\x03\xf8\x42\x01\x1a\x8e\x01\n\x18MaxIterationsCountSource\x12I\n\x05topic\x18\x01 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$H\x00\x12\x18\n\x05value\x18\x02 \x01(\x04\x42\x07\xfa\x42\x04\x32\x02(\x00H\x00\x42\r\n\x06source\x12\x03\xf8\x42\x01\x42\x1b\n\x19_input_maximum_iterationsB\x0f\n\r_session_info\"\x85\x01\n\x11VirtualCameraNode\x12\x15\n\x04name\x18\x01 \x01(\tB\x07\xfa\x42\x04r\x02\x10\x01\x12\x15\n\x04path\x18\x02 \x01(\tB\x07\xfa\x42\x04r\x02\x10\x01\x12\x42\n\x10output_port_name\x18\x03 \x01(\tB(\xfa\x42%r#\x10\x01\x32\x1f^[a-zA-Z0-9_-]+/[a-zA-Z0-9_-]+$\"\xc2\x02\n\x17ImageClassificationNode\x12\x0c\n\x04name\x18\x01 \x01(\t\x12M\n\x0binput_image\x18\x02 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12<\n\x0cmodel_source\x18\x03 \x01(\x0b\x32\x1c.inference_graph.ModelSourceB\x08\xfa\x42\x05\x8a\x01\x02\x10\x01\x12\x42\n\x10output_port_name\x18\x04 \x01(\tB(\xfa\x42%r#\x10\x01\x32\x1f^[a-zA-Z0-9_-]+/[a-zA-Z0-9_-]+$\x12\x37\n\x0csession_info\x18\x05 \x01(\x0b\x32\x1c.inference_graph.SessionInfoH\x00\x88\x01\x01\x42\x0f\n\r_session_info\"\xe1\x02\n\x18ImageObjectDetectionNode\x12\x0c\n\x04name\x18\x01 \x01(\t\x12M\n\x0binput_image\x18\x02 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12<\n\x0cmodel_source\x18\x03 \x01(\x0b\x32\x1c.inference_graph.ModelSourceB\x08\xfa\x42\x05\x8a\x01\x02\x10\x01\x12\x1c\n\x14scale_bounding_boxes\x18\x04 \x01(\x08\x12\x42\n\x10output_port_name\x18\x05 \x01(\tB(\xfa\x42%r#\x10\x01\x32\x1f^[a-zA-Z0-9_-]+/[a-zA-Z0-9_-]+$\x12\x37\n\x0csession_info\x18\x06 \x01(\x0b\x32\x1c.inference_graph.SessionInfoH\x00\x88\x01\x01\x42\x0f\n\r_session_info\"\xb7\x02\n\x0cImageOcrNode\x12\x0c\n\x04name\x18\x01 \x01(\t\x12M\n\x0binput_image\x18\x02 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12<\n\x0cmodel_source\x18\x03 \x01(\x0b\x32\x1c.inference_graph.ModelSourceB\x08\xfa\x42\x05\x8a\x01\x02\x10\x01\x12\x42\n\x10output_port_name\x18\x04 \x01(\tB(\xfa\x42%r#\x10\x01\x32\x1f^[a-zA-Z0-9_-]+/[a-zA-Z0-9_-]+$\x12\x37\n\x0csession_info\x18\x05 \x01(\x0b\x32\x1c.inference_graph.SessionInfoH\x00\x88\x01\x01\x42\x0f\n\r_session_info\"\x8c\x05\n\x15\x42oundingBoxFilterNode\x12\x15\n\x04name\x18\x01 \x01(\tB\x07\xfa\x42\x04r\x02\x10\x01\x12V\n\x14input_bounding_boxes\x18\x02 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12\x42\n\x10output_port_name\x18\x03 \x01(\tB(\xfa\x42%r#\x10\x01\x32\x1f^[a-zA-Z0-9_-]+/[a-zA-Z0-9_-]+$\x12Z\n\x15input_score_threshold\x18\x04 \x01(\x0b\x32\x36.inference_graph.BoundingBoxFilterNode.ThresholdSourceH\x00\x88\x01\x01\x12X\n\x13input_iou_threshold\x18\x05 \x01(\x0b\x32\x36.inference_graph.BoundingBoxFilterNode.ThresholdSourceH\x01\x88\x01\x01\x12\x37\n\x0csession_info\x18\x06 \x01(\x0b\x32\x1c.inference_graph.SessionInfoH\x02\x88\x01\x01\x1a\x8d\x01\n\x0fThresholdSource\x12I\n\x05topic\x18\x01 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$H\x00\x12 \n\x05value\x18\x02 \x01(\x02\x42\x0f\xfa\x42\x0c\n\n\x1d\x00\x00\x80?-\x00\x00\x00\x00H\x00\x42\r\n\x06source\x12\x03\xf8\x42\x01\x42\x18\n\x16_input_score_thresholdB\x16\n\x14_input_iou_thresholdB\x0f\n\r_session_info\"\xc0\x04\n\x04Node\x12=\n\x11\x63onst_tensor_node\x18\x01 \x01(\x0b\x32 .inference_graph.ConstTensorNodeH\x00\x12=\n\x11image_resize_node\x18\x02 \x01(\x0b\x32 .inference_graph.ImageResizeNodeH\x00\x12?\n\x12image_patches_node\x18\x03 \x01(\x0b\x32!.inference_graph.ImagePatchesNodeH\x00\x12\x41\n\x13virtual_camera_node\x18\x04 \x01(\x0b\x32\".inference_graph.VirtualCameraNodeH\x00\x12M\n\x19image_classification_node\x18\x05 \x01(\x0b\x32(.inference_graph.ImageClassificationNodeH\x00\x12P\n\x1bimage_object_detection_node\x18\x06 \x01(\x0b\x32).inference_graph.ImageObjectDetectionNodeH\x00\x12\x37\n\x0eimage_ocr_node\x18\x07 \x01(\x0b\x32\x1d.inference_graph.ImageOcrNodeH\x00\x12J\n\x18\x62ounding_box_filter_node\x18\x08 \x01(\x0b\x32&.inference_graph.BoundingBoxFilterNodeH\x00\x42\x10\n\tnode_type\x12\x03\xf8\x42\x01\"_\n\x05Graph\x12$\n\x05nodes\x18\x01 \x03(\x0b\x32\x15.inference_graph.Node\x12\x12\n\ncreated_at\x18\x02 \x01(\x03\x12\x1c\n\nlicense_id\x18\x03 \x01(\tB\x08\xfa\x42\x05r\x03\xb0\x01\x01*B\n\x11\x45xecutionProvider\x12\x07\n\x03\x43PU\x10\x00\x12\x08\n\x04\x43UDA\x10\x01\x12\x0c\n\x08\x44IRECTML\x10\x02\x12\x0c\n\x08TENSORRT\x10\x03\x42NZ0github.com/DENKweit/denkproto-go/inference_graph\xaa\x02\x19\x44\x45NK.Proto.InferenceGraphb\x06proto3')
30
30
 
31
31
  _globals = globals()
32
32
  _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals)
@@ -40,12 +40,16 @@ if not _descriptor._USE_C_DESCRIPTORS:
40
40
  _globals['_MODELSOURCE'].fields_by_name['from_network_id']._serialized_options = b'\372B\005r\003\260\001\001'
41
41
  _globals['_MODELSOURCE'].fields_by_name['from_network_experiment_id']._loaded_options = None
42
42
  _globals['_MODELSOURCE'].fields_by_name['from_network_experiment_id']._serialized_options = b'\372B\005r\003\260\001\001'
43
+ _globals['_SESSIONINFO'].fields_by_name['execution_provider']._loaded_options = None
44
+ _globals['_SESSIONINFO'].fields_by_name['execution_provider']._serialized_options = b'\372B\005\202\001\002\020\001'
45
+ _globals['_SESSIONINFO'].fields_by_name['device_id']._loaded_options = None
46
+ _globals['_SESSIONINFO'].fields_by_name['device_id']._serialized_options = b'\372B\004\032\002(\000'
43
47
  _globals['_CONSTTENSORNODE'].oneofs_by_name['data_type']._loaded_options = None
44
48
  _globals['_CONSTTENSORNODE'].oneofs_by_name['data_type']._serialized_options = b'\370B\001'
45
49
  _globals['_CONSTTENSORNODE'].fields_by_name['name']._loaded_options = None
46
50
  _globals['_CONSTTENSORNODE'].fields_by_name['name']._serialized_options = b'\372B\004r\002\020\001'
47
51
  _globals['_CONSTTENSORNODE'].fields_by_name['output_port_name']._loaded_options = None
48
- _globals['_CONSTTENSORNODE'].fields_by_name['output_port_name']._serialized_options = b'\372B#r!2\037^[a-zA-Z0-9_-]+/[a-zA-Z0-9_-]+$'
52
+ _globals['_CONSTTENSORNODE'].fields_by_name['output_port_name']._serialized_options = b'\372B%r#\020\0012\037^[a-zA-Z0-9_-]+/[a-zA-Z0-9_-]+$'
49
53
  _globals['_IMAGERESIZENODE'].fields_by_name['name']._loaded_options = None
50
54
  _globals['_IMAGERESIZENODE'].fields_by_name['name']._serialized_options = b'\372B\004r\002\020\001'
51
55
  _globals['_IMAGERESIZENODE'].fields_by_name['input_size']._loaded_options = None
@@ -53,7 +57,7 @@ if not _descriptor._USE_C_DESCRIPTORS:
53
57
  _globals['_IMAGERESIZENODE'].fields_by_name['input_image']._loaded_options = None
54
58
  _globals['_IMAGERESIZENODE'].fields_by_name['input_image']._serialized_options = b'\372B5r3\020\0012/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$'
55
59
  _globals['_IMAGERESIZENODE'].fields_by_name['output_port_name']._loaded_options = None
56
- _globals['_IMAGERESIZENODE'].fields_by_name['output_port_name']._serialized_options = b'\372B#r!2\037^[a-zA-Z0-9_-]+/[a-zA-Z0-9_-]+$'
60
+ _globals['_IMAGERESIZENODE'].fields_by_name['output_port_name']._serialized_options = b'\372B%r#\020\0012\037^[a-zA-Z0-9_-]+/[a-zA-Z0-9_-]+$'
57
61
  _globals['_IMAGEPATCHESNODE_TARGETSIZESOURCE_IMAGESIZE'].fields_by_name['height']._loaded_options = None
58
62
  _globals['_IMAGEPATCHESNODE_TARGETSIZESOURCE_IMAGESIZE'].fields_by_name['height']._serialized_options = b'\372B\0042\002(\000'
59
63
  _globals['_IMAGEPATCHESNODE_TARGETSIZESOURCE_IMAGESIZE'].fields_by_name['width']._loaded_options = None
@@ -76,28 +80,34 @@ if not _descriptor._USE_C_DESCRIPTORS:
76
80
  _globals['_IMAGEPATCHESNODE'].fields_by_name['input_bounding_boxes']._serialized_options = b'\372B5r3\020\0012/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$'
77
81
  _globals['_IMAGEPATCHESNODE'].fields_by_name['input_target_size']._loaded_options = None
78
82
  _globals['_IMAGEPATCHESNODE'].fields_by_name['input_target_size']._serialized_options = b'\372B\005\212\001\002\020\001'
83
+ _globals['_IMAGEPATCHESNODE'].fields_by_name['output_port_name']._loaded_options = None
84
+ _globals['_IMAGEPATCHESNODE'].fields_by_name['output_port_name']._serialized_options = b'\372B%r#\020\0012\037^[a-zA-Z0-9_-]+/[a-zA-Z0-9_-]+$'
79
85
  _globals['_IMAGEPATCHESNODE'].fields_by_name['input_maximum_iterations']._loaded_options = None
80
86
  _globals['_IMAGEPATCHESNODE'].fields_by_name['input_maximum_iterations']._serialized_options = b'\372B\005\212\001\002\020\001'
81
- _globals['_IMAGEPATCHESNODE'].fields_by_name['output_port_name']._loaded_options = None
82
- _globals['_IMAGEPATCHESNODE'].fields_by_name['output_port_name']._serialized_options = b'\372B#r!2\037^[a-zA-Z0-9_-]+/[a-zA-Z0-9_-]+$'
83
87
  _globals['_VIRTUALCAMERANODE'].fields_by_name['name']._loaded_options = None
84
88
  _globals['_VIRTUALCAMERANODE'].fields_by_name['name']._serialized_options = b'\372B\004r\002\020\001'
85
89
  _globals['_VIRTUALCAMERANODE'].fields_by_name['path']._loaded_options = None
86
90
  _globals['_VIRTUALCAMERANODE'].fields_by_name['path']._serialized_options = b'\372B\004r\002\020\001'
87
91
  _globals['_VIRTUALCAMERANODE'].fields_by_name['output_port_name']._loaded_options = None
88
- _globals['_VIRTUALCAMERANODE'].fields_by_name['output_port_name']._serialized_options = b'\372B#r!2\037^[a-zA-Z0-9_-]+/[a-zA-Z0-9_-]+$'
92
+ _globals['_VIRTUALCAMERANODE'].fields_by_name['output_port_name']._serialized_options = b'\372B%r#\020\0012\037^[a-zA-Z0-9_-]+/[a-zA-Z0-9_-]+$'
89
93
  _globals['_IMAGECLASSIFICATIONNODE'].fields_by_name['input_image']._loaded_options = None
90
94
  _globals['_IMAGECLASSIFICATIONNODE'].fields_by_name['input_image']._serialized_options = b'\372B5r3\020\0012/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$'
95
+ _globals['_IMAGECLASSIFICATIONNODE'].fields_by_name['model_source']._loaded_options = None
96
+ _globals['_IMAGECLASSIFICATIONNODE'].fields_by_name['model_source']._serialized_options = b'\372B\005\212\001\002\020\001'
91
97
  _globals['_IMAGECLASSIFICATIONNODE'].fields_by_name['output_port_name']._loaded_options = None
92
- _globals['_IMAGECLASSIFICATIONNODE'].fields_by_name['output_port_name']._serialized_options = b'\372B#r!2\037^[a-zA-Z0-9_-]+/[a-zA-Z0-9_-]+$'
98
+ _globals['_IMAGECLASSIFICATIONNODE'].fields_by_name['output_port_name']._serialized_options = b'\372B%r#\020\0012\037^[a-zA-Z0-9_-]+/[a-zA-Z0-9_-]+$'
93
99
  _globals['_IMAGEOBJECTDETECTIONNODE'].fields_by_name['input_image']._loaded_options = None
94
100
  _globals['_IMAGEOBJECTDETECTIONNODE'].fields_by_name['input_image']._serialized_options = b'\372B5r3\020\0012/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$'
101
+ _globals['_IMAGEOBJECTDETECTIONNODE'].fields_by_name['model_source']._loaded_options = None
102
+ _globals['_IMAGEOBJECTDETECTIONNODE'].fields_by_name['model_source']._serialized_options = b'\372B\005\212\001\002\020\001'
95
103
  _globals['_IMAGEOBJECTDETECTIONNODE'].fields_by_name['output_port_name']._loaded_options = None
96
- _globals['_IMAGEOBJECTDETECTIONNODE'].fields_by_name['output_port_name']._serialized_options = b'\372B#r!2\037^[a-zA-Z0-9_-]+/[a-zA-Z0-9_-]+$'
104
+ _globals['_IMAGEOBJECTDETECTIONNODE'].fields_by_name['output_port_name']._serialized_options = b'\372B%r#\020\0012\037^[a-zA-Z0-9_-]+/[a-zA-Z0-9_-]+$'
97
105
  _globals['_IMAGEOCRNODE'].fields_by_name['input_image']._loaded_options = None
98
106
  _globals['_IMAGEOCRNODE'].fields_by_name['input_image']._serialized_options = b'\372B5r3\020\0012/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$'
107
+ _globals['_IMAGEOCRNODE'].fields_by_name['model_source']._loaded_options = None
108
+ _globals['_IMAGEOCRNODE'].fields_by_name['model_source']._serialized_options = b'\372B\005\212\001\002\020\001'
99
109
  _globals['_IMAGEOCRNODE'].fields_by_name['output_port_name']._loaded_options = None
100
- _globals['_IMAGEOCRNODE'].fields_by_name['output_port_name']._serialized_options = b'\372B#r!2\037^[a-zA-Z0-9_-]+/[a-zA-Z0-9_-]+$'
110
+ _globals['_IMAGEOCRNODE'].fields_by_name['output_port_name']._serialized_options = b'\372B%r#\020\0012\037^[a-zA-Z0-9_-]+/[a-zA-Z0-9_-]+$'
101
111
  _globals['_BOUNDINGBOXFILTERNODE_THRESHOLDSOURCE'].oneofs_by_name['source']._loaded_options = None
102
112
  _globals['_BOUNDINGBOXFILTERNODE_THRESHOLDSOURCE'].oneofs_by_name['source']._serialized_options = b'\370B\001'
103
113
  _globals['_BOUNDINGBOXFILTERNODE_THRESHOLDSOURCE'].fields_by_name['topic']._loaded_options = None
@@ -109,45 +119,49 @@ if not _descriptor._USE_C_DESCRIPTORS:
109
119
  _globals['_BOUNDINGBOXFILTERNODE'].fields_by_name['input_bounding_boxes']._loaded_options = None
110
120
  _globals['_BOUNDINGBOXFILTERNODE'].fields_by_name['input_bounding_boxes']._serialized_options = b'\372B5r3\020\0012/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$'
111
121
  _globals['_BOUNDINGBOXFILTERNODE'].fields_by_name['output_port_name']._loaded_options = None
112
- _globals['_BOUNDINGBOXFILTERNODE'].fields_by_name['output_port_name']._serialized_options = b'\372B#r!2\037^[a-zA-Z0-9_-]+/[a-zA-Z0-9_-]+$'
122
+ _globals['_BOUNDINGBOXFILTERNODE'].fields_by_name['output_port_name']._serialized_options = b'\372B%r#\020\0012\037^[a-zA-Z0-9_-]+/[a-zA-Z0-9_-]+$'
113
123
  _globals['_NODE'].oneofs_by_name['node_type']._loaded_options = None
114
124
  _globals['_NODE'].oneofs_by_name['node_type']._serialized_options = b'\370B\001'
115
125
  _globals['_GRAPH'].fields_by_name['license_id']._loaded_options = None
116
126
  _globals['_GRAPH'].fields_by_name['license_id']._serialized_options = b'\372B\005r\003\260\001\001'
127
+ _globals['_EXECUTIONPROVIDER']._serialized_start=4581
128
+ _globals['_EXECUTIONPROVIDER']._serialized_end=4647
117
129
  _globals['_MODELSOURCE']._serialized_start=79
118
130
  _globals['_MODELSOURCE']._serialized_end=244
119
- _globals['_CONSTTENSORNODE']._serialized_start=247
120
- _globals['_CONSTTENSORNODE']._serialized_end=680
121
- _globals['_CONSTTENSORNODE_UINT64ARRAY']._serialized_start=577
122
- _globals['_CONSTTENSORNODE_UINT64ARRAY']._serialized_end=604
123
- _globals['_CONSTTENSORNODE_INT64ARRAY']._serialized_start=606
124
- _globals['_CONSTTENSORNODE_INT64ARRAY']._serialized_end=632
125
- _globals['_CONSTTENSORNODE_FLOAT64ARRAY']._serialized_start=634
126
- _globals['_CONSTTENSORNODE_FLOAT64ARRAY']._serialized_end=662
127
- _globals['_IMAGERESIZENODE']._serialized_start=683
128
- _globals['_IMAGERESIZENODE']._serialized_end=946
129
- _globals['_IMAGEPATCHESNODE']._serialized_start=949
130
- _globals['_IMAGEPATCHESNODE']._serialized_end=1812
131
- _globals['_IMAGEPATCHESNODE_TARGETSIZESOURCE']._serialized_start=1419
132
- _globals['_IMAGEPATCHESNODE_TARGETSIZESOURCE']._serialized_end=1667
133
- _globals['_IMAGEPATCHESNODE_TARGETSIZESOURCE_IMAGESIZE']._serialized_start=1592
134
- _globals['_IMAGEPATCHESNODE_TARGETSIZESOURCE_IMAGESIZE']._serialized_end=1652
135
- _globals['_IMAGEPATCHESNODE_MAXITERATIONSCOUNTSOURCE']._serialized_start=1670
136
- _globals['_IMAGEPATCHESNODE_MAXITERATIONSCOUNTSOURCE']._serialized_end=1812
137
- _globals['_VIRTUALCAMERANODE']._serialized_start=1815
138
- _globals['_VIRTUALCAMERANODE']._serialized_end=1946
139
- _globals['_IMAGECLASSIFICATIONNODE']._serialized_start=1949
140
- _globals['_IMAGECLASSIFICATIONNODE']._serialized_end=2185
141
- _globals['_IMAGEOBJECTDETECTIONNODE']._serialized_start=2188
142
- _globals['_IMAGEOBJECTDETECTIONNODE']._serialized_end=2455
143
- _globals['_IMAGEOCRNODE']._serialized_start=2458
144
- _globals['_IMAGEOCRNODE']._serialized_end=2683
145
- _globals['_BOUNDINGBOXFILTERNODE']._serialized_start=2686
146
- _globals['_BOUNDINGBOXFILTERNODE']._serialized_end=3202
147
- _globals['_BOUNDINGBOXFILTERNODE_THRESHOLDSOURCE']._serialized_start=3061
148
- _globals['_BOUNDINGBOXFILTERNODE_THRESHOLDSOURCE']._serialized_end=3202
149
- _globals['_NODE']._serialized_start=3205
150
- _globals['_NODE']._serialized_end=3781
151
- _globals['_GRAPH']._serialized_start=3783
152
- _globals['_GRAPH']._serialized_end=3878
131
+ _globals['_SESSIONINFO']._serialized_start=246
132
+ _globals['_SESSIONINFO']._serialized_end=361
133
+ _globals['_CONSTTENSORNODE']._serialized_start=364
134
+ _globals['_CONSTTENSORNODE']._serialized_end=799
135
+ _globals['_CONSTTENSORNODE_UINT64ARRAY']._serialized_start=696
136
+ _globals['_CONSTTENSORNODE_UINT64ARRAY']._serialized_end=723
137
+ _globals['_CONSTTENSORNODE_INT64ARRAY']._serialized_start=725
138
+ _globals['_CONSTTENSORNODE_INT64ARRAY']._serialized_end=751
139
+ _globals['_CONSTTENSORNODE_FLOAT64ARRAY']._serialized_start=753
140
+ _globals['_CONSTTENSORNODE_FLOAT64ARRAY']._serialized_end=781
141
+ _globals['_IMAGERESIZENODE']._serialized_start=802
142
+ _globals['_IMAGERESIZENODE']._serialized_end=1141
143
+ _globals['_IMAGEPATCHESNODE']._serialized_start=1144
144
+ _globals['_IMAGEPATCHESNODE']._serialized_end=2117
145
+ _globals['_IMAGEPATCHESNODE_TARGETSIZESOURCE']._serialized_start=1678
146
+ _globals['_IMAGEPATCHESNODE_TARGETSIZESOURCE']._serialized_end=1926
147
+ _globals['_IMAGEPATCHESNODE_TARGETSIZESOURCE_IMAGESIZE']._serialized_start=1851
148
+ _globals['_IMAGEPATCHESNODE_TARGETSIZESOURCE_IMAGESIZE']._serialized_end=1911
149
+ _globals['_IMAGEPATCHESNODE_MAXITERATIONSCOUNTSOURCE']._serialized_start=1929
150
+ _globals['_IMAGEPATCHESNODE_MAXITERATIONSCOUNTSOURCE']._serialized_end=2071
151
+ _globals['_VIRTUALCAMERANODE']._serialized_start=2120
152
+ _globals['_VIRTUALCAMERANODE']._serialized_end=2253
153
+ _globals['_IMAGECLASSIFICATIONNODE']._serialized_start=2256
154
+ _globals['_IMAGECLASSIFICATIONNODE']._serialized_end=2578
155
+ _globals['_IMAGEOBJECTDETECTIONNODE']._serialized_start=2581
156
+ _globals['_IMAGEOBJECTDETECTIONNODE']._serialized_end=2934
157
+ _globals['_IMAGEOCRNODE']._serialized_start=2937
158
+ _globals['_IMAGEOCRNODE']._serialized_end=3248
159
+ _globals['_BOUNDINGBOXFILTERNODE']._serialized_start=3251
160
+ _globals['_BOUNDINGBOXFILTERNODE']._serialized_end=3903
161
+ _globals['_BOUNDINGBOXFILTERNODE_THRESHOLDSOURCE']._serialized_start=3695
162
+ _globals['_BOUNDINGBOXFILTERNODE_THRESHOLDSOURCE']._serialized_end=3836
163
+ _globals['_NODE']._serialized_start=3906
164
+ _globals['_NODE']._serialized_end=4482
165
+ _globals['_GRAPH']._serialized_start=4484
166
+ _globals['_GRAPH']._serialized_end=4579
153
167
  # @@protoc_insertion_point(module_scope)
@@ -1,12 +1,24 @@
1
1
  import modelfile_v2_pb2 as _modelfile_v2_pb2
2
2
  import validate_pb2 as _validate_pb2
3
3
  from google.protobuf.internal import containers as _containers
4
+ from google.protobuf.internal import enum_type_wrapper as _enum_type_wrapper
4
5
  from google.protobuf import descriptor as _descriptor
5
6
  from google.protobuf import message as _message
6
7
  from typing import ClassVar as _ClassVar, Iterable as _Iterable, Mapping as _Mapping, Optional as _Optional, Union as _Union
7
8
 
8
9
  DESCRIPTOR: _descriptor.FileDescriptor
9
10
 
11
+ class ExecutionProvider(int, metaclass=_enum_type_wrapper.EnumTypeWrapper):
12
+ __slots__ = ()
13
+ CPU: _ClassVar[ExecutionProvider]
14
+ CUDA: _ClassVar[ExecutionProvider]
15
+ DIRECTML: _ClassVar[ExecutionProvider]
16
+ TENSORRT: _ClassVar[ExecutionProvider]
17
+ CPU: ExecutionProvider
18
+ CUDA: ExecutionProvider
19
+ DIRECTML: ExecutionProvider
20
+ TENSORRT: ExecutionProvider
21
+
10
22
  class ModelSource(_message.Message):
11
23
  __slots__ = ("from_proto", "from_network_id", "from_network_experiment_id")
12
24
  FROM_PROTO_FIELD_NUMBER: _ClassVar[int]
@@ -17,6 +29,14 @@ class ModelSource(_message.Message):
17
29
  from_network_experiment_id: str
18
30
  def __init__(self, from_proto: _Optional[_Union[_modelfile_v2_pb2.ModelFile, _Mapping]] = ..., from_network_id: _Optional[str] = ..., from_network_experiment_id: _Optional[str] = ...) -> None: ...
19
31
 
32
+ class SessionInfo(_message.Message):
33
+ __slots__ = ("execution_provider", "device_id")
34
+ EXECUTION_PROVIDER_FIELD_NUMBER: _ClassVar[int]
35
+ DEVICE_ID_FIELD_NUMBER: _ClassVar[int]
36
+ execution_provider: ExecutionProvider
37
+ device_id: int
38
+ def __init__(self, execution_provider: _Optional[_Union[ExecutionProvider, str]] = ..., device_id: _Optional[int] = ...) -> None: ...
39
+
20
40
  class ConstTensorNode(_message.Message):
21
41
  __slots__ = ("name", "shape", "uint64_data", "int64_data", "float64_data", "output_port_name")
22
42
  class Uint64Array(_message.Message):
@@ -49,19 +69,21 @@ class ConstTensorNode(_message.Message):
49
69
  def __init__(self, name: _Optional[str] = ..., shape: _Optional[_Iterable[int]] = ..., uint64_data: _Optional[_Union[ConstTensorNode.Uint64Array, _Mapping]] = ..., int64_data: _Optional[_Union[ConstTensorNode.Int64Array, _Mapping]] = ..., float64_data: _Optional[_Union[ConstTensorNode.Float64Array, _Mapping]] = ..., output_port_name: _Optional[str] = ...) -> None: ...
50
70
 
51
71
  class ImageResizeNode(_message.Message):
52
- __slots__ = ("name", "input_size", "input_image", "output_port_name")
72
+ __slots__ = ("name", "input_size", "input_image", "output_port_name", "session_info")
53
73
  NAME_FIELD_NUMBER: _ClassVar[int]
54
74
  INPUT_SIZE_FIELD_NUMBER: _ClassVar[int]
55
75
  INPUT_IMAGE_FIELD_NUMBER: _ClassVar[int]
56
76
  OUTPUT_PORT_NAME_FIELD_NUMBER: _ClassVar[int]
77
+ SESSION_INFO_FIELD_NUMBER: _ClassVar[int]
57
78
  name: str
58
79
  input_size: str
59
80
  input_image: str
60
81
  output_port_name: str
61
- def __init__(self, name: _Optional[str] = ..., input_size: _Optional[str] = ..., input_image: _Optional[str] = ..., output_port_name: _Optional[str] = ...) -> None: ...
82
+ session_info: SessionInfo
83
+ def __init__(self, name: _Optional[str] = ..., input_size: _Optional[str] = ..., input_image: _Optional[str] = ..., output_port_name: _Optional[str] = ..., session_info: _Optional[_Union[SessionInfo, _Mapping]] = ...) -> None: ...
62
84
 
63
85
  class ImagePatchesNode(_message.Message):
64
- __slots__ = ("name", "input_image", "input_bounding_boxes", "input_target_size", "input_maximum_iterations", "output_port_name")
86
+ __slots__ = ("name", "input_image", "input_bounding_boxes", "input_target_size", "output_port_name", "input_maximum_iterations", "session_info")
65
87
  class TargetSizeSource(_message.Message):
66
88
  __slots__ = ("topic", "size")
67
89
  class ImageSize(_message.Message):
@@ -87,15 +109,17 @@ class ImagePatchesNode(_message.Message):
87
109
  INPUT_IMAGE_FIELD_NUMBER: _ClassVar[int]
88
110
  INPUT_BOUNDING_BOXES_FIELD_NUMBER: _ClassVar[int]
89
111
  INPUT_TARGET_SIZE_FIELD_NUMBER: _ClassVar[int]
90
- INPUT_MAXIMUM_ITERATIONS_FIELD_NUMBER: _ClassVar[int]
91
112
  OUTPUT_PORT_NAME_FIELD_NUMBER: _ClassVar[int]
113
+ INPUT_MAXIMUM_ITERATIONS_FIELD_NUMBER: _ClassVar[int]
114
+ SESSION_INFO_FIELD_NUMBER: _ClassVar[int]
92
115
  name: str
93
116
  input_image: str
94
117
  input_bounding_boxes: str
95
118
  input_target_size: ImagePatchesNode.TargetSizeSource
96
- input_maximum_iterations: ImagePatchesNode.MaxIterationsCountSource
97
119
  output_port_name: str
98
- def __init__(self, name: _Optional[str] = ..., input_image: _Optional[str] = ..., input_bounding_boxes: _Optional[str] = ..., input_target_size: _Optional[_Union[ImagePatchesNode.TargetSizeSource, _Mapping]] = ..., input_maximum_iterations: _Optional[_Union[ImagePatchesNode.MaxIterationsCountSource, _Mapping]] = ..., output_port_name: _Optional[str] = ...) -> None: ...
120
+ input_maximum_iterations: ImagePatchesNode.MaxIterationsCountSource
121
+ session_info: SessionInfo
122
+ def __init__(self, name: _Optional[str] = ..., input_image: _Optional[str] = ..., input_bounding_boxes: _Optional[str] = ..., input_target_size: _Optional[_Union[ImagePatchesNode.TargetSizeSource, _Mapping]] = ..., output_port_name: _Optional[str] = ..., input_maximum_iterations: _Optional[_Union[ImagePatchesNode.MaxIterationsCountSource, _Mapping]] = ..., session_info: _Optional[_Union[SessionInfo, _Mapping]] = ...) -> None: ...
99
123
 
100
124
  class VirtualCameraNode(_message.Message):
101
125
  __slots__ = ("name", "path", "output_port_name")
@@ -108,45 +132,51 @@ class VirtualCameraNode(_message.Message):
108
132
  def __init__(self, name: _Optional[str] = ..., path: _Optional[str] = ..., output_port_name: _Optional[str] = ...) -> None: ...
109
133
 
110
134
  class ImageClassificationNode(_message.Message):
111
- __slots__ = ("name", "input_image", "model_source", "output_port_name")
135
+ __slots__ = ("name", "input_image", "model_source", "output_port_name", "session_info")
112
136
  NAME_FIELD_NUMBER: _ClassVar[int]
113
137
  INPUT_IMAGE_FIELD_NUMBER: _ClassVar[int]
114
138
  MODEL_SOURCE_FIELD_NUMBER: _ClassVar[int]
115
139
  OUTPUT_PORT_NAME_FIELD_NUMBER: _ClassVar[int]
140
+ SESSION_INFO_FIELD_NUMBER: _ClassVar[int]
116
141
  name: str
117
142
  input_image: str
118
143
  model_source: ModelSource
119
144
  output_port_name: str
120
- def __init__(self, name: _Optional[str] = ..., input_image: _Optional[str] = ..., model_source: _Optional[_Union[ModelSource, _Mapping]] = ..., output_port_name: _Optional[str] = ...) -> None: ...
145
+ session_info: SessionInfo
146
+ def __init__(self, name: _Optional[str] = ..., input_image: _Optional[str] = ..., model_source: _Optional[_Union[ModelSource, _Mapping]] = ..., output_port_name: _Optional[str] = ..., session_info: _Optional[_Union[SessionInfo, _Mapping]] = ...) -> None: ...
121
147
 
122
148
  class ImageObjectDetectionNode(_message.Message):
123
- __slots__ = ("name", "input_image", "model_source", "output_port_name", "scale_bounding_boxes")
149
+ __slots__ = ("name", "input_image", "model_source", "scale_bounding_boxes", "output_port_name", "session_info")
124
150
  NAME_FIELD_NUMBER: _ClassVar[int]
125
151
  INPUT_IMAGE_FIELD_NUMBER: _ClassVar[int]
126
152
  MODEL_SOURCE_FIELD_NUMBER: _ClassVar[int]
127
- OUTPUT_PORT_NAME_FIELD_NUMBER: _ClassVar[int]
128
153
  SCALE_BOUNDING_BOXES_FIELD_NUMBER: _ClassVar[int]
154
+ OUTPUT_PORT_NAME_FIELD_NUMBER: _ClassVar[int]
155
+ SESSION_INFO_FIELD_NUMBER: _ClassVar[int]
129
156
  name: str
130
157
  input_image: str
131
158
  model_source: ModelSource
132
- output_port_name: str
133
159
  scale_bounding_boxes: bool
134
- def __init__(self, name: _Optional[str] = ..., input_image: _Optional[str] = ..., model_source: _Optional[_Union[ModelSource, _Mapping]] = ..., output_port_name: _Optional[str] = ..., scale_bounding_boxes: bool = ...) -> None: ...
160
+ output_port_name: str
161
+ session_info: SessionInfo
162
+ def __init__(self, name: _Optional[str] = ..., input_image: _Optional[str] = ..., model_source: _Optional[_Union[ModelSource, _Mapping]] = ..., scale_bounding_boxes: bool = ..., output_port_name: _Optional[str] = ..., session_info: _Optional[_Union[SessionInfo, _Mapping]] = ...) -> None: ...
135
163
 
136
164
  class ImageOcrNode(_message.Message):
137
- __slots__ = ("name", "input_image", "model_source", "output_port_name")
165
+ __slots__ = ("name", "input_image", "model_source", "output_port_name", "session_info")
138
166
  NAME_FIELD_NUMBER: _ClassVar[int]
139
167
  INPUT_IMAGE_FIELD_NUMBER: _ClassVar[int]
140
168
  MODEL_SOURCE_FIELD_NUMBER: _ClassVar[int]
141
169
  OUTPUT_PORT_NAME_FIELD_NUMBER: _ClassVar[int]
170
+ SESSION_INFO_FIELD_NUMBER: _ClassVar[int]
142
171
  name: str
143
172
  input_image: str
144
173
  model_source: ModelSource
145
174
  output_port_name: str
146
- def __init__(self, name: _Optional[str] = ..., input_image: _Optional[str] = ..., model_source: _Optional[_Union[ModelSource, _Mapping]] = ..., output_port_name: _Optional[str] = ...) -> None: ...
175
+ session_info: SessionInfo
176
+ def __init__(self, name: _Optional[str] = ..., input_image: _Optional[str] = ..., model_source: _Optional[_Union[ModelSource, _Mapping]] = ..., output_port_name: _Optional[str] = ..., session_info: _Optional[_Union[SessionInfo, _Mapping]] = ...) -> None: ...
147
177
 
148
178
  class BoundingBoxFilterNode(_message.Message):
149
- __slots__ = ("name", "input_bounding_boxes", "input_score_threshold", "input_iou_threshold", "output_port_name")
179
+ __slots__ = ("name", "input_bounding_boxes", "output_port_name", "input_score_threshold", "input_iou_threshold", "session_info")
150
180
  class ThresholdSource(_message.Message):
151
181
  __slots__ = ("topic", "value")
152
182
  TOPIC_FIELD_NUMBER: _ClassVar[int]
@@ -156,15 +186,17 @@ class BoundingBoxFilterNode(_message.Message):
156
186
  def __init__(self, topic: _Optional[str] = ..., value: _Optional[float] = ...) -> None: ...
157
187
  NAME_FIELD_NUMBER: _ClassVar[int]
158
188
  INPUT_BOUNDING_BOXES_FIELD_NUMBER: _ClassVar[int]
189
+ OUTPUT_PORT_NAME_FIELD_NUMBER: _ClassVar[int]
159
190
  INPUT_SCORE_THRESHOLD_FIELD_NUMBER: _ClassVar[int]
160
191
  INPUT_IOU_THRESHOLD_FIELD_NUMBER: _ClassVar[int]
161
- OUTPUT_PORT_NAME_FIELD_NUMBER: _ClassVar[int]
192
+ SESSION_INFO_FIELD_NUMBER: _ClassVar[int]
162
193
  name: str
163
194
  input_bounding_boxes: str
195
+ output_port_name: str
164
196
  input_score_threshold: BoundingBoxFilterNode.ThresholdSource
165
197
  input_iou_threshold: BoundingBoxFilterNode.ThresholdSource
166
- output_port_name: str
167
- def __init__(self, name: _Optional[str] = ..., input_bounding_boxes: _Optional[str] = ..., input_score_threshold: _Optional[_Union[BoundingBoxFilterNode.ThresholdSource, _Mapping]] = ..., input_iou_threshold: _Optional[_Union[BoundingBoxFilterNode.ThresholdSource, _Mapping]] = ..., output_port_name: _Optional[str] = ...) -> None: ...
198
+ session_info: SessionInfo
199
+ def __init__(self, name: _Optional[str] = ..., input_bounding_boxes: _Optional[str] = ..., output_port_name: _Optional[str] = ..., input_score_threshold: _Optional[_Union[BoundingBoxFilterNode.ThresholdSource, _Mapping]] = ..., input_iou_threshold: _Optional[_Union[BoundingBoxFilterNode.ThresholdSource, _Mapping]] = ..., session_info: _Optional[_Union[SessionInfo, _Mapping]] = ...) -> None: ...
168
200
 
169
201
  class Node(_message.Message):
170
202
  __slots__ = ("const_tensor_node", "image_resize_node", "image_patches_node", "virtual_camera_node", "image_classification_node", "image_object_detection_node", "image_ocr_node", "bounding_box_filter_node")
@@ -1,3 +1,11 @@
1
+ # To use this code, make sure you
2
+ #
3
+ # import json
4
+ #
5
+ # and then, to convert JSON from a string, do
6
+ #
7
+ # result = classification_markup_from_dict(json.loads(json_string))
8
+
1
9
  from uuid import UUID
2
10
  from typing import Any, List, TypeVar, Callable, Type, cast
3
11
 
@@ -11,7 +19,7 @@ def from_float(x: Any) -> float:
11
19
 
12
20
 
13
21
  def to_float(x: Any) -> float:
14
- assert isinstance(x, (int, float))
22
+ assert isinstance(x, float)
15
23
  return x
16
24
 
17
25
 
@@ -9,7 +9,7 @@ class BoundingBoxFilterNode(BaseModel):
9
9
  input_bounding_boxes: str
10
10
  input_score_threshold: Optional[ThresholdSource] = None
11
11
  input_iou_threshold: Optional[ThresholdSource] = None
12
- output_port_name: Optional[str] = None
12
+ output_port_name: str
13
13
 
14
14
  class ConstTensorFloat64Data(BaseModel):
15
15
  """Constant tensor data of type float64. Base type for constant tensor data."""
@@ -25,9 +25,9 @@ class ConstTensorNode(BaseModel):
25
25
  """Node representing a constant tensor. Base type for all nodes in the graph."""
26
26
  node_type: Literal["const_tensor"]
27
27
  name: str
28
- output_port_name: Optional[str] = None
29
28
  shape: list[int]
30
29
  data: ConstTensorDataBase
30
+ output_port_name: str
31
31
 
32
32
  class ConstTensorUint64Data(BaseModel):
33
33
  """Constant tensor data of type uint64. Base type for constant tensor data."""
@@ -44,25 +44,25 @@ class ClassificationNode(BaseModel):
44
44
  node_type: Literal["image_classification"]
45
45
  name: str
46
46
  inputImage: str
47
- output_port_name: Optional[str] = None
48
47
  model_source: ModelSourceBase
48
+ output_port_name: str
49
49
 
50
50
  class ObjectDetectionNode(BaseModel):
51
51
  """Node for image object detection. Base type for all nodes in the graph."""
52
52
  node_type: Literal["image_object_detection"]
53
53
  name: str
54
54
  input_image: str
55
- output_port_name: Optional[str] = None
56
55
  model_source: ModelSourceBase
57
56
  scale_bounding_boxes: Optional[bool] = None
57
+ output_port_name: str
58
58
 
59
59
  class OcrNode(BaseModel):
60
60
  """Node for image OCR. Base type for all nodes in the graph."""
61
61
  node_type: Literal["image_ocr"]
62
62
  name: str
63
63
  input_image: str
64
- output_port_name: Optional[str] = None
65
64
  model_source: ModelSourceBase
65
+ output_port_name: str
66
66
 
67
67
  class ImagePatchesNode(BaseModel):
68
68
  """Node that extracts patches from an image based on bounding boxes. Base type for all nodes in the graph."""
@@ -72,7 +72,7 @@ class ImagePatchesNode(BaseModel):
72
72
  input_bounding_boxes: str
73
73
  input_target_size: TargetSizeSource
74
74
  input_maximum_iterations: Optional[MaxIterationsCountSource] = None
75
- output_port_name: Optional[str] = None
75
+ output_port_name: str
76
76
 
77
77
  class ImageResizeNode(BaseModel):
78
78
  """Node that resizes an image. Base type for all nodes in the graph."""
@@ -80,7 +80,7 @@ class ImageResizeNode(BaseModel):
80
80
  name: str
81
81
  input_size: str
82
82
  input_image: str
83
- output_port_name: Optional[str] = None
83
+ output_port_name: str
84
84
 
85
85
  class ModelSourceFromNetworkExperimentId(BaseModel):
86
86
  """Model source specified by a network experiment ID. Base type for the source of the model."""
@@ -96,8 +96,8 @@ class VirtualCameraNode(BaseModel):
96
96
  """Node representing a virtual camera source. Base type for all nodes in the graph."""
97
97
  node_type: Literal["virtual_camera"]
98
98
  name: str
99
- output_port_name: Optional[str] = None
100
99
  path: str
100
+ output_port_name: str
101
101
 
102
102
  # --- Inline Option Classes ---
103
103
  class MaxIterationsCountSourceTopicOption(BaseModel):
@@ -1,3 +1,11 @@
1
+ # To use this code, make sure you
2
+ #
3
+ # import json
4
+ #
5
+ # and then, to convert JSON from a string, do
6
+ #
7
+ # result = object_detection_markup_from_dict(json.loads(json_string))
8
+
1
9
  from enum import Enum
2
10
  from typing import Optional, Any, List, TypeVar, Type, Callable, cast
3
11
  from uuid import UUID
@@ -32,7 +40,7 @@ def from_bool(x: Any) -> bool:
32
40
 
33
41
 
34
42
  def to_float(x: Any) -> float:
35
- assert isinstance(x, (int, float))
43
+ assert isinstance(x, float)
36
44
  return x
37
45
 
38
46
 
@@ -104,14 +112,12 @@ class Annotation:
104
112
 
105
113
  def to_dict(self) -> dict:
106
114
  result: dict = {}
107
- if self.angle is not None:
108
- result["angle"] = from_union([to_float, from_none], self.angle)
115
+ result["angle"] = from_union([to_float, from_none], self.angle)
109
116
  result["annotation_type"] = to_enum(AnnotationType, self.annotation_type)
110
117
  result["average_width"] = to_float(self.average_width)
111
118
  result["bottom_right_x"] = to_float(self.bottom_right_x)
112
119
  result["bottom_right_y"] = to_float(self.bottom_right_y)
113
- if self.full_orientation is not None:
114
- result["full_orientation"] = from_union([from_bool, from_none], self.full_orientation)
120
+ result["full_orientation"] = from_union([from_bool, from_none], self.full_orientation)
115
121
  result["id"] = str(self.id)
116
122
  result["label_id"] = str(self.label_id)
117
123
  result["top_left_x"] = to_float(self.top_left_x)
@@ -1,3 +1,11 @@
1
+ # To use this code, make sure you
2
+ #
3
+ # import json
4
+ #
5
+ # and then, to convert JSON from a string, do
6
+ #
7
+ # result = ocr_markup_from_dict(json.loads(json_string))
8
+
1
9
  from typing import Any, List, Optional, TypeVar, Callable, Type, cast
2
10
  from uuid import UUID
3
11
 
@@ -11,7 +19,7 @@ def from_float(x: Any) -> float:
11
19
 
12
20
 
13
21
  def to_float(x: Any) -> float:
14
- assert isinstance(x, (int, float))
22
+ assert isinstance(x, float)
15
23
  return x
16
24
 
17
25
 
@@ -103,13 +111,12 @@ class Point:
103
111
 
104
112
  class OcrMarkupSchema:
105
113
  """A single closed loop (ring) of a polygon, defining either an outer boundary or a hole."""
106
-
107
- hierarchy: int
108
114
  """Nesting level: 0=outer, 1=hole in level 0, 2=poly in level 1 hole, etc. Even levels are
109
115
  filled areas, odd levels are holes.
110
116
  """
111
- points: List[Point]
117
+ hierarchy: int
112
118
  """Vertices of the ring."""
119
+ points: List[Point]
113
120
 
114
121
  def __init__(self, hierarchy: int, points: List[Point]) -> None:
115
122
  self.hierarchy = hierarchy
@@ -131,11 +138,10 @@ class OcrMarkupSchema:
131
138
 
132
139
  class Polygon:
133
140
  """A polygon defined by one or more rings, allowing for holes and nested structures."""
134
-
135
- rings: List[OcrMarkupSchema]
136
141
  """Array of polygon rings. The hierarchy field within each ring determines nesting and
137
142
  fill/hole status.
138
143
  """
144
+ rings: List[OcrMarkupSchema]
139
145
 
140
146
  def __init__(self, rings: List[OcrMarkupSchema]) -> None:
141
147
  self.rings = rings
@@ -156,9 +162,8 @@ class Annotation:
156
162
  bounding_box: Optional[BoundingBox]
157
163
  id: UUID
158
164
  label_id: UUID
159
- polygon: Optional[Polygon]
160
165
  """A polygon defined by one or more rings, allowing for holes and nested structures."""
161
-
166
+ polygon: Optional[Polygon]
162
167
  text: str
163
168
 
164
169
  def __init__(self, bounding_box: Optional[BoundingBox], id: UUID, label_id: UUID, polygon: Optional[Polygon], text: str) -> None:
@@ -180,12 +185,10 @@ class Annotation:
180
185
 
181
186
  def to_dict(self) -> dict:
182
187
  result: dict = {}
183
- if self.bounding_box is not None:
184
- result["bounding_box"] = from_union([lambda x: to_class(BoundingBox, x), from_none], self.bounding_box)
188
+ result["bounding_box"] = from_union([lambda x: to_class(BoundingBox, x), from_none], self.bounding_box)
185
189
  result["id"] = str(self.id)
186
190
  result["label_id"] = str(self.label_id)
187
- if self.polygon is not None:
188
- result["polygon"] = from_union([lambda x: to_class(Polygon, x), from_none], self.polygon)
191
+ result["polygon"] = from_union([lambda x: to_class(Polygon, x), from_none], self.polygon)
189
192
  result["text"] = from_str(self.text)
190
193
  return result
191
194
 
@@ -1,3 +1,11 @@
1
+ # To use this code, make sure you
2
+ #
3
+ # import json
4
+ #
5
+ # and then, to convert JSON from a string, do
6
+ #
7
+ # result = segmentation_markup_from_dict(json.loads(json_string))
8
+
1
9
  from enum import Enum
2
10
  from typing import Any, List, Optional, TypeVar, Callable, Type, cast
3
11
  from uuid import UUID
@@ -13,7 +21,7 @@ def from_float(x: Any) -> float:
13
21
 
14
22
 
15
23
  def to_float(x: Any) -> float:
16
- assert isinstance(x, (int, float))
24
+ assert isinstance(x, float)
17
25
  return x
18
26
 
19
27
 
@@ -283,13 +291,12 @@ class RingPoint:
283
291
 
284
292
  class SegmentationMarkupSchema:
285
293
  """A single closed loop (ring) of a polygon, defining either an outer boundary or a hole."""
286
-
287
- hierarchy: int
288
294
  """Nesting level: 0=outer, 1=hole in level 0, 2=poly in level 1 hole, etc. Even levels are
289
295
  filled areas, odd levels are holes.
290
296
  """
291
- points: List[RingPoint]
297
+ hierarchy: int
292
298
  """Vertices of the ring."""
299
+ points: List[RingPoint]
293
300
 
294
301
  def __init__(self, hierarchy: int, points: List[RingPoint]) -> None:
295
302
  self.hierarchy = hierarchy
@@ -311,11 +318,10 @@ class SegmentationMarkupSchema:
311
318
 
312
319
  class PolygonAnnotation:
313
320
  """A polygon defined by one or more rings, allowing for holes and nested structures."""
314
-
315
- rings: List[SegmentationMarkupSchema]
316
321
  """Array of polygon rings. The hierarchy field within each ring determines nesting and
317
322
  fill/hole status.
318
323
  """
324
+ rings: List[SegmentationMarkupSchema]
319
325
 
320
326
  def __init__(self, rings: List[SegmentationMarkupSchema]) -> None:
321
327
  self.rings = rings
@@ -472,22 +478,15 @@ class Annotation:
472
478
  result: dict = {}
473
479
  result["annotation_type"] = to_enum(AnnotationType, self.annotation_type)
474
480
  result["average_width"] = to_float(self.average_width)
475
- if self.circle_annotation is not None:
476
- result["circle_annotation"] = from_union([lambda x: to_class(CircleAnnotation, x), from_none], self.circle_annotation)
481
+ result["circle_annotation"] = from_union([lambda x: to_class(CircleAnnotation, x), from_none], self.circle_annotation)
477
482
  result["id"] = str(self.id)
478
483
  result["label_id"] = str(self.label_id)
479
- if self.magicwand_annotation is not None:
480
- result["magicwand_annotation"] = from_union([lambda x: to_class(MagicwandAnnotation, x), from_none], self.magicwand_annotation)
481
- if self.pen_annotation is not None:
482
- result["pen_annotation"] = from_union([lambda x: to_class(PenAnnotation, x), from_none], self.pen_annotation)
483
- if self.pixel_annotation is not None:
484
- result["pixel_annotation"] = from_union([lambda x: to_class(PixelAnnotation, x), from_none], self.pixel_annotation)
485
- if self.polygon_annotation is not None:
486
- result["polygon_annotation"] = from_union([lambda x: to_class(PolygonAnnotation, x), from_none], self.polygon_annotation)
487
- if self.rectangle_annotation is not None:
488
- result["rectangle_annotation"] = from_union([lambda x: to_class(RectangleAnnotation, x), from_none], self.rectangle_annotation)
489
- if self.sausage_annotation is not None:
490
- result["sausage_annotation"] = from_union([lambda x: to_class(SausageAnnotation, x), from_none], self.sausage_annotation)
484
+ result["magicwand_annotation"] = from_union([lambda x: to_class(MagicwandAnnotation, x), from_none], self.magicwand_annotation)
485
+ result["pen_annotation"] = from_union([lambda x: to_class(PenAnnotation, x), from_none], self.pen_annotation)
486
+ result["pixel_annotation"] = from_union([lambda x: to_class(PixelAnnotation, x), from_none], self.pixel_annotation)
487
+ result["polygon_annotation"] = from_union([lambda x: to_class(PolygonAnnotation, x), from_none], self.polygon_annotation)
488
+ result["rectangle_annotation"] = from_union([lambda x: to_class(RectangleAnnotation, x), from_none], self.rectangle_annotation)
489
+ result["sausage_annotation"] = from_union([lambda x: to_class(SausageAnnotation, x), from_none], self.sausage_annotation)
491
490
  return result
492
491
 
493
492
 
@@ -22,9 +22,10 @@ _runtime_version.ValidateProtobufRuntimeVersion(
22
22
  _sym_db = _symbol_database.Default()
23
23
 
24
24
 
25
+ import denkproto.validate_pb2 as validate__pb2
25
26
 
26
27
 
27
- DESCRIPTOR = _descriptor_pool.Default().AddSerializedFile(b'\n\x12modelfile-v2.proto\x12\x0cmodelfile.v2\"\xae$\n\tModelFile\x12\x39\n\x10protocol_version\x18\x01 \x01(\x0b\x32\x1f.modelfile.v2.ModelFile.Version\x12\x12\n\ncreated_at\x18\x02 \x01(\x03\x12\x33\n\tfile_info\x18\x03 \x01(\x0b\x32 .modelfile.v2.ModelFile.FileInfo\x12\x30\n\x07\x63ontent\x18\x04 \x01(\x0b\x32\x1f.modelfile.v2.ModelFile.Content\x12\x38\n\x0c\x63lass_labels\x18\x05 \x03(\x0b\x32\".modelfile.v2.ModelFile.ClassLabel\x12-\n\x06inputs\x18\x06 \x03(\x0b\x32\x1d.modelfile.v2.ModelFile.Input\x12/\n\x07outputs\x18\x07 \x03(\x0b\x32\x1e.modelfile.v2.ModelFile.Output\x12J\n\x12\x61\x64\x64itional_content\x18\x08 \x03(\x0b\x32..modelfile.v2.ModelFile.AdditionalContentEntry\x1a\x36\n\x07Version\x12\r\n\x05major\x18\x01 \x01(\x04\x12\r\n\x05minor\x18\x02 \x01(\x04\x12\r\n\x05patch\x18\x03 \x01(\x04\x1a\xaa\x04\n\x07\x43ontent\x12\x14\n\x0c\x62yte_content\x18\x01 \x01(\x0c\x12\x13\n\x0bhash_sha256\x18\x02 \x01(\x0c\x12M\n\x12\x63ompression_method\x18\x03 \x01(\x0e\x32\x31.modelfile.v2.ModelFile.Content.CompressionMethod\x12K\n\x11\x65ncryption_method\x18\x04 \x01(\x0e\x32\x30.modelfile.v2.ModelFile.Content.EncryptionMethod\x12@\n\tkey_slots\x18\x05 \x03(\x0b\x32-.modelfile.v2.ModelFile.Content.KeySlotsEntry\x1ai\n\x07KeySlot\x12\x13\n\x0bwrapped_key\x18\x01 \x01(\x0c\x12I\n\x0fwrapping_method\x18\x02 \x01(\x0e\x32\x30.modelfile.v2.ModelFile.Content.EncryptionMethod\x1aX\n\rKeySlotsEntry\x12\x0b\n\x03key\x18\x01 \x01(\t\x12\x36\n\x05value\x18\x02 \x01(\x0b\x32\'.modelfile.v2.ModelFile.Content.KeySlot:\x02\x38\x01\" \n\x11\x43ompressionMethod\x12\x0b\n\x07\x43M_NONE\x10\x00\"/\n\x10\x45ncryptionMethod\x12\x0b\n\x07\x45M_NONE\x10\x00\x12\x0e\n\nEM_AES_GCM\x10\x01\x1aU\n\nClassLabel\x12\x16\n\x0e\x63lass_label_id\x18\x01 \x01(\t\x12\x0c\n\x04name\x18\x02 \x01(\t\x12\x12\n\nshort_name\x18\x03 \x01(\t\x12\r\n\x05\x63olor\x18\x04 \x01(\t\x1a<\n\tImageSize\x12\r\n\x05width\x18\x01 \x01(\x04\x12\x0e\n\x06height\x18\x02 \x01(\x04\x12\x10\n\x08\x63hannels\x18\x03 \x01(\x04\x1aJ\n\x0eRegionFromEdge\x12\x0c\n\x04left\x18\x01 \x01(\x01\x12\r\n\x05right\x18\x02 \x01(\x01\x12\x0b\n\x03top\x18\x03 \x01(\x01\x12\x0e\n\x06\x62ottom\x18\x04 \x01(\x01\x1a\xe2\x05\n\x05Input\x12\x46\n\x0cimage_format\x18\x01 \x01(\x0b\x32..modelfile.v2.ModelFile.Input.ImageInputFormatH\x00\x1a\xfb\x04\n\x10ImageInputFormat\x12\x64\n\x10\x65xact_image_size\x18\x01 \x01(\x0b\x32H.modelfile.v2.ModelFile.Input.ImageInputFormat.ExactImageSizeRequirementH\x00\x12l\n\x14\x64ivisible_image_size\x18\x02 \x01(\x0b\x32L.modelfile.v2.ModelFile.Input.ImageInputFormat.DivisibleImageSizeRequirementH\x00\x12\x42\n\x12region_of_interest\x18\x03 \x01(\x0b\x32&.modelfile.v2.ModelFile.RegionFromEdge\x1aR\n\x19\x45xactImageSizeRequirement\x12\x35\n\nimage_size\x18\x01 \x01(\x0b\x32!.modelfile.v2.ModelFile.ImageSize\x1a\xdf\x01\n\x1d\x44ivisibleImageSizeRequirement\x12>\n\x13image_size_divisors\x18\x01 \x01(\x0b\x32!.modelfile.v2.ModelFile.ImageSize\x12=\n\x12minimum_image_size\x18\x02 \x01(\x0b\x32!.modelfile.v2.ModelFile.ImageSize\x12?\n\x14suggested_image_size\x18\x03 \x01(\x0b\x32!.modelfile.v2.ModelFile.ImageSizeB\x19\n\x17image_size_requirementsB\x13\n\x11\x46ormatInformation\x1a\xcc\n\n\x06Output\x12_\n\x18image_classifiers_format\x18\x01 \x01(\x0b\x32;.modelfile.v2.ModelFile.Output.ImageClassifiersOutputFormatH\x00\x12_\n\x18segmentation_maps_format\x18\x02 \x01(\x0b\x32;.modelfile.v2.ModelFile.Output.SegmentationMapsOutputFormatH\x00\x12Y\n\x15\x62ounding_boxes_format\x18\x03 \x01(\x0b\x32\x38.modelfile.v2.ModelFile.Output.BoundingBoxesOutputFormatH\x00\x12p\n!bounding_box_segmentations_format\x18\x04 \x01(\x0b\x32\x43.modelfile.v2.ModelFile.Output.BoundingBoxSegmentationsOutputFormatH\x00\x12\x44\n\nocr_format\x18\x05 \x01(\x0b\x32..modelfile.v2.ModelFile.Output.OcrOutputFormatH\x00\x1a\x1e\n\x1cImageClassifiersOutputFormat\x1aU\n\x1cSegmentationMapsOutputFormat\x12\x35\n\nimage_size\x18\x01 \x01(\x0b\x32!.modelfile.v2.ModelFile.ImageSize\x1a\xe9\x01\n\x19\x42oundingBoxesOutputFormat\x12\x17\n\x0fnumber_of_boxes\x18\x01 \x01(\x04\x12\x0e\n\x06stride\x18\x02 \x01(\x04\x12\x11\n\tx1_offset\x18\x03 \x01(\x04\x12\x11\n\ty1_offset\x18\x04 \x01(\x04\x12\x11\n\tx2_offset\x18\x05 \x01(\x04\x12\x11\n\ty2_offset\x18\x06 \x01(\x04\x12\x19\n\x11\x63onfidence_offset\x18\x07 \x01(\x04\x12 \n\x18\x63lass_label_index_offset\x18\x08 \x01(\x04\x12\x1a\n\x12\x62\x61tch_index_offset\x18\t \x01(\x04\x1a\x7f\n$BoundingBoxSegmentationsOutputFormat\x12\x35\n\nimage_size\x18\x01 \x01(\x0b\x32!.modelfile.v2.ModelFile.ImageSize\x12 \n\x18relative_to_bounding_box\x18\x02 \x01(\x08\x1a\xf3\x02\n\x0fOcrOutputFormat\x12\x1c\n\x14number_of_characters\x18\x01 \x01(\x04\x12L\n\ncharacters\x18\x02 \x03(\x0b\x32\x38.modelfile.v2.ModelFile.Output.OcrOutputFormat.Character\x1a\xf3\x01\n\tCharacter\x12\x1b\n\x13utf8_representation\x18\x01 \x01(\x0c\x12^\n\x0e\x63haracter_type\x18\x02 \x01(\x0e\x32\x46.modelfile.v2.ModelFile.Output.OcrOutputFormat.Character.CharacterType\x12\x0e\n\x06ignore\x18\x03 \x01(\x08\"Y\n\rCharacterType\x12\x0e\n\nCT_REGULAR\x10\x00\x12\x14\n\x10\x43T_START_OF_TEXT\x10\x01\x12\x12\n\x0e\x43T_END_OF_TEXT\x10\x02\x12\x0e\n\nCT_PADDING\x10\x03\x42\x13\n\x11\x46ormatInformation\x1a\xaf\t\n\x08\x46ileInfo\x12<\n\tfile_type\x18\x01 \x01(\x0e\x32).modelfile.v2.ModelFile.FileInfo.FileType\x12\x14\n\x0cnetwork_name\x18\x02 \x01(\t\x12\x12\n\nnetwork_id\x18\x03 \x01(\t\x12\x1d\n\x15network_experiment_id\x18\x04 \x01(\t\x12\x1b\n\x13network_snapshot_id\x18\x05 \x01(\t\x12\x42\n\x0cnetwork_type\x18\x06 \x01(\x0e\x32,.modelfile.v2.ModelFile.FileInfo.NetworkType\x12\x16\n\x0enetwork_flavor\x18\x07 \x01(\t\x12\x38\n\x0fnetwork_version\x18\x08 \x01(\x0b\x32\x1f.modelfile.v2.ModelFile.Version\x12\x38\n\x0fruntime_version\x18\t \x01(\x0b\x32\x1f.modelfile.v2.ModelFile.Version\x12=\n\tprecision\x18\n \x01(\x0e\x32*.modelfile.v2.ModelFile.FileInfo.Precision\x12\x44\n\x1bminimum_libdenkflow_version\x18\x0b \x01(\x0b\x32\x1f.modelfile.v2.ModelFile.Version\x12H\n\x0fhardware_target\x18\x0c \x01(\x0e\x32/.modelfile.v2.ModelFile.FileInfo.HardwareTarget\"?\n\x08\x46ileType\x12\x0c\n\x08\x46T_MODEL\x10\x00\x12\x10\n\x0c\x46T_ZXING_KEY\x10\x01\x12\x13\n\x0f\x46T_VIZIOTIX_KEY\x10\x02\"\xc0\x01\n\x0bNetworkType\x12\x0e\n\nNT_UNKNOWN\x10\x00\x12\x15\n\x11NT_CLASSIFICATION\x10\x01\x12\x13\n\x0fNT_SEGMENTATION\x10\x02\x12\x1c\n\x18NT_INSTANCE_SEGMENTATION\x10\x03\x12\x17\n\x13NT_OBJECT_DETECTION\x10\x04\x12\x18\n\x14NT_ANOMALY_DETECTION\x10\x05\x12$\n NT_OPTICAL_CHARACTER_RECOGNITION\x10\x06\"\xa8\x02\n\tPrecision\x12\x0f\n\x0bP_UNDEFINED\x10\x00\x12\x15\n\x11P_MIXED_PRECISION\x10\x01\x12\t\n\x05P_FP8\x10\x02\x12\n\n\x06P_FP16\x10\x03\x12\n\n\x06P_FP32\x10\x04\x12\n\n\x06P_FP64\x10\x05\x12\t\n\x05P_BF8\x10\x06\x12\n\n\x06P_BF16\x10\x07\x12\n\n\x06P_BF32\x10\x08\x12\n\n\x06P_BF64\x10\t\x12\n\n\x06P_INT8\x10\n\x12\x0b\n\x07P_INT16\x10\x0b\x12\x0b\n\x07P_INT32\x10\x0c\x12\x0b\n\x07P_INT64\x10\r\x12\x0b\n\x07P_UINT8\x10\x0e\x12\x0c\n\x08P_UINT16\x10\x0f\x12\x0c\n\x08P_UINT32\x10\x10\x12\x0c\n\x08P_UINT64\x10\x11\x12\r\n\tP_2_STATE\x10\x12\x12\r\n\tP_3_STATE\x10\x13\x12\r\n\tP_4_STATE\x10\x14\"1\n\x0eHardwareTarget\x12\x0e\n\nHT_DEFAULT\x10\x00\x12\x0f\n\x0bHT_TENSORRT\x10\x01\x1aY\n\x16\x41\x64\x64itionalContentEntry\x12\x0b\n\x03key\x18\x01 \x01(\t\x12.\n\x05value\x18\x02 \x01(\x0b\x32\x1f.modelfile.v2.ModelFile.Content:\x02\x38\x01\x42IZ-github.com/DENKweit/denkproto-go/modelfile/v2\xaa\x02\x17\x44\x45NK.Proto.Modelfile.V2b\x06proto3')
28
+ DESCRIPTOR = _descriptor_pool.Default().AddSerializedFile(b'\n\x12modelfile-v2.proto\x12\x0cmodelfile.v2\x1a\x0evalidate.proto\"\xb8$\n\tModelFile\x12\x39\n\x10protocol_version\x18\x01 \x01(\x0b\x32\x1f.modelfile.v2.ModelFile.Version\x12\x12\n\ncreated_at\x18\x02 \x01(\x03\x12=\n\tfile_info\x18\x03 \x01(\x0b\x32 .modelfile.v2.ModelFile.FileInfoB\x08\xfa\x42\x05\x8a\x01\x02\x10\x01\x12\x30\n\x07\x63ontent\x18\x04 \x01(\x0b\x32\x1f.modelfile.v2.ModelFile.Content\x12\x38\n\x0c\x63lass_labels\x18\x05 \x03(\x0b\x32\".modelfile.v2.ModelFile.ClassLabel\x12-\n\x06inputs\x18\x06 \x03(\x0b\x32\x1d.modelfile.v2.ModelFile.Input\x12/\n\x07outputs\x18\x07 \x03(\x0b\x32\x1e.modelfile.v2.ModelFile.Output\x12J\n\x12\x61\x64\x64itional_content\x18\x08 \x03(\x0b\x32..modelfile.v2.ModelFile.AdditionalContentEntry\x1a\x36\n\x07Version\x12\r\n\x05major\x18\x01 \x01(\x04\x12\r\n\x05minor\x18\x02 \x01(\x04\x12\r\n\x05patch\x18\x03 \x01(\x04\x1a\xaa\x04\n\x07\x43ontent\x12\x14\n\x0c\x62yte_content\x18\x01 \x01(\x0c\x12\x13\n\x0bhash_sha256\x18\x02 \x01(\x0c\x12M\n\x12\x63ompression_method\x18\x03 \x01(\x0e\x32\x31.modelfile.v2.ModelFile.Content.CompressionMethod\x12K\n\x11\x65ncryption_method\x18\x04 \x01(\x0e\x32\x30.modelfile.v2.ModelFile.Content.EncryptionMethod\x12@\n\tkey_slots\x18\x05 \x03(\x0b\x32-.modelfile.v2.ModelFile.Content.KeySlotsEntry\x1ai\n\x07KeySlot\x12\x13\n\x0bwrapped_key\x18\x01 \x01(\x0c\x12I\n\x0fwrapping_method\x18\x02 \x01(\x0e\x32\x30.modelfile.v2.ModelFile.Content.EncryptionMethod\x1aX\n\rKeySlotsEntry\x12\x0b\n\x03key\x18\x01 \x01(\t\x12\x36\n\x05value\x18\x02 \x01(\x0b\x32\'.modelfile.v2.ModelFile.Content.KeySlot:\x02\x38\x01\" \n\x11\x43ompressionMethod\x12\x0b\n\x07\x43M_NONE\x10\x00\"/\n\x10\x45ncryptionMethod\x12\x0b\n\x07\x45M_NONE\x10\x00\x12\x0e\n\nEM_AES_GCM\x10\x01\x1aU\n\nClassLabel\x12\x16\n\x0e\x63lass_label_id\x18\x01 \x01(\t\x12\x0c\n\x04name\x18\x02 \x01(\t\x12\x12\n\nshort_name\x18\x03 \x01(\t\x12\r\n\x05\x63olor\x18\x04 \x01(\t\x1a<\n\tImageSize\x12\r\n\x05width\x18\x01 \x01(\x04\x12\x0e\n\x06height\x18\x02 \x01(\x04\x12\x10\n\x08\x63hannels\x18\x03 \x01(\x04\x1aJ\n\x0eRegionFromEdge\x12\x0c\n\x04left\x18\x01 \x01(\x01\x12\r\n\x05right\x18\x02 \x01(\x01\x12\x0b\n\x03top\x18\x03 \x01(\x01\x12\x0e\n\x06\x62ottom\x18\x04 \x01(\x01\x1a\xe2\x05\n\x05Input\x12\x46\n\x0cimage_format\x18\x01 \x01(\x0b\x32..modelfile.v2.ModelFile.Input.ImageInputFormatH\x00\x1a\xfb\x04\n\x10ImageInputFormat\x12\x64\n\x10\x65xact_image_size\x18\x01 \x01(\x0b\x32H.modelfile.v2.ModelFile.Input.ImageInputFormat.ExactImageSizeRequirementH\x00\x12l\n\x14\x64ivisible_image_size\x18\x02 \x01(\x0b\x32L.modelfile.v2.ModelFile.Input.ImageInputFormat.DivisibleImageSizeRequirementH\x00\x12\x42\n\x12region_of_interest\x18\x03 \x01(\x0b\x32&.modelfile.v2.ModelFile.RegionFromEdge\x1aR\n\x19\x45xactImageSizeRequirement\x12\x35\n\nimage_size\x18\x01 \x01(\x0b\x32!.modelfile.v2.ModelFile.ImageSize\x1a\xdf\x01\n\x1d\x44ivisibleImageSizeRequirement\x12>\n\x13image_size_divisors\x18\x01 \x01(\x0b\x32!.modelfile.v2.ModelFile.ImageSize\x12=\n\x12minimum_image_size\x18\x02 \x01(\x0b\x32!.modelfile.v2.ModelFile.ImageSize\x12?\n\x14suggested_image_size\x18\x03 \x01(\x0b\x32!.modelfile.v2.ModelFile.ImageSizeB\x19\n\x17image_size_requirementsB\x13\n\x11\x46ormatInformation\x1a\xcc\n\n\x06Output\x12_\n\x18image_classifiers_format\x18\x01 \x01(\x0b\x32;.modelfile.v2.ModelFile.Output.ImageClassifiersOutputFormatH\x00\x12_\n\x18segmentation_maps_format\x18\x02 \x01(\x0b\x32;.modelfile.v2.ModelFile.Output.SegmentationMapsOutputFormatH\x00\x12Y\n\x15\x62ounding_boxes_format\x18\x03 \x01(\x0b\x32\x38.modelfile.v2.ModelFile.Output.BoundingBoxesOutputFormatH\x00\x12p\n!bounding_box_segmentations_format\x18\x04 \x01(\x0b\x32\x43.modelfile.v2.ModelFile.Output.BoundingBoxSegmentationsOutputFormatH\x00\x12\x44\n\nocr_format\x18\x05 \x01(\x0b\x32..modelfile.v2.ModelFile.Output.OcrOutputFormatH\x00\x1a\x1e\n\x1cImageClassifiersOutputFormat\x1aU\n\x1cSegmentationMapsOutputFormat\x12\x35\n\nimage_size\x18\x01 \x01(\x0b\x32!.modelfile.v2.ModelFile.ImageSize\x1a\xe9\x01\n\x19\x42oundingBoxesOutputFormat\x12\x17\n\x0fnumber_of_boxes\x18\x01 \x01(\x04\x12\x0e\n\x06stride\x18\x02 \x01(\x04\x12\x11\n\tx1_offset\x18\x03 \x01(\x04\x12\x11\n\ty1_offset\x18\x04 \x01(\x04\x12\x11\n\tx2_offset\x18\x05 \x01(\x04\x12\x11\n\ty2_offset\x18\x06 \x01(\x04\x12\x19\n\x11\x63onfidence_offset\x18\x07 \x01(\x04\x12 \n\x18\x63lass_label_index_offset\x18\x08 \x01(\x04\x12\x1a\n\x12\x62\x61tch_index_offset\x18\t \x01(\x04\x1a\x7f\n$BoundingBoxSegmentationsOutputFormat\x12\x35\n\nimage_size\x18\x01 \x01(\x0b\x32!.modelfile.v2.ModelFile.ImageSize\x12 \n\x18relative_to_bounding_box\x18\x02 \x01(\x08\x1a\xf3\x02\n\x0fOcrOutputFormat\x12\x1c\n\x14number_of_characters\x18\x01 \x01(\x04\x12L\n\ncharacters\x18\x02 \x03(\x0b\x32\x38.modelfile.v2.ModelFile.Output.OcrOutputFormat.Character\x1a\xf3\x01\n\tCharacter\x12\x1b\n\x13utf8_representation\x18\x01 \x01(\x0c\x12^\n\x0e\x63haracter_type\x18\x02 \x01(\x0e\x32\x46.modelfile.v2.ModelFile.Output.OcrOutputFormat.Character.CharacterType\x12\x0e\n\x06ignore\x18\x03 \x01(\x08\"Y\n\rCharacterType\x12\x0e\n\nCT_REGULAR\x10\x00\x12\x14\n\x10\x43T_START_OF_TEXT\x10\x01\x12\x12\n\x0e\x43T_END_OF_TEXT\x10\x02\x12\x0e\n\nCT_PADDING\x10\x03\x42\x13\n\x11\x46ormatInformation\x1a\xaf\t\n\x08\x46ileInfo\x12<\n\tfile_type\x18\x01 \x01(\x0e\x32).modelfile.v2.ModelFile.FileInfo.FileType\x12\x14\n\x0cnetwork_name\x18\x02 \x01(\t\x12\x12\n\nnetwork_id\x18\x03 \x01(\t\x12\x1d\n\x15network_experiment_id\x18\x04 \x01(\t\x12\x1b\n\x13network_snapshot_id\x18\x05 \x01(\t\x12\x42\n\x0cnetwork_type\x18\x06 \x01(\x0e\x32,.modelfile.v2.ModelFile.FileInfo.NetworkType\x12\x16\n\x0enetwork_flavor\x18\x07 \x01(\t\x12\x38\n\x0fnetwork_version\x18\x08 \x01(\x0b\x32\x1f.modelfile.v2.ModelFile.Version\x12\x38\n\x0fruntime_version\x18\t \x01(\x0b\x32\x1f.modelfile.v2.ModelFile.Version\x12=\n\tprecision\x18\n \x01(\x0e\x32*.modelfile.v2.ModelFile.FileInfo.Precision\x12\x44\n\x1bminimum_libdenkflow_version\x18\x0b \x01(\x0b\x32\x1f.modelfile.v2.ModelFile.Version\x12H\n\x0fhardware_target\x18\x0c \x01(\x0e\x32/.modelfile.v2.ModelFile.FileInfo.HardwareTarget\"?\n\x08\x46ileType\x12\x0c\n\x08\x46T_MODEL\x10\x00\x12\x10\n\x0c\x46T_ZXING_KEY\x10\x01\x12\x13\n\x0f\x46T_VIZIOTIX_KEY\x10\x02\"\xc0\x01\n\x0bNetworkType\x12\x0e\n\nNT_UNKNOWN\x10\x00\x12\x15\n\x11NT_CLASSIFICATION\x10\x01\x12\x13\n\x0fNT_SEGMENTATION\x10\x02\x12\x1c\n\x18NT_INSTANCE_SEGMENTATION\x10\x03\x12\x17\n\x13NT_OBJECT_DETECTION\x10\x04\x12\x18\n\x14NT_ANOMALY_DETECTION\x10\x05\x12$\n NT_OPTICAL_CHARACTER_RECOGNITION\x10\x06\"\xa8\x02\n\tPrecision\x12\x0f\n\x0bP_UNDEFINED\x10\x00\x12\x15\n\x11P_MIXED_PRECISION\x10\x01\x12\t\n\x05P_FP8\x10\x02\x12\n\n\x06P_FP16\x10\x03\x12\n\n\x06P_FP32\x10\x04\x12\n\n\x06P_FP64\x10\x05\x12\t\n\x05P_BF8\x10\x06\x12\n\n\x06P_BF16\x10\x07\x12\n\n\x06P_BF32\x10\x08\x12\n\n\x06P_BF64\x10\t\x12\n\n\x06P_INT8\x10\n\x12\x0b\n\x07P_INT16\x10\x0b\x12\x0b\n\x07P_INT32\x10\x0c\x12\x0b\n\x07P_INT64\x10\r\x12\x0b\n\x07P_UINT8\x10\x0e\x12\x0c\n\x08P_UINT16\x10\x0f\x12\x0c\n\x08P_UINT32\x10\x10\x12\x0c\n\x08P_UINT64\x10\x11\x12\r\n\tP_2_STATE\x10\x12\x12\r\n\tP_3_STATE\x10\x13\x12\r\n\tP_4_STATE\x10\x14\"1\n\x0eHardwareTarget\x12\x0e\n\nHT_DEFAULT\x10\x00\x12\x0f\n\x0bHT_TENSORRT\x10\x01\x1aY\n\x16\x41\x64\x64itionalContentEntry\x12\x0b\n\x03key\x18\x01 \x01(\t\x12.\n\x05value\x18\x02 \x01(\x0b\x32\x1f.modelfile.v2.ModelFile.Content:\x02\x38\x01\x42IZ-github.com/DENKweit/denkproto-go/modelfile/v2\xaa\x02\x17\x44\x45NK.Proto.Modelfile.V2b\x06proto3')
28
29
 
29
30
  _globals = globals()
30
31
  _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals)
@@ -36,60 +37,62 @@ if not _descriptor._USE_C_DESCRIPTORS:
36
37
  _globals['_MODELFILE_CONTENT_KEYSLOTSENTRY']._serialized_options = b'8\001'
37
38
  _globals['_MODELFILE_ADDITIONALCONTENTENTRY']._loaded_options = None
38
39
  _globals['_MODELFILE_ADDITIONALCONTENTENTRY']._serialized_options = b'8\001'
39
- _globals['_MODELFILE']._serialized_start=37
40
- _globals['_MODELFILE']._serialized_end=4691
41
- _globals['_MODELFILE_VERSION']._serialized_start=462
42
- _globals['_MODELFILE_VERSION']._serialized_end=516
43
- _globals['_MODELFILE_CONTENT']._serialized_start=519
44
- _globals['_MODELFILE_CONTENT']._serialized_end=1073
45
- _globals['_MODELFILE_CONTENT_KEYSLOT']._serialized_start=795
46
- _globals['_MODELFILE_CONTENT_KEYSLOT']._serialized_end=900
47
- _globals['_MODELFILE_CONTENT_KEYSLOTSENTRY']._serialized_start=902
48
- _globals['_MODELFILE_CONTENT_KEYSLOTSENTRY']._serialized_end=990
49
- _globals['_MODELFILE_CONTENT_COMPRESSIONMETHOD']._serialized_start=992
50
- _globals['_MODELFILE_CONTENT_COMPRESSIONMETHOD']._serialized_end=1024
51
- _globals['_MODELFILE_CONTENT_ENCRYPTIONMETHOD']._serialized_start=1026
52
- _globals['_MODELFILE_CONTENT_ENCRYPTIONMETHOD']._serialized_end=1073
53
- _globals['_MODELFILE_CLASSLABEL']._serialized_start=1075
54
- _globals['_MODELFILE_CLASSLABEL']._serialized_end=1160
55
- _globals['_MODELFILE_IMAGESIZE']._serialized_start=1162
56
- _globals['_MODELFILE_IMAGESIZE']._serialized_end=1222
57
- _globals['_MODELFILE_REGIONFROMEDGE']._serialized_start=1224
58
- _globals['_MODELFILE_REGIONFROMEDGE']._serialized_end=1298
59
- _globals['_MODELFILE_INPUT']._serialized_start=1301
60
- _globals['_MODELFILE_INPUT']._serialized_end=2039
61
- _globals['_MODELFILE_INPUT_IMAGEINPUTFORMAT']._serialized_start=1383
62
- _globals['_MODELFILE_INPUT_IMAGEINPUTFORMAT']._serialized_end=2018
63
- _globals['_MODELFILE_INPUT_IMAGEINPUTFORMAT_EXACTIMAGESIZEREQUIREMENT']._serialized_start=1683
64
- _globals['_MODELFILE_INPUT_IMAGEINPUTFORMAT_EXACTIMAGESIZEREQUIREMENT']._serialized_end=1765
65
- _globals['_MODELFILE_INPUT_IMAGEINPUTFORMAT_DIVISIBLEIMAGESIZEREQUIREMENT']._serialized_start=1768
66
- _globals['_MODELFILE_INPUT_IMAGEINPUTFORMAT_DIVISIBLEIMAGESIZEREQUIREMENT']._serialized_end=1991
67
- _globals['_MODELFILE_OUTPUT']._serialized_start=2042
68
- _globals['_MODELFILE_OUTPUT']._serialized_end=3398
69
- _globals['_MODELFILE_OUTPUT_IMAGECLASSIFIERSOUTPUTFORMAT']._serialized_start=2521
70
- _globals['_MODELFILE_OUTPUT_IMAGECLASSIFIERSOUTPUTFORMAT']._serialized_end=2551
71
- _globals['_MODELFILE_OUTPUT_SEGMENTATIONMAPSOUTPUTFORMAT']._serialized_start=2553
72
- _globals['_MODELFILE_OUTPUT_SEGMENTATIONMAPSOUTPUTFORMAT']._serialized_end=2638
73
- _globals['_MODELFILE_OUTPUT_BOUNDINGBOXESOUTPUTFORMAT']._serialized_start=2641
74
- _globals['_MODELFILE_OUTPUT_BOUNDINGBOXESOUTPUTFORMAT']._serialized_end=2874
75
- _globals['_MODELFILE_OUTPUT_BOUNDINGBOXSEGMENTATIONSOUTPUTFORMAT']._serialized_start=2876
76
- _globals['_MODELFILE_OUTPUT_BOUNDINGBOXSEGMENTATIONSOUTPUTFORMAT']._serialized_end=3003
77
- _globals['_MODELFILE_OUTPUT_OCROUTPUTFORMAT']._serialized_start=3006
78
- _globals['_MODELFILE_OUTPUT_OCROUTPUTFORMAT']._serialized_end=3377
79
- _globals['_MODELFILE_OUTPUT_OCROUTPUTFORMAT_CHARACTER']._serialized_start=3134
80
- _globals['_MODELFILE_OUTPUT_OCROUTPUTFORMAT_CHARACTER']._serialized_end=3377
81
- _globals['_MODELFILE_OUTPUT_OCROUTPUTFORMAT_CHARACTER_CHARACTERTYPE']._serialized_start=3288
82
- _globals['_MODELFILE_OUTPUT_OCROUTPUTFORMAT_CHARACTER_CHARACTERTYPE']._serialized_end=3377
83
- _globals['_MODELFILE_FILEINFO']._serialized_start=3401
84
- _globals['_MODELFILE_FILEINFO']._serialized_end=4600
85
- _globals['_MODELFILE_FILEINFO_FILETYPE']._serialized_start=3992
86
- _globals['_MODELFILE_FILEINFO_FILETYPE']._serialized_end=4055
87
- _globals['_MODELFILE_FILEINFO_NETWORKTYPE']._serialized_start=4058
88
- _globals['_MODELFILE_FILEINFO_NETWORKTYPE']._serialized_end=4250
89
- _globals['_MODELFILE_FILEINFO_PRECISION']._serialized_start=4253
90
- _globals['_MODELFILE_FILEINFO_PRECISION']._serialized_end=4549
91
- _globals['_MODELFILE_FILEINFO_HARDWARETARGET']._serialized_start=4551
92
- _globals['_MODELFILE_FILEINFO_HARDWARETARGET']._serialized_end=4600
93
- _globals['_MODELFILE_ADDITIONALCONTENTENTRY']._serialized_start=4602
94
- _globals['_MODELFILE_ADDITIONALCONTENTENTRY']._serialized_end=4691
40
+ _globals['_MODELFILE'].fields_by_name['file_info']._loaded_options = None
41
+ _globals['_MODELFILE'].fields_by_name['file_info']._serialized_options = b'\372B\005\212\001\002\020\001'
42
+ _globals['_MODELFILE']._serialized_start=53
43
+ _globals['_MODELFILE']._serialized_end=4717
44
+ _globals['_MODELFILE_VERSION']._serialized_start=488
45
+ _globals['_MODELFILE_VERSION']._serialized_end=542
46
+ _globals['_MODELFILE_CONTENT']._serialized_start=545
47
+ _globals['_MODELFILE_CONTENT']._serialized_end=1099
48
+ _globals['_MODELFILE_CONTENT_KEYSLOT']._serialized_start=821
49
+ _globals['_MODELFILE_CONTENT_KEYSLOT']._serialized_end=926
50
+ _globals['_MODELFILE_CONTENT_KEYSLOTSENTRY']._serialized_start=928
51
+ _globals['_MODELFILE_CONTENT_KEYSLOTSENTRY']._serialized_end=1016
52
+ _globals['_MODELFILE_CONTENT_COMPRESSIONMETHOD']._serialized_start=1018
53
+ _globals['_MODELFILE_CONTENT_COMPRESSIONMETHOD']._serialized_end=1050
54
+ _globals['_MODELFILE_CONTENT_ENCRYPTIONMETHOD']._serialized_start=1052
55
+ _globals['_MODELFILE_CONTENT_ENCRYPTIONMETHOD']._serialized_end=1099
56
+ _globals['_MODELFILE_CLASSLABEL']._serialized_start=1101
57
+ _globals['_MODELFILE_CLASSLABEL']._serialized_end=1186
58
+ _globals['_MODELFILE_IMAGESIZE']._serialized_start=1188
59
+ _globals['_MODELFILE_IMAGESIZE']._serialized_end=1248
60
+ _globals['_MODELFILE_REGIONFROMEDGE']._serialized_start=1250
61
+ _globals['_MODELFILE_REGIONFROMEDGE']._serialized_end=1324
62
+ _globals['_MODELFILE_INPUT']._serialized_start=1327
63
+ _globals['_MODELFILE_INPUT']._serialized_end=2065
64
+ _globals['_MODELFILE_INPUT_IMAGEINPUTFORMAT']._serialized_start=1409
65
+ _globals['_MODELFILE_INPUT_IMAGEINPUTFORMAT']._serialized_end=2044
66
+ _globals['_MODELFILE_INPUT_IMAGEINPUTFORMAT_EXACTIMAGESIZEREQUIREMENT']._serialized_start=1709
67
+ _globals['_MODELFILE_INPUT_IMAGEINPUTFORMAT_EXACTIMAGESIZEREQUIREMENT']._serialized_end=1791
68
+ _globals['_MODELFILE_INPUT_IMAGEINPUTFORMAT_DIVISIBLEIMAGESIZEREQUIREMENT']._serialized_start=1794
69
+ _globals['_MODELFILE_INPUT_IMAGEINPUTFORMAT_DIVISIBLEIMAGESIZEREQUIREMENT']._serialized_end=2017
70
+ _globals['_MODELFILE_OUTPUT']._serialized_start=2068
71
+ _globals['_MODELFILE_OUTPUT']._serialized_end=3424
72
+ _globals['_MODELFILE_OUTPUT_IMAGECLASSIFIERSOUTPUTFORMAT']._serialized_start=2547
73
+ _globals['_MODELFILE_OUTPUT_IMAGECLASSIFIERSOUTPUTFORMAT']._serialized_end=2577
74
+ _globals['_MODELFILE_OUTPUT_SEGMENTATIONMAPSOUTPUTFORMAT']._serialized_start=2579
75
+ _globals['_MODELFILE_OUTPUT_SEGMENTATIONMAPSOUTPUTFORMAT']._serialized_end=2664
76
+ _globals['_MODELFILE_OUTPUT_BOUNDINGBOXESOUTPUTFORMAT']._serialized_start=2667
77
+ _globals['_MODELFILE_OUTPUT_BOUNDINGBOXESOUTPUTFORMAT']._serialized_end=2900
78
+ _globals['_MODELFILE_OUTPUT_BOUNDINGBOXSEGMENTATIONSOUTPUTFORMAT']._serialized_start=2902
79
+ _globals['_MODELFILE_OUTPUT_BOUNDINGBOXSEGMENTATIONSOUTPUTFORMAT']._serialized_end=3029
80
+ _globals['_MODELFILE_OUTPUT_OCROUTPUTFORMAT']._serialized_start=3032
81
+ _globals['_MODELFILE_OUTPUT_OCROUTPUTFORMAT']._serialized_end=3403
82
+ _globals['_MODELFILE_OUTPUT_OCROUTPUTFORMAT_CHARACTER']._serialized_start=3160
83
+ _globals['_MODELFILE_OUTPUT_OCROUTPUTFORMAT_CHARACTER']._serialized_end=3403
84
+ _globals['_MODELFILE_OUTPUT_OCROUTPUTFORMAT_CHARACTER_CHARACTERTYPE']._serialized_start=3314
85
+ _globals['_MODELFILE_OUTPUT_OCROUTPUTFORMAT_CHARACTER_CHARACTERTYPE']._serialized_end=3403
86
+ _globals['_MODELFILE_FILEINFO']._serialized_start=3427
87
+ _globals['_MODELFILE_FILEINFO']._serialized_end=4626
88
+ _globals['_MODELFILE_FILEINFO_FILETYPE']._serialized_start=4018
89
+ _globals['_MODELFILE_FILEINFO_FILETYPE']._serialized_end=4081
90
+ _globals['_MODELFILE_FILEINFO_NETWORKTYPE']._serialized_start=4084
91
+ _globals['_MODELFILE_FILEINFO_NETWORKTYPE']._serialized_end=4276
92
+ _globals['_MODELFILE_FILEINFO_PRECISION']._serialized_start=4279
93
+ _globals['_MODELFILE_FILEINFO_PRECISION']._serialized_end=4575
94
+ _globals['_MODELFILE_FILEINFO_HARDWARETARGET']._serialized_start=4577
95
+ _globals['_MODELFILE_FILEINFO_HARDWARETARGET']._serialized_end=4626
96
+ _globals['_MODELFILE_ADDITIONALCONTENTENTRY']._serialized_start=4628
97
+ _globals['_MODELFILE_ADDITIONALCONTENTENTRY']._serialized_end=4717
95
98
  # @@protoc_insertion_point(module_scope)
@@ -1,3 +1,4 @@
1
+ import validate_pb2 as _validate_pb2
1
2
  from google.protobuf.internal import containers as _containers
2
3
  from google.protobuf.internal import enum_type_wrapper as _enum_type_wrapper
3
4
  from google.protobuf import descriptor as _descriptor
@@ -1,5 +1,5 @@
1
1
  Metadata-Version: 2.3
2
2
  Name: denkproto
3
- Version: 1.0.65
3
+ Version: 1.0.69
4
4
  Requires-Python: >=3.10
5
5
  Requires-Dist: protobuf>=3.20.3
@@ -4,19 +4,19 @@ denkproto/DENKbuffer_pb2_grpc.py,sha256=-CPJPM4FOqwvwV8-f1iJlD18UD9juVIIHfdWUecu
4
4
  denkproto/ImageAnalysis_ProtobufMessages_pb2.py,sha256=iEY0j9ySGUThnqTdYD4uAVr9P3GiC5R02iK53zEOXUQ,21015
5
5
  denkproto/ImageAnalysis_ProtobufMessages_pb2.pyi,sha256=5LFtxrmYpJHizDDNGFTkL7-NQ_TkwqCSdq7vcv3lg-c,36243
6
6
  denkproto/ImageAnalysis_ProtobufMessages_pb2_grpc.py,sha256=l3agtDjgu4jay6P9TRnHhyhJ-7UdoII27ywhw3k84oo,911
7
- denkproto/__about__.py,sha256=bDuKy_AnrShQVWJe0nz_XvTeTiwp_c8ToGZehIC6SPw,23
7
+ denkproto/__about__.py,sha256=eGMX1UwE3pB5G1WzwpHw2yAVpnoW_EE4qggDeo15Quw,23
8
8
  denkproto/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
9
9
  denkproto/denkcache_pb2.py,sha256=G3EEZY-IBVJpThkkXEmhoG7Y3aSLvraKckqTwsXCbUI,6414
10
10
  denkproto/denkcache_pb2.pyi,sha256=qOzFOkddUapSJZz5d_mqcfHvWDAmM-70m_7FeM7n5fI,5595
11
- denkproto/denkcache_pb2_grpc.py,sha256=tKt4dGD5IkSJ8Ff9pSsZr2vcOEXuBpEGY3azihjvOxU,15607
12
- denkproto/inference_graph_pb2.py,sha256=S_CaN6_zzAbvnP6hGbl6WdVSpe633mTqeqy8wKffbDI,18710
13
- denkproto/inference_graph_pb2.pyi,sha256=6yCucZACR5AiJZlNyO-3zIvbqwsHRl3brkIKmWO1Jdk,11181
11
+ denkproto/denkcache_pb2_grpc.py,sha256=N1y4ZQ58UPaUlOZIpznzAbJJcs9G_n-FmzFoPPeu8UA,15610
12
+ denkproto/inference_graph_pb2.py,sha256=BPd_AoxPDmzq9JDJh1manXSMKgy8Dicwv9ogMNX5ULg,21484
13
+ denkproto/inference_graph_pb2.pyi,sha256=pUTospFsX-8R10hNTrnPUOjjjsZFQdDisV36vrIpQhk,12928
14
14
  denkproto/inference_graph_pb2_grpc.py,sha256=aXPf0w7pIfspkKUKGCr--OtJMOaTfE8IbeuBm10g1Xg,896
15
15
  denkproto/modelfile_v1_pb2.py,sha256=ulF24nSIspn46DnQKlvR5Po3w-vFCnawuuverAVi3cY,6573
16
16
  denkproto/modelfile_v1_pb2.pyi,sha256=gjTbWvg48wqGhyJb5CT0pw3yUZGhO_lSZgL7Ia2aPbY,10685
17
17
  denkproto/modelfile_v1_pb2_grpc.py,sha256=ov5B2o4JSYbAfcbbdZr55wEzfGlKI02H-tkvXGXqJVg,893
18
- denkproto/modelfile_v2_pb2.py,sha256=PYDTL6pq5t6C4jkwV3cRjuXH0CWObTP8u2m_0mm26CQ,12920
19
- denkproto/modelfile_v2_pb2.pyi,sha256=ygHZzLDpgdkE8P-_IUCsQtp9_22vusx8A3DMa33LMbw,21272
18
+ denkproto/modelfile_v2_pb2.py,sha256=B9nOFLp5kZM87RtzFidZLjmVBH8zOFpjHdSrY0MBOV8,13209
19
+ denkproto/modelfile_v2_pb2.pyi,sha256=9enN5CRvdGNUv-C5T0Lh5j9U1I0-TWar2mpYTW9NfnI,21309
20
20
  denkproto/modelfile_v2_pb2_grpc.py,sha256=xiC5FeyZDWcucC3uRJ4kllDJmaRayvrzOKIhvg6o1Tc,893
21
21
  denkproto/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
22
22
  denkproto/results_pb2.py,sha256=rBZ4HIHgdKHdASDbF8mTmZ0_xi1ffq3YJ2g_cvzIlhk,14109
@@ -26,11 +26,11 @@ denkproto/validate_pb2.py,sha256=CuGAaHir9X9jniW3QsRKAESjYzoS2U6dLk_J55XmNqU,136
26
26
  denkproto/validate_pb2.pyi,sha256=fWsdVOR3NJDioCKkCKfxfl4qaEb5xqXXU_WlEbdQx6E,23077
27
27
  denkproto/validate_pb2_grpc.py,sha256=XvjuWEgJFJtH1E7HWm7SKpV10PMpOSbonKa2VPHpYy8,889
28
28
  denkproto/json/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
29
- denkproto/json/classification_markup.py,sha256=vTu0H7Cb3gU6UUUSg1vDTRlFUorZrjMbcp_yx6UssZA,2461
30
- denkproto/json/inference_graph_models_generated.py,sha256=4sX_GVb1iWJ1RgHGb6W6nOGfU2-z7em3fKX9lZciAnU,6096
31
- denkproto/json/object_detection_markup.py,sha256=T0hcFPq8F_galjDjRC9dbcRVwCSOYtu2jt9wpEeHlQs,4904
32
- denkproto/json/ocr_markup.py,sha256=KyOpth9evOekyhTJdZSnYyB9EIyoWbY33sqncb_jBgw,7069
33
- denkproto/json/segmentation_markup.py,sha256=EvniRksF2KaQolm6zZ6UKSiGwnqc8wR2sHB1iv05RTE,19911
34
- denkproto-1.0.65.dist-info/METADATA,sha256=seZ9GybaMZQnb2dnhKeFe5d_mZkreU8CeWq9SqWLe7c,110
35
- denkproto-1.0.65.dist-info/WHEEL,sha256=1yFddiXMmvYK7QYTqtRNtX66WJ0Mz8PYEiEUoOUUxRY,87
36
- denkproto-1.0.65.dist-info/RECORD,,
29
+ denkproto/json/classification_markup.py,sha256=xN6OY67BuW0dx2GiFjTf8lG-KTbPVAJq-dWcrw9HJIU,2631
30
+ denkproto/json/inference_graph_models_generated.py,sha256=lX5L5kU8dVxx3R9USQIiqSqMPY12OIWmHkjK5yX_4W4,5960
31
+ denkproto/json/object_detection_markup.py,sha256=FSpAvn-GTgVAdzV7RtG-GVCHlwyuRqDdH_18mdyyIl0,4987
32
+ denkproto/json/ocr_markup.py,sha256=zVmB3SGT3NFwYEF0WowZmHo7m57TeN5LJ54rzNtPTKg,7138
33
+ denkproto/json/segmentation_markup.py,sha256=48XvxKI9NkxcIfYv3tkrS8eIbYif4wotj3I8ih3CHQ8,19716
34
+ denkproto-1.0.69.dist-info/METADATA,sha256=uc57h3ZKuwWRdTFDFuIVl0ydUj1P3eUMW03kYpm6P9o,110
35
+ denkproto-1.0.69.dist-info/WHEEL,sha256=1yFddiXMmvYK7QYTqtRNtX66WJ0Mz8PYEiEUoOUUxRY,87
36
+ denkproto-1.0.69.dist-info/RECORD,,