denkproto 1.0.65__py3-none-any.whl → 1.0.67__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of denkproto might be problematic. Click here for more details.
- denkproto/__about__.py +1 -1
- denkproto/inference_graph_pb2.py +58 -44
- denkproto/inference_graph_pb2.pyi +50 -18
- denkproto/json/inference_graph_models_generated.py +8 -8
- denkproto/modelfile_v2_pb2.py +60 -57
- denkproto/modelfile_v2_pb2.pyi +1 -0
- {denkproto-1.0.65.dist-info → denkproto-1.0.67.dist-info}/METADATA +1 -1
- {denkproto-1.0.65.dist-info → denkproto-1.0.67.dist-info}/RECORD +9 -9
- {denkproto-1.0.65.dist-info → denkproto-1.0.67.dist-info}/WHEEL +0 -0
denkproto/__about__.py
CHANGED
|
@@ -1 +1 @@
|
|
|
1
|
-
__version__ = "1.0.
|
|
1
|
+
__version__ = "1.0.67"
|
denkproto/inference_graph_pb2.py
CHANGED
|
@@ -26,7 +26,7 @@ import modelfile_v2_pb2 as modelfile__v2__pb2
|
|
|
26
26
|
import validate_pb2 as validate__pb2
|
|
27
27
|
|
|
28
28
|
|
|
29
|
-
DESCRIPTOR = _descriptor_pool.Default().AddSerializedFile(b'\n\x15inference_graph.proto\x12\x0finference_graph\x1a\x12modelfile-v2.proto\x1a\x0evalidate.proto\"\xa5\x01\n\x0bModelSource\x12-\n\nfrom_proto\x18\x01 \x01(\x0b\x32\x17.modelfile.v2.ModelFileH\x00\x12#\n\x0f\x66rom_network_id\x18\x02 \x01(\tB\x08\xfa\x42\x05r\x03\xb0\x01\x01H\x00\x12.\n\x1a\x66rom_network_experiment_id\x18\x03 \x01(\tB\x08\xfa\x42\x05r\x03\xb0\x01\x01H\x00\x42\x12\n\x0bsource_type\x12\x03\xf8\x42\x01\"\
|
|
29
|
+
DESCRIPTOR = _descriptor_pool.Default().AddSerializedFile(b'\n\x15inference_graph.proto\x12\x0finference_graph\x1a\x12modelfile-v2.proto\x1a\x0evalidate.proto\"\xa5\x01\n\x0bModelSource\x12-\n\nfrom_proto\x18\x01 \x01(\x0b\x32\x17.modelfile.v2.ModelFileH\x00\x12#\n\x0f\x66rom_network_id\x18\x02 \x01(\tB\x08\xfa\x42\x05r\x03\xb0\x01\x01H\x00\x12.\n\x1a\x66rom_network_experiment_id\x18\x03 \x01(\tB\x08\xfa\x42\x05r\x03\xb0\x01\x01H\x00\x42\x12\n\x0bsource_type\x12\x03\xf8\x42\x01\"s\n\x0bSessionInfo\x12H\n\x12\x65xecution_provider\x18\x01 \x01(\x0e\x32\".inference_graph.ExecutionProviderB\x08\xfa\x42\x05\x82\x01\x02\x10\x01\x12\x1a\n\tdevice_id\x18\x02 \x01(\x05\x42\x07\xfa\x42\x04\x1a\x02(\x00\"\xb3\x03\n\x0f\x43onstTensorNode\x12\x15\n\x04name\x18\x01 \x01(\tB\x07\xfa\x42\x04r\x02\x10\x01\x12\r\n\x05shape\x18\x02 \x03(\r\x12\x43\n\x0buint64_data\x18\x03 \x01(\x0b\x32,.inference_graph.ConstTensorNode.Uint64ArrayH\x00\x12\x41\n\nint64_data\x18\x04 \x01(\x0b\x32+.inference_graph.ConstTensorNode.Int64ArrayH\x00\x12\x45\n\x0c\x66loat64_data\x18\x05 \x01(\x0b\x32-.inference_graph.ConstTensorNode.Float64ArrayH\x00\x12\x42\n\x10output_port_name\x18\x06 \x01(\tB(\xfa\x42%r#\x10\x01\x32\x1f^[a-zA-Z0-9_-]+/[a-zA-Z0-9_-]+$\x1a\x1b\n\x0bUint64Array\x12\x0c\n\x04\x64\x61ta\x18\x01 \x03(\x04\x1a\x1a\n\nInt64Array\x12\x0c\n\x04\x64\x61ta\x18\x01 \x03(\x12\x1a\x1c\n\x0c\x46loat64Array\x12\x0c\n\x04\x64\x61ta\x18\x01 \x03(\x01\x42\x10\n\tdata_type\x12\x03\xf8\x42\x01\"\xd3\x02\n\x0fImageResizeNode\x12\x15\n\x04name\x18\x01 \x01(\tB\x07\xfa\x42\x04r\x02\x10\x01\x12L\n\ninput_size\x18\x02 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12M\n\x0binput_image\x18\x03 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12\x42\n\x10output_port_name\x18\x04 \x01(\tB(\xfa\x42%r#\x10\x01\x32\x1f^[a-zA-Z0-9_-]+/[a-zA-Z0-9_-]+$\x12\x37\n\x0csession_info\x18\x05 \x01(\x0b\x32\x1c.inference_graph.SessionInfoH\x00\x88\x01\x01\x42\x0f\n\r_session_info\"\xcd\x07\n\x10ImagePatchesNode\x12\x15\n\x04name\x18\x01 \x01(\tB\x07\xfa\x42\x04r\x02\x10\x01\x12M\n\x0binput_image\x18\x02 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12V\n\x14input_bounding_boxes\x18\x03 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12W\n\x11input_target_size\x18\x04 \x01(\x0b\x32\x32.inference_graph.ImagePatchesNode.TargetSizeSourceB\x08\xfa\x42\x05\x8a\x01\x02\x10\x01\x12\x42\n\x10output_port_name\x18\x05 \x01(\tB(\xfa\x42%r#\x10\x01\x32\x1f^[a-zA-Z0-9_-]+/[a-zA-Z0-9_-]+$\x12k\n\x18input_maximum_iterations\x18\x06 \x01(\x0b\x32:.inference_graph.ImagePatchesNode.MaxIterationsCountSourceB\x08\xfa\x42\x05\x8a\x01\x02\x10\x01H\x00\x88\x01\x01\x12\x37\n\x0csession_info\x18\x07 \x01(\x0b\x32\x1c.inference_graph.SessionInfoH\x01\x88\x01\x01\x1a\xf8\x01\n\x10TargetSizeSource\x12I\n\x05topic\x18\x01 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$H\x00\x12L\n\x04size\x18\x02 \x01(\x0b\x32<.inference_graph.ImagePatchesNode.TargetSizeSource.ImageSizeH\x00\x1a<\n\tImageSize\x12\x17\n\x06height\x18\x01 \x01(\x04\x42\x07\xfa\x42\x04\x32\x02(\x00\x12\x16\n\x05width\x18\x02 \x01(\x04\x42\x07\xfa\x42\x04\x32\x02(\x00\x42\r\n\x06source\x12\x03\xf8\x42\x01\x1a\x8e\x01\n\x18MaxIterationsCountSource\x12I\n\x05topic\x18\x01 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$H\x00\x12\x18\n\x05value\x18\x02 \x01(\x04\x42\x07\xfa\x42\x04\x32\x02(\x00H\x00\x42\r\n\x06source\x12\x03\xf8\x42\x01\x42\x1b\n\x19_input_maximum_iterationsB\x0f\n\r_session_info\"\x85\x01\n\x11VirtualCameraNode\x12\x15\n\x04name\x18\x01 \x01(\tB\x07\xfa\x42\x04r\x02\x10\x01\x12\x15\n\x04path\x18\x02 \x01(\tB\x07\xfa\x42\x04r\x02\x10\x01\x12\x42\n\x10output_port_name\x18\x03 \x01(\tB(\xfa\x42%r#\x10\x01\x32\x1f^[a-zA-Z0-9_-]+/[a-zA-Z0-9_-]+$\"\xc2\x02\n\x17ImageClassificationNode\x12\x0c\n\x04name\x18\x01 \x01(\t\x12M\n\x0binput_image\x18\x02 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12<\n\x0cmodel_source\x18\x03 \x01(\x0b\x32\x1c.inference_graph.ModelSourceB\x08\xfa\x42\x05\x8a\x01\x02\x10\x01\x12\x42\n\x10output_port_name\x18\x04 \x01(\tB(\xfa\x42%r#\x10\x01\x32\x1f^[a-zA-Z0-9_-]+/[a-zA-Z0-9_-]+$\x12\x37\n\x0csession_info\x18\x05 \x01(\x0b\x32\x1c.inference_graph.SessionInfoH\x00\x88\x01\x01\x42\x0f\n\r_session_info\"\xe1\x02\n\x18ImageObjectDetectionNode\x12\x0c\n\x04name\x18\x01 \x01(\t\x12M\n\x0binput_image\x18\x02 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12<\n\x0cmodel_source\x18\x03 \x01(\x0b\x32\x1c.inference_graph.ModelSourceB\x08\xfa\x42\x05\x8a\x01\x02\x10\x01\x12\x1c\n\x14scale_bounding_boxes\x18\x04 \x01(\x08\x12\x42\n\x10output_port_name\x18\x05 \x01(\tB(\xfa\x42%r#\x10\x01\x32\x1f^[a-zA-Z0-9_-]+/[a-zA-Z0-9_-]+$\x12\x37\n\x0csession_info\x18\x06 \x01(\x0b\x32\x1c.inference_graph.SessionInfoH\x00\x88\x01\x01\x42\x0f\n\r_session_info\"\xb7\x02\n\x0cImageOcrNode\x12\x0c\n\x04name\x18\x01 \x01(\t\x12M\n\x0binput_image\x18\x02 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12<\n\x0cmodel_source\x18\x03 \x01(\x0b\x32\x1c.inference_graph.ModelSourceB\x08\xfa\x42\x05\x8a\x01\x02\x10\x01\x12\x42\n\x10output_port_name\x18\x04 \x01(\tB(\xfa\x42%r#\x10\x01\x32\x1f^[a-zA-Z0-9_-]+/[a-zA-Z0-9_-]+$\x12\x37\n\x0csession_info\x18\x05 \x01(\x0b\x32\x1c.inference_graph.SessionInfoH\x00\x88\x01\x01\x42\x0f\n\r_session_info\"\x8c\x05\n\x15\x42oundingBoxFilterNode\x12\x15\n\x04name\x18\x01 \x01(\tB\x07\xfa\x42\x04r\x02\x10\x01\x12V\n\x14input_bounding_boxes\x18\x02 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$\x12\x42\n\x10output_port_name\x18\x03 \x01(\tB(\xfa\x42%r#\x10\x01\x32\x1f^[a-zA-Z0-9_-]+/[a-zA-Z0-9_-]+$\x12Z\n\x15input_score_threshold\x18\x04 \x01(\x0b\x32\x36.inference_graph.BoundingBoxFilterNode.ThresholdSourceH\x00\x88\x01\x01\x12X\n\x13input_iou_threshold\x18\x05 \x01(\x0b\x32\x36.inference_graph.BoundingBoxFilterNode.ThresholdSourceH\x01\x88\x01\x01\x12\x37\n\x0csession_info\x18\x06 \x01(\x0b\x32\x1c.inference_graph.SessionInfoH\x02\x88\x01\x01\x1a\x8d\x01\n\x0fThresholdSource\x12I\n\x05topic\x18\x01 \x01(\tB8\xfa\x42\x35r3\x10\x01\x32/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$H\x00\x12 \n\x05value\x18\x02 \x01(\x02\x42\x0f\xfa\x42\x0c\n\n\x1d\x00\x00\x80?-\x00\x00\x00\x00H\x00\x42\r\n\x06source\x12\x03\xf8\x42\x01\x42\x18\n\x16_input_score_thresholdB\x16\n\x14_input_iou_thresholdB\x0f\n\r_session_info\"\xc0\x04\n\x04Node\x12=\n\x11\x63onst_tensor_node\x18\x01 \x01(\x0b\x32 .inference_graph.ConstTensorNodeH\x00\x12=\n\x11image_resize_node\x18\x02 \x01(\x0b\x32 .inference_graph.ImageResizeNodeH\x00\x12?\n\x12image_patches_node\x18\x03 \x01(\x0b\x32!.inference_graph.ImagePatchesNodeH\x00\x12\x41\n\x13virtual_camera_node\x18\x04 \x01(\x0b\x32\".inference_graph.VirtualCameraNodeH\x00\x12M\n\x19image_classification_node\x18\x05 \x01(\x0b\x32(.inference_graph.ImageClassificationNodeH\x00\x12P\n\x1bimage_object_detection_node\x18\x06 \x01(\x0b\x32).inference_graph.ImageObjectDetectionNodeH\x00\x12\x37\n\x0eimage_ocr_node\x18\x07 \x01(\x0b\x32\x1d.inference_graph.ImageOcrNodeH\x00\x12J\n\x18\x62ounding_box_filter_node\x18\x08 \x01(\x0b\x32&.inference_graph.BoundingBoxFilterNodeH\x00\x42\x10\n\tnode_type\x12\x03\xf8\x42\x01\"_\n\x05Graph\x12$\n\x05nodes\x18\x01 \x03(\x0b\x32\x15.inference_graph.Node\x12\x12\n\ncreated_at\x18\x02 \x01(\x03\x12\x1c\n\nlicense_id\x18\x03 \x01(\tB\x08\xfa\x42\x05r\x03\xb0\x01\x01*=\n\x11\x45xecutionProvider\x12\x07\n\x03\x43PU\x10\x00\x12\x08\n\x04\x43UDA\x10\x01\x12\x07\n\x03\x44ML\x10\x02\x12\x0c\n\x08TENSORRT\x10\x03\x42NZ0github.com/DENKweit/denkproto-go/inference_graph\xaa\x02\x19\x44\x45NK.Proto.InferenceGraphb\x06proto3')
|
|
30
30
|
|
|
31
31
|
_globals = globals()
|
|
32
32
|
_builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals)
|
|
@@ -40,12 +40,16 @@ if not _descriptor._USE_C_DESCRIPTORS:
|
|
|
40
40
|
_globals['_MODELSOURCE'].fields_by_name['from_network_id']._serialized_options = b'\372B\005r\003\260\001\001'
|
|
41
41
|
_globals['_MODELSOURCE'].fields_by_name['from_network_experiment_id']._loaded_options = None
|
|
42
42
|
_globals['_MODELSOURCE'].fields_by_name['from_network_experiment_id']._serialized_options = b'\372B\005r\003\260\001\001'
|
|
43
|
+
_globals['_SESSIONINFO'].fields_by_name['execution_provider']._loaded_options = None
|
|
44
|
+
_globals['_SESSIONINFO'].fields_by_name['execution_provider']._serialized_options = b'\372B\005\202\001\002\020\001'
|
|
45
|
+
_globals['_SESSIONINFO'].fields_by_name['device_id']._loaded_options = None
|
|
46
|
+
_globals['_SESSIONINFO'].fields_by_name['device_id']._serialized_options = b'\372B\004\032\002(\000'
|
|
43
47
|
_globals['_CONSTTENSORNODE'].oneofs_by_name['data_type']._loaded_options = None
|
|
44
48
|
_globals['_CONSTTENSORNODE'].oneofs_by_name['data_type']._serialized_options = b'\370B\001'
|
|
45
49
|
_globals['_CONSTTENSORNODE'].fields_by_name['name']._loaded_options = None
|
|
46
50
|
_globals['_CONSTTENSORNODE'].fields_by_name['name']._serialized_options = b'\372B\004r\002\020\001'
|
|
47
51
|
_globals['_CONSTTENSORNODE'].fields_by_name['output_port_name']._loaded_options = None
|
|
48
|
-
_globals['_CONSTTENSORNODE'].fields_by_name['output_port_name']._serialized_options = b'\372B
|
|
52
|
+
_globals['_CONSTTENSORNODE'].fields_by_name['output_port_name']._serialized_options = b'\372B%r#\020\0012\037^[a-zA-Z0-9_-]+/[a-zA-Z0-9_-]+$'
|
|
49
53
|
_globals['_IMAGERESIZENODE'].fields_by_name['name']._loaded_options = None
|
|
50
54
|
_globals['_IMAGERESIZENODE'].fields_by_name['name']._serialized_options = b'\372B\004r\002\020\001'
|
|
51
55
|
_globals['_IMAGERESIZENODE'].fields_by_name['input_size']._loaded_options = None
|
|
@@ -53,7 +57,7 @@ if not _descriptor._USE_C_DESCRIPTORS:
|
|
|
53
57
|
_globals['_IMAGERESIZENODE'].fields_by_name['input_image']._loaded_options = None
|
|
54
58
|
_globals['_IMAGERESIZENODE'].fields_by_name['input_image']._serialized_options = b'\372B5r3\020\0012/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$'
|
|
55
59
|
_globals['_IMAGERESIZENODE'].fields_by_name['output_port_name']._loaded_options = None
|
|
56
|
-
_globals['_IMAGERESIZENODE'].fields_by_name['output_port_name']._serialized_options = b'\372B
|
|
60
|
+
_globals['_IMAGERESIZENODE'].fields_by_name['output_port_name']._serialized_options = b'\372B%r#\020\0012\037^[a-zA-Z0-9_-]+/[a-zA-Z0-9_-]+$'
|
|
57
61
|
_globals['_IMAGEPATCHESNODE_TARGETSIZESOURCE_IMAGESIZE'].fields_by_name['height']._loaded_options = None
|
|
58
62
|
_globals['_IMAGEPATCHESNODE_TARGETSIZESOURCE_IMAGESIZE'].fields_by_name['height']._serialized_options = b'\372B\0042\002(\000'
|
|
59
63
|
_globals['_IMAGEPATCHESNODE_TARGETSIZESOURCE_IMAGESIZE'].fields_by_name['width']._loaded_options = None
|
|
@@ -76,28 +80,34 @@ if not _descriptor._USE_C_DESCRIPTORS:
|
|
|
76
80
|
_globals['_IMAGEPATCHESNODE'].fields_by_name['input_bounding_boxes']._serialized_options = b'\372B5r3\020\0012/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$'
|
|
77
81
|
_globals['_IMAGEPATCHESNODE'].fields_by_name['input_target_size']._loaded_options = None
|
|
78
82
|
_globals['_IMAGEPATCHESNODE'].fields_by_name['input_target_size']._serialized_options = b'\372B\005\212\001\002\020\001'
|
|
83
|
+
_globals['_IMAGEPATCHESNODE'].fields_by_name['output_port_name']._loaded_options = None
|
|
84
|
+
_globals['_IMAGEPATCHESNODE'].fields_by_name['output_port_name']._serialized_options = b'\372B%r#\020\0012\037^[a-zA-Z0-9_-]+/[a-zA-Z0-9_-]+$'
|
|
79
85
|
_globals['_IMAGEPATCHESNODE'].fields_by_name['input_maximum_iterations']._loaded_options = None
|
|
80
86
|
_globals['_IMAGEPATCHESNODE'].fields_by_name['input_maximum_iterations']._serialized_options = b'\372B\005\212\001\002\020\001'
|
|
81
|
-
_globals['_IMAGEPATCHESNODE'].fields_by_name['output_port_name']._loaded_options = None
|
|
82
|
-
_globals['_IMAGEPATCHESNODE'].fields_by_name['output_port_name']._serialized_options = b'\372B#r!2\037^[a-zA-Z0-9_-]+/[a-zA-Z0-9_-]+$'
|
|
83
87
|
_globals['_VIRTUALCAMERANODE'].fields_by_name['name']._loaded_options = None
|
|
84
88
|
_globals['_VIRTUALCAMERANODE'].fields_by_name['name']._serialized_options = b'\372B\004r\002\020\001'
|
|
85
89
|
_globals['_VIRTUALCAMERANODE'].fields_by_name['path']._loaded_options = None
|
|
86
90
|
_globals['_VIRTUALCAMERANODE'].fields_by_name['path']._serialized_options = b'\372B\004r\002\020\001'
|
|
87
91
|
_globals['_VIRTUALCAMERANODE'].fields_by_name['output_port_name']._loaded_options = None
|
|
88
|
-
_globals['_VIRTUALCAMERANODE'].fields_by_name['output_port_name']._serialized_options = b'\372B
|
|
92
|
+
_globals['_VIRTUALCAMERANODE'].fields_by_name['output_port_name']._serialized_options = b'\372B%r#\020\0012\037^[a-zA-Z0-9_-]+/[a-zA-Z0-9_-]+$'
|
|
89
93
|
_globals['_IMAGECLASSIFICATIONNODE'].fields_by_name['input_image']._loaded_options = None
|
|
90
94
|
_globals['_IMAGECLASSIFICATIONNODE'].fields_by_name['input_image']._serialized_options = b'\372B5r3\020\0012/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$'
|
|
95
|
+
_globals['_IMAGECLASSIFICATIONNODE'].fields_by_name['model_source']._loaded_options = None
|
|
96
|
+
_globals['_IMAGECLASSIFICATIONNODE'].fields_by_name['model_source']._serialized_options = b'\372B\005\212\001\002\020\001'
|
|
91
97
|
_globals['_IMAGECLASSIFICATIONNODE'].fields_by_name['output_port_name']._loaded_options = None
|
|
92
|
-
_globals['_IMAGECLASSIFICATIONNODE'].fields_by_name['output_port_name']._serialized_options = b'\372B
|
|
98
|
+
_globals['_IMAGECLASSIFICATIONNODE'].fields_by_name['output_port_name']._serialized_options = b'\372B%r#\020\0012\037^[a-zA-Z0-9_-]+/[a-zA-Z0-9_-]+$'
|
|
93
99
|
_globals['_IMAGEOBJECTDETECTIONNODE'].fields_by_name['input_image']._loaded_options = None
|
|
94
100
|
_globals['_IMAGEOBJECTDETECTIONNODE'].fields_by_name['input_image']._serialized_options = b'\372B5r3\020\0012/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$'
|
|
101
|
+
_globals['_IMAGEOBJECTDETECTIONNODE'].fields_by_name['model_source']._loaded_options = None
|
|
102
|
+
_globals['_IMAGEOBJECTDETECTIONNODE'].fields_by_name['model_source']._serialized_options = b'\372B\005\212\001\002\020\001'
|
|
95
103
|
_globals['_IMAGEOBJECTDETECTIONNODE'].fields_by_name['output_port_name']._loaded_options = None
|
|
96
|
-
_globals['_IMAGEOBJECTDETECTIONNODE'].fields_by_name['output_port_name']._serialized_options = b'\372B
|
|
104
|
+
_globals['_IMAGEOBJECTDETECTIONNODE'].fields_by_name['output_port_name']._serialized_options = b'\372B%r#\020\0012\037^[a-zA-Z0-9_-]+/[a-zA-Z0-9_-]+$'
|
|
97
105
|
_globals['_IMAGEOCRNODE'].fields_by_name['input_image']._loaded_options = None
|
|
98
106
|
_globals['_IMAGEOCRNODE'].fields_by_name['input_image']._serialized_options = b'\372B5r3\020\0012/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$'
|
|
107
|
+
_globals['_IMAGEOCRNODE'].fields_by_name['model_source']._loaded_options = None
|
|
108
|
+
_globals['_IMAGEOCRNODE'].fields_by_name['model_source']._serialized_options = b'\372B\005\212\001\002\020\001'
|
|
99
109
|
_globals['_IMAGEOCRNODE'].fields_by_name['output_port_name']._loaded_options = None
|
|
100
|
-
_globals['_IMAGEOCRNODE'].fields_by_name['output_port_name']._serialized_options = b'\372B
|
|
110
|
+
_globals['_IMAGEOCRNODE'].fields_by_name['output_port_name']._serialized_options = b'\372B%r#\020\0012\037^[a-zA-Z0-9_-]+/[a-zA-Z0-9_-]+$'
|
|
101
111
|
_globals['_BOUNDINGBOXFILTERNODE_THRESHOLDSOURCE'].oneofs_by_name['source']._loaded_options = None
|
|
102
112
|
_globals['_BOUNDINGBOXFILTERNODE_THRESHOLDSOURCE'].oneofs_by_name['source']._serialized_options = b'\370B\001'
|
|
103
113
|
_globals['_BOUNDINGBOXFILTERNODE_THRESHOLDSOURCE'].fields_by_name['topic']._loaded_options = None
|
|
@@ -109,45 +119,49 @@ if not _descriptor._USE_C_DESCRIPTORS:
|
|
|
109
119
|
_globals['_BOUNDINGBOXFILTERNODE'].fields_by_name['input_bounding_boxes']._loaded_options = None
|
|
110
120
|
_globals['_BOUNDINGBOXFILTERNODE'].fields_by_name['input_bounding_boxes']._serialized_options = b'\372B5r3\020\0012/^[a-zA-Z0-9_]+\\/[a-zA-Z0-9_]+([?]timeout=\\d+)?$'
|
|
111
121
|
_globals['_BOUNDINGBOXFILTERNODE'].fields_by_name['output_port_name']._loaded_options = None
|
|
112
|
-
_globals['_BOUNDINGBOXFILTERNODE'].fields_by_name['output_port_name']._serialized_options = b'\372B
|
|
122
|
+
_globals['_BOUNDINGBOXFILTERNODE'].fields_by_name['output_port_name']._serialized_options = b'\372B%r#\020\0012\037^[a-zA-Z0-9_-]+/[a-zA-Z0-9_-]+$'
|
|
113
123
|
_globals['_NODE'].oneofs_by_name['node_type']._loaded_options = None
|
|
114
124
|
_globals['_NODE'].oneofs_by_name['node_type']._serialized_options = b'\370B\001'
|
|
115
125
|
_globals['_GRAPH'].fields_by_name['license_id']._loaded_options = None
|
|
116
126
|
_globals['_GRAPH'].fields_by_name['license_id']._serialized_options = b'\372B\005r\003\260\001\001'
|
|
127
|
+
_globals['_EXECUTIONPROVIDER']._serialized_start=4581
|
|
128
|
+
_globals['_EXECUTIONPROVIDER']._serialized_end=4642
|
|
117
129
|
_globals['_MODELSOURCE']._serialized_start=79
|
|
118
130
|
_globals['_MODELSOURCE']._serialized_end=244
|
|
119
|
-
_globals['
|
|
120
|
-
_globals['
|
|
121
|
-
_globals['
|
|
122
|
-
_globals['
|
|
123
|
-
_globals['
|
|
124
|
-
_globals['
|
|
125
|
-
_globals['
|
|
126
|
-
_globals['
|
|
127
|
-
_globals['
|
|
128
|
-
_globals['
|
|
129
|
-
_globals['
|
|
130
|
-
_globals['
|
|
131
|
-
_globals['
|
|
132
|
-
_globals['
|
|
133
|
-
_globals['
|
|
134
|
-
_globals['
|
|
135
|
-
_globals['
|
|
136
|
-
_globals['
|
|
137
|
-
_globals['
|
|
138
|
-
_globals['
|
|
139
|
-
_globals['
|
|
140
|
-
_globals['
|
|
141
|
-
_globals['
|
|
142
|
-
_globals['
|
|
143
|
-
_globals['
|
|
144
|
-
_globals['
|
|
145
|
-
_globals['
|
|
146
|
-
_globals['
|
|
147
|
-
_globals['
|
|
148
|
-
_globals['
|
|
149
|
-
_globals['
|
|
150
|
-
_globals['
|
|
151
|
-
_globals['
|
|
152
|
-
_globals['
|
|
131
|
+
_globals['_SESSIONINFO']._serialized_start=246
|
|
132
|
+
_globals['_SESSIONINFO']._serialized_end=361
|
|
133
|
+
_globals['_CONSTTENSORNODE']._serialized_start=364
|
|
134
|
+
_globals['_CONSTTENSORNODE']._serialized_end=799
|
|
135
|
+
_globals['_CONSTTENSORNODE_UINT64ARRAY']._serialized_start=696
|
|
136
|
+
_globals['_CONSTTENSORNODE_UINT64ARRAY']._serialized_end=723
|
|
137
|
+
_globals['_CONSTTENSORNODE_INT64ARRAY']._serialized_start=725
|
|
138
|
+
_globals['_CONSTTENSORNODE_INT64ARRAY']._serialized_end=751
|
|
139
|
+
_globals['_CONSTTENSORNODE_FLOAT64ARRAY']._serialized_start=753
|
|
140
|
+
_globals['_CONSTTENSORNODE_FLOAT64ARRAY']._serialized_end=781
|
|
141
|
+
_globals['_IMAGERESIZENODE']._serialized_start=802
|
|
142
|
+
_globals['_IMAGERESIZENODE']._serialized_end=1141
|
|
143
|
+
_globals['_IMAGEPATCHESNODE']._serialized_start=1144
|
|
144
|
+
_globals['_IMAGEPATCHESNODE']._serialized_end=2117
|
|
145
|
+
_globals['_IMAGEPATCHESNODE_TARGETSIZESOURCE']._serialized_start=1678
|
|
146
|
+
_globals['_IMAGEPATCHESNODE_TARGETSIZESOURCE']._serialized_end=1926
|
|
147
|
+
_globals['_IMAGEPATCHESNODE_TARGETSIZESOURCE_IMAGESIZE']._serialized_start=1851
|
|
148
|
+
_globals['_IMAGEPATCHESNODE_TARGETSIZESOURCE_IMAGESIZE']._serialized_end=1911
|
|
149
|
+
_globals['_IMAGEPATCHESNODE_MAXITERATIONSCOUNTSOURCE']._serialized_start=1929
|
|
150
|
+
_globals['_IMAGEPATCHESNODE_MAXITERATIONSCOUNTSOURCE']._serialized_end=2071
|
|
151
|
+
_globals['_VIRTUALCAMERANODE']._serialized_start=2120
|
|
152
|
+
_globals['_VIRTUALCAMERANODE']._serialized_end=2253
|
|
153
|
+
_globals['_IMAGECLASSIFICATIONNODE']._serialized_start=2256
|
|
154
|
+
_globals['_IMAGECLASSIFICATIONNODE']._serialized_end=2578
|
|
155
|
+
_globals['_IMAGEOBJECTDETECTIONNODE']._serialized_start=2581
|
|
156
|
+
_globals['_IMAGEOBJECTDETECTIONNODE']._serialized_end=2934
|
|
157
|
+
_globals['_IMAGEOCRNODE']._serialized_start=2937
|
|
158
|
+
_globals['_IMAGEOCRNODE']._serialized_end=3248
|
|
159
|
+
_globals['_BOUNDINGBOXFILTERNODE']._serialized_start=3251
|
|
160
|
+
_globals['_BOUNDINGBOXFILTERNODE']._serialized_end=3903
|
|
161
|
+
_globals['_BOUNDINGBOXFILTERNODE_THRESHOLDSOURCE']._serialized_start=3695
|
|
162
|
+
_globals['_BOUNDINGBOXFILTERNODE_THRESHOLDSOURCE']._serialized_end=3836
|
|
163
|
+
_globals['_NODE']._serialized_start=3906
|
|
164
|
+
_globals['_NODE']._serialized_end=4482
|
|
165
|
+
_globals['_GRAPH']._serialized_start=4484
|
|
166
|
+
_globals['_GRAPH']._serialized_end=4579
|
|
153
167
|
# @@protoc_insertion_point(module_scope)
|
|
@@ -1,12 +1,24 @@
|
|
|
1
1
|
import modelfile_v2_pb2 as _modelfile_v2_pb2
|
|
2
2
|
import validate_pb2 as _validate_pb2
|
|
3
3
|
from google.protobuf.internal import containers as _containers
|
|
4
|
+
from google.protobuf.internal import enum_type_wrapper as _enum_type_wrapper
|
|
4
5
|
from google.protobuf import descriptor as _descriptor
|
|
5
6
|
from google.protobuf import message as _message
|
|
6
7
|
from typing import ClassVar as _ClassVar, Iterable as _Iterable, Mapping as _Mapping, Optional as _Optional, Union as _Union
|
|
7
8
|
|
|
8
9
|
DESCRIPTOR: _descriptor.FileDescriptor
|
|
9
10
|
|
|
11
|
+
class ExecutionProvider(int, metaclass=_enum_type_wrapper.EnumTypeWrapper):
|
|
12
|
+
__slots__ = ()
|
|
13
|
+
CPU: _ClassVar[ExecutionProvider]
|
|
14
|
+
CUDA: _ClassVar[ExecutionProvider]
|
|
15
|
+
DML: _ClassVar[ExecutionProvider]
|
|
16
|
+
TENSORRT: _ClassVar[ExecutionProvider]
|
|
17
|
+
CPU: ExecutionProvider
|
|
18
|
+
CUDA: ExecutionProvider
|
|
19
|
+
DML: ExecutionProvider
|
|
20
|
+
TENSORRT: ExecutionProvider
|
|
21
|
+
|
|
10
22
|
class ModelSource(_message.Message):
|
|
11
23
|
__slots__ = ("from_proto", "from_network_id", "from_network_experiment_id")
|
|
12
24
|
FROM_PROTO_FIELD_NUMBER: _ClassVar[int]
|
|
@@ -17,6 +29,14 @@ class ModelSource(_message.Message):
|
|
|
17
29
|
from_network_experiment_id: str
|
|
18
30
|
def __init__(self, from_proto: _Optional[_Union[_modelfile_v2_pb2.ModelFile, _Mapping]] = ..., from_network_id: _Optional[str] = ..., from_network_experiment_id: _Optional[str] = ...) -> None: ...
|
|
19
31
|
|
|
32
|
+
class SessionInfo(_message.Message):
|
|
33
|
+
__slots__ = ("execution_provider", "device_id")
|
|
34
|
+
EXECUTION_PROVIDER_FIELD_NUMBER: _ClassVar[int]
|
|
35
|
+
DEVICE_ID_FIELD_NUMBER: _ClassVar[int]
|
|
36
|
+
execution_provider: ExecutionProvider
|
|
37
|
+
device_id: int
|
|
38
|
+
def __init__(self, execution_provider: _Optional[_Union[ExecutionProvider, str]] = ..., device_id: _Optional[int] = ...) -> None: ...
|
|
39
|
+
|
|
20
40
|
class ConstTensorNode(_message.Message):
|
|
21
41
|
__slots__ = ("name", "shape", "uint64_data", "int64_data", "float64_data", "output_port_name")
|
|
22
42
|
class Uint64Array(_message.Message):
|
|
@@ -49,19 +69,21 @@ class ConstTensorNode(_message.Message):
|
|
|
49
69
|
def __init__(self, name: _Optional[str] = ..., shape: _Optional[_Iterable[int]] = ..., uint64_data: _Optional[_Union[ConstTensorNode.Uint64Array, _Mapping]] = ..., int64_data: _Optional[_Union[ConstTensorNode.Int64Array, _Mapping]] = ..., float64_data: _Optional[_Union[ConstTensorNode.Float64Array, _Mapping]] = ..., output_port_name: _Optional[str] = ...) -> None: ...
|
|
50
70
|
|
|
51
71
|
class ImageResizeNode(_message.Message):
|
|
52
|
-
__slots__ = ("name", "input_size", "input_image", "output_port_name")
|
|
72
|
+
__slots__ = ("name", "input_size", "input_image", "output_port_name", "session_info")
|
|
53
73
|
NAME_FIELD_NUMBER: _ClassVar[int]
|
|
54
74
|
INPUT_SIZE_FIELD_NUMBER: _ClassVar[int]
|
|
55
75
|
INPUT_IMAGE_FIELD_NUMBER: _ClassVar[int]
|
|
56
76
|
OUTPUT_PORT_NAME_FIELD_NUMBER: _ClassVar[int]
|
|
77
|
+
SESSION_INFO_FIELD_NUMBER: _ClassVar[int]
|
|
57
78
|
name: str
|
|
58
79
|
input_size: str
|
|
59
80
|
input_image: str
|
|
60
81
|
output_port_name: str
|
|
61
|
-
|
|
82
|
+
session_info: SessionInfo
|
|
83
|
+
def __init__(self, name: _Optional[str] = ..., input_size: _Optional[str] = ..., input_image: _Optional[str] = ..., output_port_name: _Optional[str] = ..., session_info: _Optional[_Union[SessionInfo, _Mapping]] = ...) -> None: ...
|
|
62
84
|
|
|
63
85
|
class ImagePatchesNode(_message.Message):
|
|
64
|
-
__slots__ = ("name", "input_image", "input_bounding_boxes", "input_target_size", "input_maximum_iterations", "
|
|
86
|
+
__slots__ = ("name", "input_image", "input_bounding_boxes", "input_target_size", "output_port_name", "input_maximum_iterations", "session_info")
|
|
65
87
|
class TargetSizeSource(_message.Message):
|
|
66
88
|
__slots__ = ("topic", "size")
|
|
67
89
|
class ImageSize(_message.Message):
|
|
@@ -87,15 +109,17 @@ class ImagePatchesNode(_message.Message):
|
|
|
87
109
|
INPUT_IMAGE_FIELD_NUMBER: _ClassVar[int]
|
|
88
110
|
INPUT_BOUNDING_BOXES_FIELD_NUMBER: _ClassVar[int]
|
|
89
111
|
INPUT_TARGET_SIZE_FIELD_NUMBER: _ClassVar[int]
|
|
90
|
-
INPUT_MAXIMUM_ITERATIONS_FIELD_NUMBER: _ClassVar[int]
|
|
91
112
|
OUTPUT_PORT_NAME_FIELD_NUMBER: _ClassVar[int]
|
|
113
|
+
INPUT_MAXIMUM_ITERATIONS_FIELD_NUMBER: _ClassVar[int]
|
|
114
|
+
SESSION_INFO_FIELD_NUMBER: _ClassVar[int]
|
|
92
115
|
name: str
|
|
93
116
|
input_image: str
|
|
94
117
|
input_bounding_boxes: str
|
|
95
118
|
input_target_size: ImagePatchesNode.TargetSizeSource
|
|
96
|
-
input_maximum_iterations: ImagePatchesNode.MaxIterationsCountSource
|
|
97
119
|
output_port_name: str
|
|
98
|
-
|
|
120
|
+
input_maximum_iterations: ImagePatchesNode.MaxIterationsCountSource
|
|
121
|
+
session_info: SessionInfo
|
|
122
|
+
def __init__(self, name: _Optional[str] = ..., input_image: _Optional[str] = ..., input_bounding_boxes: _Optional[str] = ..., input_target_size: _Optional[_Union[ImagePatchesNode.TargetSizeSource, _Mapping]] = ..., output_port_name: _Optional[str] = ..., input_maximum_iterations: _Optional[_Union[ImagePatchesNode.MaxIterationsCountSource, _Mapping]] = ..., session_info: _Optional[_Union[SessionInfo, _Mapping]] = ...) -> None: ...
|
|
99
123
|
|
|
100
124
|
class VirtualCameraNode(_message.Message):
|
|
101
125
|
__slots__ = ("name", "path", "output_port_name")
|
|
@@ -108,45 +132,51 @@ class VirtualCameraNode(_message.Message):
|
|
|
108
132
|
def __init__(self, name: _Optional[str] = ..., path: _Optional[str] = ..., output_port_name: _Optional[str] = ...) -> None: ...
|
|
109
133
|
|
|
110
134
|
class ImageClassificationNode(_message.Message):
|
|
111
|
-
__slots__ = ("name", "input_image", "model_source", "output_port_name")
|
|
135
|
+
__slots__ = ("name", "input_image", "model_source", "output_port_name", "session_info")
|
|
112
136
|
NAME_FIELD_NUMBER: _ClassVar[int]
|
|
113
137
|
INPUT_IMAGE_FIELD_NUMBER: _ClassVar[int]
|
|
114
138
|
MODEL_SOURCE_FIELD_NUMBER: _ClassVar[int]
|
|
115
139
|
OUTPUT_PORT_NAME_FIELD_NUMBER: _ClassVar[int]
|
|
140
|
+
SESSION_INFO_FIELD_NUMBER: _ClassVar[int]
|
|
116
141
|
name: str
|
|
117
142
|
input_image: str
|
|
118
143
|
model_source: ModelSource
|
|
119
144
|
output_port_name: str
|
|
120
|
-
|
|
145
|
+
session_info: SessionInfo
|
|
146
|
+
def __init__(self, name: _Optional[str] = ..., input_image: _Optional[str] = ..., model_source: _Optional[_Union[ModelSource, _Mapping]] = ..., output_port_name: _Optional[str] = ..., session_info: _Optional[_Union[SessionInfo, _Mapping]] = ...) -> None: ...
|
|
121
147
|
|
|
122
148
|
class ImageObjectDetectionNode(_message.Message):
|
|
123
|
-
__slots__ = ("name", "input_image", "model_source", "output_port_name", "
|
|
149
|
+
__slots__ = ("name", "input_image", "model_source", "scale_bounding_boxes", "output_port_name", "session_info")
|
|
124
150
|
NAME_FIELD_NUMBER: _ClassVar[int]
|
|
125
151
|
INPUT_IMAGE_FIELD_NUMBER: _ClassVar[int]
|
|
126
152
|
MODEL_SOURCE_FIELD_NUMBER: _ClassVar[int]
|
|
127
|
-
OUTPUT_PORT_NAME_FIELD_NUMBER: _ClassVar[int]
|
|
128
153
|
SCALE_BOUNDING_BOXES_FIELD_NUMBER: _ClassVar[int]
|
|
154
|
+
OUTPUT_PORT_NAME_FIELD_NUMBER: _ClassVar[int]
|
|
155
|
+
SESSION_INFO_FIELD_NUMBER: _ClassVar[int]
|
|
129
156
|
name: str
|
|
130
157
|
input_image: str
|
|
131
158
|
model_source: ModelSource
|
|
132
|
-
output_port_name: str
|
|
133
159
|
scale_bounding_boxes: bool
|
|
134
|
-
|
|
160
|
+
output_port_name: str
|
|
161
|
+
session_info: SessionInfo
|
|
162
|
+
def __init__(self, name: _Optional[str] = ..., input_image: _Optional[str] = ..., model_source: _Optional[_Union[ModelSource, _Mapping]] = ..., scale_bounding_boxes: bool = ..., output_port_name: _Optional[str] = ..., session_info: _Optional[_Union[SessionInfo, _Mapping]] = ...) -> None: ...
|
|
135
163
|
|
|
136
164
|
class ImageOcrNode(_message.Message):
|
|
137
|
-
__slots__ = ("name", "input_image", "model_source", "output_port_name")
|
|
165
|
+
__slots__ = ("name", "input_image", "model_source", "output_port_name", "session_info")
|
|
138
166
|
NAME_FIELD_NUMBER: _ClassVar[int]
|
|
139
167
|
INPUT_IMAGE_FIELD_NUMBER: _ClassVar[int]
|
|
140
168
|
MODEL_SOURCE_FIELD_NUMBER: _ClassVar[int]
|
|
141
169
|
OUTPUT_PORT_NAME_FIELD_NUMBER: _ClassVar[int]
|
|
170
|
+
SESSION_INFO_FIELD_NUMBER: _ClassVar[int]
|
|
142
171
|
name: str
|
|
143
172
|
input_image: str
|
|
144
173
|
model_source: ModelSource
|
|
145
174
|
output_port_name: str
|
|
146
|
-
|
|
175
|
+
session_info: SessionInfo
|
|
176
|
+
def __init__(self, name: _Optional[str] = ..., input_image: _Optional[str] = ..., model_source: _Optional[_Union[ModelSource, _Mapping]] = ..., output_port_name: _Optional[str] = ..., session_info: _Optional[_Union[SessionInfo, _Mapping]] = ...) -> None: ...
|
|
147
177
|
|
|
148
178
|
class BoundingBoxFilterNode(_message.Message):
|
|
149
|
-
__slots__ = ("name", "input_bounding_boxes", "input_score_threshold", "input_iou_threshold", "
|
|
179
|
+
__slots__ = ("name", "input_bounding_boxes", "output_port_name", "input_score_threshold", "input_iou_threshold", "session_info")
|
|
150
180
|
class ThresholdSource(_message.Message):
|
|
151
181
|
__slots__ = ("topic", "value")
|
|
152
182
|
TOPIC_FIELD_NUMBER: _ClassVar[int]
|
|
@@ -156,15 +186,17 @@ class BoundingBoxFilterNode(_message.Message):
|
|
|
156
186
|
def __init__(self, topic: _Optional[str] = ..., value: _Optional[float] = ...) -> None: ...
|
|
157
187
|
NAME_FIELD_NUMBER: _ClassVar[int]
|
|
158
188
|
INPUT_BOUNDING_BOXES_FIELD_NUMBER: _ClassVar[int]
|
|
189
|
+
OUTPUT_PORT_NAME_FIELD_NUMBER: _ClassVar[int]
|
|
159
190
|
INPUT_SCORE_THRESHOLD_FIELD_NUMBER: _ClassVar[int]
|
|
160
191
|
INPUT_IOU_THRESHOLD_FIELD_NUMBER: _ClassVar[int]
|
|
161
|
-
|
|
192
|
+
SESSION_INFO_FIELD_NUMBER: _ClassVar[int]
|
|
162
193
|
name: str
|
|
163
194
|
input_bounding_boxes: str
|
|
195
|
+
output_port_name: str
|
|
164
196
|
input_score_threshold: BoundingBoxFilterNode.ThresholdSource
|
|
165
197
|
input_iou_threshold: BoundingBoxFilterNode.ThresholdSource
|
|
166
|
-
|
|
167
|
-
def __init__(self, name: _Optional[str] = ..., input_bounding_boxes: _Optional[str] = ..., input_score_threshold: _Optional[_Union[BoundingBoxFilterNode.ThresholdSource, _Mapping]] = ..., input_iou_threshold: _Optional[_Union[BoundingBoxFilterNode.ThresholdSource, _Mapping]] = ...,
|
|
198
|
+
session_info: SessionInfo
|
|
199
|
+
def __init__(self, name: _Optional[str] = ..., input_bounding_boxes: _Optional[str] = ..., output_port_name: _Optional[str] = ..., input_score_threshold: _Optional[_Union[BoundingBoxFilterNode.ThresholdSource, _Mapping]] = ..., input_iou_threshold: _Optional[_Union[BoundingBoxFilterNode.ThresholdSource, _Mapping]] = ..., session_info: _Optional[_Union[SessionInfo, _Mapping]] = ...) -> None: ...
|
|
168
200
|
|
|
169
201
|
class Node(_message.Message):
|
|
170
202
|
__slots__ = ("const_tensor_node", "image_resize_node", "image_patches_node", "virtual_camera_node", "image_classification_node", "image_object_detection_node", "image_ocr_node", "bounding_box_filter_node")
|
|
@@ -9,7 +9,7 @@ class BoundingBoxFilterNode(BaseModel):
|
|
|
9
9
|
input_bounding_boxes: str
|
|
10
10
|
input_score_threshold: Optional[ThresholdSource] = None
|
|
11
11
|
input_iou_threshold: Optional[ThresholdSource] = None
|
|
12
|
-
output_port_name:
|
|
12
|
+
output_port_name: str
|
|
13
13
|
|
|
14
14
|
class ConstTensorFloat64Data(BaseModel):
|
|
15
15
|
"""Constant tensor data of type float64. Base type for constant tensor data."""
|
|
@@ -25,9 +25,9 @@ class ConstTensorNode(BaseModel):
|
|
|
25
25
|
"""Node representing a constant tensor. Base type for all nodes in the graph."""
|
|
26
26
|
node_type: Literal["const_tensor"]
|
|
27
27
|
name: str
|
|
28
|
-
output_port_name: Optional[str] = None
|
|
29
28
|
shape: list[int]
|
|
30
29
|
data: ConstTensorDataBase
|
|
30
|
+
output_port_name: str
|
|
31
31
|
|
|
32
32
|
class ConstTensorUint64Data(BaseModel):
|
|
33
33
|
"""Constant tensor data of type uint64. Base type for constant tensor data."""
|
|
@@ -44,25 +44,25 @@ class ClassificationNode(BaseModel):
|
|
|
44
44
|
node_type: Literal["image_classification"]
|
|
45
45
|
name: str
|
|
46
46
|
inputImage: str
|
|
47
|
-
output_port_name: Optional[str] = None
|
|
48
47
|
model_source: ModelSourceBase
|
|
48
|
+
output_port_name: str
|
|
49
49
|
|
|
50
50
|
class ObjectDetectionNode(BaseModel):
|
|
51
51
|
"""Node for image object detection. Base type for all nodes in the graph."""
|
|
52
52
|
node_type: Literal["image_object_detection"]
|
|
53
53
|
name: str
|
|
54
54
|
input_image: str
|
|
55
|
-
output_port_name: Optional[str] = None
|
|
56
55
|
model_source: ModelSourceBase
|
|
57
56
|
scale_bounding_boxes: Optional[bool] = None
|
|
57
|
+
output_port_name: str
|
|
58
58
|
|
|
59
59
|
class OcrNode(BaseModel):
|
|
60
60
|
"""Node for image OCR. Base type for all nodes in the graph."""
|
|
61
61
|
node_type: Literal["image_ocr"]
|
|
62
62
|
name: str
|
|
63
63
|
input_image: str
|
|
64
|
-
output_port_name: Optional[str] = None
|
|
65
64
|
model_source: ModelSourceBase
|
|
65
|
+
output_port_name: str
|
|
66
66
|
|
|
67
67
|
class ImagePatchesNode(BaseModel):
|
|
68
68
|
"""Node that extracts patches from an image based on bounding boxes. Base type for all nodes in the graph."""
|
|
@@ -72,7 +72,7 @@ class ImagePatchesNode(BaseModel):
|
|
|
72
72
|
input_bounding_boxes: str
|
|
73
73
|
input_target_size: TargetSizeSource
|
|
74
74
|
input_maximum_iterations: Optional[MaxIterationsCountSource] = None
|
|
75
|
-
output_port_name:
|
|
75
|
+
output_port_name: str
|
|
76
76
|
|
|
77
77
|
class ImageResizeNode(BaseModel):
|
|
78
78
|
"""Node that resizes an image. Base type for all nodes in the graph."""
|
|
@@ -80,7 +80,7 @@ class ImageResizeNode(BaseModel):
|
|
|
80
80
|
name: str
|
|
81
81
|
input_size: str
|
|
82
82
|
input_image: str
|
|
83
|
-
output_port_name:
|
|
83
|
+
output_port_name: str
|
|
84
84
|
|
|
85
85
|
class ModelSourceFromNetworkExperimentId(BaseModel):
|
|
86
86
|
"""Model source specified by a network experiment ID. Base type for the source of the model."""
|
|
@@ -96,8 +96,8 @@ class VirtualCameraNode(BaseModel):
|
|
|
96
96
|
"""Node representing a virtual camera source. Base type for all nodes in the graph."""
|
|
97
97
|
node_type: Literal["virtual_camera"]
|
|
98
98
|
name: str
|
|
99
|
-
output_port_name: Optional[str] = None
|
|
100
99
|
path: str
|
|
100
|
+
output_port_name: str
|
|
101
101
|
|
|
102
102
|
# --- Inline Option Classes ---
|
|
103
103
|
class MaxIterationsCountSourceTopicOption(BaseModel):
|
denkproto/modelfile_v2_pb2.py
CHANGED
|
@@ -22,9 +22,10 @@ _runtime_version.ValidateProtobufRuntimeVersion(
|
|
|
22
22
|
_sym_db = _symbol_database.Default()
|
|
23
23
|
|
|
24
24
|
|
|
25
|
+
import validate_pb2 as validate__pb2
|
|
25
26
|
|
|
26
27
|
|
|
27
|
-
DESCRIPTOR = _descriptor_pool.Default().AddSerializedFile(b'\n\x12modelfile-v2.proto\x12\x0cmodelfile.v2\"\
|
|
28
|
+
DESCRIPTOR = _descriptor_pool.Default().AddSerializedFile(b'\n\x12modelfile-v2.proto\x12\x0cmodelfile.v2\x1a\x0evalidate.proto\"\xb8$\n\tModelFile\x12\x39\n\x10protocol_version\x18\x01 \x01(\x0b\x32\x1f.modelfile.v2.ModelFile.Version\x12\x12\n\ncreated_at\x18\x02 \x01(\x03\x12=\n\tfile_info\x18\x03 \x01(\x0b\x32 .modelfile.v2.ModelFile.FileInfoB\x08\xfa\x42\x05\x8a\x01\x02\x10\x01\x12\x30\n\x07\x63ontent\x18\x04 \x01(\x0b\x32\x1f.modelfile.v2.ModelFile.Content\x12\x38\n\x0c\x63lass_labels\x18\x05 \x03(\x0b\x32\".modelfile.v2.ModelFile.ClassLabel\x12-\n\x06inputs\x18\x06 \x03(\x0b\x32\x1d.modelfile.v2.ModelFile.Input\x12/\n\x07outputs\x18\x07 \x03(\x0b\x32\x1e.modelfile.v2.ModelFile.Output\x12J\n\x12\x61\x64\x64itional_content\x18\x08 \x03(\x0b\x32..modelfile.v2.ModelFile.AdditionalContentEntry\x1a\x36\n\x07Version\x12\r\n\x05major\x18\x01 \x01(\x04\x12\r\n\x05minor\x18\x02 \x01(\x04\x12\r\n\x05patch\x18\x03 \x01(\x04\x1a\xaa\x04\n\x07\x43ontent\x12\x14\n\x0c\x62yte_content\x18\x01 \x01(\x0c\x12\x13\n\x0bhash_sha256\x18\x02 \x01(\x0c\x12M\n\x12\x63ompression_method\x18\x03 \x01(\x0e\x32\x31.modelfile.v2.ModelFile.Content.CompressionMethod\x12K\n\x11\x65ncryption_method\x18\x04 \x01(\x0e\x32\x30.modelfile.v2.ModelFile.Content.EncryptionMethod\x12@\n\tkey_slots\x18\x05 \x03(\x0b\x32-.modelfile.v2.ModelFile.Content.KeySlotsEntry\x1ai\n\x07KeySlot\x12\x13\n\x0bwrapped_key\x18\x01 \x01(\x0c\x12I\n\x0fwrapping_method\x18\x02 \x01(\x0e\x32\x30.modelfile.v2.ModelFile.Content.EncryptionMethod\x1aX\n\rKeySlotsEntry\x12\x0b\n\x03key\x18\x01 \x01(\t\x12\x36\n\x05value\x18\x02 \x01(\x0b\x32\'.modelfile.v2.ModelFile.Content.KeySlot:\x02\x38\x01\" \n\x11\x43ompressionMethod\x12\x0b\n\x07\x43M_NONE\x10\x00\"/\n\x10\x45ncryptionMethod\x12\x0b\n\x07\x45M_NONE\x10\x00\x12\x0e\n\nEM_AES_GCM\x10\x01\x1aU\n\nClassLabel\x12\x16\n\x0e\x63lass_label_id\x18\x01 \x01(\t\x12\x0c\n\x04name\x18\x02 \x01(\t\x12\x12\n\nshort_name\x18\x03 \x01(\t\x12\r\n\x05\x63olor\x18\x04 \x01(\t\x1a<\n\tImageSize\x12\r\n\x05width\x18\x01 \x01(\x04\x12\x0e\n\x06height\x18\x02 \x01(\x04\x12\x10\n\x08\x63hannels\x18\x03 \x01(\x04\x1aJ\n\x0eRegionFromEdge\x12\x0c\n\x04left\x18\x01 \x01(\x01\x12\r\n\x05right\x18\x02 \x01(\x01\x12\x0b\n\x03top\x18\x03 \x01(\x01\x12\x0e\n\x06\x62ottom\x18\x04 \x01(\x01\x1a\xe2\x05\n\x05Input\x12\x46\n\x0cimage_format\x18\x01 \x01(\x0b\x32..modelfile.v2.ModelFile.Input.ImageInputFormatH\x00\x1a\xfb\x04\n\x10ImageInputFormat\x12\x64\n\x10\x65xact_image_size\x18\x01 \x01(\x0b\x32H.modelfile.v2.ModelFile.Input.ImageInputFormat.ExactImageSizeRequirementH\x00\x12l\n\x14\x64ivisible_image_size\x18\x02 \x01(\x0b\x32L.modelfile.v2.ModelFile.Input.ImageInputFormat.DivisibleImageSizeRequirementH\x00\x12\x42\n\x12region_of_interest\x18\x03 \x01(\x0b\x32&.modelfile.v2.ModelFile.RegionFromEdge\x1aR\n\x19\x45xactImageSizeRequirement\x12\x35\n\nimage_size\x18\x01 \x01(\x0b\x32!.modelfile.v2.ModelFile.ImageSize\x1a\xdf\x01\n\x1d\x44ivisibleImageSizeRequirement\x12>\n\x13image_size_divisors\x18\x01 \x01(\x0b\x32!.modelfile.v2.ModelFile.ImageSize\x12=\n\x12minimum_image_size\x18\x02 \x01(\x0b\x32!.modelfile.v2.ModelFile.ImageSize\x12?\n\x14suggested_image_size\x18\x03 \x01(\x0b\x32!.modelfile.v2.ModelFile.ImageSizeB\x19\n\x17image_size_requirementsB\x13\n\x11\x46ormatInformation\x1a\xcc\n\n\x06Output\x12_\n\x18image_classifiers_format\x18\x01 \x01(\x0b\x32;.modelfile.v2.ModelFile.Output.ImageClassifiersOutputFormatH\x00\x12_\n\x18segmentation_maps_format\x18\x02 \x01(\x0b\x32;.modelfile.v2.ModelFile.Output.SegmentationMapsOutputFormatH\x00\x12Y\n\x15\x62ounding_boxes_format\x18\x03 \x01(\x0b\x32\x38.modelfile.v2.ModelFile.Output.BoundingBoxesOutputFormatH\x00\x12p\n!bounding_box_segmentations_format\x18\x04 \x01(\x0b\x32\x43.modelfile.v2.ModelFile.Output.BoundingBoxSegmentationsOutputFormatH\x00\x12\x44\n\nocr_format\x18\x05 \x01(\x0b\x32..modelfile.v2.ModelFile.Output.OcrOutputFormatH\x00\x1a\x1e\n\x1cImageClassifiersOutputFormat\x1aU\n\x1cSegmentationMapsOutputFormat\x12\x35\n\nimage_size\x18\x01 \x01(\x0b\x32!.modelfile.v2.ModelFile.ImageSize\x1a\xe9\x01\n\x19\x42oundingBoxesOutputFormat\x12\x17\n\x0fnumber_of_boxes\x18\x01 \x01(\x04\x12\x0e\n\x06stride\x18\x02 \x01(\x04\x12\x11\n\tx1_offset\x18\x03 \x01(\x04\x12\x11\n\ty1_offset\x18\x04 \x01(\x04\x12\x11\n\tx2_offset\x18\x05 \x01(\x04\x12\x11\n\ty2_offset\x18\x06 \x01(\x04\x12\x19\n\x11\x63onfidence_offset\x18\x07 \x01(\x04\x12 \n\x18\x63lass_label_index_offset\x18\x08 \x01(\x04\x12\x1a\n\x12\x62\x61tch_index_offset\x18\t \x01(\x04\x1a\x7f\n$BoundingBoxSegmentationsOutputFormat\x12\x35\n\nimage_size\x18\x01 \x01(\x0b\x32!.modelfile.v2.ModelFile.ImageSize\x12 \n\x18relative_to_bounding_box\x18\x02 \x01(\x08\x1a\xf3\x02\n\x0fOcrOutputFormat\x12\x1c\n\x14number_of_characters\x18\x01 \x01(\x04\x12L\n\ncharacters\x18\x02 \x03(\x0b\x32\x38.modelfile.v2.ModelFile.Output.OcrOutputFormat.Character\x1a\xf3\x01\n\tCharacter\x12\x1b\n\x13utf8_representation\x18\x01 \x01(\x0c\x12^\n\x0e\x63haracter_type\x18\x02 \x01(\x0e\x32\x46.modelfile.v2.ModelFile.Output.OcrOutputFormat.Character.CharacterType\x12\x0e\n\x06ignore\x18\x03 \x01(\x08\"Y\n\rCharacterType\x12\x0e\n\nCT_REGULAR\x10\x00\x12\x14\n\x10\x43T_START_OF_TEXT\x10\x01\x12\x12\n\x0e\x43T_END_OF_TEXT\x10\x02\x12\x0e\n\nCT_PADDING\x10\x03\x42\x13\n\x11\x46ormatInformation\x1a\xaf\t\n\x08\x46ileInfo\x12<\n\tfile_type\x18\x01 \x01(\x0e\x32).modelfile.v2.ModelFile.FileInfo.FileType\x12\x14\n\x0cnetwork_name\x18\x02 \x01(\t\x12\x12\n\nnetwork_id\x18\x03 \x01(\t\x12\x1d\n\x15network_experiment_id\x18\x04 \x01(\t\x12\x1b\n\x13network_snapshot_id\x18\x05 \x01(\t\x12\x42\n\x0cnetwork_type\x18\x06 \x01(\x0e\x32,.modelfile.v2.ModelFile.FileInfo.NetworkType\x12\x16\n\x0enetwork_flavor\x18\x07 \x01(\t\x12\x38\n\x0fnetwork_version\x18\x08 \x01(\x0b\x32\x1f.modelfile.v2.ModelFile.Version\x12\x38\n\x0fruntime_version\x18\t \x01(\x0b\x32\x1f.modelfile.v2.ModelFile.Version\x12=\n\tprecision\x18\n \x01(\x0e\x32*.modelfile.v2.ModelFile.FileInfo.Precision\x12\x44\n\x1bminimum_libdenkflow_version\x18\x0b \x01(\x0b\x32\x1f.modelfile.v2.ModelFile.Version\x12H\n\x0fhardware_target\x18\x0c \x01(\x0e\x32/.modelfile.v2.ModelFile.FileInfo.HardwareTarget\"?\n\x08\x46ileType\x12\x0c\n\x08\x46T_MODEL\x10\x00\x12\x10\n\x0c\x46T_ZXING_KEY\x10\x01\x12\x13\n\x0f\x46T_VIZIOTIX_KEY\x10\x02\"\xc0\x01\n\x0bNetworkType\x12\x0e\n\nNT_UNKNOWN\x10\x00\x12\x15\n\x11NT_CLASSIFICATION\x10\x01\x12\x13\n\x0fNT_SEGMENTATION\x10\x02\x12\x1c\n\x18NT_INSTANCE_SEGMENTATION\x10\x03\x12\x17\n\x13NT_OBJECT_DETECTION\x10\x04\x12\x18\n\x14NT_ANOMALY_DETECTION\x10\x05\x12$\n NT_OPTICAL_CHARACTER_RECOGNITION\x10\x06\"\xa8\x02\n\tPrecision\x12\x0f\n\x0bP_UNDEFINED\x10\x00\x12\x15\n\x11P_MIXED_PRECISION\x10\x01\x12\t\n\x05P_FP8\x10\x02\x12\n\n\x06P_FP16\x10\x03\x12\n\n\x06P_FP32\x10\x04\x12\n\n\x06P_FP64\x10\x05\x12\t\n\x05P_BF8\x10\x06\x12\n\n\x06P_BF16\x10\x07\x12\n\n\x06P_BF32\x10\x08\x12\n\n\x06P_BF64\x10\t\x12\n\n\x06P_INT8\x10\n\x12\x0b\n\x07P_INT16\x10\x0b\x12\x0b\n\x07P_INT32\x10\x0c\x12\x0b\n\x07P_INT64\x10\r\x12\x0b\n\x07P_UINT8\x10\x0e\x12\x0c\n\x08P_UINT16\x10\x0f\x12\x0c\n\x08P_UINT32\x10\x10\x12\x0c\n\x08P_UINT64\x10\x11\x12\r\n\tP_2_STATE\x10\x12\x12\r\n\tP_3_STATE\x10\x13\x12\r\n\tP_4_STATE\x10\x14\"1\n\x0eHardwareTarget\x12\x0e\n\nHT_DEFAULT\x10\x00\x12\x0f\n\x0bHT_TENSORRT\x10\x01\x1aY\n\x16\x41\x64\x64itionalContentEntry\x12\x0b\n\x03key\x18\x01 \x01(\t\x12.\n\x05value\x18\x02 \x01(\x0b\x32\x1f.modelfile.v2.ModelFile.Content:\x02\x38\x01\x42IZ-github.com/DENKweit/denkproto-go/modelfile/v2\xaa\x02\x17\x44\x45NK.Proto.Modelfile.V2b\x06proto3')
|
|
28
29
|
|
|
29
30
|
_globals = globals()
|
|
30
31
|
_builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals)
|
|
@@ -36,60 +37,62 @@ if not _descriptor._USE_C_DESCRIPTORS:
|
|
|
36
37
|
_globals['_MODELFILE_CONTENT_KEYSLOTSENTRY']._serialized_options = b'8\001'
|
|
37
38
|
_globals['_MODELFILE_ADDITIONALCONTENTENTRY']._loaded_options = None
|
|
38
39
|
_globals['_MODELFILE_ADDITIONALCONTENTENTRY']._serialized_options = b'8\001'
|
|
39
|
-
_globals['_MODELFILE'].
|
|
40
|
-
_globals['_MODELFILE'].
|
|
41
|
-
_globals['
|
|
42
|
-
_globals['
|
|
43
|
-
_globals['
|
|
44
|
-
_globals['
|
|
45
|
-
_globals['
|
|
46
|
-
_globals['
|
|
47
|
-
_globals['
|
|
48
|
-
_globals['
|
|
49
|
-
_globals['
|
|
50
|
-
_globals['
|
|
51
|
-
_globals['
|
|
52
|
-
_globals['
|
|
53
|
-
_globals['
|
|
54
|
-
_globals['
|
|
55
|
-
_globals['
|
|
56
|
-
_globals['
|
|
57
|
-
_globals['
|
|
58
|
-
_globals['
|
|
59
|
-
_globals['
|
|
60
|
-
_globals['
|
|
61
|
-
_globals['
|
|
62
|
-
_globals['
|
|
63
|
-
_globals['
|
|
64
|
-
_globals['
|
|
65
|
-
_globals['
|
|
66
|
-
_globals['
|
|
67
|
-
_globals['
|
|
68
|
-
_globals['
|
|
69
|
-
_globals['
|
|
70
|
-
_globals['
|
|
71
|
-
_globals['
|
|
72
|
-
_globals['
|
|
73
|
-
_globals['
|
|
74
|
-
_globals['
|
|
75
|
-
_globals['
|
|
76
|
-
_globals['
|
|
77
|
-
_globals['
|
|
78
|
-
_globals['
|
|
79
|
-
_globals['
|
|
80
|
-
_globals['
|
|
81
|
-
_globals['
|
|
82
|
-
_globals['
|
|
83
|
-
_globals['
|
|
84
|
-
_globals['
|
|
85
|
-
_globals['
|
|
86
|
-
_globals['
|
|
87
|
-
_globals['
|
|
88
|
-
_globals['
|
|
89
|
-
_globals['
|
|
90
|
-
_globals['
|
|
91
|
-
_globals['
|
|
92
|
-
_globals['
|
|
93
|
-
_globals['
|
|
94
|
-
_globals['
|
|
40
|
+
_globals['_MODELFILE'].fields_by_name['file_info']._loaded_options = None
|
|
41
|
+
_globals['_MODELFILE'].fields_by_name['file_info']._serialized_options = b'\372B\005\212\001\002\020\001'
|
|
42
|
+
_globals['_MODELFILE']._serialized_start=53
|
|
43
|
+
_globals['_MODELFILE']._serialized_end=4717
|
|
44
|
+
_globals['_MODELFILE_VERSION']._serialized_start=488
|
|
45
|
+
_globals['_MODELFILE_VERSION']._serialized_end=542
|
|
46
|
+
_globals['_MODELFILE_CONTENT']._serialized_start=545
|
|
47
|
+
_globals['_MODELFILE_CONTENT']._serialized_end=1099
|
|
48
|
+
_globals['_MODELFILE_CONTENT_KEYSLOT']._serialized_start=821
|
|
49
|
+
_globals['_MODELFILE_CONTENT_KEYSLOT']._serialized_end=926
|
|
50
|
+
_globals['_MODELFILE_CONTENT_KEYSLOTSENTRY']._serialized_start=928
|
|
51
|
+
_globals['_MODELFILE_CONTENT_KEYSLOTSENTRY']._serialized_end=1016
|
|
52
|
+
_globals['_MODELFILE_CONTENT_COMPRESSIONMETHOD']._serialized_start=1018
|
|
53
|
+
_globals['_MODELFILE_CONTENT_COMPRESSIONMETHOD']._serialized_end=1050
|
|
54
|
+
_globals['_MODELFILE_CONTENT_ENCRYPTIONMETHOD']._serialized_start=1052
|
|
55
|
+
_globals['_MODELFILE_CONTENT_ENCRYPTIONMETHOD']._serialized_end=1099
|
|
56
|
+
_globals['_MODELFILE_CLASSLABEL']._serialized_start=1101
|
|
57
|
+
_globals['_MODELFILE_CLASSLABEL']._serialized_end=1186
|
|
58
|
+
_globals['_MODELFILE_IMAGESIZE']._serialized_start=1188
|
|
59
|
+
_globals['_MODELFILE_IMAGESIZE']._serialized_end=1248
|
|
60
|
+
_globals['_MODELFILE_REGIONFROMEDGE']._serialized_start=1250
|
|
61
|
+
_globals['_MODELFILE_REGIONFROMEDGE']._serialized_end=1324
|
|
62
|
+
_globals['_MODELFILE_INPUT']._serialized_start=1327
|
|
63
|
+
_globals['_MODELFILE_INPUT']._serialized_end=2065
|
|
64
|
+
_globals['_MODELFILE_INPUT_IMAGEINPUTFORMAT']._serialized_start=1409
|
|
65
|
+
_globals['_MODELFILE_INPUT_IMAGEINPUTFORMAT']._serialized_end=2044
|
|
66
|
+
_globals['_MODELFILE_INPUT_IMAGEINPUTFORMAT_EXACTIMAGESIZEREQUIREMENT']._serialized_start=1709
|
|
67
|
+
_globals['_MODELFILE_INPUT_IMAGEINPUTFORMAT_EXACTIMAGESIZEREQUIREMENT']._serialized_end=1791
|
|
68
|
+
_globals['_MODELFILE_INPUT_IMAGEINPUTFORMAT_DIVISIBLEIMAGESIZEREQUIREMENT']._serialized_start=1794
|
|
69
|
+
_globals['_MODELFILE_INPUT_IMAGEINPUTFORMAT_DIVISIBLEIMAGESIZEREQUIREMENT']._serialized_end=2017
|
|
70
|
+
_globals['_MODELFILE_OUTPUT']._serialized_start=2068
|
|
71
|
+
_globals['_MODELFILE_OUTPUT']._serialized_end=3424
|
|
72
|
+
_globals['_MODELFILE_OUTPUT_IMAGECLASSIFIERSOUTPUTFORMAT']._serialized_start=2547
|
|
73
|
+
_globals['_MODELFILE_OUTPUT_IMAGECLASSIFIERSOUTPUTFORMAT']._serialized_end=2577
|
|
74
|
+
_globals['_MODELFILE_OUTPUT_SEGMENTATIONMAPSOUTPUTFORMAT']._serialized_start=2579
|
|
75
|
+
_globals['_MODELFILE_OUTPUT_SEGMENTATIONMAPSOUTPUTFORMAT']._serialized_end=2664
|
|
76
|
+
_globals['_MODELFILE_OUTPUT_BOUNDINGBOXESOUTPUTFORMAT']._serialized_start=2667
|
|
77
|
+
_globals['_MODELFILE_OUTPUT_BOUNDINGBOXESOUTPUTFORMAT']._serialized_end=2900
|
|
78
|
+
_globals['_MODELFILE_OUTPUT_BOUNDINGBOXSEGMENTATIONSOUTPUTFORMAT']._serialized_start=2902
|
|
79
|
+
_globals['_MODELFILE_OUTPUT_BOUNDINGBOXSEGMENTATIONSOUTPUTFORMAT']._serialized_end=3029
|
|
80
|
+
_globals['_MODELFILE_OUTPUT_OCROUTPUTFORMAT']._serialized_start=3032
|
|
81
|
+
_globals['_MODELFILE_OUTPUT_OCROUTPUTFORMAT']._serialized_end=3403
|
|
82
|
+
_globals['_MODELFILE_OUTPUT_OCROUTPUTFORMAT_CHARACTER']._serialized_start=3160
|
|
83
|
+
_globals['_MODELFILE_OUTPUT_OCROUTPUTFORMAT_CHARACTER']._serialized_end=3403
|
|
84
|
+
_globals['_MODELFILE_OUTPUT_OCROUTPUTFORMAT_CHARACTER_CHARACTERTYPE']._serialized_start=3314
|
|
85
|
+
_globals['_MODELFILE_OUTPUT_OCROUTPUTFORMAT_CHARACTER_CHARACTERTYPE']._serialized_end=3403
|
|
86
|
+
_globals['_MODELFILE_FILEINFO']._serialized_start=3427
|
|
87
|
+
_globals['_MODELFILE_FILEINFO']._serialized_end=4626
|
|
88
|
+
_globals['_MODELFILE_FILEINFO_FILETYPE']._serialized_start=4018
|
|
89
|
+
_globals['_MODELFILE_FILEINFO_FILETYPE']._serialized_end=4081
|
|
90
|
+
_globals['_MODELFILE_FILEINFO_NETWORKTYPE']._serialized_start=4084
|
|
91
|
+
_globals['_MODELFILE_FILEINFO_NETWORKTYPE']._serialized_end=4276
|
|
92
|
+
_globals['_MODELFILE_FILEINFO_PRECISION']._serialized_start=4279
|
|
93
|
+
_globals['_MODELFILE_FILEINFO_PRECISION']._serialized_end=4575
|
|
94
|
+
_globals['_MODELFILE_FILEINFO_HARDWARETARGET']._serialized_start=4577
|
|
95
|
+
_globals['_MODELFILE_FILEINFO_HARDWARETARGET']._serialized_end=4626
|
|
96
|
+
_globals['_MODELFILE_ADDITIONALCONTENTENTRY']._serialized_start=4628
|
|
97
|
+
_globals['_MODELFILE_ADDITIONALCONTENTENTRY']._serialized_end=4717
|
|
95
98
|
# @@protoc_insertion_point(module_scope)
|
denkproto/modelfile_v2_pb2.pyi
CHANGED
|
@@ -4,19 +4,19 @@ denkproto/DENKbuffer_pb2_grpc.py,sha256=-CPJPM4FOqwvwV8-f1iJlD18UD9juVIIHfdWUecu
|
|
|
4
4
|
denkproto/ImageAnalysis_ProtobufMessages_pb2.py,sha256=iEY0j9ySGUThnqTdYD4uAVr9P3GiC5R02iK53zEOXUQ,21015
|
|
5
5
|
denkproto/ImageAnalysis_ProtobufMessages_pb2.pyi,sha256=5LFtxrmYpJHizDDNGFTkL7-NQ_TkwqCSdq7vcv3lg-c,36243
|
|
6
6
|
denkproto/ImageAnalysis_ProtobufMessages_pb2_grpc.py,sha256=l3agtDjgu4jay6P9TRnHhyhJ-7UdoII27ywhw3k84oo,911
|
|
7
|
-
denkproto/__about__.py,sha256=
|
|
7
|
+
denkproto/__about__.py,sha256=AjGOAFzdEMyNJ602JwrwyuL3XO692ebHb18ffAc676g,23
|
|
8
8
|
denkproto/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
9
9
|
denkproto/denkcache_pb2.py,sha256=G3EEZY-IBVJpThkkXEmhoG7Y3aSLvraKckqTwsXCbUI,6414
|
|
10
10
|
denkproto/denkcache_pb2.pyi,sha256=qOzFOkddUapSJZz5d_mqcfHvWDAmM-70m_7FeM7n5fI,5595
|
|
11
11
|
denkproto/denkcache_pb2_grpc.py,sha256=tKt4dGD5IkSJ8Ff9pSsZr2vcOEXuBpEGY3azihjvOxU,15607
|
|
12
|
-
denkproto/inference_graph_pb2.py,sha256=
|
|
13
|
-
denkproto/inference_graph_pb2.pyi,sha256=
|
|
12
|
+
denkproto/inference_graph_pb2.py,sha256=sFYB70NsQM7xXNK0dTGzrsf4icY8wvPHJqEvYFfziTU,21459
|
|
13
|
+
denkproto/inference_graph_pb2.pyi,sha256=si2CoYE4btohHFHfMU3YbMRDkm1eDsci0cw8Lr2qJSE,12918
|
|
14
14
|
denkproto/inference_graph_pb2_grpc.py,sha256=aXPf0w7pIfspkKUKGCr--OtJMOaTfE8IbeuBm10g1Xg,896
|
|
15
15
|
denkproto/modelfile_v1_pb2.py,sha256=ulF24nSIspn46DnQKlvR5Po3w-vFCnawuuverAVi3cY,6573
|
|
16
16
|
denkproto/modelfile_v1_pb2.pyi,sha256=gjTbWvg48wqGhyJb5CT0pw3yUZGhO_lSZgL7Ia2aPbY,10685
|
|
17
17
|
denkproto/modelfile_v1_pb2_grpc.py,sha256=ov5B2o4JSYbAfcbbdZr55wEzfGlKI02H-tkvXGXqJVg,893
|
|
18
|
-
denkproto/modelfile_v2_pb2.py,sha256=
|
|
19
|
-
denkproto/modelfile_v2_pb2.pyi,sha256=
|
|
18
|
+
denkproto/modelfile_v2_pb2.py,sha256=1ldz8jktT-AXv00pyhTcuVgEvC8xYwwRS4AOW25-yDs,13199
|
|
19
|
+
denkproto/modelfile_v2_pb2.pyi,sha256=9enN5CRvdGNUv-C5T0Lh5j9U1I0-TWar2mpYTW9NfnI,21309
|
|
20
20
|
denkproto/modelfile_v2_pb2_grpc.py,sha256=xiC5FeyZDWcucC3uRJ4kllDJmaRayvrzOKIhvg6o1Tc,893
|
|
21
21
|
denkproto/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
22
22
|
denkproto/results_pb2.py,sha256=rBZ4HIHgdKHdASDbF8mTmZ0_xi1ffq3YJ2g_cvzIlhk,14109
|
|
@@ -27,10 +27,10 @@ denkproto/validate_pb2.pyi,sha256=fWsdVOR3NJDioCKkCKfxfl4qaEb5xqXXU_WlEbdQx6E,23
|
|
|
27
27
|
denkproto/validate_pb2_grpc.py,sha256=XvjuWEgJFJtH1E7HWm7SKpV10PMpOSbonKa2VPHpYy8,889
|
|
28
28
|
denkproto/json/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
29
29
|
denkproto/json/classification_markup.py,sha256=vTu0H7Cb3gU6UUUSg1vDTRlFUorZrjMbcp_yx6UssZA,2461
|
|
30
|
-
denkproto/json/inference_graph_models_generated.py,sha256=
|
|
30
|
+
denkproto/json/inference_graph_models_generated.py,sha256=lX5L5kU8dVxx3R9USQIiqSqMPY12OIWmHkjK5yX_4W4,5960
|
|
31
31
|
denkproto/json/object_detection_markup.py,sha256=T0hcFPq8F_galjDjRC9dbcRVwCSOYtu2jt9wpEeHlQs,4904
|
|
32
32
|
denkproto/json/ocr_markup.py,sha256=KyOpth9evOekyhTJdZSnYyB9EIyoWbY33sqncb_jBgw,7069
|
|
33
33
|
denkproto/json/segmentation_markup.py,sha256=EvniRksF2KaQolm6zZ6UKSiGwnqc8wR2sHB1iv05RTE,19911
|
|
34
|
-
denkproto-1.0.
|
|
35
|
-
denkproto-1.0.
|
|
36
|
-
denkproto-1.0.
|
|
34
|
+
denkproto-1.0.67.dist-info/METADATA,sha256=M44qurT5fEH4l5qsgPwPbhiKjOGbOyUJbuCLgksMPTg,110
|
|
35
|
+
denkproto-1.0.67.dist-info/WHEEL,sha256=1yFddiXMmvYK7QYTqtRNtX66WJ0Mz8PYEiEUoOUUxRY,87
|
|
36
|
+
denkproto-1.0.67.dist-info/RECORD,,
|
|
File without changes
|