denkproto 1.0.56__py3-none-any.whl → 1.0.58__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of denkproto might be problematic. Click here for more details.
- denkproto/__about__.py +1 -1
- denkproto/inference_graph_pb2.py +32 -32
- denkproto/inference_graph_pb2.pyi +6 -6
- denkproto/json/inference_graph_models_generated.py +152 -0
- denkproto/json/segmentation_markup.py +2 -32
- denkproto/modelfile_v2_pb2.py +13 -11
- denkproto/modelfile_v2_pb2.pyi +28 -6
- {denkproto-1.0.56.dist-info → denkproto-1.0.58.dist-info}/METADATA +1 -1
- {denkproto-1.0.56.dist-info → denkproto-1.0.58.dist-info}/RECORD +10 -9
- {denkproto-1.0.56.dist-info → denkproto-1.0.58.dist-info}/WHEEL +0 -0
denkproto/__about__.py
CHANGED
|
@@ -1 +1 @@
|
|
|
1
|
-
__version__ = "1.0.
|
|
1
|
+
__version__ = "1.0.58"
|
denkproto/inference_graph_pb2.py
CHANGED
|
@@ -25,7 +25,7 @@ _sym_db = _symbol_database.Default()
|
|
|
25
25
|
import modelfile_v2_pb2 as modelfile__v2__pb2
|
|
26
26
|
|
|
27
27
|
|
|
28
|
-
DESCRIPTOR = _descriptor_pool.Default().AddSerializedFile(b'\n\x15inference_graph.proto\x12\x0finference_graph\x1a\x12modelfile-v2.proto\"\
|
|
28
|
+
DESCRIPTOR = _descriptor_pool.Default().AddSerializedFile(b'\n\x15inference_graph.proto\x12\x0finference_graph\x1a\x12modelfile-v2.proto\"\x8c\x01\n\x0bModelSource\x12-\n\nfrom_proto\x18\x01 \x01(\x0b\x32\x17.modelfile.v2.ModelFileH\x00\x12\x19\n\x0f\x66rom_network_id\x18\x02 \x01(\tH\x00\x12$\n\x1a\x66rom_network_experiment_id\x18\x03 \x01(\tH\x00\x42\r\n\x0bsource_type\"\xf1\x02\n\x0f\x43onstTensorNode\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x0e\n\x06output\x18\x02 \x01(\t\x12\r\n\x05shape\x18\x03 \x03(\r\x12\x43\n\x0buint64_data\x18\x04 \x01(\x0b\x32,.inference_graph.ConstTensorNode.Uint64ArrayH\x00\x12\x41\n\nint64_data\x18\x05 \x01(\x0b\x32+.inference_graph.ConstTensorNode.Int64ArrayH\x00\x12\x45\n\x0c\x66loat64_data\x18\x06 \x01(\x0b\x32-.inference_graph.ConstTensorNode.Float64ArrayH\x00\x1a\x1b\n\x0bUint64Array\x12\x0c\n\x04\x64\x61ta\x18\x01 \x03(\x04\x1a\x1a\n\nInt64Array\x12\x0c\n\x04\x64\x61ta\x18\x01 \x03(\x12\x1a\x1c\n\x0c\x46loat64Array\x12\x0c\n\x04\x64\x61ta\x18\x01 \x03(\x01\x42\x0b\n\tdata_type\"L\n\x12GenerateNumberNode\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x0e\n\x06output\x18\x02 \x01(\t\x12\x0b\n\x03min\x18\x03 \x01(\x04\x12\x0b\n\x03max\x18\x04 \x01(\x04\"^\n\x0e\x41\x64\x64NumbersNode\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x16\n\x0einput_number_1\x18\x02 \x01(\t\x12\x16\n\x0einput_number_2\x18\x03 \x01(\t\x12\x0e\n\x06output\x18\x04 \x01(\t\"X\n\x0fImageResizeNode\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x12\n\ninput_size\x18\x02 \x01(\t\x12\x13\n\x0binput_image\x18\x03 \x01(\t\x12\x0e\n\x06output\x18\x04 \x01(\t\"\xb0\x01\n\x10ImagePatchesNode\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x13\n\x0binput_image\x18\x02 \x01(\t\x12\x13\n\x0binput_boxes\x18\x03 \x01(\t\x12\x17\n\x0finput_batch_map\x18\x04 \x01(\t\x12\x19\n\x11input_target_size\x18\x05 \x01(\t\x12 \n\x18input_maximum_iterations\x18\x06 \x01(\t\x12\x0e\n\x06output\x18\x07 \x01(\t\"?\n\x11VirtualCameraNode\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x0e\n\x06output\x18\x02 \x01(\t\x12\x0c\n\x04path\x18\x03 \x01(\t\"z\n\x17ImageClassificationNode\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\r\n\x05input\x18\x02 \x01(\t\x12\x0e\n\x06output\x18\x03 \x01(\t\x12\x32\n\x0cmodel_source\x18\x04 \x01(\x0b\x32\x1c.inference_graph.ModelSource\"{\n\x18ImageObjectDetectionNode\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\r\n\x05input\x18\x02 \x01(\t\x12\x0e\n\x06output\x18\x03 \x01(\t\x12\x32\n\x0cmodel_source\x18\x04 \x01(\x0b\x32\x1c.inference_graph.ModelSource\"o\n\x0cImageOcrNode\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\r\n\x05input\x18\x02 \x01(\t\x12\x0e\n\x06output\x18\x03 \x01(\t\x12\x32\n\x0cmodel_source\x18\x04 \x01(\x0b\x32\x1c.inference_graph.ModelSource\"\x91\x01\n\x15\x42oundingBoxFilterNode\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\"\n\x1ainput_confidence_threshold\x18\x02 \x01(\t\x12\x1b\n\x13input_iou_threshold\x18\x03 \x01(\t\x12\x13\n\x0binput_boxes\x18\x04 \x01(\t\x12\x14\n\x0coutput_boxes\x18\x05 \x01(\t\"\xbd\x05\n\x04Node\x12=\n\x11\x63onst_tensor_node\x18\x01 \x01(\x0b\x32 .inference_graph.ConstTensorNodeH\x00\x12\x43\n\x14generate_number_node\x18\x02 \x01(\x0b\x32#.inference_graph.GenerateNumberNodeH\x00\x12;\n\x10\x61\x64\x64_numbers_node\x18\x03 \x01(\x0b\x32\x1f.inference_graph.AddNumbersNodeH\x00\x12=\n\x11image_resize_node\x18\x04 \x01(\x0b\x32 .inference_graph.ImageResizeNodeH\x00\x12?\n\x12image_patches_node\x18\x05 \x01(\x0b\x32!.inference_graph.ImagePatchesNodeH\x00\x12\x41\n\x13virtual_camera_node\x18\x06 \x01(\x0b\x32\".inference_graph.VirtualCameraNodeH\x00\x12M\n\x19image_classification_node\x18\x07 \x01(\x0b\x32(.inference_graph.ImageClassificationNodeH\x00\x12P\n\x1bimage_object_detection_node\x18\x08 \x01(\x0b\x32).inference_graph.ImageObjectDetectionNodeH\x00\x12\x37\n\x0eimage_ocr_node\x18\t \x01(\x0b\x32\x1d.inference_graph.ImageOcrNodeH\x00\x12J\n\x18\x62ounding_box_filter_node\x18\n \x01(\x0b\x32&.inference_graph.BoundingBoxFilterNodeH\x00\x42\x0b\n\tnode_type\"U\n\x05Graph\x12$\n\x05nodes\x18\x01 \x03(\x0b\x32\x15.inference_graph.Node\x12\x12\n\ncreated_at\x18\x02 \x01(\x03\x12\x12\n\nlicense_id\x18\x03 \x01(\tBNZ0github.com/DENKweit/denkproto-go/inference_graph\xaa\x02\x19\x44\x45NK.Proto.InferenceGraphb\x06proto3')
|
|
29
29
|
|
|
30
30
|
_globals = globals()
|
|
31
31
|
_builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals)
|
|
@@ -34,35 +34,35 @@ if not _descriptor._USE_C_DESCRIPTORS:
|
|
|
34
34
|
_globals['DESCRIPTOR']._loaded_options = None
|
|
35
35
|
_globals['DESCRIPTOR']._serialized_options = b'Z0github.com/DENKweit/denkproto-go/inference_graph\252\002\031DENK.Proto.InferenceGraph'
|
|
36
36
|
_globals['_MODELSOURCE']._serialized_start=63
|
|
37
|
-
_globals['_MODELSOURCE']._serialized_end=
|
|
38
|
-
_globals['_CONSTTENSORNODE']._serialized_start=
|
|
39
|
-
_globals['_CONSTTENSORNODE']._serialized_end=
|
|
40
|
-
_globals['_CONSTTENSORNODE_UINT64ARRAY']._serialized_start=
|
|
41
|
-
_globals['_CONSTTENSORNODE_UINT64ARRAY']._serialized_end=
|
|
42
|
-
_globals['_CONSTTENSORNODE_INT64ARRAY']._serialized_start=
|
|
43
|
-
_globals['_CONSTTENSORNODE_INT64ARRAY']._serialized_end=
|
|
44
|
-
_globals['_CONSTTENSORNODE_FLOAT64ARRAY']._serialized_start=
|
|
45
|
-
_globals['_CONSTTENSORNODE_FLOAT64ARRAY']._serialized_end=
|
|
46
|
-
_globals['_GENERATENUMBERNODE']._serialized_start=
|
|
47
|
-
_globals['_GENERATENUMBERNODE']._serialized_end=
|
|
48
|
-
_globals['_ADDNUMBERSNODE']._serialized_start=
|
|
49
|
-
_globals['_ADDNUMBERSNODE']._serialized_end=
|
|
50
|
-
_globals['_IMAGERESIZENODE']._serialized_start=
|
|
51
|
-
_globals['_IMAGERESIZENODE']._serialized_end=
|
|
52
|
-
_globals['_IMAGEPATCHESNODE']._serialized_start=
|
|
53
|
-
_globals['_IMAGEPATCHESNODE']._serialized_end=
|
|
54
|
-
_globals['_VIRTUALCAMERANODE']._serialized_start=
|
|
55
|
-
_globals['_VIRTUALCAMERANODE']._serialized_end=
|
|
56
|
-
_globals['_IMAGECLASSIFICATIONNODE']._serialized_start=
|
|
57
|
-
_globals['_IMAGECLASSIFICATIONNODE']._serialized_end=
|
|
58
|
-
_globals['_IMAGEOBJECTDETECTIONNODE']._serialized_start=
|
|
59
|
-
_globals['_IMAGEOBJECTDETECTIONNODE']._serialized_end=
|
|
60
|
-
_globals['_IMAGEOCRNODE']._serialized_start=
|
|
61
|
-
_globals['_IMAGEOCRNODE']._serialized_end=
|
|
62
|
-
_globals['_BOUNDINGBOXFILTERNODE']._serialized_start=
|
|
63
|
-
_globals['_BOUNDINGBOXFILTERNODE']._serialized_end=
|
|
64
|
-
_globals['_NODE']._serialized_start=
|
|
65
|
-
_globals['_NODE']._serialized_end=
|
|
66
|
-
_globals['_GRAPH']._serialized_start=
|
|
67
|
-
_globals['_GRAPH']._serialized_end=
|
|
37
|
+
_globals['_MODELSOURCE']._serialized_end=203
|
|
38
|
+
_globals['_CONSTTENSORNODE']._serialized_start=206
|
|
39
|
+
_globals['_CONSTTENSORNODE']._serialized_end=575
|
|
40
|
+
_globals['_CONSTTENSORNODE_UINT64ARRAY']._serialized_start=477
|
|
41
|
+
_globals['_CONSTTENSORNODE_UINT64ARRAY']._serialized_end=504
|
|
42
|
+
_globals['_CONSTTENSORNODE_INT64ARRAY']._serialized_start=506
|
|
43
|
+
_globals['_CONSTTENSORNODE_INT64ARRAY']._serialized_end=532
|
|
44
|
+
_globals['_CONSTTENSORNODE_FLOAT64ARRAY']._serialized_start=534
|
|
45
|
+
_globals['_CONSTTENSORNODE_FLOAT64ARRAY']._serialized_end=562
|
|
46
|
+
_globals['_GENERATENUMBERNODE']._serialized_start=577
|
|
47
|
+
_globals['_GENERATENUMBERNODE']._serialized_end=653
|
|
48
|
+
_globals['_ADDNUMBERSNODE']._serialized_start=655
|
|
49
|
+
_globals['_ADDNUMBERSNODE']._serialized_end=749
|
|
50
|
+
_globals['_IMAGERESIZENODE']._serialized_start=751
|
|
51
|
+
_globals['_IMAGERESIZENODE']._serialized_end=839
|
|
52
|
+
_globals['_IMAGEPATCHESNODE']._serialized_start=842
|
|
53
|
+
_globals['_IMAGEPATCHESNODE']._serialized_end=1018
|
|
54
|
+
_globals['_VIRTUALCAMERANODE']._serialized_start=1020
|
|
55
|
+
_globals['_VIRTUALCAMERANODE']._serialized_end=1083
|
|
56
|
+
_globals['_IMAGECLASSIFICATIONNODE']._serialized_start=1085
|
|
57
|
+
_globals['_IMAGECLASSIFICATIONNODE']._serialized_end=1207
|
|
58
|
+
_globals['_IMAGEOBJECTDETECTIONNODE']._serialized_start=1209
|
|
59
|
+
_globals['_IMAGEOBJECTDETECTIONNODE']._serialized_end=1332
|
|
60
|
+
_globals['_IMAGEOCRNODE']._serialized_start=1334
|
|
61
|
+
_globals['_IMAGEOCRNODE']._serialized_end=1445
|
|
62
|
+
_globals['_BOUNDINGBOXFILTERNODE']._serialized_start=1448
|
|
63
|
+
_globals['_BOUNDINGBOXFILTERNODE']._serialized_end=1593
|
|
64
|
+
_globals['_NODE']._serialized_start=1596
|
|
65
|
+
_globals['_NODE']._serialized_end=2297
|
|
66
|
+
_globals['_GRAPH']._serialized_start=2299
|
|
67
|
+
_globals['_GRAPH']._serialized_end=2384
|
|
68
68
|
# @@protoc_insertion_point(module_scope)
|
|
@@ -148,18 +148,18 @@ class ImageOcrNode(_message.Message):
|
|
|
148
148
|
def __init__(self, name: _Optional[str] = ..., input: _Optional[str] = ..., output: _Optional[str] = ..., model_source: _Optional[_Union[ModelSource, _Mapping]] = ...) -> None: ...
|
|
149
149
|
|
|
150
150
|
class BoundingBoxFilterNode(_message.Message):
|
|
151
|
-
__slots__ = ("name", "
|
|
151
|
+
__slots__ = ("name", "input_confidence_threshold", "input_iou_threshold", "input_boxes", "output_boxes")
|
|
152
152
|
NAME_FIELD_NUMBER: _ClassVar[int]
|
|
153
|
-
|
|
153
|
+
INPUT_CONFIDENCE_THRESHOLD_FIELD_NUMBER: _ClassVar[int]
|
|
154
|
+
INPUT_IOU_THRESHOLD_FIELD_NUMBER: _ClassVar[int]
|
|
154
155
|
INPUT_BOXES_FIELD_NUMBER: _ClassVar[int]
|
|
155
156
|
OUTPUT_BOXES_FIELD_NUMBER: _ClassVar[int]
|
|
156
|
-
OUTPUT_BATCH_MAP_FIELD_NUMBER: _ClassVar[int]
|
|
157
157
|
name: str
|
|
158
|
-
|
|
158
|
+
input_confidence_threshold: str
|
|
159
|
+
input_iou_threshold: str
|
|
159
160
|
input_boxes: str
|
|
160
161
|
output_boxes: str
|
|
161
|
-
|
|
162
|
-
def __init__(self, name: _Optional[str] = ..., input_threshold: _Optional[str] = ..., input_boxes: _Optional[str] = ..., output_boxes: _Optional[str] = ..., output_batch_map: _Optional[str] = ...) -> None: ...
|
|
162
|
+
def __init__(self, name: _Optional[str] = ..., input_confidence_threshold: _Optional[str] = ..., input_iou_threshold: _Optional[str] = ..., input_boxes: _Optional[str] = ..., output_boxes: _Optional[str] = ...) -> None: ...
|
|
163
163
|
|
|
164
164
|
class Node(_message.Message):
|
|
165
165
|
__slots__ = ("const_tensor_node", "generate_number_node", "add_numbers_node", "image_resize_node", "image_patches_node", "virtual_camera_node", "image_classification_node", "image_object_detection_node", "image_ocr_node", "bounding_box_filter_node")
|
|
@@ -0,0 +1,152 @@
|
|
|
1
|
+
from __future__ import annotations # Postponed evaluation of annotations
|
|
2
|
+
from pydantic import BaseModel, Field
|
|
3
|
+
from typing import List, Union, Literal, Dict, Any, Optional, Annotated
|
|
4
|
+
|
|
5
|
+
class AddNumbersNode(BaseModel):
|
|
6
|
+
"""Node that adds two numbers. Base type for all nodes in the graph."""
|
|
7
|
+
node_type: Literal["add_numbers"]
|
|
8
|
+
name: str
|
|
9
|
+
input_number_1: str
|
|
10
|
+
input_number_2: str
|
|
11
|
+
output: str
|
|
12
|
+
|
|
13
|
+
class BoundingBoxFilterNode(BaseModel):
|
|
14
|
+
"""Node that filters bounding boxes based on a threshold. Base type for all nodes in the graph."""
|
|
15
|
+
node_type: Literal["bounding_box_filter"]
|
|
16
|
+
name: str
|
|
17
|
+
input_threshold: str
|
|
18
|
+
input_boxes: str
|
|
19
|
+
output_boxes: str
|
|
20
|
+
output_batch_map: str
|
|
21
|
+
|
|
22
|
+
class ConstTensorFloat64Data(BaseModel):
|
|
23
|
+
"""Constant tensor data of type float64. Base type for constant tensor data."""
|
|
24
|
+
data_type: Literal["float64"]
|
|
25
|
+
data: list[float]
|
|
26
|
+
|
|
27
|
+
class ConstTensorInt64Data(BaseModel):
|
|
28
|
+
"""Constant tensor data of type int64. Base type for constant tensor data."""
|
|
29
|
+
data_type: Literal["int64"]
|
|
30
|
+
data: list[int]
|
|
31
|
+
|
|
32
|
+
class ConstTensorNode(BaseModel):
|
|
33
|
+
"""Node representing a constant tensor. Base type for all nodes in the graph."""
|
|
34
|
+
node_type: Literal["const_tensor"]
|
|
35
|
+
name: str
|
|
36
|
+
output: str
|
|
37
|
+
shape: list[int]
|
|
38
|
+
data: ConstTensorDataBase
|
|
39
|
+
|
|
40
|
+
class ConstTensorUint64Data(BaseModel):
|
|
41
|
+
"""Constant tensor data of type uint64. Base type for constant tensor data."""
|
|
42
|
+
data_type: Literal["uint64"]
|
|
43
|
+
data: list[int]
|
|
44
|
+
|
|
45
|
+
class GenerateNumberNode(BaseModel):
|
|
46
|
+
"""Node that generates a number within a range. Base type for all nodes in the graph."""
|
|
47
|
+
node_type: Literal["generate_number"]
|
|
48
|
+
name: str
|
|
49
|
+
output: str
|
|
50
|
+
min: int
|
|
51
|
+
max: int
|
|
52
|
+
|
|
53
|
+
class ImageClassificationNode(BaseModel):
|
|
54
|
+
"""Node for image classification. Base type for all nodes in the graph."""
|
|
55
|
+
node_type: Literal["image_classification"]
|
|
56
|
+
name: str
|
|
57
|
+
input: str
|
|
58
|
+
output: str
|
|
59
|
+
model_source: ModelSourceBase
|
|
60
|
+
|
|
61
|
+
class ImageObjectDetectionNode(BaseModel):
|
|
62
|
+
"""Node for image object detection. Base type for all nodes in the graph."""
|
|
63
|
+
node_type: Literal["image_object_detection"]
|
|
64
|
+
name: str
|
|
65
|
+
input: str
|
|
66
|
+
output: str
|
|
67
|
+
model_source: ModelSourceBase
|
|
68
|
+
|
|
69
|
+
class ImageOcrNode(BaseModel):
|
|
70
|
+
"""Node for image OCR. Base type for all nodes in the graph."""
|
|
71
|
+
node_type: Literal["image_ocr"]
|
|
72
|
+
name: str
|
|
73
|
+
input: str
|
|
74
|
+
output: str
|
|
75
|
+
model_source: ModelSourceBase
|
|
76
|
+
|
|
77
|
+
class ImagePatchesNode(BaseModel):
|
|
78
|
+
"""Node that extracts patches from an image based on bounding boxes. Base type for all nodes in the graph."""
|
|
79
|
+
node_type: Literal["image_patches"]
|
|
80
|
+
name: str
|
|
81
|
+
input_image: str
|
|
82
|
+
input_boxes: str
|
|
83
|
+
input_batch_map: str
|
|
84
|
+
input_target_size: str
|
|
85
|
+
input_maximum_iterations: str
|
|
86
|
+
output: str
|
|
87
|
+
|
|
88
|
+
class ImageResizeNode(BaseModel):
|
|
89
|
+
"""Node that resizes an image. Base type for all nodes in the graph."""
|
|
90
|
+
node_type: Literal["image_resize"]
|
|
91
|
+
name: str
|
|
92
|
+
input_size: str
|
|
93
|
+
input_image: str
|
|
94
|
+
output: str
|
|
95
|
+
|
|
96
|
+
class ModelSourceFromNetworkExperimentId(BaseModel):
|
|
97
|
+
"""Model source specified by a network experiment ID. Base type for the source of the model."""
|
|
98
|
+
source_type: Literal["network_experiment_id"]
|
|
99
|
+
network_experiment_id: str
|
|
100
|
+
|
|
101
|
+
class ModelSourceFromNetworkId(BaseModel):
|
|
102
|
+
"""Model source specified by a network ID. Base type for the source of the model."""
|
|
103
|
+
source_type: Literal["network_id"]
|
|
104
|
+
network_id: str
|
|
105
|
+
|
|
106
|
+
class VirtualCameraNode(BaseModel):
|
|
107
|
+
"""Node representing a virtual camera source. Base type for all nodes in the graph."""
|
|
108
|
+
node_type: Literal["virtual_camera"]
|
|
109
|
+
name: str
|
|
110
|
+
output: str
|
|
111
|
+
path: str
|
|
112
|
+
|
|
113
|
+
# --- Main Recipe Class ---
|
|
114
|
+
class InferenceGraphRecipe(BaseModel):
|
|
115
|
+
nodes: list[Node]
|
|
116
|
+
license_id: str
|
|
117
|
+
created_at: int
|
|
118
|
+
|
|
119
|
+
# --- Union Type Definitions ---
|
|
120
|
+
ConstTensorDataBase = Annotated[
|
|
121
|
+
Union[
|
|
122
|
+
ConstTensorFloat64Data,
|
|
123
|
+
ConstTensorInt64Data,
|
|
124
|
+
ConstTensorUint64Data
|
|
125
|
+
],
|
|
126
|
+
Field(discriminator='data_type')
|
|
127
|
+
]
|
|
128
|
+
|
|
129
|
+
ModelSourceBase = Annotated[
|
|
130
|
+
Union[
|
|
131
|
+
ModelSourceFromNetworkExperimentId,
|
|
132
|
+
ModelSourceFromNetworkId
|
|
133
|
+
],
|
|
134
|
+
Field(discriminator='source_type')
|
|
135
|
+
]
|
|
136
|
+
|
|
137
|
+
Node = Annotated[
|
|
138
|
+
Union[
|
|
139
|
+
AddNumbersNode,
|
|
140
|
+
BoundingBoxFilterNode,
|
|
141
|
+
ConstTensorNode,
|
|
142
|
+
GenerateNumberNode,
|
|
143
|
+
ImageClassificationNode,
|
|
144
|
+
ImageObjectDetectionNode,
|
|
145
|
+
ImageOcrNode,
|
|
146
|
+
ImagePatchesNode,
|
|
147
|
+
ImageResizeNode,
|
|
148
|
+
VirtualCameraNode
|
|
149
|
+
],
|
|
150
|
+
Field(discriminator='node_type')
|
|
151
|
+
]
|
|
152
|
+
|
|
@@ -491,44 +491,16 @@ class Annotation:
|
|
|
491
491
|
return result
|
|
492
492
|
|
|
493
493
|
|
|
494
|
-
class SegmentationMap:
|
|
495
|
-
blob_id: UUID
|
|
496
|
-
label_id: UUID
|
|
497
|
-
thumbnail: str
|
|
498
|
-
|
|
499
|
-
def __init__(self, blob_id: UUID, label_id: UUID, thumbnail: str) -> None:
|
|
500
|
-
self.blob_id = blob_id
|
|
501
|
-
self.label_id = label_id
|
|
502
|
-
self.thumbnail = thumbnail
|
|
503
|
-
|
|
504
|
-
@staticmethod
|
|
505
|
-
def from_dict(obj: Any) -> 'SegmentationMap':
|
|
506
|
-
assert isinstance(obj, dict)
|
|
507
|
-
blob_id = UUID(obj.get("blob_id"))
|
|
508
|
-
label_id = UUID(obj.get("label_id"))
|
|
509
|
-
thumbnail = from_str(obj.get("thumbnail"))
|
|
510
|
-
return SegmentationMap(blob_id, label_id, thumbnail)
|
|
511
|
-
|
|
512
|
-
def to_dict(self) -> dict:
|
|
513
|
-
result: dict = {}
|
|
514
|
-
result["blob_id"] = str(self.blob_id)
|
|
515
|
-
result["label_id"] = str(self.label_id)
|
|
516
|
-
result["thumbnail"] = from_str(self.thumbnail)
|
|
517
|
-
return result
|
|
518
|
-
|
|
519
|
-
|
|
520
494
|
class SegmentationMarkup:
|
|
521
495
|
annotations: List[Annotation]
|
|
522
496
|
average_object_widths: List[float]
|
|
523
497
|
height: int
|
|
524
|
-
segmentation_maps: List[SegmentationMap]
|
|
525
498
|
width: int
|
|
526
499
|
|
|
527
|
-
def __init__(self, annotations: List[Annotation], average_object_widths: List[float], height: int,
|
|
500
|
+
def __init__(self, annotations: List[Annotation], average_object_widths: List[float], height: int, width: int) -> None:
|
|
528
501
|
self.annotations = annotations
|
|
529
502
|
self.average_object_widths = average_object_widths
|
|
530
503
|
self.height = height
|
|
531
|
-
self.segmentation_maps = segmentation_maps
|
|
532
504
|
self.width = width
|
|
533
505
|
|
|
534
506
|
@staticmethod
|
|
@@ -537,16 +509,14 @@ class SegmentationMarkup:
|
|
|
537
509
|
annotations = from_list(Annotation.from_dict, obj.get("annotations"))
|
|
538
510
|
average_object_widths = from_list(from_float, obj.get("average_object_widths"))
|
|
539
511
|
height = from_int(obj.get("height"))
|
|
540
|
-
segmentation_maps = from_list(SegmentationMap.from_dict, obj.get("segmentation_maps"))
|
|
541
512
|
width = from_int(obj.get("width"))
|
|
542
|
-
return SegmentationMarkup(annotations, average_object_widths, height,
|
|
513
|
+
return SegmentationMarkup(annotations, average_object_widths, height, width)
|
|
543
514
|
|
|
544
515
|
def to_dict(self) -> dict:
|
|
545
516
|
result: dict = {}
|
|
546
517
|
result["annotations"] = from_list(lambda x: to_class(Annotation, x), self.annotations)
|
|
547
518
|
result["average_object_widths"] = from_list(to_float, self.average_object_widths)
|
|
548
519
|
result["height"] = from_int(self.height)
|
|
549
|
-
result["segmentation_maps"] = from_list(lambda x: to_class(SegmentationMap, x), self.segmentation_maps)
|
|
550
520
|
result["width"] = from_int(self.width)
|
|
551
521
|
return result
|
|
552
522
|
|
denkproto/modelfile_v2_pb2.py
CHANGED
|
@@ -24,7 +24,7 @@ _sym_db = _symbol_database.Default()
|
|
|
24
24
|
|
|
25
25
|
|
|
26
26
|
|
|
27
|
-
DESCRIPTOR = _descriptor_pool.Default().AddSerializedFile(b'\n\x12modelfile-v2.proto\x12\x0cmodelfile.v2\"\
|
|
27
|
+
DESCRIPTOR = _descriptor_pool.Default().AddSerializedFile(b'\n\x12modelfile-v2.proto\x12\x0cmodelfile.v2\"\xae$\n\tModelFile\x12\x39\n\x10protocol_version\x18\x01 \x01(\x0b\x32\x1f.modelfile.v2.ModelFile.Version\x12\x12\n\ncreated_at\x18\x02 \x01(\x03\x12\x33\n\tfile_info\x18\x03 \x01(\x0b\x32 .modelfile.v2.ModelFile.FileInfo\x12\x30\n\x07\x63ontent\x18\x04 \x01(\x0b\x32\x1f.modelfile.v2.ModelFile.Content\x12\x38\n\x0c\x63lass_labels\x18\x05 \x03(\x0b\x32\".modelfile.v2.ModelFile.ClassLabel\x12-\n\x06inputs\x18\x06 \x03(\x0b\x32\x1d.modelfile.v2.ModelFile.Input\x12/\n\x07outputs\x18\x07 \x03(\x0b\x32\x1e.modelfile.v2.ModelFile.Output\x12J\n\x12\x61\x64\x64itional_content\x18\x08 \x03(\x0b\x32..modelfile.v2.ModelFile.AdditionalContentEntry\x1a\x36\n\x07Version\x12\r\n\x05major\x18\x01 \x01(\x04\x12\r\n\x05minor\x18\x02 \x01(\x04\x12\r\n\x05patch\x18\x03 \x01(\x04\x1a\xaa\x04\n\x07\x43ontent\x12\x14\n\x0c\x62yte_content\x18\x01 \x01(\x0c\x12\x13\n\x0bhash_sha256\x18\x02 \x01(\x0c\x12M\n\x12\x63ompression_method\x18\x03 \x01(\x0e\x32\x31.modelfile.v2.ModelFile.Content.CompressionMethod\x12K\n\x11\x65ncryption_method\x18\x04 \x01(\x0e\x32\x30.modelfile.v2.ModelFile.Content.EncryptionMethod\x12@\n\tkey_slots\x18\x05 \x03(\x0b\x32-.modelfile.v2.ModelFile.Content.KeySlotsEntry\x1ai\n\x07KeySlot\x12\x13\n\x0bwrapped_key\x18\x01 \x01(\x0c\x12I\n\x0fwrapping_method\x18\x02 \x01(\x0e\x32\x30.modelfile.v2.ModelFile.Content.EncryptionMethod\x1aX\n\rKeySlotsEntry\x12\x0b\n\x03key\x18\x01 \x01(\t\x12\x36\n\x05value\x18\x02 \x01(\x0b\x32\'.modelfile.v2.ModelFile.Content.KeySlot:\x02\x38\x01\" \n\x11\x43ompressionMethod\x12\x0b\n\x07\x43M_NONE\x10\x00\"/\n\x10\x45ncryptionMethod\x12\x0b\n\x07\x45M_NONE\x10\x00\x12\x0e\n\nEM_AES_GCM\x10\x01\x1aU\n\nClassLabel\x12\x16\n\x0e\x63lass_label_id\x18\x01 \x01(\t\x12\x0c\n\x04name\x18\x02 \x01(\t\x12\x12\n\nshort_name\x18\x03 \x01(\t\x12\r\n\x05\x63olor\x18\x04 \x01(\t\x1a<\n\tImageSize\x12\r\n\x05width\x18\x01 \x01(\x04\x12\x0e\n\x06height\x18\x02 \x01(\x04\x12\x10\n\x08\x63hannels\x18\x03 \x01(\x04\x1aJ\n\x0eRegionFromEdge\x12\x0c\n\x04left\x18\x01 \x01(\x01\x12\r\n\x05right\x18\x02 \x01(\x01\x12\x0b\n\x03top\x18\x03 \x01(\x01\x12\x0e\n\x06\x62ottom\x18\x04 \x01(\x01\x1a\xe2\x05\n\x05Input\x12\x46\n\x0cimage_format\x18\x01 \x01(\x0b\x32..modelfile.v2.ModelFile.Input.ImageInputFormatH\x00\x1a\xfb\x04\n\x10ImageInputFormat\x12\x64\n\x10\x65xact_image_size\x18\x01 \x01(\x0b\x32H.modelfile.v2.ModelFile.Input.ImageInputFormat.ExactImageSizeRequirementH\x00\x12l\n\x14\x64ivisible_image_size\x18\x02 \x01(\x0b\x32L.modelfile.v2.ModelFile.Input.ImageInputFormat.DivisibleImageSizeRequirementH\x00\x12\x42\n\x12region_of_interest\x18\x03 \x01(\x0b\x32&.modelfile.v2.ModelFile.RegionFromEdge\x1aR\n\x19\x45xactImageSizeRequirement\x12\x35\n\nimage_size\x18\x01 \x01(\x0b\x32!.modelfile.v2.ModelFile.ImageSize\x1a\xdf\x01\n\x1d\x44ivisibleImageSizeRequirement\x12>\n\x13image_size_divisors\x18\x01 \x01(\x0b\x32!.modelfile.v2.ModelFile.ImageSize\x12=\n\x12minimum_image_size\x18\x02 \x01(\x0b\x32!.modelfile.v2.ModelFile.ImageSize\x12?\n\x14suggested_image_size\x18\x03 \x01(\x0b\x32!.modelfile.v2.ModelFile.ImageSizeB\x19\n\x17image_size_requirementsB\x13\n\x11\x46ormatInformation\x1a\xcc\n\n\x06Output\x12_\n\x18image_classifiers_format\x18\x01 \x01(\x0b\x32;.modelfile.v2.ModelFile.Output.ImageClassifiersOutputFormatH\x00\x12_\n\x18segmentation_maps_format\x18\x02 \x01(\x0b\x32;.modelfile.v2.ModelFile.Output.SegmentationMapsOutputFormatH\x00\x12Y\n\x15\x62ounding_boxes_format\x18\x03 \x01(\x0b\x32\x38.modelfile.v2.ModelFile.Output.BoundingBoxesOutputFormatH\x00\x12p\n!bounding_box_segmentations_format\x18\x04 \x01(\x0b\x32\x43.modelfile.v2.ModelFile.Output.BoundingBoxSegmentationsOutputFormatH\x00\x12\x44\n\nocr_format\x18\x05 \x01(\x0b\x32..modelfile.v2.ModelFile.Output.OcrOutputFormatH\x00\x1a\x1e\n\x1cImageClassifiersOutputFormat\x1aU\n\x1cSegmentationMapsOutputFormat\x12\x35\n\nimage_size\x18\x01 \x01(\x0b\x32!.modelfile.v2.ModelFile.ImageSize\x1a\xe9\x01\n\x19\x42oundingBoxesOutputFormat\x12\x17\n\x0fnumber_of_boxes\x18\x01 \x01(\x04\x12\x0e\n\x06stride\x18\x02 \x01(\x04\x12\x11\n\tx1_offset\x18\x03 \x01(\x04\x12\x11\n\ty1_offset\x18\x04 \x01(\x04\x12\x11\n\tx2_offset\x18\x05 \x01(\x04\x12\x11\n\ty2_offset\x18\x06 \x01(\x04\x12\x19\n\x11\x63onfidence_offset\x18\x07 \x01(\x04\x12 \n\x18\x63lass_label_index_offset\x18\x08 \x01(\x04\x12\x1a\n\x12\x62\x61tch_index_offset\x18\t \x01(\x04\x1a\x7f\n$BoundingBoxSegmentationsOutputFormat\x12\x35\n\nimage_size\x18\x01 \x01(\x0b\x32!.modelfile.v2.ModelFile.ImageSize\x12 \n\x18relative_to_bounding_box\x18\x02 \x01(\x08\x1a\xf3\x02\n\x0fOcrOutputFormat\x12\x1c\n\x14number_of_characters\x18\x01 \x01(\x04\x12L\n\ncharacters\x18\x02 \x03(\x0b\x32\x38.modelfile.v2.ModelFile.Output.OcrOutputFormat.Character\x1a\xf3\x01\n\tCharacter\x12\x1b\n\x13utf8_representation\x18\x01 \x01(\x0c\x12^\n\x0e\x63haracter_type\x18\x02 \x01(\x0e\x32\x46.modelfile.v2.ModelFile.Output.OcrOutputFormat.Character.CharacterType\x12\x0e\n\x06ignore\x18\x03 \x01(\x08\"Y\n\rCharacterType\x12\x0e\n\nCT_REGULAR\x10\x00\x12\x14\n\x10\x43T_START_OF_TEXT\x10\x01\x12\x12\n\x0e\x43T_END_OF_TEXT\x10\x02\x12\x0e\n\nCT_PADDING\x10\x03\x42\x13\n\x11\x46ormatInformation\x1a\xaf\t\n\x08\x46ileInfo\x12<\n\tfile_type\x18\x01 \x01(\x0e\x32).modelfile.v2.ModelFile.FileInfo.FileType\x12\x14\n\x0cnetwork_name\x18\x02 \x01(\t\x12\x12\n\nnetwork_id\x18\x03 \x01(\t\x12\x1d\n\x15network_experiment_id\x18\x04 \x01(\t\x12\x1b\n\x13network_snapshot_id\x18\x05 \x01(\t\x12\x42\n\x0cnetwork_type\x18\x06 \x01(\x0e\x32,.modelfile.v2.ModelFile.FileInfo.NetworkType\x12\x16\n\x0enetwork_flavor\x18\x07 \x01(\t\x12\x38\n\x0fnetwork_version\x18\x08 \x01(\x0b\x32\x1f.modelfile.v2.ModelFile.Version\x12\x38\n\x0fruntime_version\x18\t \x01(\x0b\x32\x1f.modelfile.v2.ModelFile.Version\x12=\n\tprecision\x18\n \x01(\x0e\x32*.modelfile.v2.ModelFile.FileInfo.Precision\x12\x44\n\x1bminimum_libdenkflow_version\x18\x0b \x01(\x0b\x32\x1f.modelfile.v2.ModelFile.Version\x12H\n\x0fhardware_target\x18\x0c \x01(\x0e\x32/.modelfile.v2.ModelFile.FileInfo.HardwareTarget\"?\n\x08\x46ileType\x12\x0c\n\x08\x46T_MODEL\x10\x00\x12\x10\n\x0c\x46T_ZXING_KEY\x10\x01\x12\x13\n\x0f\x46T_VIZIOTIX_KEY\x10\x02\"\xc0\x01\n\x0bNetworkType\x12\x0e\n\nNT_UNKNOWN\x10\x00\x12\x15\n\x11NT_CLASSIFICATION\x10\x01\x12\x13\n\x0fNT_SEGMENTATION\x10\x02\x12\x1c\n\x18NT_INSTANCE_SEGMENTATION\x10\x03\x12\x17\n\x13NT_OBJECT_DETECTION\x10\x04\x12\x18\n\x14NT_ANOMALY_DETECTION\x10\x05\x12$\n NT_OPTICAL_CHARACTER_RECOGNITION\x10\x06\"\xa8\x02\n\tPrecision\x12\x0f\n\x0bP_UNDEFINED\x10\x00\x12\x15\n\x11P_MIXED_PRECISION\x10\x01\x12\t\n\x05P_FP8\x10\x02\x12\n\n\x06P_FP16\x10\x03\x12\n\n\x06P_FP32\x10\x04\x12\n\n\x06P_FP64\x10\x05\x12\t\n\x05P_BF8\x10\x06\x12\n\n\x06P_BF16\x10\x07\x12\n\n\x06P_BF32\x10\x08\x12\n\n\x06P_BF64\x10\t\x12\n\n\x06P_INT8\x10\n\x12\x0b\n\x07P_INT16\x10\x0b\x12\x0b\n\x07P_INT32\x10\x0c\x12\x0b\n\x07P_INT64\x10\r\x12\x0b\n\x07P_UINT8\x10\x0e\x12\x0c\n\x08P_UINT16\x10\x0f\x12\x0c\n\x08P_UINT32\x10\x10\x12\x0c\n\x08P_UINT64\x10\x11\x12\r\n\tP_2_STATE\x10\x12\x12\r\n\tP_3_STATE\x10\x13\x12\r\n\tP_4_STATE\x10\x14\"1\n\x0eHardwareTarget\x12\x0e\n\nHT_DEFAULT\x10\x00\x12\x0f\n\x0bHT_TENSORRT\x10\x01\x1aY\n\x16\x41\x64\x64itionalContentEntry\x12\x0b\n\x03key\x18\x01 \x01(\t\x12.\n\x05value\x18\x02 \x01(\x0b\x32\x1f.modelfile.v2.ModelFile.Content:\x02\x38\x01\x42IZ-github.com/DENKweit/denkproto-go/modelfile/v2\xaa\x02\x17\x44\x45NK.Proto.Modelfile.V2b\x06proto3')
|
|
28
28
|
|
|
29
29
|
_globals = globals()
|
|
30
30
|
_builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals)
|
|
@@ -37,7 +37,7 @@ if not _descriptor._USE_C_DESCRIPTORS:
|
|
|
37
37
|
_globals['_MODELFILE_ADDITIONALCONTENTENTRY']._loaded_options = None
|
|
38
38
|
_globals['_MODELFILE_ADDITIONALCONTENTENTRY']._serialized_options = b'8\001'
|
|
39
39
|
_globals['_MODELFILE']._serialized_start=37
|
|
40
|
-
_globals['_MODELFILE']._serialized_end=
|
|
40
|
+
_globals['_MODELFILE']._serialized_end=4691
|
|
41
41
|
_globals['_MODELFILE_VERSION']._serialized_start=462
|
|
42
42
|
_globals['_MODELFILE_VERSION']._serialized_end=516
|
|
43
43
|
_globals['_MODELFILE_CONTENT']._serialized_start=519
|
|
@@ -81,13 +81,15 @@ if not _descriptor._USE_C_DESCRIPTORS:
|
|
|
81
81
|
_globals['_MODELFILE_OUTPUT_OCROUTPUTFORMAT_CHARACTER_CHARACTERTYPE']._serialized_start=3288
|
|
82
82
|
_globals['_MODELFILE_OUTPUT_OCROUTPUTFORMAT_CHARACTER_CHARACTERTYPE']._serialized_end=3377
|
|
83
83
|
_globals['_MODELFILE_FILEINFO']._serialized_start=3401
|
|
84
|
-
_globals['_MODELFILE_FILEINFO']._serialized_end=
|
|
85
|
-
_globals['_MODELFILE_FILEINFO_FILETYPE']._serialized_start=
|
|
86
|
-
_globals['_MODELFILE_FILEINFO_FILETYPE']._serialized_end=
|
|
87
|
-
_globals['_MODELFILE_FILEINFO_NETWORKTYPE']._serialized_start=
|
|
88
|
-
_globals['_MODELFILE_FILEINFO_NETWORKTYPE']._serialized_end=
|
|
89
|
-
_globals['_MODELFILE_FILEINFO_PRECISION']._serialized_start=
|
|
90
|
-
_globals['_MODELFILE_FILEINFO_PRECISION']._serialized_end=
|
|
91
|
-
_globals['
|
|
92
|
-
_globals['
|
|
84
|
+
_globals['_MODELFILE_FILEINFO']._serialized_end=4600
|
|
85
|
+
_globals['_MODELFILE_FILEINFO_FILETYPE']._serialized_start=3992
|
|
86
|
+
_globals['_MODELFILE_FILEINFO_FILETYPE']._serialized_end=4055
|
|
87
|
+
_globals['_MODELFILE_FILEINFO_NETWORKTYPE']._serialized_start=4058
|
|
88
|
+
_globals['_MODELFILE_FILEINFO_NETWORKTYPE']._serialized_end=4250
|
|
89
|
+
_globals['_MODELFILE_FILEINFO_PRECISION']._serialized_start=4253
|
|
90
|
+
_globals['_MODELFILE_FILEINFO_PRECISION']._serialized_end=4549
|
|
91
|
+
_globals['_MODELFILE_FILEINFO_HARDWARETARGET']._serialized_start=4551
|
|
92
|
+
_globals['_MODELFILE_FILEINFO_HARDWARETARGET']._serialized_end=4600
|
|
93
|
+
_globals['_MODELFILE_ADDITIONALCONTENTENTRY']._serialized_start=4602
|
|
94
|
+
_globals['_MODELFILE_ADDITIONALCONTENTENTRY']._serialized_end=4691
|
|
93
95
|
# @@protoc_insertion_point(module_scope)
|
denkproto/modelfile_v2_pb2.pyi
CHANGED
|
@@ -189,13 +189,13 @@ class ModelFile(_message.Message):
|
|
|
189
189
|
ocr_format: ModelFile.Output.OcrOutputFormat
|
|
190
190
|
def __init__(self, image_classifiers_format: _Optional[_Union[ModelFile.Output.ImageClassifiersOutputFormat, _Mapping]] = ..., segmentation_maps_format: _Optional[_Union[ModelFile.Output.SegmentationMapsOutputFormat, _Mapping]] = ..., bounding_boxes_format: _Optional[_Union[ModelFile.Output.BoundingBoxesOutputFormat, _Mapping]] = ..., bounding_box_segmentations_format: _Optional[_Union[ModelFile.Output.BoundingBoxSegmentationsOutputFormat, _Mapping]] = ..., ocr_format: _Optional[_Union[ModelFile.Output.OcrOutputFormat, _Mapping]] = ...) -> None: ...
|
|
191
191
|
class FileInfo(_message.Message):
|
|
192
|
-
__slots__ = ("file_type", "network_name", "network_id", "network_experiment_id", "network_snapshot_id", "network_type", "network_flavor", "network_version", "runtime_version", "precision", "minimum_libdenkflow_version")
|
|
192
|
+
__slots__ = ("file_type", "network_name", "network_id", "network_experiment_id", "network_snapshot_id", "network_type", "network_flavor", "network_version", "runtime_version", "precision", "minimum_libdenkflow_version", "hardware_target")
|
|
193
193
|
class FileType(int, metaclass=_enum_type_wrapper.EnumTypeWrapper):
|
|
194
194
|
__slots__ = ()
|
|
195
|
-
|
|
195
|
+
FT_MODEL: _ClassVar[ModelFile.FileInfo.FileType]
|
|
196
196
|
FT_ZXING_KEY: _ClassVar[ModelFile.FileInfo.FileType]
|
|
197
197
|
FT_VIZIOTIX_KEY: _ClassVar[ModelFile.FileInfo.FileType]
|
|
198
|
-
|
|
198
|
+
FT_MODEL: ModelFile.FileInfo.FileType
|
|
199
199
|
FT_ZXING_KEY: ModelFile.FileInfo.FileType
|
|
200
200
|
FT_VIZIOTIX_KEY: ModelFile.FileInfo.FileType
|
|
201
201
|
class NetworkType(int, metaclass=_enum_type_wrapper.EnumTypeWrapper):
|
|
@@ -217,10 +217,15 @@ class ModelFile(_message.Message):
|
|
|
217
217
|
class Precision(int, metaclass=_enum_type_wrapper.EnumTypeWrapper):
|
|
218
218
|
__slots__ = ()
|
|
219
219
|
P_UNDEFINED: _ClassVar[ModelFile.FileInfo.Precision]
|
|
220
|
+
P_MIXED_PRECISION: _ClassVar[ModelFile.FileInfo.Precision]
|
|
220
221
|
P_FP8: _ClassVar[ModelFile.FileInfo.Precision]
|
|
221
222
|
P_FP16: _ClassVar[ModelFile.FileInfo.Precision]
|
|
222
223
|
P_FP32: _ClassVar[ModelFile.FileInfo.Precision]
|
|
223
224
|
P_FP64: _ClassVar[ModelFile.FileInfo.Precision]
|
|
225
|
+
P_BF8: _ClassVar[ModelFile.FileInfo.Precision]
|
|
226
|
+
P_BF16: _ClassVar[ModelFile.FileInfo.Precision]
|
|
227
|
+
P_BF32: _ClassVar[ModelFile.FileInfo.Precision]
|
|
228
|
+
P_BF64: _ClassVar[ModelFile.FileInfo.Precision]
|
|
224
229
|
P_INT8: _ClassVar[ModelFile.FileInfo.Precision]
|
|
225
230
|
P_INT16: _ClassVar[ModelFile.FileInfo.Precision]
|
|
226
231
|
P_INT32: _ClassVar[ModelFile.FileInfo.Precision]
|
|
@@ -229,12 +234,19 @@ class ModelFile(_message.Message):
|
|
|
229
234
|
P_UINT16: _ClassVar[ModelFile.FileInfo.Precision]
|
|
230
235
|
P_UINT32: _ClassVar[ModelFile.FileInfo.Precision]
|
|
231
236
|
P_UINT64: _ClassVar[ModelFile.FileInfo.Precision]
|
|
232
|
-
|
|
237
|
+
P_2_STATE: _ClassVar[ModelFile.FileInfo.Precision]
|
|
238
|
+
P_3_STATE: _ClassVar[ModelFile.FileInfo.Precision]
|
|
239
|
+
P_4_STATE: _ClassVar[ModelFile.FileInfo.Precision]
|
|
233
240
|
P_UNDEFINED: ModelFile.FileInfo.Precision
|
|
241
|
+
P_MIXED_PRECISION: ModelFile.FileInfo.Precision
|
|
234
242
|
P_FP8: ModelFile.FileInfo.Precision
|
|
235
243
|
P_FP16: ModelFile.FileInfo.Precision
|
|
236
244
|
P_FP32: ModelFile.FileInfo.Precision
|
|
237
245
|
P_FP64: ModelFile.FileInfo.Precision
|
|
246
|
+
P_BF8: ModelFile.FileInfo.Precision
|
|
247
|
+
P_BF16: ModelFile.FileInfo.Precision
|
|
248
|
+
P_BF32: ModelFile.FileInfo.Precision
|
|
249
|
+
P_BF64: ModelFile.FileInfo.Precision
|
|
238
250
|
P_INT8: ModelFile.FileInfo.Precision
|
|
239
251
|
P_INT16: ModelFile.FileInfo.Precision
|
|
240
252
|
P_INT32: ModelFile.FileInfo.Precision
|
|
@@ -243,7 +255,15 @@ class ModelFile(_message.Message):
|
|
|
243
255
|
P_UINT16: ModelFile.FileInfo.Precision
|
|
244
256
|
P_UINT32: ModelFile.FileInfo.Precision
|
|
245
257
|
P_UINT64: ModelFile.FileInfo.Precision
|
|
246
|
-
|
|
258
|
+
P_2_STATE: ModelFile.FileInfo.Precision
|
|
259
|
+
P_3_STATE: ModelFile.FileInfo.Precision
|
|
260
|
+
P_4_STATE: ModelFile.FileInfo.Precision
|
|
261
|
+
class HardwareTarget(int, metaclass=_enum_type_wrapper.EnumTypeWrapper):
|
|
262
|
+
__slots__ = ()
|
|
263
|
+
HT_DEFAULT: _ClassVar[ModelFile.FileInfo.HardwareTarget]
|
|
264
|
+
HT_TENSORRT: _ClassVar[ModelFile.FileInfo.HardwareTarget]
|
|
265
|
+
HT_DEFAULT: ModelFile.FileInfo.HardwareTarget
|
|
266
|
+
HT_TENSORRT: ModelFile.FileInfo.HardwareTarget
|
|
247
267
|
FILE_TYPE_FIELD_NUMBER: _ClassVar[int]
|
|
248
268
|
NETWORK_NAME_FIELD_NUMBER: _ClassVar[int]
|
|
249
269
|
NETWORK_ID_FIELD_NUMBER: _ClassVar[int]
|
|
@@ -255,6 +275,7 @@ class ModelFile(_message.Message):
|
|
|
255
275
|
RUNTIME_VERSION_FIELD_NUMBER: _ClassVar[int]
|
|
256
276
|
PRECISION_FIELD_NUMBER: _ClassVar[int]
|
|
257
277
|
MINIMUM_LIBDENKFLOW_VERSION_FIELD_NUMBER: _ClassVar[int]
|
|
278
|
+
HARDWARE_TARGET_FIELD_NUMBER: _ClassVar[int]
|
|
258
279
|
file_type: ModelFile.FileInfo.FileType
|
|
259
280
|
network_name: str
|
|
260
281
|
network_id: str
|
|
@@ -266,7 +287,8 @@ class ModelFile(_message.Message):
|
|
|
266
287
|
runtime_version: ModelFile.Version
|
|
267
288
|
precision: ModelFile.FileInfo.Precision
|
|
268
289
|
minimum_libdenkflow_version: ModelFile.Version
|
|
269
|
-
|
|
290
|
+
hardware_target: ModelFile.FileInfo.HardwareTarget
|
|
291
|
+
def __init__(self, file_type: _Optional[_Union[ModelFile.FileInfo.FileType, str]] = ..., network_name: _Optional[str] = ..., network_id: _Optional[str] = ..., network_experiment_id: _Optional[str] = ..., network_snapshot_id: _Optional[str] = ..., network_type: _Optional[_Union[ModelFile.FileInfo.NetworkType, str]] = ..., network_flavor: _Optional[str] = ..., network_version: _Optional[_Union[ModelFile.Version, _Mapping]] = ..., runtime_version: _Optional[_Union[ModelFile.Version, _Mapping]] = ..., precision: _Optional[_Union[ModelFile.FileInfo.Precision, str]] = ..., minimum_libdenkflow_version: _Optional[_Union[ModelFile.Version, _Mapping]] = ..., hardware_target: _Optional[_Union[ModelFile.FileInfo.HardwareTarget, str]] = ...) -> None: ...
|
|
270
292
|
class AdditionalContentEntry(_message.Message):
|
|
271
293
|
__slots__ = ("key", "value")
|
|
272
294
|
KEY_FIELD_NUMBER: _ClassVar[int]
|
|
@@ -4,19 +4,19 @@ denkproto/DENKbuffer_pb2_grpc.py,sha256=-CPJPM4FOqwvwV8-f1iJlD18UD9juVIIHfdWUecu
|
|
|
4
4
|
denkproto/ImageAnalysis_ProtobufMessages_pb2.py,sha256=iEY0j9ySGUThnqTdYD4uAVr9P3GiC5R02iK53zEOXUQ,21015
|
|
5
5
|
denkproto/ImageAnalysis_ProtobufMessages_pb2.pyi,sha256=5LFtxrmYpJHizDDNGFTkL7-NQ_TkwqCSdq7vcv3lg-c,36243
|
|
6
6
|
denkproto/ImageAnalysis_ProtobufMessages_pb2_grpc.py,sha256=l3agtDjgu4jay6P9TRnHhyhJ-7UdoII27ywhw3k84oo,911
|
|
7
|
-
denkproto/__about__.py,sha256=
|
|
7
|
+
denkproto/__about__.py,sha256=DvokxX2C6GOmUAHUjQdvSvXOTZM59GLHju9gn9q6dAI,23
|
|
8
8
|
denkproto/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
9
9
|
denkproto/denkcache_pb2.py,sha256=fvrIvDfK8ED_w0EfO0tIrLMsBh2T5yvVI-sNFCK7NEQ,6627
|
|
10
10
|
denkproto/denkcache_pb2.pyi,sha256=qOzFOkddUapSJZz5d_mqcfHvWDAmM-70m_7FeM7n5fI,5595
|
|
11
11
|
denkproto/denkcache_pb2_grpc.py,sha256=tKt4dGD5IkSJ8Ff9pSsZr2vcOEXuBpEGY3azihjvOxU,15607
|
|
12
|
-
denkproto/inference_graph_pb2.py,sha256=
|
|
13
|
-
denkproto/inference_graph_pb2.pyi,sha256=
|
|
12
|
+
denkproto/inference_graph_pb2.py,sha256=KwlyoGyMDvZVM0uHgJOjuPF6VdwaOcDkCuf00apZy0k,7148
|
|
13
|
+
denkproto/inference_graph_pb2.pyi,sha256=DbyULi73hqdxWX-X-S-_Ygkhk6WJVAgBfrxjOKYwXMA,10371
|
|
14
14
|
denkproto/inference_graph_pb2_grpc.py,sha256=aXPf0w7pIfspkKUKGCr--OtJMOaTfE8IbeuBm10g1Xg,896
|
|
15
15
|
denkproto/modelfile_v1_pb2.py,sha256=ulF24nSIspn46DnQKlvR5Po3w-vFCnawuuverAVi3cY,6573
|
|
16
16
|
denkproto/modelfile_v1_pb2.pyi,sha256=gjTbWvg48wqGhyJb5CT0pw3yUZGhO_lSZgL7Ia2aPbY,10685
|
|
17
17
|
denkproto/modelfile_v1_pb2_grpc.py,sha256=ov5B2o4JSYbAfcbbdZr55wEzfGlKI02H-tkvXGXqJVg,893
|
|
18
|
-
denkproto/modelfile_v2_pb2.py,sha256=
|
|
19
|
-
denkproto/modelfile_v2_pb2.pyi,sha256=
|
|
18
|
+
denkproto/modelfile_v2_pb2.py,sha256=PYDTL6pq5t6C4jkwV3cRjuXH0CWObTP8u2m_0mm26CQ,12920
|
|
19
|
+
denkproto/modelfile_v2_pb2.pyi,sha256=ygHZzLDpgdkE8P-_IUCsQtp9_22vusx8A3DMa33LMbw,21272
|
|
20
20
|
denkproto/modelfile_v2_pb2_grpc.py,sha256=xiC5FeyZDWcucC3uRJ4kllDJmaRayvrzOKIhvg6o1Tc,893
|
|
21
21
|
denkproto/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
22
22
|
denkproto/results_pb2.py,sha256=rBZ4HIHgdKHdASDbF8mTmZ0_xi1ffq3YJ2g_cvzIlhk,14109
|
|
@@ -24,9 +24,10 @@ denkproto/results_pb2.pyi,sha256=8l1v1QenLzWlYnQtnCBqzXMMHUagOTalq9xJKfK6FKo,267
|
|
|
24
24
|
denkproto/results_pb2_grpc.py,sha256=z-4qcDMjjuPRy7lDtECTtReByVEyz3fjIPES9dMlO58,888
|
|
25
25
|
denkproto/json/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
26
26
|
denkproto/json/classification_markup.py,sha256=vTu0H7Cb3gU6UUUSg1vDTRlFUorZrjMbcp_yx6UssZA,2461
|
|
27
|
+
denkproto/json/inference_graph_models_generated.py,sha256=reCaSG7fgGgkQjmywrjOc5Vc4AYzgtEqElkXr1pAGx4,4497
|
|
27
28
|
denkproto/json/object_detection_markup.py,sha256=T0hcFPq8F_galjDjRC9dbcRVwCSOYtu2jt9wpEeHlQs,4904
|
|
28
29
|
denkproto/json/ocr_markup.py,sha256=KyOpth9evOekyhTJdZSnYyB9EIyoWbY33sqncb_jBgw,7069
|
|
29
|
-
denkproto/json/segmentation_markup.py,sha256=
|
|
30
|
-
denkproto-1.0.
|
|
31
|
-
denkproto-1.0.
|
|
32
|
-
denkproto-1.0.
|
|
30
|
+
denkproto/json/segmentation_markup.py,sha256=EvniRksF2KaQolm6zZ6UKSiGwnqc8wR2sHB1iv05RTE,19911
|
|
31
|
+
denkproto-1.0.58.dist-info/METADATA,sha256=RREqZx8NY8E9kbnY7nEKNZmOG08V47Y_L7gZrAJxyP4,110
|
|
32
|
+
denkproto-1.0.58.dist-info/WHEEL,sha256=1yFddiXMmvYK7QYTqtRNtX66WJ0Mz8PYEiEUoOUUxRY,87
|
|
33
|
+
denkproto-1.0.58.dist-info/RECORD,,
|
|
File without changes
|