delta-theory 8.1.2__py3-none-any.whl → 8.2.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: delta-theory
3
- Version: 8.1.2
3
+ Version: 8.2.1
4
4
  Summary: Unified materials strength and fatigue prediction based on geometric first principles
5
5
  Author: Tamaki
6
6
  Author-email: Masamichi Iizumi <m.iizumi@miosync.email>
@@ -54,7 +54,7 @@ Dynamic: license-file
54
54
  [![PyPI](https://img.shields.io/pypi/v/delta-theory.svg)](https://pypi.org/project/delta-theory/)
55
55
  [![License: MIT](https://img.shields.io/badge/License-MIT-blue.svg)](LICENSE)
56
56
  [![Python 3.9+](https://img.shields.io/badge/python-3.9+-blue.svg)](https://www.python.org/downloads/)
57
- [![Version](https://img.shields.io/badge/version-8.0.0-green.svg)](CHANGELOG.md)
57
+ [![Version](https://img.shields.io/badge/version-8.2.0-green.svg)](CHANGELOG.md)
58
58
  [![codecov](https://codecov.io/gh/miosync/delta-theory/branch/main/graph/badge.svg)](https://codecov.io/gh/miosync/delta-theory)
59
59
 
60
60
  </div>
@@ -77,24 +77,21 @@ $$\Lambda = \frac{K}{|V|_{\text{eff}}}$$
77
77
 
78
78
  | Module | Predicts | Key Parameters | Accuracy |
79
79
  |--------|----------|----------------|----------|
80
- | **v5.0** | Yield stress σ_y | f_d, E_bond, crystal geometry | 2.6% |
80
+ | **v6.9b** | Yield stress σ_y | f_d, E_bond, crystal geometry | 2.6% |
81
81
  | **v6.10** | Fatigue life N | r_th (BCC=0.65, FCC=0.02, HCP=0.20) | 4-7% |
82
- | **v7.2** | Forming Limit Curve FLC(β) | Free volume consumption | 2.7% |
83
- | **v8.0** | Post-forming fatigue life | η_forming → r_th_eff | — |
82
+ | **v8.1** | Forming Limit Curve FLC | 7-mode discrete, 1-point calibration | 4.7% |
84
83
  | **DBT** | Ductile-Brittle Transition | Grain size, segregation | — |
85
84
 
86
85
  ---
87
86
 
88
87
  ## 📦 Installation
89
-
90
88
  ```bash
91
89
  pip install delta-theory
92
90
  ```
93
91
 
94
92
  ### From Source
95
-
96
93
  ```bash
97
- git clone https://github.com/miosync/delta-theory.git
94
+ git clone https://github.com/miosync-inc/delta-theory.git
98
95
  cd delta-theory
99
96
  pip install -e .
100
97
  ```
@@ -104,9 +101,8 @@ pip install -e .
104
101
  ## 🚀 Quick Start
105
102
 
106
103
  ### Yield Stress
107
-
108
104
  ```python
109
- from core import calc_sigma_y, MATERIALS
105
+ from delta_theory import calc_sigma_y, MATERIALS
110
106
 
111
107
  mat = MATERIALS['Fe']
112
108
  result = calc_sigma_y(mat, T_K=300)
@@ -114,52 +110,46 @@ print(f"σ_y = {result['sigma_y']:.1f} MPa")
114
110
  ```
115
111
 
116
112
  ### Fatigue Life
117
-
118
113
  ```python
119
- from core import fatigue_life_const_amp, MATERIALS
114
+ from delta_theory import fatigue_life_const_amp, MATERIALS
120
115
 
121
116
  result = fatigue_life_const_amp(
122
117
  MATERIALS['Fe'],
123
118
  sigma_a_MPa=150,
124
119
  sigma_y_tension_MPa=200,
120
+ A_ext=2.5e-4,
125
121
  )
126
122
  print(f"N_fail = {result['N_fail']:.2e} cycles")
127
123
  ```
128
124
 
129
- ### FLC Prediction (NEW in v8.0!)
130
-
125
+ ### FLC Prediction (v8.1 7-Mode Discrete!)
131
126
  ```python
132
- from core import FLCPredictor
133
-
134
- flc = FLCPredictor()
135
- for beta in [-0.5, 0.0, 1.0]:
136
- Em = flc.predict(beta, 'SPCC')
137
- print(f"β={beta:+.1f}: FLC = {Em:.3f}")
138
- ```
139
-
140
- ### Forming-Fatigue Integration (NEW in v8.0!)
127
+ from delta_theory import FLCPredictor, predict_flc
141
128
 
142
- ```python
143
- from core import FormingFatigueIntegrator
129
+ # Quick prediction
130
+ eps1 = predict_flc('Cu', 'Plane Strain') # → 0.346
144
131
 
145
- integrator = FormingFatigueIntegrator()
132
+ # Full usage
133
+ flc = FLCPredictor()
134
+ for mode in ['Uniaxial', 'Plane Strain', 'Equi-biaxial']:
135
+ print(f"{mode}: {flc.predict('Cu', mode):.3f}")
146
136
 
147
- # After 40% free volume consumption from forming:
148
- r_th_eff = integrator.effective_r_th(eta_forming=0.40, structure='BCC')
149
- print(f"r_th: 0.65 {r_th_eff:.3f}") # Fatigue threshold drops!
137
+ # Add new material from v6.9 parameters
138
+ flc.add_from_v69('MySteel', flc0=0.28, base_element='Fe')
139
+ betas, eps1s = flc.predict_curve('MySteel') # All 7 modes!
150
140
  ```
151
141
 
152
142
  ---
153
143
 
154
144
  ## 📦 Repository Structure
155
-
156
145
  ```
157
146
  delta-theory/
158
- ├── core/ # 🔧 Main modules
147
+ ├── delta_theory/ # 🔧 Main package
159
148
  │ ├── unified_yield_fatigue_v6_9.py # Unified yield + fatigue model
160
- │ ├── unified_flc_v7.py # ★ FLC + Forming-Fatigue (NEW!)
149
+ │ ├── unified_flc_v8_1.py # ★ FLC 7-mode discrete (NEW!)
161
150
  │ ├── dbt_unified.py # DBT/DBTT prediction model
162
151
  │ ├── materials.py # Materials database
152
+ │ ├── banners.py # ASCII art banners
163
153
  │ └── fatigue_redis_api.py # FatigueData-AM2022 API
164
154
 
165
155
  ├── apps/ # 🖥️ Applications
@@ -194,66 +184,93 @@ $$\frac{dD}{dN} = \begin{cases} 0 & (r \leq r_{th}) \\ A_{\text{eff}} \cdot (r -
194
184
 
195
185
  **Structure Presets (No Fitting Required):**
196
186
 
197
- | Structure | r_th | n | Fatigue Limit | Representative Materials |
198
- |-----------|------|---|---------------|--------------------------|
199
- | BCC | 0.65 | 10 | Clear | Fe, W, Mo |
200
- | FCC | 0.02 | 7 | None | Cu, Al, Ni |
201
- | HCP | 0.20 | 9 | Intermediate | Ti, Mg, Zn |
187
+ | Structure | r_th | n | τ/σ | R_comp | Fatigue Limit |
188
+ |-----------|------|---|-----|--------|---------------|
189
+ | BCC | 0.65 | 10 | 0.565 | 1.0 | Clear |
190
+ | FCC | 0.02 | 7 | 0.565 | 1.0 | None |
191
+ | HCP | 0.20 | 9 | 0.327* | 0.6* | Intermediate |
192
+
193
+ *HCP values depend on T_twin (twinning factor)
202
194
 
203
195
  ---
204
196
 
205
- ### 2. unified_flc_v7.py (NEW in v8.0!)
197
+ ### 2. unified_flc_v8_1.py (NEW in v8.2!)
206
198
 
207
- **FLC Prediction + Forming-Fatigue Integration**
199
+ **FLC Prediction 7-Mode Discrete Formulation**
208
200
 
209
- #### FLC Model (v7.2)
201
+ #### Core Equation
210
202
 
211
- $$\text{FLC}(\beta) = \text{FLC}_0^{\text{pure}} \times (1 - \eta_{\text{total}}) \times h(\beta, R, \tau/\sigma)$$
203
+ $$\varepsilon_{1,j} = |V|_{\text{eff}} \times \frac{C_j}{R_j}$$
212
204
 
213
- | Parameter | Description |
214
- |-----------|-------------|
215
- | FLC₀_pure | Pure metal formability from δ-theory |
216
- | η_total | Free volume consumed by strengthening mechanisms |
217
- | h(β) | V-shape factor from multiaxial stress state |
218
- | R | Compression/tension ratio (twin effect for HCP) |
219
- | τ/σ | Shear/tension ratio |
205
+ | Component | Formula | Description |
206
+ |-----------|---------|-------------|
207
+ | \|V\|_eff | Calibrated from FLC₀ | Material forming capacity |
208
+ | C_j | 1 + 0.75β + 0.48β² | Localization correction (frozen) |
209
+ | R_j | w_σ + w_τ/(τ/σ) + w_c/R_comp | Mixed resistance |
220
210
 
221
- **Free Volume Consumption:**
211
+ #### 7 Standard Forming Modes
222
212
 
223
- ```
224
- η_total = η_ss + η_ppt + η_wh + η_HP
225
- = k_ss×C_ss + k_ppt×f_ppt + k_wh×log(ρ/ρ_ref) + k_HP×(√(d_ref/d)-1)
226
- ```
227
-
228
- **Why SPCC vs DP590 have different FLC:**
213
+ | Mode | β | C_j | Physical Meaning |
214
+ |------|---|-----|------------------|
215
+ | Uniaxial | -0.370 | 0.788 | Deep drawing (tension + compression) |
216
+ | Deep Draw | -0.306 | 0.815 | Drawing dominant |
217
+ | Draw-Plane | -0.169 | 0.887 | Transition region |
218
+ | **Plane Strain** | **0.000** | **1.000** | **FLC₀ reference** |
219
+ | Plane-Stretch | +0.133 | 1.108 | Transition to biaxial |
220
+ | Stretch | +0.247 | 1.214 | Stretching dominant |
221
+ | Equi-biaxial | +0.430 | 1.411 | Balanced biaxial tension |
229
222
 
230
- | Material | Free Volume Remaining | FLC₀ |
231
- |----------|----------------------|------|
232
- | SPCC | 90.6% | 0.25 |
233
- | DP590 | 71.4% | 0.20 |
223
+ #### 1-Point Calibration
234
224
 
235
- #### Forming-Fatigue Integration (v8.0)
225
+ Measure only **FLC₀** (Plane Strain) → Predict **all 7 modes** automatically!
226
+ ```python
227
+ from delta_theory import FLCPredictor
236
228
 
237
- **Revolutionary insight:** Forming consumes free volume → Less available for fatigue!
229
+ flc = FLCPredictor()
238
230
 
239
- $$r_{th}^{\text{eff}} = r_{th}^{\text{virgin}} \times (1 - \eta_{\text{forming}})$$
231
+ # Add material with just FLC₀ + base element
232
+ flc.add_from_v69('MySteel', flc0=0.28, base_element='Fe')
240
233
 
241
- | η_forming | r_th_eff (BCC) | Implication |
242
- |-----------|----------------|-------------|
243
- | 0% | 0.65 | Virgin material |
244
- | 20% | 0.52 | Some forming |
245
- | 40% | 0.39 | Heavy forming |
246
- | 60% | 0.26 | Severe forming |
234
+ # Get full FLC curve
235
+ results = flc.predict_all_modes('MySteel')
236
+ for mode, eps1 in results.items():
237
+ print(f"{mode}: {eps1:.3f}")
238
+ ```
247
239
 
248
- **Critical η:** The forming level where "infinite life" becomes "finite life"
240
+ #### v6.9 Integration
249
241
 
242
+ τ/σ and R_comp are automatically retrieved from δ-theory based on crystal structure:
250
243
  ```python
251
- from core import critical_forming_consumption
244
+ # BCC steel — uses τ/σ = 0.565, R_comp = 1.0
245
+ flc.add_from_v69('SPCC', flc0=0.225, base_element='Fe')
246
+
247
+ # HCP magnesium (twin-dominated) — uses τ/σ = 0.327, R_comp = 0.6
248
+ flc.add_from_v69('AZ31', flc0=0.265, base_element='Mg', T_twin=0.0)
252
249
 
253
- eta_crit = critical_forming_consumption(r_applied=0.50, structure='BCC')
254
- print(f"η_critical = {eta_crit*100:.1f}%") # → 23.1%
250
+ # HCP titanium (slip-dominated) — uses τ/σ = 0.546, R_comp = 1.0
251
+ flc.add_from_v69('Ti64', flc0=0.30, base_element='Ti', T_twin=1.0)
255
252
  ```
256
253
 
254
+ #### HCP T_twin Interpolation
255
+
256
+ | T_twin | τ/σ | R_comp | Behavior |
257
+ |--------|-----|--------|----------|
258
+ | 0.0 | 0.327 | 0.60 | Twin-dominated (Mg-like) |
259
+ | 0.5 | 0.446 | 0.80 | Mixed |
260
+ | 1.0 | 0.565 | 1.00 | Slip-dominated |
261
+
262
+ #### Built-in Materials
263
+
264
+ | Material | Structure | τ/σ | R_comp | \|V\|_eff | FLC₀ |
265
+ |----------|-----------|-----|--------|-----------|------|
266
+ | Cu | FCC | 0.565 | 1.00 | 1.224 | 0.346 |
267
+ | Ti | HCP | 0.546 | 1.00 | 1.039 | 0.293 |
268
+ | SPCC | BCC | 0.565 | 1.00 | 0.802 | 0.225 |
269
+ | DP590 | BCC | 0.565 | 1.00 | 0.691 | 0.194 |
270
+ | Al5052 | FCC | 0.565 | 1.00 | 0.619 | 0.165 |
271
+ | SUS304 | FCC | 0.565 | 1.00 | 1.423 | 0.400 |
272
+ | Mg_AZ31 | HCP | 0.327 | 0.60 | 1.180 | 0.265 |
273
+
257
274
  ---
258
275
 
259
276
  ### 3. dbt_unified.py
@@ -265,9 +282,8 @@ print(f"η_critical = {eta_crit*100:.1f}%") # → 23.1%
265
282
  | View 1 | Temperature T | Grain size d* | Ductile window detection |
266
283
  | View 2 | Grain size d | Temperature T* | DBTT prediction |
267
284
  | View 3 | d, T | Time t | Segregation evolution |
268
-
269
285
  ```python
270
- from core import DBTUnified
286
+ from delta_theory import DBTUnified
271
287
 
272
288
  model = DBTUnified()
273
289
  result = model.temp_view.find_DBTT(d=30e-6, c=0.005)
@@ -278,74 +294,70 @@ print(f"DBTT = {result['T_star']:.0f} K")
278
294
 
279
295
  ## ⌨️ CLI Reference
280
296
 
281
- ### Yield & Fatigue
297
+ ### FLC Commands (NEW!)
298
+ ```bash
299
+ # Quick FLC₀ prediction
300
+ python -m delta_theory flc Cu
282
301
 
302
+ # All 7 modes
303
+ python -m delta_theory flc SPCC all
304
+
305
+ # Specific mode
306
+ python -m delta_theory flc Cu Uniaxial
307
+
308
+ # List available materials
309
+ python -m delta_theory flc --list
310
+
311
+ # Detailed info
312
+ python -m delta_theory info
313
+ ```
314
+
315
+ ### Yield & Fatigue
283
316
  ```bash
284
317
  # Single point calculation
285
- python -m core.unified_yield_fatigue_v6_9 point --metal Fe --sigma_a 150
318
+ python -m delta_theory.unified_yield_fatigue_v6_9 point --metal Fe --sigma_a 150
286
319
 
287
320
  # Generate S-N curve
288
- python -m core.unified_yield_fatigue_v6_9 sn --metal Fe --sigma_min 100 --sigma_max 300
321
+ python -m delta_theory.unified_yield_fatigue_v6_9 sn --metal Fe --sigma_min 100 --sigma_max 300
289
322
 
290
323
  # Calibrate A_ext
291
- python -m core.unified_yield_fatigue_v6_9 calibrate --metal Fe --sigma_a 244 --N_fail 7.25e7
292
- ```
293
-
294
- ### FLC (NEW!)
295
-
296
- ```bash
297
- # Single material FLC
298
- python3 -c "
299
- from core import FLCPredictor
300
- flc = FLCPredictor()
301
- for b in [-0.5, -0.25, 0, 0.25, 0.5, 1.0]:
302
- print(f'β={b:+.2f}: {flc.predict(b, \"SPCC\"):.3f}')
303
- "
304
-
305
- # Quick FLC value
306
- python3 -c "from core import predict_flc; print(predict_flc('SPCC', 0.0))"
307
-
308
- # Forming-fatigue analysis
309
- python3 -c "
310
- from core import FormingFatigueIntegrator
311
- integrator = FormingFatigueIntegrator()
312
- for eta in [0.0, 0.2, 0.4, 0.6]:
313
- r_th = integrator.effective_r_th(eta, 'BCC')
314
- print(f'η={eta:.0%}: r_th_eff = {r_th:.3f}')
315
- "
316
-
317
- # Critical η calculation
318
- python3 -c "
319
- from core import critical_forming_consumption
320
- for r in [0.3, 0.4, 0.5, 0.6]:
321
- eta = critical_forming_consumption(r, 'BCC')
322
- print(f'r={r:.1f}: η_critical = {eta*100:.1f}%')
323
- "
324
+ python -m delta_theory.unified_yield_fatigue_v6_9 calibrate --metal Fe --sigma_a 244 --N_fail 7.25e7
324
325
  ```
325
326
 
326
327
  ### DBT
327
-
328
328
  ```bash
329
329
  # Single point calculation
330
- python -m core.dbt_unified point --d 30 --c 0.5 --T 300
330
+ python -m delta_theory.dbt_unified point --d 30 --c 0.5 --T 300
331
331
 
332
332
  # Temperature axis analysis (DBTT)
333
- python -m core.dbt_unified T_axis --d 30 --c 0.5
333
+ python -m delta_theory.dbt_unified T_axis --d 30 --c 0.5
334
334
 
335
335
  # Grain size axis analysis (ductile window)
336
- python -m core.dbt_unified d_axis --T 300 --c 0.5 --find_c_crit
336
+ python -m delta_theory.dbt_unified d_axis --T 300 --c 0.5 --find_c_crit
337
337
  ```
338
338
 
339
339
  ---
340
340
 
341
341
  ## 📊 Validation Data
342
342
 
343
+ ### FLC v8.1 Validation
344
+
345
+ | Material | Structure | MAE | Data Points |
346
+ |----------|-----------|-----|-------------|
347
+ | Cu | FCC | 3.4% | 7 |
348
+ | Ti | HCP | 4.8% | 7 |
349
+ | SPCC | BCC | 4.2% | 7 |
350
+ | Al5052 | FCC | 6.8% | 7 |
351
+ | SUS304 | FCC | 3.9% | 7 |
352
+ | DP590 | BCC | 4.2% | 7 |
353
+ | Mg_AZ31 | HCP | 5.6% | 7 |
354
+ | **Overall** | — | **4.7%** | **49** |
355
+
343
356
  ### FatigueData-AM2022 (Upstash Redis)
344
357
 
345
358
  Instant access to 1.49M fatigue data points:
346
-
347
359
  ```python
348
- from core import FatigueDB
360
+ from delta_theory import FatigueDB
349
361
 
350
362
  db = FatigueDB()
351
363
  ti64 = db.get_sn_for_delta('Ti-6Al-4V', R=-1.0)
@@ -366,7 +378,6 @@ for point in ti64:
366
378
  ---
367
379
 
368
380
  ## 🖥️ Web Application
369
-
370
381
  ```bash
371
382
  cd apps
372
383
  streamlit run delta_fatigue_app.py
@@ -380,7 +391,6 @@ Features:
380
391
  ---
381
392
 
382
393
  ## 🧪 Testing
383
-
384
394
  ```bash
385
395
  pytest tests/ -v
386
396
  ```
@@ -397,7 +407,7 @@ pytest tests/ -v
397
407
 
398
408
  1. **Materials = Highly Viscous Fluids** — Deformation is "flow", not "fracture"
399
409
  2. **Fatigue Limits = Geometric Consequence of Crystal Structure** — BCC/FCC/HCP differences emerge naturally
400
- 3. **Free Volume = Shared Resource** — Strength, ductility, and fatigue compete for the same "余白"
410
+ 3. **Forming Limit = Geometry + Localization** — C_j captures strain path, R_j captures crystal resistance
401
411
  4. **Fitting Parameters ≈ 0** — Derived from crystal geometry, not curve fitting
402
412
 
403
413
  ### Version History
@@ -405,10 +415,27 @@ pytest tests/ -v
405
415
  | Version | Feature |
406
416
  |---------|---------|
407
417
  | v5.0 | Yield stress from δ-theory |
408
- | v6.9b | Unified yield + fatigue with multiaxial |
418
+ | v6.9b | Unified yield + fatigue with multiaxial (τ/σ, R_comp) |
409
419
  | v6.10 | Universal fatigue validation (2472 points) |
410
420
  | v7.2 | FLC from free volume consumption |
411
- | **v8.0** | **Forming-Fatigue integration** |
421
+ | **v8.1** | **FLC 7-mode discrete formulation** |
422
+ | **v8.2** | **v6.9 integration + CLI commands** |
423
+
424
+ ---
425
+
426
+ ## 💡 Forming-Fatigue (Simple Rule)
427
+
428
+ > **"Forming makes it weak"** — Stretched lattice = Nearly broken bonds
429
+ ```
430
+ Before: ●──●──●──● (r₀)
431
+ After: ●───●───●───● (r > r₀, about to break!)
432
+ ```
433
+
434
+ Simple formula:
435
+ ```python
436
+ eta = eps_formed / eps_FLC # How much capacity used
437
+ r_th_eff = r_th * (1 - eta) # Remaining fatigue threshold
438
+ ```
412
439
 
413
440
  ---
414
441
 
@@ -428,14 +455,13 @@ Data sources (FatigueData-AM2022): CC BY 4.0
428
455
  ---
429
456
 
430
457
  ## 📚 Citation
431
-
432
458
  ```bibtex
433
459
  @software{delta_theory_2025,
434
460
  author = {Iizumi, Masamichi and Tamaki},
435
461
  title = {δ-Theory: Unified Materials Strength, Fatigue, and Forming Framework},
436
- version = {8.0.0},
462
+ version = {8.2.0},
437
463
  year = {2025},
438
- url = {https://github.com/miosync/delta-theory},
464
+ url = {https://github.com/miosync-inc/delta-theory},
439
465
  doi = {10.5281/zenodo.18457897}
440
466
  }
441
467
  ```
@@ -1,17 +1,17 @@
1
1
  apps/__init__.py,sha256=Jjt0FwRjaPFkffK1I4OUp2M0IR2oeh9yaeLPRhyPCxw,95
2
2
  apps/delta_fatigue_app.py,sha256=2lDdKF9NeyzQB7VyH0-vSZF7IveSrNAIwtRpYPekFNM,12448
3
3
  core/Universal_Lindemann.py,sha256=lEDhhSzE3sVhwSqaG1EeNCr1PuCRLaYj0C6faISGaO0,14227
4
- core/__init__.py,sha256=uj8rd8BoZoaypODFRpAKc8D_O_ZYk8aSVMftFeoABGQ,7543
5
- core/__main__.py,sha256=ucbqEFFOXC4I1hFTZ-NDr-gQazqL6lutcSkcUjz0HMU,18669
4
+ core/__init__.py,sha256=Ly6qhzXcJeLeV36XNMI_Y5oT-To1Y5Gtt2HRFzCDSeE,9592
5
+ core/__main__.py,sha256=brjs30TnOXUiYJkIu2Ott8V_qCfV3FudjuV6kh8xwxg,20452
6
6
  core/banners.py,sha256=HOHtue250kQJYLhSTJrRtruQ70zWQOKTQ_K1jRT5LSo,18609
7
7
  core/dbt_unified.py,sha256=m-tO6mDnEmpWfmuWKSAyX_0wLhPiXJ5VWQ0uUpNWuSY,23042
8
8
  core/fatigue_redis_api.py,sha256=4fXVhDuXPads_CjBkqQex2YUOjw2WxdTgZo2SxpbWvc,16274
9
9
  core/materials.py,sha256=FLVQWOrQ_CooDr-wi3S6GJnTGDV15RpHGCnbVIEy0q0,17051
10
- core/unified_flc_v7.py,sha256=0v6-_vXCbf6U50Z1UuOySG4_otlGFeFkHp2DXVGj-Tk,24034
10
+ core/unified_flc_v8_1.py,sha256=3ht_biYoKy3epM5burnag8Nb1sQ9JqTue7VhbhyGiUY,26843
11
11
  core/unified_yield_fatigue_v6_9.py,sha256=DhvUa3DluJV_uHN0TDzIJ3rNeZakmwaDAZ8EXHCw3Ps,31766
12
- delta_theory-8.1.2.dist-info/licenses/LICENSE,sha256=8dVpjRFTkE7BbLXxN9C2jwYio3jR9mD3q-DRcnqsQQo,1211
13
- delta_theory-8.1.2.dist-info/METADATA,sha256=N9i_oRqid7Ib9v1BZDRtw8bKh2zF-y58CZXMQ4AtdzU,12873
14
- delta_theory-8.1.2.dist-info/WHEEL,sha256=wUyA8OaulRlbfwMtmQsvNngGrxQHAvkKcvRmdizlJi0,92
15
- delta_theory-8.1.2.dist-info/entry_points.txt,sha256=SbfW_U3JII-Ygfnfx1qRw7-zdXUf7f2h8ZAUxxKxWu0,103
16
- delta_theory-8.1.2.dist-info/top_level.txt,sha256=y2DGPXIOL_UZHy6CTjK7_CvOytT9zdBpsg7BW5R6mxQ,10
17
- delta_theory-8.1.2.dist-info/RECORD,,
12
+ delta_theory-8.2.1.dist-info/licenses/LICENSE,sha256=8dVpjRFTkE7BbLXxN9C2jwYio3jR9mD3q-DRcnqsQQo,1211
13
+ delta_theory-8.2.1.dist-info/METADATA,sha256=atud6G-VIgnYolWgB96xtjfIhpb8u4krbUkGbdbPfDk,14284
14
+ delta_theory-8.2.1.dist-info/WHEEL,sha256=wUyA8OaulRlbfwMtmQsvNngGrxQHAvkKcvRmdizlJi0,92
15
+ delta_theory-8.2.1.dist-info/entry_points.txt,sha256=SbfW_U3JII-Ygfnfx1qRw7-zdXUf7f2h8ZAUxxKxWu0,103
16
+ delta_theory-8.2.1.dist-info/top_level.txt,sha256=y2DGPXIOL_UZHy6CTjK7_CvOytT9zdBpsg7BW5R6mxQ,10
17
+ delta_theory-8.2.1.dist-info/RECORD,,