deepwork 0.5.1__py3-none-any.whl → 0.7.0a1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (66) hide show
  1. deepwork/__init__.py +1 -1
  2. deepwork/cli/hook.py +3 -4
  3. deepwork/cli/install.py +70 -117
  4. deepwork/cli/main.py +2 -2
  5. deepwork/cli/serve.py +133 -0
  6. deepwork/cli/sync.py +93 -58
  7. deepwork/core/adapters.py +91 -102
  8. deepwork/core/generator.py +19 -386
  9. deepwork/core/hooks_syncer.py +1 -1
  10. deepwork/core/parser.py +270 -1
  11. deepwork/hooks/README.md +0 -44
  12. deepwork/hooks/__init__.py +3 -6
  13. deepwork/hooks/check_version.sh +54 -21
  14. deepwork/mcp/__init__.py +23 -0
  15. deepwork/mcp/quality_gate.py +347 -0
  16. deepwork/mcp/schemas.py +263 -0
  17. deepwork/mcp/server.py +253 -0
  18. deepwork/mcp/state.py +422 -0
  19. deepwork/mcp/tools.py +394 -0
  20. deepwork/schemas/job.schema.json +347 -0
  21. deepwork/schemas/job_schema.py +27 -239
  22. deepwork/standard_jobs/deepwork_jobs/doc_specs/job_spec.md +9 -15
  23. deepwork/standard_jobs/deepwork_jobs/job.yml +146 -46
  24. deepwork/standard_jobs/deepwork_jobs/steps/define.md +100 -33
  25. deepwork/standard_jobs/deepwork_jobs/steps/errata.md +154 -0
  26. deepwork/standard_jobs/deepwork_jobs/steps/fix_jobs.md +207 -0
  27. deepwork/standard_jobs/deepwork_jobs/steps/fix_settings.md +177 -0
  28. deepwork/standard_jobs/deepwork_jobs/steps/implement.md +22 -138
  29. deepwork/standard_jobs/deepwork_jobs/steps/iterate.md +221 -0
  30. deepwork/standard_jobs/deepwork_jobs/steps/learn.md +2 -26
  31. deepwork/standard_jobs/deepwork_jobs/steps/test.md +154 -0
  32. deepwork/standard_jobs/deepwork_jobs/templates/job.yml.template +2 -0
  33. deepwork/templates/claude/settings.json +16 -0
  34. deepwork/templates/claude/skill-deepwork.md.jinja +37 -0
  35. deepwork/templates/gemini/skill-deepwork.md.jinja +37 -0
  36. deepwork-0.7.0a1.dist-info/METADATA +317 -0
  37. deepwork-0.7.0a1.dist-info/RECORD +64 -0
  38. deepwork/cli/rules.py +0 -32
  39. deepwork/core/command_executor.py +0 -190
  40. deepwork/core/pattern_matcher.py +0 -271
  41. deepwork/core/rules_parser.py +0 -559
  42. deepwork/core/rules_queue.py +0 -321
  43. deepwork/hooks/rules_check.py +0 -759
  44. deepwork/schemas/rules_schema.py +0 -135
  45. deepwork/standard_jobs/deepwork_jobs/steps/review_job_spec.md +0 -208
  46. deepwork/standard_jobs/deepwork_jobs/templates/doc_spec.md.example +0 -86
  47. deepwork/standard_jobs/deepwork_rules/hooks/capture_prompt_work_tree.sh +0 -38
  48. deepwork/standard_jobs/deepwork_rules/hooks/global_hooks.yml +0 -8
  49. deepwork/standard_jobs/deepwork_rules/hooks/user_prompt_submit.sh +0 -16
  50. deepwork/standard_jobs/deepwork_rules/job.yml +0 -49
  51. deepwork/standard_jobs/deepwork_rules/rules/.gitkeep +0 -13
  52. deepwork/standard_jobs/deepwork_rules/rules/api-documentation-sync.md.example +0 -10
  53. deepwork/standard_jobs/deepwork_rules/rules/readme-documentation.md.example +0 -10
  54. deepwork/standard_jobs/deepwork_rules/rules/security-review.md.example +0 -11
  55. deepwork/standard_jobs/deepwork_rules/rules/skill-md-validation.md +0 -46
  56. deepwork/standard_jobs/deepwork_rules/rules/source-test-pairing.md.example +0 -13
  57. deepwork/standard_jobs/deepwork_rules/steps/define.md +0 -249
  58. deepwork/templates/claude/skill-job-meta.md.jinja +0 -77
  59. deepwork/templates/claude/skill-job-step.md.jinja +0 -235
  60. deepwork/templates/gemini/skill-job-meta.toml.jinja +0 -76
  61. deepwork/templates/gemini/skill-job-step.toml.jinja +0 -162
  62. deepwork-0.5.1.dist-info/METADATA +0 -381
  63. deepwork-0.5.1.dist-info/RECORD +0 -72
  64. {deepwork-0.5.1.dist-info → deepwork-0.7.0a1.dist-info}/WHEEL +0 -0
  65. {deepwork-0.5.1.dist-info → deepwork-0.7.0a1.dist-info}/entry_points.txt +0 -0
  66. {deepwork-0.5.1.dist-info → deepwork-0.7.0a1.dist-info}/licenses/LICENSE.md +0 -0
@@ -0,0 +1,221 @@
1
+ # Iterate on Workflow Design
2
+
3
+ ## Objective
4
+
5
+ Review the test run conversation and improve the job definition based on what happened. This step closes the feedback loop by incorporating learnings from the test into the workflow itself, making future runs more efficient and producing better results.
6
+
7
+ ## Task
8
+
9
+ Analyze the conversation history from the test step, identify areas for improvement, and update the job definition and step instructions accordingly.
10
+
11
+ ### Step 1: Review the Conversation History
12
+
13
+ Carefully analyze the conversation from the test step, looking for:
14
+
15
+ 1. **Process Inefficiencies**
16
+ - Steps that took multiple attempts to complete
17
+ - Questions the agent had to ask that should have been in the instructions
18
+ - Unnecessary back-and-forth with the user
19
+ - Information that had to be repeated
20
+
21
+ 2. **Output Quality Issues**
22
+ - Issues identified during critique (from Step 3 of test)
23
+ - Corrections requested by the user
24
+ - Patterns in user feedback (what did they consistently want changed?)
25
+
26
+ 3. **Tool Usage Problems**
27
+ - Tools that didn't work as expected
28
+ - Missing tools that would have helped
29
+ - Inefficient tool sequences
30
+
31
+ 4. **Missing or Unclear Instructions**
32
+ - Ambiguities that led to wrong outputs
33
+ - Missing guidance that caused confusion
34
+ - Quality criteria that weren't clear enough
35
+
36
+ ### Step 2: Plan Improvements
37
+
38
+ For each issue identified, determine the appropriate fix:
39
+
40
+ | Issue Type | Solution Location |
41
+ |------------|-------------------|
42
+ | Process inefficiency | Update step instructions with clearer guidance |
43
+ | Output quality | Update quality criteria or add examples |
44
+ | Missing information | Add to step inputs or instructions |
45
+ | Tool problems | Suggest different tools in instructions |
46
+ | Unclear criteria | Rewrite quality criteria to be specific |
47
+
48
+ **Prioritize improvements** that will have the most impact on future runs. Focus on:
49
+ - Issues that caused multiple iterations
50
+ - Problems that affected the final output quality
51
+ - Confusion that could be eliminated with clearer instructions
52
+
53
+ ### Step 3: Update Step Instructions
54
+
55
+ For each step that needs improvement:
56
+
57
+ 1. **Read the current instruction file** at `.deepwork/jobs/[job_name]/steps/[step_id].md`
58
+
59
+ 2. **Make targeted improvements**:
60
+ - Add missing context or clarification
61
+ - Include examples of good output (use what worked in the test)
62
+ - Clarify ambiguous instructions
63
+ - Add tool recommendations if a different approach would be better
64
+ - Update quality criteria to match user expectations
65
+
66
+ 3. **Keep instructions concise**:
67
+ - Avoid redundancy
68
+ - Be direct and actionable
69
+ - Use bullet points where appropriate
70
+
71
+ ### Step 4: Update Quality Criteria
72
+
73
+ Review and update quality criteria in two places:
74
+
75
+ 1. **In step instruction files** - The "Quality Criteria" section should reflect what the user actually cared about during testing
76
+
77
+ 2. **In job.yml** - If steps have `quality_criteria` or `stop_hooks`, update them to:
78
+ - Remove criteria that weren't relevant
79
+ - Add criteria based on user feedback
80
+ - Make existing criteria more specific
81
+
82
+ **Example improvement:**
83
+ ```yaml
84
+ # Before
85
+ quality_criteria:
86
+ - "Report is formatted correctly"
87
+
88
+ # After
89
+ quality_criteria:
90
+ - "Report uses distinct colors for each data series in charts"
91
+ - "Tables have sufficient padding and font size for readability"
92
+ - "Executive summary is understandable by non-technical readers"
93
+ ```
94
+
95
+ ### Step 5: Consider Alternative Tools
96
+
97
+ If any tools didn't work well during the test:
98
+
99
+ 1. **Identify the problem** - What went wrong? (slow, wrong output, hard to use)
100
+
101
+ 2. **Research alternatives** - What other tools could accomplish the same goal?
102
+
103
+ 3. **Update instructions** - If a better tool exists, update the step instructions to recommend it
104
+
105
+ Examples:
106
+ - If web scraping was unreliable, suggest a specific browser automation approach
107
+ - If data processing was slow, suggest a different method or tool
108
+ - If file generation had issues, recommend a different library or format
109
+
110
+ ### Step 6: Update Job Version and Changelog
111
+
112
+ After making improvements:
113
+
114
+ 1. **Bump the version** in `job.yml`:
115
+ - Patch version (x.x.1) for minor instruction tweaks
116
+ - Minor version (x.1.0) for quality criteria changes or significant improvements
117
+
118
+ 2. **Add a changelog entry** describing what was improved:
119
+ ```yaml
120
+ changelog:
121
+ - version: "1.0.1"
122
+ changes: "Improved [step] instructions based on test run: added examples, clarified criteria, updated tool recommendations"
123
+ ```
124
+
125
+ ### Step 7: Provide Recap
126
+
127
+ Summarize the improvements made:
128
+
129
+ 1. **List the issues identified** from the test run
130
+
131
+ 2. **Describe the changes made** to address each issue
132
+
133
+ 3. **Explain the expected impact** on future runs
134
+
135
+ Example recap format:
136
+ ```
137
+ ## Iteration Summary
138
+
139
+ ### Issues Identified
140
+ 1. Chart colors were hard to distinguish
141
+ 2. Tables were too small to read
142
+ 3. Executive summary was too technical
143
+
144
+ ### Changes Made
145
+
146
+ **gather_data step:**
147
+ - Added instruction to use distinct color palettes for charts
148
+ - Updated quality criteria to require readable table formatting
149
+
150
+ **generate_report step:**
151
+ - Added example of good executive summary
152
+ - Updated quality criteria: "Summary understandable by non-technical stakeholders"
153
+
154
+ **job.yml:**
155
+ - Updated version to 1.0.1
156
+ - Added changelog entry
157
+
158
+ ### Expected Impact
159
+ Future runs should produce reports with better visual design and clearer summaries, reducing the need for post-generation corrections.
160
+ ```
161
+
162
+ ## Example Dialog
163
+
164
+ ```
165
+ Claude: Let me review our test run and improve the workflow based on what happened.
166
+
167
+ **Analyzing Test Conversation...**
168
+
169
+ I identified the following issues from the test run:
170
+
171
+ ### Issues Found
172
+
173
+ 1. **Chart readability (gather_data step)**: The instructions didn't specify how to handle color choices for visualizations. During the test, we had to fix colors that were too similar.
174
+
175
+ 2. **Missing month-over-month comparison (analyze_trends step)**: The user wanted comparisons to previous periods, but this wasn't in the instructions. We had to add it after the fact.
176
+
177
+ 3. **Technical executive summary (generate_report step)**: The summary was too technical for non-technical stakeholders. The quality criteria didn't specify the audience clearly.
178
+
179
+ 4. **Table formatting (generate_report step)**: Tables were hard to read. No guidance on sizing or padding.
180
+
181
+ ### Changes Made
182
+
183
+ **`.deepwork/jobs/monthly_report/steps/gather_data.md`:**
184
+ - Added: "Use distinct, high-contrast colors for chart data series. Avoid similar shades for different categories."
185
+ - Added to Quality Criteria: "Charts use visually distinct colors that are accessible to colorblind readers"
186
+
187
+ **`.deepwork/jobs/monthly_report/steps/analyze_trends.md`:**
188
+ - Added: "Always include comparison to the same period in the previous month/quarter"
189
+ - Added input: "previous_period_data" to formalize this requirement
190
+
191
+ **`.deepwork/jobs/monthly_report/steps/generate_report.md`:**
192
+ - Added example of good executive summary targeting non-technical readers
193
+ - Added: "Format tables with sufficient padding (at least 8px) and readable font size (minimum 11pt)"
194
+ - Updated Quality Criteria:
195
+ - "Executive summary is understandable by non-technical stakeholders"
196
+ - "Tables are readable with adequate padding and font size"
197
+
198
+ **`.deepwork/jobs/monthly_report/job.yml`:**
199
+ - Version bumped to 1.0.1
200
+ - Added changelog: "Improved visual design guidance and audience-appropriate writing based on test feedback"
201
+
202
+ Done! The workflow has been updated. Changes are immediately available through the MCP server.
203
+
204
+ ### Expected Impact
205
+
206
+ Future monthly reports should:
207
+ - Have better chart color choices from the start
208
+ - Include month-over-month comparisons automatically
209
+ - Have clearer executive summaries for leadership
210
+ - Have more readable tables
211
+
212
+ This should significantly reduce the number of corrections needed after the initial output.
213
+ ```
214
+
215
+ ## Important Guidelines
216
+
217
+ 1. **Be specific** - Don't just note "instructions were unclear" - explain exactly what was unclear and how you fixed it
218
+ 2. **Use test results as examples** - If something worked well in the test, add it as an example in the instructions
219
+ 3. **Don't over-engineer** - Only add improvements that address actual problems from the test
220
+ 4. **Maintain consistency** - Keep the same structure and style in instruction files
221
+ 5. **Test-driven improvement** - Every change should trace back to something that happened in the test
@@ -233,15 +233,6 @@ If instruction files were modified:
233
233
  changes: "Improved [step] instructions based on execution learnings: [brief description]"
234
234
  ```
235
235
 
236
- ### Step 7: Sync and Relay Instructions
237
-
238
- 1. **Run deepwork sync** (if instructions were modified)
239
- ```bash
240
- deepwork sync
241
- ```
242
-
243
- 2. **If skills were regenerated**, look at the "To use the new skills" section in the `deepwork sync` output and **relay these exact reload instructions to the user** (e.g., "Type 'exit' then run 'claude --resume'" for Claude Code)
244
-
245
236
  ## File Reference Patterns
246
237
 
247
238
  When adding entries to AGENTS.md, prefer these patterns:
@@ -260,23 +251,10 @@ When adding entries to AGENTS.md, prefer these patterns:
260
251
  - Configuration requires these fields: name, version, ...
261
252
  ```
262
253
 
263
- ## Quality Criteria
264
-
265
- - Conversation has been analyzed for job executions
266
- - Points of confusion and inefficiency are identified
267
- - Learnings are correctly classified (generalizable vs bespoke)
268
- - Job instructions updated for generalizable improvements
269
- - Instructions are concise - no redundancy or unnecessary verbosity
270
- - Shared/lengthy content extracted into referenced files where appropriate
271
- - AGENTS.md created/updated with bespoke learnings
272
- - File references used instead of duplicating content
273
- - AGENTS.md is in the correct folder (the deepest common folder for the topic)
274
- - When all criteria are met, include `<promise>✓ Quality Criteria Met</promise>`
275
-
276
254
  ## Example Dialog
277
255
 
278
256
  ```
279
- User: /deepwork_jobs.learn
257
+ User: [Invokes the learn workflow via MCP]
280
258
 
281
259
  Claude: I'll analyze this conversation for learnings from DeepWork job executions.
282
260
 
@@ -326,11 +304,9 @@ I found the following job executions:
326
304
 
327
305
  3. Updated job.yml version to 1.0.1 with changelog entry
328
306
 
329
- 4. Ran `deepwork sync`
330
-
331
307
  **Summary**
332
308
 
333
- Updated job instructions and created AGENTS.md with bespoke learnings. To get the updated skills, type 'exit' then run 'claude --resume'.
309
+ Updated job instructions and created AGENTS.md with bespoke learnings.
334
310
  ```
335
311
 
336
312
  ## Handling Edge Cases
@@ -0,0 +1,154 @@
1
+ # Test the New Workflow
2
+
3
+ ## Objective
4
+
5
+ Run the newly created workflow on a real use case chosen by the user, critique the output, and iterate until the user is satisfied with the results. This step validates that the workflow works as intended before finalizing it.
6
+
7
+ ## Task
8
+
9
+ Guide the user through testing their new workflow by running it on a real example, then critically evaluating the output and refining it based on user feedback.
10
+
11
+ ### Step 1: Announce Readiness and Gather Test Case
12
+
13
+ The workflow is now implemented and ready to test. Use the AskUserQuestion tool to:
14
+
15
+ 1. **Inform the user** that the workflow is ready for a test run
16
+ 2. **Ask what they'd like to test it on** - Get a specific, real use case
17
+
18
+ Example question to ask:
19
+ ```
20
+ Your new workflow is ready to try out! What would you like to use it on for the first test run?
21
+
22
+ Please describe a specific case you want to run through the workflow - ideally something you actually need done, so we can validate the workflow produces useful results.
23
+ ```
24
+
25
+ **Important**: Get a concrete, specific test case. Vague responses like "just test it" should be followed up with clarifying questions to understand what inputs/context the workflow needs.
26
+
27
+ ### Step 2: Prepare and Run the Workflow
28
+
29
+ 1. **Prepare clean context** - Before invoking the workflow, consider compacting the conversation history (e.g., using `/compact` in Claude Code) to ensure the workflow starts with clean context focused on the test case.
30
+
31
+ 2. **Start the new workflow** - Use `start_workflow` through the DeepWork MCP server with the job name and workflow name to begin executing the workflow.
32
+
33
+ 3. **Complete the full workflow** - Continue through all steps of the workflow until it produces its final output. Use `finished_step` to progress through each step.
34
+
35
+ 4. **Note any issues during execution** - Pay attention to:
36
+ - Confusion or ambiguity in instructions
37
+ - Missing information that had to be asked for
38
+ - Steps that took longer than expected
39
+ - Awkward tool usage or process flow
40
+
41
+ ### Step 3: Critique the Output
42
+
43
+ After the workflow completes, perform a self-critique of the output:
44
+
45
+ 1. **Review the final deliverable** - Read through all outputs produced by the workflow
46
+
47
+ 2. **Identify up to 3 top issues** - Look for problems such as:
48
+ - Missing information or sections
49
+ - Formatting issues (layout, structure, readability)
50
+ - Quality problems (vague content, errors, inconsistencies)
51
+ - Misalignment with what the user likely wanted
52
+ - Technical issues (broken links, malformed data, etc.)
53
+
54
+ 3. **Present each issue to the user** with a specific question asking if they want it fixed. For example:
55
+ ```
56
+ I noticed a few things we could improve:
57
+
58
+ 1. **Text overlap**: The PDF has some text overlapping images in a few places - shall I correct that?
59
+
60
+ 2. **Missing summary**: The report doesn't have an executive summary at the top - would you like me to add one?
61
+
62
+ 3. **Data formatting**: The numbers aren't consistently formatted (some have commas, some don't) - should I standardize them?
63
+ ```
64
+
65
+ 4. **Make corrections** for any issues the user confirms they want fixed
66
+
67
+ ### Step 4: Gather Additional Feedback
68
+
69
+ After addressing the identified issues:
70
+
71
+ 1. **Ask if the user has more comments** on the output:
72
+ ```
73
+ I've made those corrections. Is there anything else you'd like me to change about the output?
74
+ ```
75
+
76
+ 2. **Iterate on feedback** - Keep making corrections based on user feedback until they indicate they're satisfied
77
+
78
+ 3. **Confirm completion** - When the user says the output is good, confirm that testing is complete
79
+
80
+ ### Loop Behavior
81
+
82
+ The feedback loop should continue until the user explicitly indicates satisfaction. Look for signals like:
83
+ - "Looks good"
84
+ - "That's fine"
85
+ - "I'm happy with it"
86
+ - "No more changes"
87
+ - "Perfect"
88
+
89
+ If the user provides more feedback, address it and ask again. Don't assume satisfaction without explicit confirmation.
90
+
91
+ ## Example Dialog
92
+
93
+ ```
94
+ Claude: Your new workflow is ready to try out!
95
+
96
+ The `monthly_report` workflow has been implemented with these steps:
97
+ 1. gather_data - Collects metrics from various sources
98
+ 2. analyze_trends - Identifies patterns and insights
99
+ 3. generate_report - Creates the final PDF report
100
+
101
+ What would you like to use it on for the first test run? Please describe a specific report you need - for example, which month's data and any particular focus areas.
102
+
103
+ User: Let's do the January 2026 engineering report, focusing on deployment frequency and incident response times.
104
+
105
+ Claude: Great, let me run the workflow on your January 2026 engineering report.
106
+
107
+ [Starting the monthly_report workflow via MCP...]
108
+
109
+ [... workflow runs through all steps ...]
110
+
111
+ Claude: The January 2026 Engineering Report has been generated. Let me review it for any issues.
112
+
113
+ I noticed a few things we could improve:
114
+
115
+ 1. **Chart readability**: The deployment frequency chart uses very similar colors for different teams - shall I change to a more distinct color palette?
116
+
117
+ 2. **Missing context**: The incident response times don't include comparison to the previous month - would you like me to add month-over-month comparison?
118
+
119
+ 3. **Executive summary**: The summary is quite technical - should I add a simpler high-level overview for non-technical stakeholders?
120
+
121
+ User: Yes to all three, please.
122
+
123
+ Claude: Done! I've updated the report with:
124
+ - Distinct color palette for the deployment chart
125
+ - Month-over-month comparison for incident response times
126
+ - Added a non-technical executive summary
127
+
128
+ Is there anything else you'd like me to change about the report?
129
+
130
+ User: Can you make the tables larger? They're a bit hard to read.
131
+
132
+ Claude: I've increased the table sizes for better readability. The font is now larger and there's more padding around cells.
133
+
134
+ Is there anything else you'd like me to adjust?
135
+
136
+ User: No, that looks great!
137
+
138
+ Claude: Excellent! The test run is complete. The workflow successfully generated your January 2026 Engineering Report with all the refinements applied.
139
+
140
+ **Test Summary:**
141
+ - Workflow ran successfully through all 3 steps
142
+ - Output required adjustments to chart colors, comparisons, and table sizing
143
+ - User is satisfied with the final result
144
+
145
+ Ready to proceed to the iterate step to improve the workflow based on what we learned.
146
+ ```
147
+
148
+ ## Important Guidelines
149
+
150
+ 1. **Use real test cases** - Testing with actual data/needs validates the workflow better than hypothetical examples
151
+ 2. **Be specific in critiques** - Don't say "formatting issues" - say exactly what's wrong and where
152
+ 3. **Limit initial critique to 3 issues** - Too many issues at once is overwhelming; address more in the feedback loop
153
+ 4. **Don't assume what user wants fixed** - Always ask before making corrections
154
+ 5. **Iterate until satisfied** - Don't rush to completion; the user's satisfaction is the goal
@@ -34,6 +34,8 @@ steps:
34
34
  outputs:
35
35
  - [output_filename_or_path] # e.g., "report.md" or "reports/analysis.md"
36
36
  dependencies: [] # List of step IDs that must complete first
37
+ # Optional: Delegate to a specific agent type (uses context: fork)
38
+ # agent: general-purpose # or other agent type
37
39
  # Optional: Quality validation hooks
38
40
  hooks:
39
41
  after_agent:
@@ -0,0 +1,16 @@
1
+ {
2
+ "permissions": {
3
+ "allow": [
4
+ "Read(./.deepwork/**)",
5
+ "Edit(./.deepwork/**)",
6
+ "Write(./.deepwork/**)",
7
+ "Bash(deepwork:*)",
8
+ "Bash(./.deepwork/jobs/deepwork_jobs/make_new_job.sh:*)",
9
+ "WebSearch",
10
+ "mcp__deepwork__get_workflows",
11
+ "mcp__deepwork__start_workflow",
12
+ "mcp__deepwork__finished_step",
13
+ "mcp__deepwork__abort_workflow"
14
+ ]
15
+ }
16
+ }
@@ -0,0 +1,37 @@
1
+ {#
2
+ Template: skill-deepwork.md.jinja
3
+ Purpose: Generates the main /deepwork skill that instructs agents to use MCP tools
4
+
5
+ This template is used to create the entry-point skill for DeepWork.
6
+ Instead of containing step instructions, it directs agents to use the
7
+ DeepWork MCP server tools.
8
+ #}
9
+ ---
10
+ name: deepwork
11
+ description: "Start or continue DeepWork workflows using MCP tools"
12
+ ---
13
+
14
+ # DeepWork Workflow Manager
15
+
16
+ Execute multi-step workflows with quality gate checkpoints.
17
+
18
+ > **IMPORTANT**: Use the DeepWork MCP server tools. All workflow operations
19
+ > are performed through MCP tool calls and following the instructions they return,
20
+ > not by reading instructions from files.
21
+
22
+ ## How to Use
23
+
24
+ 1. Call `get_workflows` to discover available workflows
25
+ 2. Call `start_workflow` with goal, job_name, and workflow_name
26
+ 3. Follow the step instructions returned
27
+ 4. Call `finished_step` with your outputs when done
28
+ 5. Handle the response: `needs_work`, `next_step`, or `workflow_complete`
29
+
30
+ ## Intent Parsing
31
+
32
+ When the user invokes `/deepwork`, parse their intent:
33
+ 1. **ALWAYS**: Call `get_workflows` to discover available workflows
34
+ 2. Based on the available flows and what the user said in their request, proceed:
35
+ - **Explicit workflow**: `/deepwork <a workflow name>` → start the `<a workflow name>` workflow
36
+ - **General request**: `/deepwork <a request>` → infer best match from available workflows
37
+ - **No context**: `/deepwork` alone → ask user to choose from available workflows
@@ -0,0 +1,37 @@
1
+ {#
2
+ Template: skill-deepwork.md.jinja
3
+ Purpose: Generates the main /deepwork skill that instructs agents to use MCP tools
4
+
5
+ This template is used to create the entry-point skill for DeepWork.
6
+ Instead of containing step instructions, it directs agents to use the
7
+ DeepWork MCP server tools.
8
+ #}
9
+ +++
10
+ name = "deepwork"
11
+ description = "Start or continue DeepWork workflows using MCP tools"
12
+ +++
13
+
14
+ # DeepWork Workflow Manager
15
+
16
+ Execute multi-step workflows with quality gate checkpoints.
17
+
18
+ > **IMPORTANT**: Use the DeepWork MCP server tools. All workflow operations
19
+ > are performed through MCP tool calls and following the instructions they return,
20
+ > not by reading instructions from files.
21
+
22
+ ## How to Use
23
+
24
+ 1. Call `get_workflows` to discover available workflows
25
+ 2. Call `start_workflow` with goal, job_name, and workflow_name
26
+ 3. Follow the step instructions returned
27
+ 4. Call `finished_step` with your outputs when done
28
+ 5. Handle the response: `needs_work`, `next_step`, or `workflow_complete`
29
+
30
+ ## Intent Parsing
31
+
32
+ When the user invokes `/deepwork`, parse their intent:
33
+ 1. **ALWAYS**: Call `get_workflows` to discover available workflows
34
+ 2. Based on the available flows and what the user said in their request, proceed:
35
+ - **Explicit workflow**: `/deepwork <a workflow name>` → start the `<a workflow name>` workflow
36
+ - **General request**: `/deepwork <a request>` → infer best match from available workflows
37
+ - **No context**: `/deepwork` alone → ask user to choose from available workflows