deepset-mcp 0.0.2rc1__py3-none-any.whl → 0.0.2rc2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -470,4 +470,4 @@ def register_tools(
470
470
  # Create enhanced tool
471
471
  enhanced_tool = create_enhanced_tool(base_func, config, workspace_mode, workspace)
472
472
 
473
- mcp.add_tool(enhanced_tool, name=tool_name)
473
+ mcp.add_tool(enhanced_tool, name=tool_name, structured_output=False)
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: deepset-mcp
3
- Version: 0.0.2rc1
3
+ Version: 0.0.2rc2
4
4
  Summary: Collection of MCP tools and Agents to work with the deepset AI platform. Create, debug or learn about pipelines on the platform. Useable from the CLI, Cursor, Claude Code, or other MCP clients.
5
5
  Project-URL: Homepage, https://deepset.ai
6
6
  Author-email: Mathis Lucka <mathis.lucka@deepset.ai>, Tanay Soni <tanay.soni@deepset.ai>
@@ -18,7 +18,7 @@ Requires-Python: >=3.11
18
18
  Requires-Dist: fastapi
19
19
  Requires-Dist: glom
20
20
  Requires-Dist: httpx
21
- Requires-Dist: mcp
21
+ Requires-Dist: mcp>=1.10.1
22
22
  Requires-Dist: model2vec
23
23
  Requires-Dist: numpy
24
24
  Requires-Dist: pydantic>=2.0.0
@@ -117,18 +117,14 @@ Agents can use these tools to:
117
117
  Running the server with uv gives you faster startup time and consumes slightly less resources on your system.
118
118
 
119
119
  1. [Install uv](https://docs.astral.sh/uv/guides/install-python/) if you don't have it yet
120
- 2. Clone the [deepset-mcp-server repository](https://github.com/deepset-ai/deepset-mcp-server)
121
- 3. Put the following into your `claude_desktop_config.json`
120
+ 2. Put the following into your `claude_desktop_config.json`
122
121
 
123
122
  ```python
124
123
  {
125
124
  "mcpServers": {
126
125
  "deepset": {
127
- "command": "/opt/homebrew/bin/uv", # path to your uv installation
126
+ "command": "uvx",
128
127
  "args": [
129
- "--directory",
130
- "/path/to/your/clone/of/deepset-mcp-server", # path to your clone of the deepset-mcp-server repo
131
- "run",
132
128
  "deepset-mcp"
133
129
  ],
134
130
  "env": {
@@ -141,7 +137,10 @@ Running the server with uv gives you faster startup time and consumes slightly l
141
137
  }
142
138
  ```
143
139
 
144
- 4. Quit and start the Claude Desktop App
140
+ This will load the [deepset-mcp package from PyPi](https://pypi.org/project/deepset-mcp/) and install it into a temporary virtual environment.
141
+
142
+ 3. Quit and start the Claude Desktop App
143
+
145
144
 
146
145
 
147
146
  ### Other MCP Clients
@@ -156,7 +155,7 @@ Here is where you need to configure `deepset-mcp` for:
156
155
 
157
156
  Generally speaking, depending on your installation, you need to configure an MCP client with one of the following commands:
158
157
 
159
- `uv --directory path/to/deepset-mcp run deepset-mcp --workspace your_workspace --api-key your_api_key`
158
+ `uvx deepset-mcp --workspace your_workspace --api-key your_api_key`
160
159
 
161
160
  If you installed the deepset-mcp package globally and added it to your `PATH`, you can just run:
162
161
 
@@ -192,11 +191,8 @@ For example:
192
191
  {
193
192
  "mcpServers": {
194
193
  "deepset": {
195
- "command": "/opt/homebrew/bin/uv",
194
+ "command": "uvx",
196
195
  "args": [
197
- "--directory",
198
- "/path/to/your/clone/of/deepset-mcp-server",
199
- "run",
200
196
  "deepset-mcp",
201
197
  "--workspace-mode",
202
198
  "explicit"
@@ -272,7 +268,7 @@ If your pipeline is not deployed yet, the LLM can autonomously validate it and f
272
268
  ## CLI
273
269
  You can use the MCP server as a Haystack Agent through a command-line interface.
274
270
 
275
- Install with `uv pip install deepset-mcp[cli]`.
271
+ Install with `uvx tool install "deepset-mcp[cli]"`.
276
272
 
277
273
  Start the interactive CLI with:
278
274
 
@@ -2,7 +2,7 @@ deepset_mcp/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
2
2
  deepset_mcp/initialize_embedding_model.py,sha256=dgItYfml2LvEk_uxZJSga0aEstFUxTdqAvWWSpEZQEA,300
3
3
  deepset_mcp/main.py,sha256=CLUSiUouY2NXvTo8rVyqvqiMsX4Fd2qhl8xF99Tge9Y,4321
4
4
  deepset_mcp/store.py,sha256=rhjAZgisgdmc7cr61qdTmp0ZEXCYBKZL5faPmQgDFT4,116
5
- deepset_mcp/tool_factory.py,sha256=8qEyYlwrbvAOKm1TfYXtvKNbXlOf41JbujCNaMCacmU,19287
5
+ deepset_mcp/tool_factory.py,sha256=euxZ2jXxe0SzzCUvG3aRIEr-n20irdUVZccU3yxDrEA,19312
6
6
  deepset_mcp/agents/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
7
7
  deepset_mcp/agents/debugging/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
8
8
  deepset_mcp/agents/debugging/debugging_agent.py,sha256=MRr88Af8AMrof1WLlxanppusaahp41WFCHkfaxrX_iI,1646
@@ -108,7 +108,7 @@ deepset_mcp/tools/tokonomics/__init__.py,sha256=QFDYoHPEpfaJ9fr5kfNJ1QXykDFzfy91
108
108
  deepset_mcp/tools/tokonomics/decorators.py,sha256=msJNho6p6ZnZ5CNjPLbt0RM0CLz8gUzzQCWYT30M10Q,14833
109
109
  deepset_mcp/tools/tokonomics/explorer.py,sha256=sSmvXesfl5GdJGiWgCj5ktTOub097pBhhF26BqqT_ig,12880
110
110
  deepset_mcp/tools/tokonomics/object_store.py,sha256=OtmVal_6hJPb5R-3mAGLmgAblgM05jdw3f1R7PvvdP0,6415
111
- deepset_mcp-0.0.2rc1.dist-info/METADATA,sha256=BEh8A4rXEIHLZ7KVuF5uJZJ9nGzDXBw6JPgFdT9iejg,9934
112
- deepset_mcp-0.0.2rc1.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
113
- deepset_mcp-0.0.2rc1.dist-info/entry_points.txt,sha256=gm-y9dhJVhzslA3nh8W3tofranX76WAw_ATxWbzAhoQ,101
114
- deepset_mcp-0.0.2rc1.dist-info/RECORD,,
111
+ deepset_mcp-0.0.2rc2.dist-info/METADATA,sha256=riwN3sF-XtZYBEXNDUFkesrznHF9k1XCUd9i4pPWSOQ,9661
112
+ deepset_mcp-0.0.2rc2.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
113
+ deepset_mcp-0.0.2rc2.dist-info/entry_points.txt,sha256=gm-y9dhJVhzslA3nh8W3tofranX76WAw_ATxWbzAhoQ,101
114
+ deepset_mcp-0.0.2rc2.dist-info/RECORD,,