deeplotx 0.8.5__py3-none-any.whl → 0.8.7__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -48,7 +48,7 @@ class Encoder(nn.Module):
48
48
  return self.encoder.forward(_input_tup[0], attention_mask=_input_tup[1]).last_hidden_state[:, 0, :]
49
49
 
50
50
  num_chunks = math.ceil(input_ids.shape[-1] / self.embed_dim)
51
- chunks = chunk_results = []
51
+ chunks, chunk_results = [], []
52
52
  for i in range(num_chunks):
53
53
  start_idx = i * self.embed_dim
54
54
  end_idx = min(start_idx + self.embed_dim, input_ids.shape[-1])
@@ -99,11 +99,14 @@ class BaseNeuralNetwork(nn.Module):
99
99
 
100
100
  def predict(self, x: torch.Tensor) -> torch.Tensor:
101
101
  x = self.ensure_device_and_dtype(x, device=self.device, dtype=self.dtype)
102
- __train = self.training
103
- self.training = False
102
+ training_state_dict = dict()
103
+ for m in self.modules():
104
+ training_state_dict[m] = m.training
105
+ m.training = False
104
106
  with torch.no_grad():
105
107
  res = self.forward(x)
106
- self.training = __train
108
+ for m, training_state in training_state_dict.items():
109
+ m.training = training_state
107
110
  return res
108
111
 
109
112
  def save(self, model_name: str | None = None, model_dir: str = '.', _suffix: str = DEFAULT_SUFFIX):
@@ -28,7 +28,7 @@ class FeedForwardUnit(BaseNeuralNetwork):
28
28
  x = self.layer_norm(x)
29
29
  x = self.up_proj(x)
30
30
  x = self.parametric_relu(x)
31
- if self._dropout_rate > .0:
31
+ if self._dropout_rate > .0 and self.training:
32
32
  x = torch.dropout(x, p=self._dropout_rate, train=self.training)
33
33
  return self.down_proj(x) + residual
34
34
 
@@ -10,17 +10,20 @@ from deeplotx.nn.multi_head_feed_forward import MultiHeadFeedForward
10
10
  class LinearRegression(BaseNeuralNetwork):
11
11
  def __init__(self, input_dim: int, output_dim: int, num_heads: int = 1, num_layers: int = 1,
12
12
  expansion_factor: int | float = 1.5, bias: bool = True, dropout_rate: float = 0.1,
13
- model_name: str | None = None, device: str | None = None, dtype: torch.dtype | None = None):
13
+ model_name: str | None = None, device: str | None = None, dtype: torch.dtype | None = None, **kwargs):
14
14
  super().__init__(in_features=input_dim, out_features=output_dim, model_name=model_name, device=device, dtype=dtype)
15
- self.ffn = MultiHeadFeedForward(feature_dim=input_dim, num_heads=num_heads,
16
- num_layers=num_layers, expansion_factor=expansion_factor,
17
- bias=bias, dropout_rate=dropout_rate, device=self.device, dtype=self.dtype)
18
- self.proj = nn.Linear(in_features=input_dim, out_features=output_dim,
19
- bias=bias, device=self.device, dtype=self.dtype)
15
+ self.multi_head_ffn_layers = nn.ModuleList([MultiHeadFeedForward(feature_dim=input_dim, num_heads=num_heads,
16
+ num_layers=kwargs.get('head_layers', 1),
17
+ expansion_factor=expansion_factor,
18
+ bias=bias, dropout_rate=dropout_rate,
19
+ device=self.device, dtype=self.dtype) for _ in range(num_layers)])
20
+ self.out_proj = nn.Linear(in_features=input_dim, out_features=output_dim,
21
+ bias=bias, device=self.device, dtype=self.dtype)
20
22
 
21
23
  @override
22
24
  def forward(self, x: torch.Tensor) -> torch.Tensor:
23
25
  x = self.ensure_device_and_dtype(x, device=self.device, dtype=self.dtype)
24
26
  residual = x
25
- x = self.ffn(x) + residual
26
- return self.proj(x)
27
+ for ffn in self.multi_head_ffn_layers:
28
+ x = ffn(x)
29
+ return self.out_proj(x + residual)
@@ -8,10 +8,10 @@ from deeplotx.nn.linear_regression import LinearRegression
8
8
  class LogisticRegression(LinearRegression):
9
9
  def __init__(self, input_dim: int, output_dim: int = 1, num_heads: int = 1, num_layers: int = 1,
10
10
  expansion_factor: int | float = 1.5, bias: bool = True, dropout_rate: float = 0.1,
11
- model_name: str | None = None, device: str | None = None, dtype: torch.dtype | None = None):
11
+ model_name: str | None = None, device: str | None = None, dtype: torch.dtype | None = None, **kwargs):
12
12
  super().__init__(input_dim=input_dim, output_dim=output_dim, num_heads=num_heads, num_layers=num_layers,
13
13
  expansion_factor=expansion_factor, bias=bias, dropout_rate=dropout_rate,
14
- model_name=model_name, device=device, dtype=dtype)
14
+ model_name=model_name, device=device, dtype=dtype, **kwargs)
15
15
 
16
16
  @override
17
17
  def forward(self, x: torch.Tensor) -> torch.Tensor:
@@ -4,7 +4,7 @@ import torch
4
4
  from torch import nn
5
5
 
6
6
  from deeplotx.nn.base_neural_network import BaseNeuralNetwork
7
- from deeplotx.nn.multi_head_feed_forward import MultiHeadFeedForward
7
+ from deeplotx.nn.linear_regression import LinearRegression
8
8
 
9
9
 
10
10
  class RecursiveSequential(BaseNeuralNetwork):
@@ -20,11 +20,10 @@ class RecursiveSequential(BaseNeuralNetwork):
20
20
  num_layers=recursive_layers, batch_first=True,
21
21
  bias=True, bidirectional=True, device=self.device,
22
22
  dtype=self.dtype)
23
- self.ffn = MultiHeadFeedForward(feature_dim=recursive_hidden_dim * 2, num_heads=kwargs.get('ffn_heads', 1),
24
- num_layers=ffn_layers, expansion_factor=ffn_expansion_factor,
25
- bias=bias, dropout_rate=dropout_rate, device=self.device, dtype=self.dtype)
26
- self.__proj = nn.Linear(in_features=recursive_hidden_dim * 2, out_features=output_dim, bias=bias,
27
- device=self.device, dtype=self.dtype)
23
+ self.out_proj = LinearRegression(input_dim=recursive_hidden_dim * 2, output_dim=output_dim,
24
+ num_heads=kwargs.get('ffn_heads', 1), head_layers=kwargs.get('ffn_head_layers', 1),
25
+ num_layers=ffn_layers, expansion_factor=ffn_expansion_factor,
26
+ bias=bias, dropout_rate=dropout_rate, device=self.device, dtype=self.dtype)
28
27
 
29
28
  def initial_state(self, batch_size: int = 1) -> tuple[torch.Tensor, torch.Tensor]:
30
29
  zeros = torch.zeros(self.lstm.num_layers * 2, batch_size, self.lstm.hidden_size, device=self.device, dtype=self.dtype)
@@ -37,16 +36,17 @@ class RecursiveSequential(BaseNeuralNetwork):
37
36
  self.ensure_device_and_dtype(state[1], device=self.device, dtype=self.dtype))
38
37
  x, (hidden_state, cell_state) = self.lstm(x, state)
39
38
  x = x[:, -1, :]
40
- residual = x
41
- x = self.ffn(x) + residual
42
- x = self.__proj(x)
39
+ x = self.out_proj(x)
43
40
  return x, (hidden_state, cell_state)
44
41
 
45
42
  @override
46
43
  def predict(self, x: torch.Tensor) -> torch.Tensor:
47
- __train = self.training
48
- self.training = False
44
+ training_state_dict = dict()
45
+ for m in self.modules():
46
+ training_state_dict[m] = m.training
47
+ m.training = False
49
48
  with torch.no_grad():
50
49
  res = self.forward(x.unsqueeze(0), self.initial_state(batch_size=1))[0]
51
- self.training = __train
50
+ for m, training_state in training_state_dict.items():
51
+ m.training = training_state
52
52
  return res
@@ -27,8 +27,8 @@ class RoFormerEncoder(BaseNeuralNetwork):
27
27
  device=self.device, dtype=self.dtype)
28
28
  self.layer_norm = nn.LayerNorm(normalized_shape=feature_dim, eps=1e-9,
29
29
  device=self.device, dtype=self.dtype)
30
- self.__proj = nn.Linear(in_features=feature_dim * 2, out_features=feature_dim,
31
- bias=bias, device=self.device, dtype=self.dtype)
30
+ self.out_proj = nn.Linear(in_features=feature_dim * 2, out_features=feature_dim,
31
+ bias=bias, device=self.device, dtype=self.dtype)
32
32
 
33
33
  @override
34
34
  def forward(self, x: torch.Tensor, mask: torch.Tensor | None = None) -> torch.Tensor:
@@ -37,4 +37,4 @@ class RoFormerEncoder(BaseNeuralNetwork):
37
37
  mask = self.ensure_device_and_dtype(mask, device=self.device, dtype=self.dtype)
38
38
  attn = self.attn(x=self.layer_norm(x), y=None, mask=mask)
39
39
  x = torch.concat([attn, x], dim=-1)
40
- return self.__proj(self.ffn(x))
40
+ return self.out_proj(self.ffn(x))
@@ -8,10 +8,10 @@ from deeplotx.nn.linear_regression import LinearRegression
8
8
  class SoftmaxRegression(LinearRegression):
9
9
  def __init__(self, input_dim: int, output_dim: int, num_heads: int = 1, num_layers: int = 1,
10
10
  expansion_factor: int | float = 1.5, bias: bool = True, dropout_rate: float = 0.1,
11
- model_name: str | None = None, device: str | None = None, dtype: torch.dtype | None = None):
11
+ model_name: str | None = None, device: str | None = None, dtype: torch.dtype | None = None, **kwargs):
12
12
  super().__init__(input_dim=input_dim, output_dim=output_dim, num_heads=num_heads, num_layers=num_layers,
13
13
  expansion_factor=expansion_factor, bias=bias, dropout_rate=dropout_rate,
14
- model_name=model_name, device=device, dtype=dtype)
14
+ model_name=model_name, device=device, dtype=dtype, **kwargs)
15
15
 
16
16
  @override
17
17
  def forward(self, x: torch.Tensor) -> torch.Tensor:
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: deeplotx
3
- Version: 0.8.5
3
+ Version: 0.8.7
4
4
  Summary: Easy-2-use long text NLP toolkit.
5
5
  Requires-Python: >=3.10
6
6
  Description-Content-Type: text/markdown
@@ -1,23 +1,23 @@
1
1
  deeplotx/__init__.py,sha256=xEq8WQ2LpEZoLX_Z464d0dy4aemFGrEV6ZMJr6ioFnQ,1186
2
2
  deeplotx/encoder/__init__.py,sha256=BrsF5_4O-4pfihYF2wjExDOoAY-03kGJTH-Mhez4tsE,129
3
- deeplotx/encoder/encoder.py,sha256=oSBdA-MiwMKNfTFJWR-RdvNS0G0qfX-Qchwy4LuwB00,3985
3
+ deeplotx/encoder/encoder.py,sha256=tksTtmz9JRDSimCdhMkxpbGUHNWhARGaeKh2pBvLgEI,3988
4
4
  deeplotx/encoder/long_text_encoder.py,sha256=3ScdKDi65J5tdO8PFCXBjCzNUCLlJRwVhpDR0BrphG4,3951
5
5
  deeplotx/encoder/longformer_encoder.py,sha256=NNYLr5I9tdeh0C8Ir7QcbEMU9gDk6U7CiF3Tbg6NEsE,3372
6
6
  deeplotx/nn/__init__.py,sha256=YILwbxb-NHdiJjfOwBKH8F7PuZSDZSrGpTznPDucTro,710
7
7
  deeplotx/nn/attention.py,sha256=R-i-Rd7gnsh6hwXDeYfqLQOJvfSZIGfQbFzRlC91XLo,2879
8
8
  deeplotx/nn/auto_regression.py,sha256=j_R7WGPq9REngjpLuX5c0AaNqOpgGm2Vfrolw-XjWXw,877
9
- deeplotx/nn/base_neural_network.py,sha256=FjQEDFH810fJS7JV3aLgJZnaMqC6DH--wlBvuj-ghTc,5900
10
- deeplotx/nn/feed_forward.py,sha256=4ozj7EDalO9pb6JUhZtsJqE0r8bIHFApHRt2zTrl4ho,2931
11
- deeplotx/nn/linear_regression.py,sha256=EotBCCam7FH5iaAv0ma4TfYId2YfhBnrQlMirF0xoq4,1400
12
- deeplotx/nn/logistic_regression.py,sha256=6vlXuP5el6EdXEhUbpVTKstcf-pikD50Xezw66l-aUc,978
9
+ deeplotx/nn/base_neural_network.py,sha256=QCyB1dxOs4I8vpu6PCshrZs0infoHXS9IErw6tN-dhs,6060
10
+ deeplotx/nn/feed_forward.py,sha256=kGWEUo8J7jrhSSWlitNnj-AcitNiLz6eOCvUcEuWlVs,2949
11
+ deeplotx/nn/linear_regression.py,sha256=LWrrdAIw32KIT1bdr7q6HczdpEiCgb-R8BCNXGywMxE,1763
12
+ deeplotx/nn/logistic_regression.py,sha256=nipWD3ZPRub2Cx0rU2zxYQyG0COn3NJvew8b2gbJy24,998
13
13
  deeplotx/nn/long_context_auto_regression.py,sha256=uy0k_g8wEfMH5nd5HCfrHA8dgEsuWBA2x8U-g3h4vQc,1054
14
14
  deeplotx/nn/long_context_recursive_sequential.py,sha256=pcZfnrIHBqbp2BssfUTS1klpuykZwowikfAIaOnvRUI,2674
15
15
  deeplotx/nn/multi_head_attention.py,sha256=3z73uGbvy3jszRy1B9nxGOJjlttHpcpRF8Qd09OEams,2267
16
16
  deeplotx/nn/multi_head_feed_forward.py,sha256=hD9ScrVJZ9kNksoFASf0xaPgEnNgCeRivW-XjYOPjj8,1908
17
- deeplotx/nn/recursive_sequential.py,sha256=crD3rEUPPjwu-uSJSiX9kqaM8OPI8SYspbDPlZb2J2Y,2900
18
- deeplotx/nn/roformer_encoder.py,sha256=UJjKniNdMd0rfoYQcsX6bPo6Ceq_Z6EhwHe2kgqWC_k,2426
17
+ deeplotx/nn/recursive_sequential.py,sha256=sNvAs9iVCuWIgx0_6TizDq41hJpFbfKT3kyDHE86wRM,2928
18
+ deeplotx/nn/roformer_encoder.py,sha256=BAPAMS5-qiM3i2FUyIW-ZTc7og4gZzwlu5LniqzaymY,2432
19
19
  deeplotx/nn/rope.py,sha256=RTOjnllubktdy2rzFWxBfkuLuGjhEMyDd06uojdqPhM,1848
20
- deeplotx/nn/softmax_regression.py,sha256=1brNbnj8qI0VfycZmZQlfn52myKZZe8BF_ziq1JQfPY,999
20
+ deeplotx/nn/softmax_regression.py,sha256=xe2etxSfN0e9XZ4E6Uyz5ThWWzAdQVjYIvN24j8kfNY,1019
21
21
  deeplotx/similarity/__init__.py,sha256=s3u-KSgxjnMcWpIItKgXNltFMPQ7YY3CqsqHI-5F1c8,724
22
22
  deeplotx/similarity/distribution.py,sha256=wQGouuuW531pZeBRKBujXsdsoz4fDnPw7_GW81jwepc,1066
23
23
  deeplotx/similarity/set.py,sha256=zhGFxtSIXlWqvipBYzoiPahp4g0boAIoUiMfG0wl07A,686
@@ -28,8 +28,8 @@ deeplotx/trainer/text_binary_classification_trainer.py,sha256=TFxOX8rWU_zKliI9zm
28
28
  deeplotx/util/__init__.py,sha256=5CH4MTeSgsmCe3LPMfvKoSBpwh6jDSBuHVElJvzQzgs,90
29
29
  deeplotx/util/hash.py,sha256=qbNU3RLBWGQYFVte9WZBAkZ1BkdjCXiKLDaKPN54KFk,662
30
30
  deeplotx/util/read_file.py,sha256=ptzouvEQeeW8KU5BrWNJlXw-vFXVrpS9SkAUxsu6A8A,612
31
- deeplotx-0.8.5.dist-info/licenses/LICENSE,sha256=IwGE9guuL-ryRPEKi6wFPI_zOhg7zDZbTYuHbSt_SAk,35823
32
- deeplotx-0.8.5.dist-info/METADATA,sha256=aM49grLNXqwEDdA4PwOEgiBKH1uCPjFuu7OCf5-_5aU,13138
33
- deeplotx-0.8.5.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
34
- deeplotx-0.8.5.dist-info/top_level.txt,sha256=hKg4pVDXZ-WWxkRfJFczRIll1Sv7VyfKCmzHLXbuh1U,9
35
- deeplotx-0.8.5.dist-info/RECORD,,
31
+ deeplotx-0.8.7.dist-info/licenses/LICENSE,sha256=IwGE9guuL-ryRPEKi6wFPI_zOhg7zDZbTYuHbSt_SAk,35823
32
+ deeplotx-0.8.7.dist-info/METADATA,sha256=fGyVnmSy3YKst_ZpwtMQhCq_-yxp5pvf-4zcQlhxNBA,13138
33
+ deeplotx-0.8.7.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
34
+ deeplotx-0.8.7.dist-info/top_level.txt,sha256=hKg4pVDXZ-WWxkRfJFczRIll1Sv7VyfKCmzHLXbuh1U,9
35
+ deeplotx-0.8.7.dist-info/RECORD,,