deeplotx 0.4.13__py3-none-any.whl → 0.4.15__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -58,5 +58,5 @@ class BaseNeuralNetwork(nn.Module):
58
58
  return self
59
59
 
60
60
  def load(self):
61
- self.load_state_dict(torch.load(f'{self._model_name}.deeplotx'))
61
+ self.load_state_dict(torch.load(f'{self._model_name}.deeplotx', map_location=self.device, weights_only=True))
62
62
  return self
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: deeplotx
3
- Version: 0.4.13
3
+ Version: 0.4.15
4
4
  Summary: Easy-2-use long text NLP toolkit.
5
5
  Requires-Python: >=3.10
6
6
  Description-Content-Type: text/markdown
@@ -177,31 +177,33 @@ Dynamic: license-file
177
177
 
178
178
  import torch
179
179
  from torch import nn
180
-
180
+
181
181
  from deeplotx.nn.base_neural_network import BaseNeuralNetwork
182
-
183
-
182
+
183
+
184
184
  class LinearRegression(BaseNeuralNetwork):
185
- def __init__(self, input_dim: int, output_dim: int, model_name: str | None = None):
186
- super().__init__(model_name=model_name)
187
- self.fc1 = nn.Linear(input_dim, 1024)
188
- self.fc1_to_fc4_res = nn.Linear(1024, 64)
189
- self.fc2 = nn.Linear(1024, 768)
190
- self.fc3 = nn.Linear(768, 128)
191
- self.fc4 = nn.Linear(128, 64)
192
- self.fc5 = nn.Linear(64, output_dim)
193
- self.parametric_relu_1 = nn.PReLU(num_parameters=1, init=5e-3)
194
- self.parametric_relu_2 = nn.PReLU(num_parameters=1, init=5e-3)
195
- self.parametric_relu_3 = nn.PReLU(num_parameters=1, init=5e-3)
196
- self.parametric_relu_4 = nn.PReLU(num_parameters=1, init=5e-3)
197
-
185
+ def __init__(self, input_dim: int, output_dim: int, model_name: str | None = None,
186
+ device: str | None = None, dtype: torch.dtype | None = None):
187
+ super().__init__(model_name=model_name, device=device, dtype=dtype)
188
+ self.fc1 = nn.Linear(input_dim, 1024, device=self.device, dtype=self.dtype)
189
+ self.fc1_to_fc4_res = nn.Linear(1024, 64, device=self.device, dtype=self.dtype)
190
+ self.fc2 = nn.Linear(1024, 768, device=self.device, dtype=self.dtype)
191
+ self.fc3 = nn.Linear(768, 128, device=self.device, dtype=self.dtype)
192
+ self.fc4 = nn.Linear(128, 64, device=self.device, dtype=self.dtype)
193
+ self.fc5 = nn.Linear(64, output_dim, device=self.device, dtype=self.dtype)
194
+ self.parametric_relu_1 = nn.PReLU(num_parameters=1, init=5e-3, device=self.device, dtype=self.dtype)
195
+ self.parametric_relu_2 = nn.PReLU(num_parameters=1, init=5e-3, device=self.device, dtype=self.dtype)
196
+ self.parametric_relu_3 = nn.PReLU(num_parameters=1, init=5e-3, device=self.device, dtype=self.dtype)
197
+ self.parametric_relu_4 = nn.PReLU(num_parameters=1, init=5e-3, device=self.device, dtype=self.dtype)
198
+
198
199
  @override
199
200
  def forward(self, x) -> torch.Tensor:
201
+ x = self.ensure_device_and_dtype(x, device=self.device, dtype=self.dtype)
200
202
  fc1_out = self.parametric_relu_1(self.fc1(x))
201
- x = nn.LayerNorm(normalized_shape=1024, eps=1e-9)(fc1_out)
203
+ x = nn.LayerNorm(normalized_shape=1024, eps=1e-9, device=self.device, dtype=self.dtype)(fc1_out)
202
204
  x = torch.dropout(x, p=0.2, train=self.training)
203
205
  x = self.parametric_relu_2(self.fc2(x))
204
- x = nn.LayerNorm(normalized_shape=768, eps=1e-9)(x)
206
+ x = nn.LayerNorm(normalized_shape=768, eps=1e-9, device=self.device, dtype=self.dtype)(x)
205
207
  x = torch.dropout(x, p=0.2, train=self.training)
206
208
  x = self.parametric_relu_3(self.fc3(x))
207
209
  x = torch.dropout(x, p=0.2, train=self.training)
@@ -5,7 +5,7 @@ deeplotx/encoder/long_text_encoder.py,sha256=hl_O8kR9o1kcII9YfSx2rf_Pk0l_Rv7LNbs
5
5
  deeplotx/encoder/longformer_encoder.py,sha256=A8FXqd4mdHxSn_o_R689XtpT73ISDT788EgMQRGLC2g,1822
6
6
  deeplotx/nn/__init__.py,sha256=oQ-vYXyuaGelfCOs2im_gZXAiiBlCCVXh1uw9yjvRMs,253
7
7
  deeplotx/nn/auto_regression.py,sha256=7P63opWCWMqE2DigwbsL6kfXtFtJPz00Yo1RqflBz4A,572
8
- deeplotx/nn/base_neural_network.py,sha256=ufA0QOFFXaz4RLqjqx9N6VY-mDwWOe9Y35u2vsh_NFc,2339
8
+ deeplotx/nn/base_neural_network.py,sha256=oGlqY6ZZ3DGOXWQQ9nZ7ktJpfyIaUrSraGnFRbGD1jM,2384
9
9
  deeplotx/nn/linear_regression.py,sha256=_LQFrOKBbQxvuNzb_B8Mr6PAQJUg-pFeu3h7_jQz04o,2166
10
10
  deeplotx/nn/logistic_regression.py,sha256=j8QGe0e7In97RMOXApJRID85qf1rOUCOk3V368CBfqs,653
11
11
  deeplotx/nn/recursive_sequential.py,sha256=pHZChjzw9cuMQ0lmv42lxxVgxCU6D7owOgph0Irj-w4,2219
@@ -20,8 +20,8 @@ deeplotx/trainer/text_binary_classification_trainer.py,sha256=Wq_pGO78zgdXxFeBja
20
20
  deeplotx/util/__init__.py,sha256=JxqAK_WOOHcYVSTHBT1-WuBwWrPEVDTV3titeVWvNUM,74
21
21
  deeplotx/util/hash.py,sha256=wwsC6kOQvbpuvwKsNQOARd78_wePmW9i3oaUuXRUnpc,352
22
22
  deeplotx/util/read_file.py,sha256=ptzouvEQeeW8KU5BrWNJlXw-vFXVrpS9SkAUxsu6A8A,612
23
- deeplotx-0.4.13.dist-info/licenses/LICENSE,sha256=IwGE9guuL-ryRPEKi6wFPI_zOhg7zDZbTYuHbSt_SAk,35823
24
- deeplotx-0.4.13.dist-info/METADATA,sha256=IpaDS2hmLGYUDKEhE_o-uTR0Go2ZkAFQCHQMsft2-o8,6285
25
- deeplotx-0.4.13.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
26
- deeplotx-0.4.13.dist-info/top_level.txt,sha256=hKg4pVDXZ-WWxkRfJFczRIll1Sv7VyfKCmzHLXbuh1U,9
27
- deeplotx-0.4.13.dist-info/RECORD,,
23
+ deeplotx-0.4.15.dist-info/licenses/LICENSE,sha256=IwGE9guuL-ryRPEKi6wFPI_zOhg7zDZbTYuHbSt_SAk,35823
24
+ deeplotx-0.4.15.dist-info/METADATA,sha256=HB6VHdLgyuMclJYLykBMnbnLa7s-rwfHyhrgjNdoRFQ,6955
25
+ deeplotx-0.4.15.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
26
+ deeplotx-0.4.15.dist-info/top_level.txt,sha256=hKg4pVDXZ-WWxkRfJFczRIll1Sv7VyfKCmzHLXbuh1U,9
27
+ deeplotx-0.4.15.dist-info/RECORD,,