deeplotx 0.4.10__py3-none-any.whl → 0.4.12b0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -16,7 +16,8 @@ logger = logging.getLogger('deeplotx.embedding')
16
16
  class BertEncoder(nn.Module):
17
17
  def __init__(self, model_name_or_path: str = DEFAULT_BERT, device: str | None = None):
18
18
  super().__init__()
19
- self.device = device if device is not None else torch.device('cuda' if torch.cuda.is_available() else 'cpu')
19
+ self.device = torch.device(device) if device is not None \
20
+ else torch.device('cuda' if torch.cuda.is_available() else 'cpu')
20
21
  self.tokenizer = BertTokenizer.from_pretrained(pretrained_model_name_or_path=model_name_or_path,
21
22
  cache_dir=CACHE_PATH, _from_auto=True)
22
23
  self.bert = BertModel.from_pretrained(pretrained_model_name_or_path=model_name_or_path,
@@ -28,7 +28,7 @@ class LongTextEncoder(BertEncoder):
28
28
  def postprocess(tensors: list[torch.Tensor], _flatten: bool) -> torch.Tensor:
29
29
  if not _flatten:
30
30
  return torch.stack(tensors, dim=0).squeeze()
31
- _fin_emb_tensor = torch.tensor([], dtype=tensors[0].dtype)
31
+ _fin_emb_tensor = torch.tensor([], dtype=tensors[0].dtype, device=self.device)
32
32
  for _emb in tensors:
33
33
  _fin_emb_tensor = torch.cat((_fin_emb_tensor.detach().clone(), _emb.detach().clone()), dim=-1)
34
34
  return _fin_emb_tensor.squeeze()
@@ -55,8 +55,8 @@ class LongTextEncoder(BertEncoder):
55
55
  for i in range(num_chunks):
56
56
  _tmp_left = max(i * self._chunk_size - self._overlapping, 0)
57
57
  _tmp_right = (i + 1) * self._chunk_size + self._overlapping
58
- chunks.append((i, torch.tensor([_text_to_input_ids[_tmp_left: _tmp_right]], dtype=torch.int),
59
- torch.tensor([_text_to_input_ids_att_mask[_tmp_left: _tmp_right]], dtype=torch.int)))
58
+ chunks.append((i, torch.tensor([_text_to_input_ids[_tmp_left: _tmp_right]], dtype=torch.int, device=self.device),
59
+ torch.tensor([_text_to_input_ids_att_mask[_tmp_left: _tmp_right]], dtype=torch.int, device=self.device)))
60
60
  with ThreadPoolExecutor(max_workers=min(num_chunks + 1, 3)) as executor:
61
61
  embeddings = list(executor.map(self.__chunk_embedding, chunks))
62
62
  embeddings.sort(key=lambda x: x[0])
@@ -15,7 +15,8 @@ logger = logging.getLogger('deeplotx.embedding')
15
15
  class LongformerEncoder(nn.Module):
16
16
  def __init__(self, model_name_or_path: str = DEFAULT_LONGFORMER, device: str | None = None):
17
17
  super().__init__()
18
- self.device = device if device is not None else torch.device('cuda' if torch.cuda.is_available() else 'cpu')
18
+ self.device = torch.device(device) if device is not None \
19
+ else torch.device('cuda' if torch.cuda.is_available() else 'cpu')
19
20
  self.tokenizer = LongformerTokenizer.from_pretrained(pretrained_model_name_or_path=model_name_or_path,
20
21
  cache_dir=CACHE_PATH, _from_auto=True)
21
22
  self.bert = LongformerModel.from_pretrained(pretrained_model_name_or_path=model_name_or_path,
@@ -16,6 +16,7 @@ class TextBinaryClassifierTrainer(BaseTrainer):
16
16
  def __init__(self, long_text_encoder: LongTextEncoder, batch_size: int = 2, train_ratio: float = 0.8):
17
17
  super().__init__(batch_size=batch_size, train_ratio=train_ratio)
18
18
  self._long_text_encoder = long_text_encoder
19
+ self.device = self._long_text_encoder.device
19
20
 
20
21
  @override
21
22
  def train(self, positive_texts: list[str], negative_texts: list[str],
@@ -27,8 +28,8 @@ class TextBinaryClassifierTrainer(BaseTrainer):
27
28
  positive_texts = positive_texts[:min_length]
28
29
  negative_texts = negative_texts[:min_length]
29
30
  all_texts = positive_texts + negative_texts
30
- labels = ([torch.tensor([1.0], dtype=torch.float32) for _ in range(len(positive_texts))]
31
- + [torch.tensor([0.0], dtype=torch.float32) for _ in range(len(negative_texts))])
31
+ labels = ([torch.tensor([1.0], dtype=torch.float32, device=self.device) for _ in range(len(positive_texts))]
32
+ + [torch.tensor([0.0], dtype=torch.float32, device=self.device) for _ in range(len(negative_texts))])
32
33
  text_embeddings = [self._long_text_encoder.encode(x) for x in all_texts]
33
34
  feature_dim = text_embeddings[0].shape[-1]
34
35
  inputs = torch.stack(text_embeddings)
@@ -44,6 +45,7 @@ class TextBinaryClassifierTrainer(BaseTrainer):
44
45
  self.model = None
45
46
  if self.model is None:
46
47
  self.model = LogisticRegression(input_dim=feature_dim, output_dim=1)
48
+ self.model.to(self.device)
47
49
  loss_function = nn.BCELoss()
48
50
  optimizer = optim.Adamax(self.model.parameters(), lr=learning_rate)
49
51
  for epoch in range(num_epochs):
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: deeplotx
3
- Version: 0.4.10
3
+ Version: 0.4.12b0
4
4
  Summary: Easy-2-use long text NLP toolkit.
5
5
  Requires-Python: >=3.10
6
6
  Description-Content-Type: text/markdown
@@ -1,8 +1,8 @@
1
1
  deeplotx/__init__.py,sha256=wMN_AI14V-0BPbQghYpvd2y7eUGfhr7jKTTuur-5Upg,1002
2
2
  deeplotx/encoder/__init__.py,sha256=EM-xrTsHoGaiiFpj-iFAxilMHXC_sQKWYrcq1qCnI3U,138
3
- deeplotx/encoder/bert_encoder.py,sha256=VCmYsBSqB9bRL_ge4bYssyx-Xy4oR0-DE1cMTuTn1tU,2412
4
- deeplotx/encoder/long_text_encoder.py,sha256=7On6NuaINDZLqgb3HsSJBEzbWXNZPh_MXAvO5KY471k,3313
5
- deeplotx/encoder/longformer_encoder.py,sha256=J8Si8Ta0bh7Vo7YsV0XdC7jGrvIt54GKcHr_pq2qHbI,1857
3
+ deeplotx/encoder/bert_encoder.py,sha256=IZsmkcmK6ulwTS4zubljW5uvq2r1Ik03nYG6jqcgQL8,2441
4
+ deeplotx/encoder/long_text_encoder.py,sha256=hl_O8kR9o1kcII9YfSx2rf_Pk0l_Rv7LNbsS9UsTU0c,3373
5
+ deeplotx/encoder/longformer_encoder.py,sha256=vsDIiS9kLzvAalDnCGfTuAd2gfqDBgKUqPj6tPgF-BM,1886
6
6
  deeplotx/nn/__init__.py,sha256=oQ-vYXyuaGelfCOs2im_gZXAiiBlCCVXh1uw9yjvRMs,253
7
7
  deeplotx/nn/auto_regression.py,sha256=o82C9TREZbhGdj2knSVGTXhjJne0LGEqc7BllByJJWE,449
8
8
  deeplotx/nn/base_neural_network.py,sha256=xWKG4FX6Jzdlrfc1HOW1aO9uh0Af3D-dB5Jl7eCxsAk,1635
@@ -16,12 +16,12 @@ deeplotx/similarity/set.py,sha256=zhGFxtSIXlWqvipBYzoiPahp4g0boAIoUiMfG0wl07A,68
16
16
  deeplotx/similarity/vector.py,sha256=WVbDHqykt-fvuILVrhUCtIFAOEjY_zvttrXGM9eylG0,1125
17
17
  deeplotx/trainer/__init__.py,sha256=Fl5DR9UecQc5VtBcczU9sx_HtPNoFohpuELOh-Jrsks,77
18
18
  deeplotx/trainer/base_trainer.py,sha256=z0MeAT-rRYmjeBXt0ckt7J1itYArR0Cx02wHesXUoZE,385
19
- deeplotx/trainer/text_binary_classification_trainer.py,sha256=5O-5dwVMCj5EDX9gjJwCA468OR4UozJ7V8b-JxeUB0s,4080
19
+ deeplotx/trainer/text_binary_classification_trainer.py,sha256=NhLFndk4I1PViSfat4XadDV-vSUGPOZ0RabfhQ5FLKY,4210
20
20
  deeplotx/util/__init__.py,sha256=JxqAK_WOOHcYVSTHBT1-WuBwWrPEVDTV3titeVWvNUM,74
21
21
  deeplotx/util/hash.py,sha256=wwsC6kOQvbpuvwKsNQOARd78_wePmW9i3oaUuXRUnpc,352
22
22
  deeplotx/util/read_file.py,sha256=ptzouvEQeeW8KU5BrWNJlXw-vFXVrpS9SkAUxsu6A8A,612
23
- deeplotx-0.4.10.dist-info/licenses/LICENSE,sha256=IwGE9guuL-ryRPEKi6wFPI_zOhg7zDZbTYuHbSt_SAk,35823
24
- deeplotx-0.4.10.dist-info/METADATA,sha256=2x4T_toVpNHl8eXdLmHwKjjjvOPEsTB2qVg3pvyLltA,6285
25
- deeplotx-0.4.10.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
26
- deeplotx-0.4.10.dist-info/top_level.txt,sha256=hKg4pVDXZ-WWxkRfJFczRIll1Sv7VyfKCmzHLXbuh1U,9
27
- deeplotx-0.4.10.dist-info/RECORD,,
23
+ deeplotx-0.4.12b0.dist-info/licenses/LICENSE,sha256=IwGE9guuL-ryRPEKi6wFPI_zOhg7zDZbTYuHbSt_SAk,35823
24
+ deeplotx-0.4.12b0.dist-info/METADATA,sha256=2JQcCaNV4WQ2jYDw50dIT5aLcwoEBkkjrvDAOCrcdbM,6287
25
+ deeplotx-0.4.12b0.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
26
+ deeplotx-0.4.12b0.dist-info/top_level.txt,sha256=hKg4pVDXZ-WWxkRfJFczRIll1Sv7VyfKCmzHLXbuh1U,9
27
+ deeplotx-0.4.12b0.dist-info/RECORD,,