deepliif 1.1.7__py3-none-any.whl → 1.1.9__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: deepliif
3
- Version: 1.1.7
3
+ Version: 1.1.9
4
4
  Summary: DeepLIIF: Deep-Learning Inferred Multiplex Immunofluorescence for Immunohistochemical Image Quantification
5
5
  Home-page: https://github.com/nadeemlab/DeepLIIF
6
6
  Author: Parmida93
@@ -26,11 +26,13 @@ Requires-Dist: python-bioformats (>=4.0.6)
26
26
  <img src="./images/DeepLIIF_logo.png" width="50%">
27
27
  <h3 align="center"><strong>Deep-Learning Inferred Multiplex Immunofluorescence for Immunohistochemical Image Quantification</strong></h3>
28
28
  <p align="center">
29
- <a href="https://rdcu.be/cKSBz">Nature MI'22 Link</a>
29
+ <a href="https://rdcu.be/cKSBz">Nature MI'22</a>
30
30
  |
31
- <a href="https://openaccess.thecvf.com/content/CVPR2022/html/Ghahremani_DeepLIIF_An_Online_Platform_for_Quantification_of_Clinical_Pathology_Slides_CVPR_2022_paper.html">CVPR'22 Link</a>
31
+ <a href="https://openaccess.thecvf.com/content/CVPR2022/html/Ghahremani_DeepLIIF_An_Online_Platform_for_Quantification_of_Clinical_Pathology_Slides_CVPR_2022_paper.html">CVPR'22</a>
32
32
  |
33
- <a href="https://arxiv.org/abs/2305.16465">MICCAI'23 link</a>
33
+ <a href="https://arxiv.org/abs/2305.16465">MICCAI'23</a>
34
+ |
35
+ <a href="https://onlinelibrary.wiley.com/share/author/4AEBAGEHSZE9GDP3H8MN?target=10.1111/his.15048">Histopathology'23</a>
34
36
  |
35
37
  <a href="https://deepliif.org/">Cloud Deployment</a>
36
38
  |
@@ -227,8 +229,7 @@ on how to deploy the model with Torchserve and for an example of how to run the
227
229
  We provide a Dockerfile that can be used to run the DeepLIIF models inside a container.
228
230
  First, you need to install the [Docker Engine](https://docs.docker.com/engine/install/ubuntu/).
229
231
  After installing the Docker, you need to follow these steps:
230
- * Download the pretrained model and place them in DeepLIIF/checkpoints/DeepLIIF_Latest_Model.
231
- * Change XXX of the **WORKDIR** line in the **DockerFile** to the directory containing the DeepLIIF project.
232
+ * Download the pretrained model [here](https://zenodo.org/record/4751737#.YKRTS0NKhH4) and place them in DeepLIIF/model-server/DeepLIIF_Latest_Model.
232
233
  * To create a docker image from the docker file:
233
234
  ```
234
235
  docker build -t cuda/deepliif .
@@ -237,7 +238,7 @@ The image is then used as a base. You can copy and use it to run an application.
237
238
  environment in which to run, referred to as a container.
238
239
  * To create and run a container:
239
240
  ```
240
- docker run -it -v `pwd`:`pwd` -w `pwd` cuda/deepliif deepliif test --input-dir Sample_Large_Tissues
241
+ docker run -it -v `pwd`:`pwd` -w `pwd` cuda/deepliif deepliif test --input-dir Sample_Large_Tissues --tile-size 512
241
242
  ```
242
243
  When you run a container from the image, the `deepliif` CLI will be available.
243
244
  You can easily run any CLI command in the activated environment and copy the results from the docker container to the host.
@@ -268,7 +269,7 @@ img (required)
268
269
  file: image to run the models on
269
270
 
270
271
  resolution
271
- string: resolution used to scan the slide (10x, 20x, 40x), defaults to 20x
272
+ string: resolution used to scan the slide (10x, 20x, 40x), defaults to 40x
272
273
 
273
274
  pil
274
275
  boolean: if true, use PIL.Image.open() to load the image, instead of python-bioformats
@@ -297,9 +298,9 @@ res = requests.post(
297
298
  files={
298
299
  'img': open(f'{images_dir}/{filename}', 'rb')
299
300
  },
300
- # optional param that can be 10x, 20x (default) or 40x
301
+ # optional param that can be 10x, 20x, or 40x (default)
301
302
  params={
302
- 'resolution': '20x'
303
+ 'resolution': '40x'
303
304
  }
304
305
  )
305
306
 
@@ -363,7 +364,7 @@ co-registration, whole-cell multiplex segmentation via [ImPartial](https://githu
363
364
  DeepLIIF model and release back to the community with full credit to the contributors.
364
365
 
365
366
  - [x] **Memorial Sloan Kettering Cancer Center** [AI-ready immunohistochemistry and multiplex immunofluorescence dataset](https://zenodo.org/record/4751737#.YKRTS0NKhH4) for breast, lung, and bladder cancers (**Nature Machine Intelligence'22**)
366
- - [x] **Moffitt Cancer Center** AI-ready multiplex immunofluorescence and multiplex immunohistochemistry dataset for head-and-neck squamous cell carcinoma (**MICCAI'23**)
367
+ - [x] **Moffitt Cancer Center** [AI-ready multiplex immunofluorescence and multiplex immunohistochemistry dataset](https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=70226184) for head-and-neck squamous cell carcinoma (**MICCAI'23**)
367
368
 
368
369
  ## Support
369
370
  Please use the [Image.sc Forum](https://forum.image.sc/tag/deepliif) for discussion and questions related to DeepLIIF.
@@ -405,4 +406,12 @@ If you find our work useful in your research or if you use parts of this code or
405
406
  journal={International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI)},
406
407
  year={2023}
407
408
  }
409
+
410
+ @article{nadeem2023ki67validationMTC,
411
+ author = {Nadeem, Saad and Hanna, Matthew G and Viswanathan, Kartik and Marino, Joseph and Ahadi, Mahsa and Alzumaili, Bayan and Bani, Mohamed-Amine and Chiarucci, Federico and Chou, Angela and De Leo, Antonio and Fuchs, Talia L and Lubin, Daniel J and Luxford, Catherine and Magliocca, Kelly and Martinez, Germán and Shi, Qiuying and Sidhu, Stan and Al Ghuzlan, Abir and Gill, Anthony J and Tallini, Giovanni and Ghossein, Ronald and Xu, Bin},
412
+ title = {Ki67 proliferation index in medullary thyroid carcinoma: a comparative study of multiple counting methods and validation of image analysis and deep learning platforms},
413
+ journal = {Histopathology},
414
+ year = {2023},
415
+ doi = {https://doi.org/10.1111/his.15048}
416
+ }
408
417
  ```
@@ -1,21 +1,22 @@
1
- cli.py,sha256=o6nxKM8WzSS-AzqmvJkm8NDb203oucBzutRvqWHeKWk,40524
1
+ cli.py,sha256=elGu-9di_LcUXPsWWknWPevbaTv2r2rpORVPH5lsnAU,39723
2
2
  deepliif/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
3
- deepliif/postprocessing.py,sha256=fvRjOAQeHcCpKxqJfBgEozx5H7fqOPWaG9D689XkMQ0,16985
3
+ deepliif/postprocessing.py,sha256=cM-cYVidY691Sjb1-B8a1jkLq5UR_hTCbuKzuF4765o,17589
4
4
  deepliif/train.py,sha256=-ZORL5vQrD0_Jq2Adgr3w8vJ7L1QcAgNTqMnBgtixgk,15757
5
5
  deepliif/data/__init__.py,sha256=euf9eUboK4RYR0jvdiyZDgPGozC1Nv7WRqRbTxSZD6A,5281
6
- deepliif/data/aligned_dataset.py,sha256=swmgEKocx_fGWF9RVTAuYdNxhqSEPNmPQUM3Ad1EUOY,3045
6
+ deepliif/data/aligned_dataset.py,sha256=bAofVfgMwtb8Exe4EtQ3aP2ZYewBT4N_X8BDWSeFFj0,4405
7
7
  deepliif/data/base_dataset.py,sha256=bQlxfY7bGSE9WPj31ZHkCxv5CAEJovjakGDCcK-aYdc,5564
8
8
  deepliif/data/colorization_dataset.py,sha256=uDYWciSxwqZkStQ_Vte27D9x5FNhv6eR9wSPn39K3RY,2808
9
9
  deepliif/data/image_folder.py,sha256=eesP9vn__YQ-dw1KJG9J-yVUHMmJjLcIEQI552Iv2vE,2006
10
10
  deepliif/data/single_dataset.py,sha256=hWjqTkRESEMppZj_r8bi3G0hAZ5EfvXYgE_qRbpiEz4,1553
11
11
  deepliif/data/template_dataset.py,sha256=PCDBnFRzRKReaeWgKUZmW0LrzRByI9adrKDJ6SN2KMs,3592
12
12
  deepliif/data/unaligned_dataset.py,sha256=m7j-CX-hkXbhg96NSEcaCagNVhTuXKkMsBADdMEJDBA,3393
13
- deepliif/models/DeepLIIF_model.py,sha256=CE-fs9g9zaeUtBKGEYtEsVVMRRQ8V-i9cOWO7cy4Z0U,20669
14
- deepliif/models/__init__.py,sha256=FRjj-kFG67MG6VAdsbehJkloi2GDO9vTbZoktPkVykc,17778
15
- deepliif/models/base_model.py,sha256=MGIsgMbhbfJyKMW_IiM4TCxvvHSioqKjdbti1k9u4ko,12951
13
+ deepliif/models/DeepLIIFExt_model.py,sha256=Sc60rOfDJuoGrJ1CYe4beAg6as6F0o864AO6ZB7paBY,14527
14
+ deepliif/models/DeepLIIF_model.py,sha256=ECZyM9jzoJAWSgB1ProBoarVuGcbScQMaSkRjSMgt0k,20872
15
+ deepliif/models/__init__.py,sha256=E2udWyU4eScFnvDO2qtwMeHRz4ihw8hhCoP666QBK4o,22674
16
+ deepliif/models/base_model.py,sha256=HKcUOBHtL-zLs5ZcmeXT-ZV_ubqsSUo4wMCQ0W27YHU,15583
16
17
  deepliif/models/networks.py,sha256=bN4yjRdE413efUESq8pvhzPDgFCTwFKXyQOrRqHckWY,32177
17
- deepliif/options/__init__.py,sha256=WEkvROZkYWDVDCrB_P66wPYYU2cMgBmVx2i7_BpEKq0,137
18
- deepliif/options/base_options.py,sha256=YZsU4GGccyknMChjCdIr8x7sk8MaWj3XU0E8gIz36hc,9794
18
+ deepliif/options/__init__.py,sha256=nm231wh_hQw1mX0AfXZu7-cx6WZdxURsE-jvnjlHQzE,4581
19
+ deepliif/options/base_options.py,sha256=m5UXY8MvjNcDisUWuiP228yoT27SsCh1bXS_Td6SwTc,9852
19
20
  deepliif/options/processing_options.py,sha256=OnNT-ytoTQzetFiMEKrWvrsrhZlupRK4smcnIk0MbqY,2947
20
21
  deepliif/options/test_options.py,sha256=4ZbQC5U-nTbUz8jvdDIbse5TK_mjw4D5yNjpVevWD5M,1114
21
22
  deepliif/options/train_options.py,sha256=5eA_oxpRj2-HiuMMvC5-HLapxNFG_JXOQ3K132JjpR8,3580
@@ -25,9 +26,9 @@ deepliif/util/html.py,sha256=RNAONZ4opP-bViahgmpSbHwOc6jXKQRnWRAVIaeIvac,3309
25
26
  deepliif/util/image_pool.py,sha256=M89Hc7DblRWroNP71S9mAdRn7h3DrhPFPjqFxxZYSgw,2280
26
27
  deepliif/util/util.py,sha256=bTArzuhIMGgGweH0v5rkiHrqBxc24BDv12rssOE9OoI,4636
27
28
  deepliif/util/visualizer.py,sha256=5V1lWidHqssJX21jn1P5-bOVgtrEXKVaQgnMWAsMfqg,15636
28
- deepliif-1.1.7.dist-info/LICENSE.md,sha256=HlZw_UPS6EtJimJ_Ci7xKh-S5Iubs0Z8y8E6EZ3ZNyE,956
29
- deepliif-1.1.7.dist-info/METADATA,sha256=cTL4yv1e45pY0Isz-4qFPE8QYLS-9ffQTBwbB6aaLsI,24145
30
- deepliif-1.1.7.dist-info/WHEEL,sha256=pkctZYzUS4AYVn6dJ-7367OJZivF2e8RA9b_ZBjif18,92
31
- deepliif-1.1.7.dist-info/entry_points.txt,sha256=f70-10j2q68o_rDlsE3hspnv4ejlDnXwwGZ9JJ-3yF4,37
32
- deepliif-1.1.7.dist-info/top_level.txt,sha256=vLDK5YKmDz08E7PywuvEjAo7dM5rnIpsjR4c0ubQCnc,13
33
- deepliif-1.1.7.dist-info/RECORD,,
29
+ deepliif-1.1.9.dist-info/LICENSE.md,sha256=HlZw_UPS6EtJimJ_Ci7xKh-S5Iubs0Z8y8E6EZ3ZNyE,956
30
+ deepliif-1.1.9.dist-info/METADATA,sha256=CBgGs3wxeg1Hewt7lbAFUEH4Sbm5jV6jt4F3q59gvzM,25076
31
+ deepliif-1.1.9.dist-info/WHEEL,sha256=pkctZYzUS4AYVn6dJ-7367OJZivF2e8RA9b_ZBjif18,92
32
+ deepliif-1.1.9.dist-info/entry_points.txt,sha256=f70-10j2q68o_rDlsE3hspnv4ejlDnXwwGZ9JJ-3yF4,37
33
+ deepliif-1.1.9.dist-info/top_level.txt,sha256=vLDK5YKmDz08E7PywuvEjAo7dM5rnIpsjR4c0ubQCnc,13
34
+ deepliif-1.1.9.dist-info/RECORD,,