deepliif 1.1.7__py3-none-any.whl → 1.1.8__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- cli.py +76 -102
- deepliif/data/aligned_dataset.py +33 -7
- deepliif/models/DeepLIIFExt_model.py +297 -0
- deepliif/models/DeepLIIF_model.py +10 -5
- deepliif/models/__init__.py +262 -168
- deepliif/models/base_model.py +54 -8
- deepliif/options/__init__.py +101 -0
- deepliif/options/base_options.py +7 -6
- deepliif/postprocessing.py +285 -246
- {deepliif-1.1.7.dist-info → deepliif-1.1.8.dist-info}/METADATA +17 -8
- {deepliif-1.1.7.dist-info → deepliif-1.1.8.dist-info}/RECORD +15 -14
- {deepliif-1.1.7.dist-info → deepliif-1.1.8.dist-info}/LICENSE.md +0 -0
- {deepliif-1.1.7.dist-info → deepliif-1.1.8.dist-info}/WHEEL +0 -0
- {deepliif-1.1.7.dist-info → deepliif-1.1.8.dist-info}/entry_points.txt +0 -0
- {deepliif-1.1.7.dist-info → deepliif-1.1.8.dist-info}/top_level.txt +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: deepliif
|
|
3
|
-
Version: 1.1.
|
|
3
|
+
Version: 1.1.8
|
|
4
4
|
Summary: DeepLIIF: Deep-Learning Inferred Multiplex Immunofluorescence for Immunohistochemical Image Quantification
|
|
5
5
|
Home-page: https://github.com/nadeemlab/DeepLIIF
|
|
6
6
|
Author: Parmida93
|
|
@@ -26,11 +26,13 @@ Requires-Dist: python-bioformats (>=4.0.6)
|
|
|
26
26
|
<img src="./images/DeepLIIF_logo.png" width="50%">
|
|
27
27
|
<h3 align="center"><strong>Deep-Learning Inferred Multiplex Immunofluorescence for Immunohistochemical Image Quantification</strong></h3>
|
|
28
28
|
<p align="center">
|
|
29
|
-
<a href="https://rdcu.be/cKSBz">Nature MI'22
|
|
29
|
+
<a href="https://rdcu.be/cKSBz">Nature MI'22</a>
|
|
30
30
|
|
|
|
31
|
-
<a href="https://openaccess.thecvf.com/content/CVPR2022/html/Ghahremani_DeepLIIF_An_Online_Platform_for_Quantification_of_Clinical_Pathology_Slides_CVPR_2022_paper.html">CVPR'22
|
|
31
|
+
<a href="https://openaccess.thecvf.com/content/CVPR2022/html/Ghahremani_DeepLIIF_An_Online_Platform_for_Quantification_of_Clinical_Pathology_Slides_CVPR_2022_paper.html">CVPR'22</a>
|
|
32
32
|
|
|
|
33
|
-
<a href="https://arxiv.org/abs/2305.16465">MICCAI'23
|
|
33
|
+
<a href="https://arxiv.org/abs/2305.16465">MICCAI'23</a>
|
|
34
|
+
|
|
|
35
|
+
<a href="https://onlinelibrary.wiley.com/share/author/4AEBAGEHSZE9GDP3H8MN?target=10.1111/his.15048">Histopathology'23</a>
|
|
34
36
|
|
|
|
35
37
|
<a href="https://deepliif.org/">Cloud Deployment</a>
|
|
36
38
|
|
|
|
@@ -227,8 +229,7 @@ on how to deploy the model with Torchserve and for an example of how to run the
|
|
|
227
229
|
We provide a Dockerfile that can be used to run the DeepLIIF models inside a container.
|
|
228
230
|
First, you need to install the [Docker Engine](https://docs.docker.com/engine/install/ubuntu/).
|
|
229
231
|
After installing the Docker, you need to follow these steps:
|
|
230
|
-
* Download the pretrained model and place them in DeepLIIF/
|
|
231
|
-
* Change XXX of the **WORKDIR** line in the **DockerFile** to the directory containing the DeepLIIF project.
|
|
232
|
+
* Download the pretrained model [here](https://zenodo.org/record/4751737#.YKRTS0NKhH4) and place them in DeepLIIF/model-server/DeepLIIF_Latest_Model.
|
|
232
233
|
* To create a docker image from the docker file:
|
|
233
234
|
```
|
|
234
235
|
docker build -t cuda/deepliif .
|
|
@@ -237,7 +238,7 @@ The image is then used as a base. You can copy and use it to run an application.
|
|
|
237
238
|
environment in which to run, referred to as a container.
|
|
238
239
|
* To create and run a container:
|
|
239
240
|
```
|
|
240
|
-
docker run -it -v `pwd`:`pwd` -w `pwd` cuda/deepliif deepliif test --input-dir Sample_Large_Tissues
|
|
241
|
+
docker run -it -v `pwd`:`pwd` -w `pwd` cuda/deepliif deepliif test --input-dir Sample_Large_Tissues --tile-size 512
|
|
241
242
|
```
|
|
242
243
|
When you run a container from the image, the `deepliif` CLI will be available.
|
|
243
244
|
You can easily run any CLI command in the activated environment and copy the results from the docker container to the host.
|
|
@@ -363,7 +364,7 @@ co-registration, whole-cell multiplex segmentation via [ImPartial](https://githu
|
|
|
363
364
|
DeepLIIF model and release back to the community with full credit to the contributors.
|
|
364
365
|
|
|
365
366
|
- [x] **Memorial Sloan Kettering Cancer Center** [AI-ready immunohistochemistry and multiplex immunofluorescence dataset](https://zenodo.org/record/4751737#.YKRTS0NKhH4) for breast, lung, and bladder cancers (**Nature Machine Intelligence'22**)
|
|
366
|
-
- [x] **Moffitt Cancer Center** AI-ready multiplex immunofluorescence and multiplex immunohistochemistry dataset for head-and-neck squamous cell carcinoma (**MICCAI'23**)
|
|
367
|
+
- [x] **Moffitt Cancer Center** [AI-ready multiplex immunofluorescence and multiplex immunohistochemistry dataset](https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=70226184) for head-and-neck squamous cell carcinoma (**MICCAI'23**)
|
|
367
368
|
|
|
368
369
|
## Support
|
|
369
370
|
Please use the [Image.sc Forum](https://forum.image.sc/tag/deepliif) for discussion and questions related to DeepLIIF.
|
|
@@ -405,4 +406,12 @@ If you find our work useful in your research or if you use parts of this code or
|
|
|
405
406
|
journal={International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI)},
|
|
406
407
|
year={2023}
|
|
407
408
|
}
|
|
409
|
+
|
|
410
|
+
@article{nadeem2023ki67validationMTC,
|
|
411
|
+
author = {Nadeem, Saad and Hanna, Matthew G and Viswanathan, Kartik and Marino, Joseph and Ahadi, Mahsa and Alzumaili, Bayan and Bani, Mohamed-Amine and Chiarucci, Federico and Chou, Angela and De Leo, Antonio and Fuchs, Talia L and Lubin, Daniel J and Luxford, Catherine and Magliocca, Kelly and Martinez, Germán and Shi, Qiuying and Sidhu, Stan and Al Ghuzlan, Abir and Gill, Anthony J and Tallini, Giovanni and Ghossein, Ronald and Xu, Bin},
|
|
412
|
+
title = {Ki67 proliferation index in medullary thyroid carcinoma: a comparative study of multiple counting methods and validation of image analysis and deep learning platforms},
|
|
413
|
+
journal = {Histopathology},
|
|
414
|
+
year = {2023},
|
|
415
|
+
doi = {https://doi.org/10.1111/his.15048}
|
|
416
|
+
}
|
|
408
417
|
```
|
|
@@ -1,21 +1,22 @@
|
|
|
1
|
-
cli.py,sha256=
|
|
1
|
+
cli.py,sha256=elGu-9di_LcUXPsWWknWPevbaTv2r2rpORVPH5lsnAU,39723
|
|
2
2
|
deepliif/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
3
|
-
deepliif/postprocessing.py,sha256=
|
|
3
|
+
deepliif/postprocessing.py,sha256=QrTT7HodlLyrNFrI9hJowkQet6YVVIosf9B1iK4ajQk,17327
|
|
4
4
|
deepliif/train.py,sha256=-ZORL5vQrD0_Jq2Adgr3w8vJ7L1QcAgNTqMnBgtixgk,15757
|
|
5
5
|
deepliif/data/__init__.py,sha256=euf9eUboK4RYR0jvdiyZDgPGozC1Nv7WRqRbTxSZD6A,5281
|
|
6
|
-
deepliif/data/aligned_dataset.py,sha256=
|
|
6
|
+
deepliif/data/aligned_dataset.py,sha256=bAofVfgMwtb8Exe4EtQ3aP2ZYewBT4N_X8BDWSeFFj0,4405
|
|
7
7
|
deepliif/data/base_dataset.py,sha256=bQlxfY7bGSE9WPj31ZHkCxv5CAEJovjakGDCcK-aYdc,5564
|
|
8
8
|
deepliif/data/colorization_dataset.py,sha256=uDYWciSxwqZkStQ_Vte27D9x5FNhv6eR9wSPn39K3RY,2808
|
|
9
9
|
deepliif/data/image_folder.py,sha256=eesP9vn__YQ-dw1KJG9J-yVUHMmJjLcIEQI552Iv2vE,2006
|
|
10
10
|
deepliif/data/single_dataset.py,sha256=hWjqTkRESEMppZj_r8bi3G0hAZ5EfvXYgE_qRbpiEz4,1553
|
|
11
11
|
deepliif/data/template_dataset.py,sha256=PCDBnFRzRKReaeWgKUZmW0LrzRByI9adrKDJ6SN2KMs,3592
|
|
12
12
|
deepliif/data/unaligned_dataset.py,sha256=m7j-CX-hkXbhg96NSEcaCagNVhTuXKkMsBADdMEJDBA,3393
|
|
13
|
-
deepliif/models/
|
|
14
|
-
deepliif/models/
|
|
15
|
-
deepliif/models/
|
|
13
|
+
deepliif/models/DeepLIIFExt_model.py,sha256=Sc60rOfDJuoGrJ1CYe4beAg6as6F0o864AO6ZB7paBY,14527
|
|
14
|
+
deepliif/models/DeepLIIF_model.py,sha256=ECZyM9jzoJAWSgB1ProBoarVuGcbScQMaSkRjSMgt0k,20872
|
|
15
|
+
deepliif/models/__init__.py,sha256=0vseZQ6LX6zrUQuMnmpcZDjyyjuVb_vMBi_hyiAVwcw,22565
|
|
16
|
+
deepliif/models/base_model.py,sha256=HKcUOBHtL-zLs5ZcmeXT-ZV_ubqsSUo4wMCQ0W27YHU,15583
|
|
16
17
|
deepliif/models/networks.py,sha256=bN4yjRdE413efUESq8pvhzPDgFCTwFKXyQOrRqHckWY,32177
|
|
17
|
-
deepliif/options/__init__.py,sha256=
|
|
18
|
-
deepliif/options/base_options.py,sha256=
|
|
18
|
+
deepliif/options/__init__.py,sha256=nm231wh_hQw1mX0AfXZu7-cx6WZdxURsE-jvnjlHQzE,4581
|
|
19
|
+
deepliif/options/base_options.py,sha256=m5UXY8MvjNcDisUWuiP228yoT27SsCh1bXS_Td6SwTc,9852
|
|
19
20
|
deepliif/options/processing_options.py,sha256=OnNT-ytoTQzetFiMEKrWvrsrhZlupRK4smcnIk0MbqY,2947
|
|
20
21
|
deepliif/options/test_options.py,sha256=4ZbQC5U-nTbUz8jvdDIbse5TK_mjw4D5yNjpVevWD5M,1114
|
|
21
22
|
deepliif/options/train_options.py,sha256=5eA_oxpRj2-HiuMMvC5-HLapxNFG_JXOQ3K132JjpR8,3580
|
|
@@ -25,9 +26,9 @@ deepliif/util/html.py,sha256=RNAONZ4opP-bViahgmpSbHwOc6jXKQRnWRAVIaeIvac,3309
|
|
|
25
26
|
deepliif/util/image_pool.py,sha256=M89Hc7DblRWroNP71S9mAdRn7h3DrhPFPjqFxxZYSgw,2280
|
|
26
27
|
deepliif/util/util.py,sha256=bTArzuhIMGgGweH0v5rkiHrqBxc24BDv12rssOE9OoI,4636
|
|
27
28
|
deepliif/util/visualizer.py,sha256=5V1lWidHqssJX21jn1P5-bOVgtrEXKVaQgnMWAsMfqg,15636
|
|
28
|
-
deepliif-1.1.
|
|
29
|
-
deepliif-1.1.
|
|
30
|
-
deepliif-1.1.
|
|
31
|
-
deepliif-1.1.
|
|
32
|
-
deepliif-1.1.
|
|
33
|
-
deepliif-1.1.
|
|
29
|
+
deepliif-1.1.8.dist-info/LICENSE.md,sha256=HlZw_UPS6EtJimJ_Ci7xKh-S5Iubs0Z8y8E6EZ3ZNyE,956
|
|
30
|
+
deepliif-1.1.8.dist-info/METADATA,sha256=kXAkqKbOVhBUAhMuF7vTqZAXr8rJuLKU8dykdnr47jQ,25075
|
|
31
|
+
deepliif-1.1.8.dist-info/WHEEL,sha256=pkctZYzUS4AYVn6dJ-7367OJZivF2e8RA9b_ZBjif18,92
|
|
32
|
+
deepliif-1.1.8.dist-info/entry_points.txt,sha256=f70-10j2q68o_rDlsE3hspnv4ejlDnXwwGZ9JJ-3yF4,37
|
|
33
|
+
deepliif-1.1.8.dist-info/top_level.txt,sha256=vLDK5YKmDz08E7PywuvEjAo7dM5rnIpsjR4c0ubQCnc,13
|
|
34
|
+
deepliif-1.1.8.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|