deepliif 1.1.6__py3-none-any.whl → 1.1.8__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: deepliif
3
- Version: 1.1.6
3
+ Version: 1.1.8
4
4
  Summary: DeepLIIF: Deep-Learning Inferred Multiplex Immunofluorescence for Immunohistochemical Image Quantification
5
5
  Home-page: https://github.com/nadeemlab/DeepLIIF
6
6
  Author: Parmida93
@@ -26,20 +26,18 @@ Requires-Dist: python-bioformats (>=4.0.6)
26
26
  <img src="./images/DeepLIIF_logo.png" width="50%">
27
27
  <h3 align="center"><strong>Deep-Learning Inferred Multiplex Immunofluorescence for Immunohistochemical Image Quantification</strong></h3>
28
28
  <p align="center">
29
- <a href="https://doi.org/10.1101/2021.05.01.442219">Journal Preprint</a>
29
+ <a href="https://rdcu.be/cKSBz">Nature MI'22</a>
30
30
  |
31
- <a href="https://rdcu.be/cKSBz">Journal Link</a>
31
+ <a href="https://openaccess.thecvf.com/content/CVPR2022/html/Ghahremani_DeepLIIF_An_Online_Platform_for_Quantification_of_Clinical_Pathology_Slides_CVPR_2022_paper.html">CVPR'22</a>
32
32
  |
33
- <a href="https://openaccess.thecvf.com/content/CVPR2022/html/Ghahremani_DeepLIIF_An_Online_Platform_for_Quantification_of_Clinical_Pathology_Slides_CVPR_2022_paper.html">CVPR Link</a>
33
+ <a href="https://arxiv.org/abs/2305.16465">MICCAI'23</a>
34
+ |
35
+ <a href="https://onlinelibrary.wiley.com/share/author/4AEBAGEHSZE9GDP3H8MN?target=10.1111/his.15048">Histopathology'23</a>
34
36
  |
35
37
  <a href="https://deepliif.org/">Cloud Deployment</a>
36
38
  |
37
39
  <a href="https://nadeemlab.github.io/DeepLIIF/">Documentation</a>
38
40
  |
39
- <a href="#docker">Docker</a>
40
- |
41
- <a href="https://github.com/nadeemlab/DeepLIIF/tree/main/ImageJ_Plugin">ImageJ Plugin</a>
42
- |
43
41
  <a href="#support">Support</a>
44
42
  </p>
45
43
  </p>
@@ -231,8 +229,7 @@ on how to deploy the model with Torchserve and for an example of how to run the
231
229
  We provide a Dockerfile that can be used to run the DeepLIIF models inside a container.
232
230
  First, you need to install the [Docker Engine](https://docs.docker.com/engine/install/ubuntu/).
233
231
  After installing the Docker, you need to follow these steps:
234
- * Download the pretrained model and place them in DeepLIIF/checkpoints/DeepLIIF_Latest_Model.
235
- * Change XXX of the **WORKDIR** line in the **DockerFile** to the directory containing the DeepLIIF project.
232
+ * Download the pretrained model [here](https://zenodo.org/record/4751737#.YKRTS0NKhH4) and place them in DeepLIIF/model-server/DeepLIIF_Latest_Model.
236
233
  * To create a docker image from the docker file:
237
234
  ```
238
235
  docker build -t cuda/deepliif .
@@ -241,7 +238,7 @@ The image is then used as a base. You can copy and use it to run an application.
241
238
  environment in which to run, referred to as a container.
242
239
  * To create and run a container:
243
240
  ```
244
- docker run -it -v `pwd`:`pwd` -w `pwd` cuda/deepliif deepliif test --input-dir Sample_Large_Tissues
241
+ docker run -it -v `pwd`:`pwd` -w `pwd` cuda/deepliif deepliif test --input-dir Sample_Large_Tissues --tile-size 512
245
242
  ```
246
243
  When you run a container from the image, the `deepliif` CLI will be available.
247
244
  You can easily run any CLI command in the activated environment and copy the results from the docker container to the host.
@@ -366,6 +363,9 @@ for the same slide (de novo staining) and would like to contribute that data for
366
363
  co-registration, whole-cell multiplex segmentation via [ImPartial](https://github.com/nadeemlab/ImPartial), train the
367
364
  DeepLIIF model and release back to the community with full credit to the contributors.
368
365
 
366
+ - [x] **Memorial Sloan Kettering Cancer Center** [AI-ready immunohistochemistry and multiplex immunofluorescence dataset](https://zenodo.org/record/4751737#.YKRTS0NKhH4) for breast, lung, and bladder cancers (**Nature Machine Intelligence'22**)
367
+ - [x] **Moffitt Cancer Center** [AI-ready multiplex immunofluorescence and multiplex immunohistochemistry dataset](https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=70226184) for head-and-neck squamous cell carcinoma (**MICCAI'23**)
368
+
369
369
  ## Support
370
370
  Please use the [Image.sc Forum](https://forum.image.sc/tag/deepliif) for discussion and questions related to DeepLIIF.
371
371
 
@@ -379,7 +379,7 @@ and is available for non-commercial academic purposes.
379
379
  * This code is inspired by [CycleGAN and pix2pix in PyTorch](https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix).
380
380
 
381
381
  ## Reference
382
- If you find our work useful in your research or if you use parts of this code, please cite our paper:
382
+ If you find our work useful in your research or if you use parts of this code or our released dataset, please cite the following papers:
383
383
  ```
384
384
  @article{ghahremani2022deep,
385
385
  title={Deep learning-inferred multiplex immunofluorescence for immunohistochemical image quantification},
@@ -400,4 +400,18 @@ If you find our work useful in your research or if you use parts of this code, p
400
400
  year={2022}
401
401
  }
402
402
 
403
+ @article{ghahremani2023deepliifdataset,
404
+ title={An AI-Ready Multiplex Staining Dataset for Reproducible and Accurate Characterization of Tumor Immune Microenvironment},
405
+ author={Ghahremani, Parmida and Marino, Joseph and Hernandez-Prera, Juan and V. de la Iglesia, Janis and JC Slebos, Robbert and H. Chung, Christine and Nadeem, Saad},
406
+ journal={International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI)},
407
+ year={2023}
408
+ }
409
+
410
+ @article{nadeem2023ki67validationMTC,
411
+ author = {Nadeem, Saad and Hanna, Matthew G and Viswanathan, Kartik and Marino, Joseph and Ahadi, Mahsa and Alzumaili, Bayan and Bani, Mohamed-Amine and Chiarucci, Federico and Chou, Angela and De Leo, Antonio and Fuchs, Talia L and Lubin, Daniel J and Luxford, Catherine and Magliocca, Kelly and Martinez, Germán and Shi, Qiuying and Sidhu, Stan and Al Ghuzlan, Abir and Gill, Anthony J and Tallini, Giovanni and Ghossein, Ronald and Xu, Bin},
412
+ title = {Ki67 proliferation index in medullary thyroid carcinoma: a comparative study of multiple counting methods and validation of image analysis and deep learning platforms},
413
+ journal = {Histopathology},
414
+ year = {2023},
415
+ doi = {https://doi.org/10.1111/his.15048}
416
+ }
403
417
  ```
@@ -1,21 +1,22 @@
1
- cli.py,sha256=o6nxKM8WzSS-AzqmvJkm8NDb203oucBzutRvqWHeKWk,40524
1
+ cli.py,sha256=elGu-9di_LcUXPsWWknWPevbaTv2r2rpORVPH5lsnAU,39723
2
2
  deepliif/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
3
- deepliif/postprocessing.py,sha256=fvRjOAQeHcCpKxqJfBgEozx5H7fqOPWaG9D689XkMQ0,16985
3
+ deepliif/postprocessing.py,sha256=QrTT7HodlLyrNFrI9hJowkQet6YVVIosf9B1iK4ajQk,17327
4
4
  deepliif/train.py,sha256=-ZORL5vQrD0_Jq2Adgr3w8vJ7L1QcAgNTqMnBgtixgk,15757
5
5
  deepliif/data/__init__.py,sha256=euf9eUboK4RYR0jvdiyZDgPGozC1Nv7WRqRbTxSZD6A,5281
6
- deepliif/data/aligned_dataset.py,sha256=swmgEKocx_fGWF9RVTAuYdNxhqSEPNmPQUM3Ad1EUOY,3045
6
+ deepliif/data/aligned_dataset.py,sha256=bAofVfgMwtb8Exe4EtQ3aP2ZYewBT4N_X8BDWSeFFj0,4405
7
7
  deepliif/data/base_dataset.py,sha256=bQlxfY7bGSE9WPj31ZHkCxv5CAEJovjakGDCcK-aYdc,5564
8
8
  deepliif/data/colorization_dataset.py,sha256=uDYWciSxwqZkStQ_Vte27D9x5FNhv6eR9wSPn39K3RY,2808
9
9
  deepliif/data/image_folder.py,sha256=eesP9vn__YQ-dw1KJG9J-yVUHMmJjLcIEQI552Iv2vE,2006
10
10
  deepliif/data/single_dataset.py,sha256=hWjqTkRESEMppZj_r8bi3G0hAZ5EfvXYgE_qRbpiEz4,1553
11
11
  deepliif/data/template_dataset.py,sha256=PCDBnFRzRKReaeWgKUZmW0LrzRByI9adrKDJ6SN2KMs,3592
12
12
  deepliif/data/unaligned_dataset.py,sha256=m7j-CX-hkXbhg96NSEcaCagNVhTuXKkMsBADdMEJDBA,3393
13
- deepliif/models/DeepLIIF_model.py,sha256=CE-fs9g9zaeUtBKGEYtEsVVMRRQ8V-i9cOWO7cy4Z0U,20669
14
- deepliif/models/__init__.py,sha256=4L842F6d6T2ULPalv_aJgZhu5rMgZvb5Sa4cNz3IKm4,17765
15
- deepliif/models/base_model.py,sha256=MGIsgMbhbfJyKMW_IiM4TCxvvHSioqKjdbti1k9u4ko,12951
13
+ deepliif/models/DeepLIIFExt_model.py,sha256=Sc60rOfDJuoGrJ1CYe4beAg6as6F0o864AO6ZB7paBY,14527
14
+ deepliif/models/DeepLIIF_model.py,sha256=ECZyM9jzoJAWSgB1ProBoarVuGcbScQMaSkRjSMgt0k,20872
15
+ deepliif/models/__init__.py,sha256=0vseZQ6LX6zrUQuMnmpcZDjyyjuVb_vMBi_hyiAVwcw,22565
16
+ deepliif/models/base_model.py,sha256=HKcUOBHtL-zLs5ZcmeXT-ZV_ubqsSUo4wMCQ0W27YHU,15583
16
17
  deepliif/models/networks.py,sha256=bN4yjRdE413efUESq8pvhzPDgFCTwFKXyQOrRqHckWY,32177
17
- deepliif/options/__init__.py,sha256=WEkvROZkYWDVDCrB_P66wPYYU2cMgBmVx2i7_BpEKq0,137
18
- deepliif/options/base_options.py,sha256=YZsU4GGccyknMChjCdIr8x7sk8MaWj3XU0E8gIz36hc,9794
18
+ deepliif/options/__init__.py,sha256=nm231wh_hQw1mX0AfXZu7-cx6WZdxURsE-jvnjlHQzE,4581
19
+ deepliif/options/base_options.py,sha256=m5UXY8MvjNcDisUWuiP228yoT27SsCh1bXS_Td6SwTc,9852
19
20
  deepliif/options/processing_options.py,sha256=OnNT-ytoTQzetFiMEKrWvrsrhZlupRK4smcnIk0MbqY,2947
20
21
  deepliif/options/test_options.py,sha256=4ZbQC5U-nTbUz8jvdDIbse5TK_mjw4D5yNjpVevWD5M,1114
21
22
  deepliif/options/train_options.py,sha256=5eA_oxpRj2-HiuMMvC5-HLapxNFG_JXOQ3K132JjpR8,3580
@@ -25,9 +26,9 @@ deepliif/util/html.py,sha256=RNAONZ4opP-bViahgmpSbHwOc6jXKQRnWRAVIaeIvac,3309
25
26
  deepliif/util/image_pool.py,sha256=M89Hc7DblRWroNP71S9mAdRn7h3DrhPFPjqFxxZYSgw,2280
26
27
  deepliif/util/util.py,sha256=bTArzuhIMGgGweH0v5rkiHrqBxc24BDv12rssOE9OoI,4636
27
28
  deepliif/util/visualizer.py,sha256=5V1lWidHqssJX21jn1P5-bOVgtrEXKVaQgnMWAsMfqg,15636
28
- deepliif-1.1.6.dist-info/LICENSE.md,sha256=HlZw_UPS6EtJimJ_Ci7xKh-S5Iubs0Z8y8E6EZ3ZNyE,956
29
- deepliif-1.1.6.dist-info/METADATA,sha256=6eDCIj2ragujJw-K_PpMBKcoppZbH5BHw7q_GVsJSL8,23363
30
- deepliif-1.1.6.dist-info/WHEEL,sha256=pkctZYzUS4AYVn6dJ-7367OJZivF2e8RA9b_ZBjif18,92
31
- deepliif-1.1.6.dist-info/entry_points.txt,sha256=f70-10j2q68o_rDlsE3hspnv4ejlDnXwwGZ9JJ-3yF4,37
32
- deepliif-1.1.6.dist-info/top_level.txt,sha256=vLDK5YKmDz08E7PywuvEjAo7dM5rnIpsjR4c0ubQCnc,13
33
- deepliif-1.1.6.dist-info/RECORD,,
29
+ deepliif-1.1.8.dist-info/LICENSE.md,sha256=HlZw_UPS6EtJimJ_Ci7xKh-S5Iubs0Z8y8E6EZ3ZNyE,956
30
+ deepliif-1.1.8.dist-info/METADATA,sha256=kXAkqKbOVhBUAhMuF7vTqZAXr8rJuLKU8dykdnr47jQ,25075
31
+ deepliif-1.1.8.dist-info/WHEEL,sha256=pkctZYzUS4AYVn6dJ-7367OJZivF2e8RA9b_ZBjif18,92
32
+ deepliif-1.1.8.dist-info/entry_points.txt,sha256=f70-10j2q68o_rDlsE3hspnv4ejlDnXwwGZ9JJ-3yF4,37
33
+ deepliif-1.1.8.dist-info/top_level.txt,sha256=vLDK5YKmDz08E7PywuvEjAo7dM5rnIpsjR4c0ubQCnc,13
34
+ deepliif-1.1.8.dist-info/RECORD,,