deepliif 1.1.6__py3-none-any.whl → 1.1.8__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- cli.py +76 -102
- deepliif/data/aligned_dataset.py +33 -7
- deepliif/models/DeepLIIFExt_model.py +297 -0
- deepliif/models/DeepLIIF_model.py +10 -5
- deepliif/models/__init__.py +262 -168
- deepliif/models/base_model.py +54 -8
- deepliif/options/__init__.py +101 -0
- deepliif/options/base_options.py +7 -6
- deepliif/postprocessing.py +285 -246
- {deepliif-1.1.6.dist-info → deepliif-1.1.8.dist-info}/METADATA +26 -12
- {deepliif-1.1.6.dist-info → deepliif-1.1.8.dist-info}/RECORD +15 -14
- {deepliif-1.1.6.dist-info → deepliif-1.1.8.dist-info}/LICENSE.md +0 -0
- {deepliif-1.1.6.dist-info → deepliif-1.1.8.dist-info}/WHEEL +0 -0
- {deepliif-1.1.6.dist-info → deepliif-1.1.8.dist-info}/entry_points.txt +0 -0
- {deepliif-1.1.6.dist-info → deepliif-1.1.8.dist-info}/top_level.txt +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: deepliif
|
|
3
|
-
Version: 1.1.
|
|
3
|
+
Version: 1.1.8
|
|
4
4
|
Summary: DeepLIIF: Deep-Learning Inferred Multiplex Immunofluorescence for Immunohistochemical Image Quantification
|
|
5
5
|
Home-page: https://github.com/nadeemlab/DeepLIIF
|
|
6
6
|
Author: Parmida93
|
|
@@ -26,20 +26,18 @@ Requires-Dist: python-bioformats (>=4.0.6)
|
|
|
26
26
|
<img src="./images/DeepLIIF_logo.png" width="50%">
|
|
27
27
|
<h3 align="center"><strong>Deep-Learning Inferred Multiplex Immunofluorescence for Immunohistochemical Image Quantification</strong></h3>
|
|
28
28
|
<p align="center">
|
|
29
|
-
<a href="https://
|
|
29
|
+
<a href="https://rdcu.be/cKSBz">Nature MI'22</a>
|
|
30
30
|
|
|
|
31
|
-
<a href="https://
|
|
31
|
+
<a href="https://openaccess.thecvf.com/content/CVPR2022/html/Ghahremani_DeepLIIF_An_Online_Platform_for_Quantification_of_Clinical_Pathology_Slides_CVPR_2022_paper.html">CVPR'22</a>
|
|
32
32
|
|
|
|
33
|
-
<a href="https://
|
|
33
|
+
<a href="https://arxiv.org/abs/2305.16465">MICCAI'23</a>
|
|
34
|
+
|
|
|
35
|
+
<a href="https://onlinelibrary.wiley.com/share/author/4AEBAGEHSZE9GDP3H8MN?target=10.1111/his.15048">Histopathology'23</a>
|
|
34
36
|
|
|
|
35
37
|
<a href="https://deepliif.org/">Cloud Deployment</a>
|
|
36
38
|
|
|
|
37
39
|
<a href="https://nadeemlab.github.io/DeepLIIF/">Documentation</a>
|
|
38
40
|
|
|
|
39
|
-
<a href="#docker">Docker</a>
|
|
40
|
-
|
|
|
41
|
-
<a href="https://github.com/nadeemlab/DeepLIIF/tree/main/ImageJ_Plugin">ImageJ Plugin</a>
|
|
42
|
-
|
|
|
43
41
|
<a href="#support">Support</a>
|
|
44
42
|
</p>
|
|
45
43
|
</p>
|
|
@@ -231,8 +229,7 @@ on how to deploy the model with Torchserve and for an example of how to run the
|
|
|
231
229
|
We provide a Dockerfile that can be used to run the DeepLIIF models inside a container.
|
|
232
230
|
First, you need to install the [Docker Engine](https://docs.docker.com/engine/install/ubuntu/).
|
|
233
231
|
After installing the Docker, you need to follow these steps:
|
|
234
|
-
* Download the pretrained model and place them in DeepLIIF/
|
|
235
|
-
* Change XXX of the **WORKDIR** line in the **DockerFile** to the directory containing the DeepLIIF project.
|
|
232
|
+
* Download the pretrained model [here](https://zenodo.org/record/4751737#.YKRTS0NKhH4) and place them in DeepLIIF/model-server/DeepLIIF_Latest_Model.
|
|
236
233
|
* To create a docker image from the docker file:
|
|
237
234
|
```
|
|
238
235
|
docker build -t cuda/deepliif .
|
|
@@ -241,7 +238,7 @@ The image is then used as a base. You can copy and use it to run an application.
|
|
|
241
238
|
environment in which to run, referred to as a container.
|
|
242
239
|
* To create and run a container:
|
|
243
240
|
```
|
|
244
|
-
docker run -it -v `pwd`:`pwd` -w `pwd` cuda/deepliif deepliif test --input-dir Sample_Large_Tissues
|
|
241
|
+
docker run -it -v `pwd`:`pwd` -w `pwd` cuda/deepliif deepliif test --input-dir Sample_Large_Tissues --tile-size 512
|
|
245
242
|
```
|
|
246
243
|
When you run a container from the image, the `deepliif` CLI will be available.
|
|
247
244
|
You can easily run any CLI command in the activated environment and copy the results from the docker container to the host.
|
|
@@ -366,6 +363,9 @@ for the same slide (de novo staining) and would like to contribute that data for
|
|
|
366
363
|
co-registration, whole-cell multiplex segmentation via [ImPartial](https://github.com/nadeemlab/ImPartial), train the
|
|
367
364
|
DeepLIIF model and release back to the community with full credit to the contributors.
|
|
368
365
|
|
|
366
|
+
- [x] **Memorial Sloan Kettering Cancer Center** [AI-ready immunohistochemistry and multiplex immunofluorescence dataset](https://zenodo.org/record/4751737#.YKRTS0NKhH4) for breast, lung, and bladder cancers (**Nature Machine Intelligence'22**)
|
|
367
|
+
- [x] **Moffitt Cancer Center** [AI-ready multiplex immunofluorescence and multiplex immunohistochemistry dataset](https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=70226184) for head-and-neck squamous cell carcinoma (**MICCAI'23**)
|
|
368
|
+
|
|
369
369
|
## Support
|
|
370
370
|
Please use the [Image.sc Forum](https://forum.image.sc/tag/deepliif) for discussion and questions related to DeepLIIF.
|
|
371
371
|
|
|
@@ -379,7 +379,7 @@ and is available for non-commercial academic purposes.
|
|
|
379
379
|
* This code is inspired by [CycleGAN and pix2pix in PyTorch](https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix).
|
|
380
380
|
|
|
381
381
|
## Reference
|
|
382
|
-
If you find our work useful in your research or if you use parts of this code, please cite
|
|
382
|
+
If you find our work useful in your research or if you use parts of this code or our released dataset, please cite the following papers:
|
|
383
383
|
```
|
|
384
384
|
@article{ghahremani2022deep,
|
|
385
385
|
title={Deep learning-inferred multiplex immunofluorescence for immunohistochemical image quantification},
|
|
@@ -400,4 +400,18 @@ If you find our work useful in your research or if you use parts of this code, p
|
|
|
400
400
|
year={2022}
|
|
401
401
|
}
|
|
402
402
|
|
|
403
|
+
@article{ghahremani2023deepliifdataset,
|
|
404
|
+
title={An AI-Ready Multiplex Staining Dataset for Reproducible and Accurate Characterization of Tumor Immune Microenvironment},
|
|
405
|
+
author={Ghahremani, Parmida and Marino, Joseph and Hernandez-Prera, Juan and V. de la Iglesia, Janis and JC Slebos, Robbert and H. Chung, Christine and Nadeem, Saad},
|
|
406
|
+
journal={International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI)},
|
|
407
|
+
year={2023}
|
|
408
|
+
}
|
|
409
|
+
|
|
410
|
+
@article{nadeem2023ki67validationMTC,
|
|
411
|
+
author = {Nadeem, Saad and Hanna, Matthew G and Viswanathan, Kartik and Marino, Joseph and Ahadi, Mahsa and Alzumaili, Bayan and Bani, Mohamed-Amine and Chiarucci, Federico and Chou, Angela and De Leo, Antonio and Fuchs, Talia L and Lubin, Daniel J and Luxford, Catherine and Magliocca, Kelly and Martinez, Germán and Shi, Qiuying and Sidhu, Stan and Al Ghuzlan, Abir and Gill, Anthony J and Tallini, Giovanni and Ghossein, Ronald and Xu, Bin},
|
|
412
|
+
title = {Ki67 proliferation index in medullary thyroid carcinoma: a comparative study of multiple counting methods and validation of image analysis and deep learning platforms},
|
|
413
|
+
journal = {Histopathology},
|
|
414
|
+
year = {2023},
|
|
415
|
+
doi = {https://doi.org/10.1111/his.15048}
|
|
416
|
+
}
|
|
403
417
|
```
|
|
@@ -1,21 +1,22 @@
|
|
|
1
|
-
cli.py,sha256=
|
|
1
|
+
cli.py,sha256=elGu-9di_LcUXPsWWknWPevbaTv2r2rpORVPH5lsnAU,39723
|
|
2
2
|
deepliif/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
3
|
-
deepliif/postprocessing.py,sha256=
|
|
3
|
+
deepliif/postprocessing.py,sha256=QrTT7HodlLyrNFrI9hJowkQet6YVVIosf9B1iK4ajQk,17327
|
|
4
4
|
deepliif/train.py,sha256=-ZORL5vQrD0_Jq2Adgr3w8vJ7L1QcAgNTqMnBgtixgk,15757
|
|
5
5
|
deepliif/data/__init__.py,sha256=euf9eUboK4RYR0jvdiyZDgPGozC1Nv7WRqRbTxSZD6A,5281
|
|
6
|
-
deepliif/data/aligned_dataset.py,sha256=
|
|
6
|
+
deepliif/data/aligned_dataset.py,sha256=bAofVfgMwtb8Exe4EtQ3aP2ZYewBT4N_X8BDWSeFFj0,4405
|
|
7
7
|
deepliif/data/base_dataset.py,sha256=bQlxfY7bGSE9WPj31ZHkCxv5CAEJovjakGDCcK-aYdc,5564
|
|
8
8
|
deepliif/data/colorization_dataset.py,sha256=uDYWciSxwqZkStQ_Vte27D9x5FNhv6eR9wSPn39K3RY,2808
|
|
9
9
|
deepliif/data/image_folder.py,sha256=eesP9vn__YQ-dw1KJG9J-yVUHMmJjLcIEQI552Iv2vE,2006
|
|
10
10
|
deepliif/data/single_dataset.py,sha256=hWjqTkRESEMppZj_r8bi3G0hAZ5EfvXYgE_qRbpiEz4,1553
|
|
11
11
|
deepliif/data/template_dataset.py,sha256=PCDBnFRzRKReaeWgKUZmW0LrzRByI9adrKDJ6SN2KMs,3592
|
|
12
12
|
deepliif/data/unaligned_dataset.py,sha256=m7j-CX-hkXbhg96NSEcaCagNVhTuXKkMsBADdMEJDBA,3393
|
|
13
|
-
deepliif/models/
|
|
14
|
-
deepliif/models/
|
|
15
|
-
deepliif/models/
|
|
13
|
+
deepliif/models/DeepLIIFExt_model.py,sha256=Sc60rOfDJuoGrJ1CYe4beAg6as6F0o864AO6ZB7paBY,14527
|
|
14
|
+
deepliif/models/DeepLIIF_model.py,sha256=ECZyM9jzoJAWSgB1ProBoarVuGcbScQMaSkRjSMgt0k,20872
|
|
15
|
+
deepliif/models/__init__.py,sha256=0vseZQ6LX6zrUQuMnmpcZDjyyjuVb_vMBi_hyiAVwcw,22565
|
|
16
|
+
deepliif/models/base_model.py,sha256=HKcUOBHtL-zLs5ZcmeXT-ZV_ubqsSUo4wMCQ0W27YHU,15583
|
|
16
17
|
deepliif/models/networks.py,sha256=bN4yjRdE413efUESq8pvhzPDgFCTwFKXyQOrRqHckWY,32177
|
|
17
|
-
deepliif/options/__init__.py,sha256=
|
|
18
|
-
deepliif/options/base_options.py,sha256=
|
|
18
|
+
deepliif/options/__init__.py,sha256=nm231wh_hQw1mX0AfXZu7-cx6WZdxURsE-jvnjlHQzE,4581
|
|
19
|
+
deepliif/options/base_options.py,sha256=m5UXY8MvjNcDisUWuiP228yoT27SsCh1bXS_Td6SwTc,9852
|
|
19
20
|
deepliif/options/processing_options.py,sha256=OnNT-ytoTQzetFiMEKrWvrsrhZlupRK4smcnIk0MbqY,2947
|
|
20
21
|
deepliif/options/test_options.py,sha256=4ZbQC5U-nTbUz8jvdDIbse5TK_mjw4D5yNjpVevWD5M,1114
|
|
21
22
|
deepliif/options/train_options.py,sha256=5eA_oxpRj2-HiuMMvC5-HLapxNFG_JXOQ3K132JjpR8,3580
|
|
@@ -25,9 +26,9 @@ deepliif/util/html.py,sha256=RNAONZ4opP-bViahgmpSbHwOc6jXKQRnWRAVIaeIvac,3309
|
|
|
25
26
|
deepliif/util/image_pool.py,sha256=M89Hc7DblRWroNP71S9mAdRn7h3DrhPFPjqFxxZYSgw,2280
|
|
26
27
|
deepliif/util/util.py,sha256=bTArzuhIMGgGweH0v5rkiHrqBxc24BDv12rssOE9OoI,4636
|
|
27
28
|
deepliif/util/visualizer.py,sha256=5V1lWidHqssJX21jn1P5-bOVgtrEXKVaQgnMWAsMfqg,15636
|
|
28
|
-
deepliif-1.1.
|
|
29
|
-
deepliif-1.1.
|
|
30
|
-
deepliif-1.1.
|
|
31
|
-
deepliif-1.1.
|
|
32
|
-
deepliif-1.1.
|
|
33
|
-
deepliif-1.1.
|
|
29
|
+
deepliif-1.1.8.dist-info/LICENSE.md,sha256=HlZw_UPS6EtJimJ_Ci7xKh-S5Iubs0Z8y8E6EZ3ZNyE,956
|
|
30
|
+
deepliif-1.1.8.dist-info/METADATA,sha256=kXAkqKbOVhBUAhMuF7vTqZAXr8rJuLKU8dykdnr47jQ,25075
|
|
31
|
+
deepliif-1.1.8.dist-info/WHEEL,sha256=pkctZYzUS4AYVn6dJ-7367OJZivF2e8RA9b_ZBjif18,92
|
|
32
|
+
deepliif-1.1.8.dist-info/entry_points.txt,sha256=f70-10j2q68o_rDlsE3hspnv4ejlDnXwwGZ9JJ-3yF4,37
|
|
33
|
+
deepliif-1.1.8.dist-info/top_level.txt,sha256=vLDK5YKmDz08E7PywuvEjAo7dM5rnIpsjR4c0ubQCnc,13
|
|
34
|
+
deepliif-1.1.8.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|