deepliif 1.1.5__py3-none-any.whl → 1.1.7__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,403 +1,408 @@
1
- Metadata-Version: 2.1
2
- Name: deepliif
3
- Version: 1.1.5
4
- Summary: DeepLIIF: Deep-Learning Inferred Multiplex Immunofluorescence for Immunohistochemical Image Quantification
5
- Home-page: https://github.com/nadeemlab/DeepLIIF
6
- Author: Parmida93
7
- Author-email: ghahremani.parmida@gmail.com
8
- Keywords: DeepLIIF,IHC,Segmentation,Classification
9
- Description-Content-Type: text/markdown
10
- License-File: LICENSE.md
11
- Requires-Dist: opencv-python (==4.5.3.56)
12
- Requires-Dist: torchvision (==0.10.0)
13
- Requires-Dist: scikit-image (==0.18.3)
14
- Requires-Dist: dominate (==2.6.0)
15
- Requires-Dist: numba (==0.53.1)
16
- Requires-Dist: Click (==8.0.3)
17
- Requires-Dist: requests (==2.26.0)
18
- Requires-Dist: dask (==2021.11.2)
19
- Requires-Dist: visdom (>=0.1.8.3)
20
- Requires-Dist: python-bioformats (>=4.0.6)
21
-
22
-
23
- <!-- PROJECT LOGO -->
24
- <br />
25
- <p align="center">
26
- <img src="./images/DeepLIIF_logo.png" width="50%">
27
- <h3 align="center"><strong>Deep-Learning Inferred Multiplex Immunofluorescence for Immunohistochemical Image Quantification</strong></h3>
28
- <p align="center">
29
- <a href="https://doi.org/10.1101/2021.05.01.442219">Journal Preprint</a>
30
- |
31
- <a href="https://rdcu.be/cKSBz">Journal Link</a>
32
- |
33
- <a href="https://openaccess.thecvf.com/content/CVPR2022/html/Ghahremani_DeepLIIF_An_Online_Platform_for_Quantification_of_Clinical_Pathology_Slides_CVPR_2022_paper.html">CVPR Link</a>
34
- |
35
- <a href="https://deepliif.org/">Cloud Deployment</a>
36
- |
37
- <a href="https://nadeemlab.github.io/DeepLIIF/">Documentation</a>
38
- |
39
- <a href="#docker">Docker</a>
40
- |
41
- <a href="https://github.com/nadeemlab/DeepLIIF/tree/main/ImageJ_Plugin">ImageJ Plugin</a>
42
- |
43
- <a href="#support">Support</a>
44
- </p>
45
- </p>
46
-
47
- *Reporting biomarkers assessed by routine immunohistochemical (IHC) staining of tissue is broadly used in diagnostic
48
- pathology laboratories for patient care. To date, clinical reporting is predominantly qualitative or semi-quantitative.
49
- By creating a multitask deep learning framework referred to as DeepLIIF, we present a single-step solution to stain
50
- deconvolution/separation, cell segmentation, and quantitative single-cell IHC scoring. Leveraging a unique de novo
51
- dataset of co-registered IHC and multiplex immunofluorescence (mpIF) staining of the same slides, we segment and
52
- translate low-cost and prevalent IHC slides to more expensive-yet-informative mpIF images, while simultaneously
53
- providing the essential ground truth for the superimposed brightfield IHC channels. Moreover, a new nuclear-envelop
54
- stain, LAP2beta, with high (>95%) cell coverage is introduced to improve cell delineation/segmentation and protein
55
- expression quantification on IHC slides. By simultaneously translating input IHC images to clean/separated mpIF channels
56
- and performing cell segmentation/classification, we show that our model trained on clean IHC Ki67 data can generalize to
57
- more noisy and artifact-ridden images as well as other nuclear and non-nuclear markers such as CD3, CD8, BCL2, BCL6,
58
- MYC, MUM1, CD10, and TP53. We thoroughly evaluate our method on publicly available benchmark datasets as well as against
59
- pathologists' semi-quantitative scoring. Trained on IHC, DeepLIIF generalizes well to H&E images for out-of-the-box nuclear
60
- segmentation.*
61
-
62
- **DeepLIIF** is deployed as a free publicly available cloud-native platform (https://deepliif.org) with Bioformats (more than 150 input formats supported) and MLOps pipeline. We also release **DeepLIIF** implementations for single/multi-GPU training, Torchserve/Dask+Torchscript deployment, and auto-scaling via Pulumi (1000s of concurrent connections supported); details can be found in our [documentation](https://nadeemlab.github.io/DeepLIIF/). **DeepLIIF** can be run locally (GPU required) by [pip installing the package](https://github.com/nadeemlab/DeepLIIF/edit/main/README.md#installing-deepliif) and using the deepliif CLI command. **DeepLIIF** can be used remotely (no GPU required) through the https://deepliif.org website, calling the [cloud API via Python](https://github.com/nadeemlab/DeepLIIF/edit/main/README.md#cloud-deployment), or via the [ImageJ/Fiji plugin](https://github.com/nadeemlab/DeepLIIF/edit/main/README.md#imagej-plugin); details for the free cloud-native platform can be found in our [CVPR'22 paper](https://arxiv.org/pdf/2204.04494.pdf).
63
-
64
- © This code is made available for non-commercial academic purposes.
65
-
66
- ![overview_image](./images/overview.png)*Overview of DeepLIIF pipeline and sample input IHCs (different
67
- brown/DAB markers -- BCL2, BCL6, CD10, CD3/CD8, Ki67) with corresponding DeepLIIF-generated hematoxylin/mpIF modalities
68
- and classified (positive (red) and negative (blue) cell) segmentation masks. (a) Overview of DeepLIIF. Given an IHC
69
- input, our multitask deep learning framework simultaneously infers corresponding Hematoxylin channel, mpIF DAPI, mpIF
70
- protein expression (Ki67, CD3, CD8, etc.), and the positive/negative protein cell segmentation, baking explainability
71
- and interpretability into the model itself rather than relying on coarse activation/attention maps. In the segmentation
72
- mask, the red cells denote cells with positive protein expression (brown/DAB cells in the input IHC), whereas blue cells
73
- represent negative cells (blue cells in the input IHC). (b) Example DeepLIIF-generated hematoxylin/mpIF modalities and
74
- segmentation masks for different IHC markers. DeepLIIF, trained on clean IHC Ki67 nuclear marker images, can generalize
75
- to noisier as well as other IHC nuclear/cytoplasmic marker images.*
76
-
77
- ## Prerequisites
78
- 1. Python 3.8
79
- 2. Docker
80
-
81
- ## Installing `deepliif`
82
-
83
- DeepLIIF can be `pip` installed:
84
- ```shell
85
- $ conda create --name deepliif_env python=3.8
86
- $ conda activate deepliif_env
87
- (deepliif_env) $ pip install deepliif
88
- (deepliif_env) $ conda install -c conda-forge openjdk
89
- ```
90
-
91
- The package is composed of two parts:
92
- 1. A library that implements the core functions used to train and test DeepLIIF models.
93
- 2. A CLI to run common batch operations including training, batch testing and Torchscipt models serialization.
94
-
95
- You can list all available commands:
96
-
97
- ```
98
- (venv) $ deepliif --help
99
- Usage: deepliif [OPTIONS] COMMAND [ARGS]...
100
-
101
- Options:
102
- --help Show this message and exit.
103
-
104
- Commands:
105
- prepare-testing-data Preparing data for testing
106
- serialize Serialize DeepLIIF models using Torchscript
107
- test Test trained models
108
- train General-purpose training script for multi-task...
109
- ```
110
-
111
- ## Training Dataset
112
- For training, all image sets must be 512x512 and combined together in 3072x512 images (six images of size 512x512 stitched
113
- together horizontally).
114
- The data need to be arranged in the following order:
115
- ```
116
- XXX_Dataset
117
- ├── train
118
- └── val
119
- ```
120
- We have provided a simple function in the CLI for preparing data for training.
121
-
122
- * **To prepare data for training**, you need to have the image dataset for each image (including IHC, Hematoxylin Channel, mpIF DAPI, mpIF Lap2, mpIF marker, and segmentation mask) in the input directory.
123
- Each of the six images for a single image set must have the same naming format, with only the name of the label for the type of image differing between them. The label names must be, respectively: IHC, Hematoxylin, DAPI, Lap2, Marker, Seg.
124
- The command takes the address of the directory containing image set data and the address of the output dataset directory.
125
- It first creates the train and validation directories inside the given output dataset directory.
126
- It then reads all of the images in the input directory and saves the combined image in the train or validation directory, based on the given `validation_ratio`.
127
- ```
128
- deepliif prepare-training-data --input-dir /path/to/input/images
129
- --output-dir /path/to/output/images
130
- --validation-ratio 0.2
131
- ```
132
-
133
- ## Training
134
- To train a model:
135
- ```
136
- deepliif train --dataroot /path/to/input/images
137
- --name Model_Name
138
- ```
139
- or
140
- ```
141
- python train.py --dataroot /path/to/input/images
142
- --name Model_Name
143
- ```
144
-
145
- * To view training losses and results, open the URL http://localhost:8097. For cloud servers replace localhost with your IP.
146
- * Epoch-wise intermediate training results are in `DeepLIIF/checkpoints/Model_Name/web/index.html`.
147
- * Trained models will be by default be saved in `DeepLIIF/checkpoints/Model_Name`.
148
- * Training datasets can be downloaded [here](https://zenodo.org/record/4751737#.YKRTS0NKhH4).
149
-
150
- **DP**: To train a model you can use DP. DP is single-process. It means that **all the GPUs you want to use must be on the same machine** so that they can be included in the same process - you cannot distribute the training across multiple GPU machines, unless you write your own code to handle inter-node (node = machine) communication.
151
- To split and manage the workload for multiple GPUs within the same process, DP uses multi-threading.
152
- You can find more information on DP [here](https://github.com/nadeemlab/DeepLIIF/blob/main/Multi-GPU%20Training.md).
153
-
154
- To train a model with DP (Example with 2 GPUs (on 1 machine)):
155
- ```
156
- deepliif train --dataroot <data_dir> --batch-size 6 --gpu-ids 0 --gpu-ids 1
157
- ```
158
- Note that `batch-size` is defined per process. Since DP is a single-process method, the `batch-size` you set is the **effective** batch size.
159
-
160
- **DDP**: To train a model you can use DDP. DDP usually spawns multiple processes.
161
- **DeepLIIF's code follows the PyTorch recommendation to spawn 1 process per GPU** ([doc](https://github.com/pytorch/examples/blob/master/distributed/ddp/README.md#application-process-topologies)). If you want to assign multiple GPUs to each process, you will need to make modifications to DeepLIIF's code (see [doc](https://pytorch.org/tutorials/intermediate/ddp_tutorial.html#combine-ddp-with-model-parallelism)).
162
- Despite all the benefits of DDP, one drawback is the extra GPU memory needed for dedicated CUDA buffer for communication. See a short discussion [here](https://discuss.pytorch.org/t/do-dataparallel-and-distributeddataparallel-affect-the-batch-size-and-gpu-memory-consumption/97194/2). In the context of DeepLIIF, this means that there might be situations where you could use a *bigger batch size with DP* as compared to DDP, which may actually train faster than using DDP with a smaller batch size.
163
- You can find more information on DDP [here](https://github.com/nadeemlab/DeepLIIF/blob/main/Multi-GPU%20Training.md).
164
-
165
- To launch training using DDP on a local machine, use `deepliif trainlaunch`. Example with 2 GPUs (on 1 machine):
166
- ```
167
- deepliif trainlaunch --dataroot <data_dir> --batch-size 3 --gpu-ids 0 --gpu-ids 1 --use-torchrun "--nproc_per_node 2"
168
- ```
169
- Note that
170
- 1. `batch-size` is defined per process. Since DDP is a single-process method, the `batch-size` you set is the batch size for each process, and the **effective** batch size will be `batch-size` multiplied by the number of processes you started. In the above example, it will be 3 * 2 = 6.
171
- 2. You still need to provide **all GPU ids to use** to the training command. Internally, in each process DeepLIIF picks the device using `gpu_ids[local_rank]`. If you provide `--gpu-ids 2 --gpu-ids 3`, the process with local rank 0 will use gpu id 2 and that with local rank 1 will use gpu id 3.
172
- 3. `-t 3 --log_dir <log_dir>` is not required, but is a useful setting in `torchrun` that saves the log from each process to your target log directory. For example:
173
- ```
174
- deepliif trainlaunch --dataroot <data_dir> --batch-size 3 --gpu-ids 0 --gpu-ids 1 --use-torchrun "-t 3 --log_dir <log_dir> --nproc_per_node 2"
175
- ```
176
- 4. If your PyTorch is older than 1.10, DeepLIIF calls `torch.distributed.launch` in the backend. Otherwise, DeepLIIF calls `torchrun`.
177
-
178
- ## Serialize Model
179
- The installed `deepliif` uses Dask to perform inference on the input IHC images.
180
- Before running the `test` command, the model files must be serialized using Torchscript.
181
- To serialize the model files:
182
- ```
183
- deepliif serialize --models-dir /path/to/input/model/files
184
- --output-dir /path/to/output/model/files
185
- ```
186
- * By default, the model files are expected to be located in `DeepLIIF/model-server/DeepLIIF_Latest_Model`.
187
- * By default, the serialized files will be saved to the same directory as the input model files.
188
-
189
- ## Testing
190
- To test the model:
191
- ```
192
- deepliif test --input-dir /path/to/input/images
193
- --output-dir /path/to/output/images
194
- --model-dir path/to/the/serialized/model
195
- --tile-size 512
196
- ```
197
- or
198
- ```
199
- python test.py --dataroot /path/to/input/images
200
- --name Model_Name
201
- ```
202
- * The latest version of the pretrained models can be downloaded [here](https://zenodo.org/record/4751737#.YKRTS0NKhH4).
203
- * Before running test on images, the model files must be serialized as described above.
204
- * The serialized model files are expected to be located in `DeepLIIF/model-server/DeepLIIF_Latest_Model`.
205
- * The test results will be saved to the specified output directory, which defaults to the input directory.
206
- * The default tile size is 512.
207
- * Testing datasets can be downloaded [here](https://zenodo.org/record/4751737#.YKRTS0NKhH4).
208
-
209
- **Whole Slide Image (WSI) Inference:**
210
- For translation and segmentation of whole slide images,
211
- you can simply use the same test command
212
- giving path to the directory containing your whole slide images as the input-dir.
213
- DeepLIIF automatically reads the WSI region by region,
214
- and translate and segment each region separately and stitches the regions
215
- to create the translation and segmentation for whole slide image,
216
- then saves all masks in the format of ome.tiff in the given output-dir.
217
- Based on the available GPU resources, the region-size can be changed.
218
- ```
219
- deepliif test --input-dir /path/to/input/images
220
- --output-dir /path/to/output/images
221
- --model-dir path/to/the/serialized/model
222
- --tile-size 512
223
- --region-size 20000
224
- ```
225
-
226
- If you prefer, it is possible to run the models using Torchserve.
227
- Please see [the documentation](https://nadeemlab.github.io/DeepLIIF/deployment/#deploying-deepliif-with-torchserve)
228
- on how to deploy the model with Torchserve and for an example of how to run the inference.
229
-
230
- ## Docker
231
- We provide a Dockerfile that can be used to run the DeepLIIF models inside a container.
232
- First, you need to install the [Docker Engine](https://docs.docker.com/engine/install/ubuntu/).
233
- After installing the Docker, you need to follow these steps:
234
- * Download the pretrained model and place them in DeepLIIF/checkpoints/DeepLIIF_Latest_Model.
235
- * Change XXX of the **WORKDIR** line in the **DockerFile** to the directory containing the DeepLIIF project.
236
- * To create a docker image from the docker file:
237
- ```
238
- docker build -t cuda/deepliif .
239
- ```
240
- The image is then used as a base. You can copy and use it to run an application. The application needs an isolated
241
- environment in which to run, referred to as a container.
242
- * To create and run a container:
243
- ```
244
- docker run -it -v `pwd`:`pwd` -w `pwd` cuda/deepliif deepliif test --input-dir Sample_Large_Tissues
245
- ```
246
- When you run a container from the image, the `deepliif` CLI will be available.
247
- You can easily run any CLI command in the activated environment and copy the results from the docker container to the host.
248
-
249
- ## ImageJ Plugin
250
- If you don't have access to GPU or appropriate hardware and just want to use ImageJ to run inference, we have also created an [ImageJ plugin](https://github.com/nadeemlab/DeepLIIF/tree/main/ImageJ_Plugin) for your convenience.
251
-
252
- ![DeepLIIF ImageJ Demo](images/deepliif-imagej-demo.gif)
253
-
254
- The plugin also supports submitting multiple ROIs at once:
255
-
256
- ![DeepLIIF ImageJ ROI Demo](images/deepliif-imagej-roi-demo.gif)
257
-
258
- ## Cloud Deployment
259
- If you don't have access to GPU or appropriate hardware and don't want to install ImageJ, we have also created a [cloud-native DeepLIIF deployment](https://deepliif.org) with a user-friendly interface to upload images, visualize, interact, and download the final results.
260
-
261
- ![DeepLIIF Website Demo](images/deepliif-website-demo-03.gif)
262
-
263
- DeepLIIF can also be accessed programmatically through an endpoint by posting a multipart-encoded request
264
- containing the original image file:
265
-
266
- ```
267
- POST /api/infer
268
-
269
- Parameters
270
-
271
- img (required)
272
- file: image to run the models on
273
-
274
- resolution
275
- string: resolution used to scan the slide (10x, 20x, 40x), defaults to 20x
276
-
277
- pil
278
- boolean: if true, use PIL.Image.open() to load the image, instead of python-bioformats
279
-
280
- slim
281
- boolean: if true, return only the segmentation result image
282
- ```
283
-
284
- For example, in Python:
285
-
286
- ```python
287
- import os
288
- import json
289
- import base64
290
- from io import BytesIO
291
-
292
- import requests
293
- from PIL import Image
294
-
295
- # Use the sample images from the main DeepLIIF repo
296
- images_dir = './Sample_Large_Tissues'
297
- filename = 'ROI_1.png'
298
-
299
- res = requests.post(
300
- url='https://deepliif.org/api/infer',
301
- files={
302
- 'img': open(f'{images_dir}/{filename}', 'rb')
303
- },
304
- # optional param that can be 10x, 20x (default) or 40x
305
- params={
306
- 'resolution': '20x'
307
- }
308
- )
309
-
310
- data = res.json()
311
-
312
- def b64_to_pil(b):
313
- return Image.open(BytesIO(base64.b64decode(b.encode())))
314
-
315
- for name, img in data['images'].items():
316
- output_filepath = f'{images_dir}/{os.path.splitext(filename)[0]}_{name}.png'
317
- with open(output_filepath, 'wb') as f:
318
- b64_to_pil(img).save(f, format='PNG')
319
-
320
- print(json.dumps(data['scoring'], indent=2))
321
- ```
322
-
323
- ## Synthetic Data Generation
324
- The first version of DeepLIIF model suffered from its inability to separate IHC positive cells in some large clusters,
325
- resulting from the absence of clustered positive cells in our training data. To infuse more information about the
326
- clustered positive cells into our model, we present a novel approach for the synthetic generation of IHC images using
327
- co-registered data.
328
- We design a GAN-based model that receives the Hematoxylin channel, the mpIF DAPI image, and the segmentation mask and
329
- generates the corresponding IHC image. The model converts the Hematoxylin channel to gray-scale to infer more helpful
330
- information such as the texture and discard unnecessary information such as color. The Hematoxylin image guides the
331
- network to synthesize the background of the IHC image by preserving the shape and texture of the cells and artifacts in
332
- the background. The DAPI image assists the network in identifying the location, shape, and texture of the cells to
333
- better isolate the cells from the background. The segmentation mask helps the network specify the color of cells based
334
- on the type of the cell (positive cell: a brown hue, negative: a blue hue).
335
-
336
- In the next step, we generate synthetic IHC images with more clustered positive cells. To do so, we change the
337
- segmentation mask by choosing a percentage of random negative cells in the segmentation mask (called as Neg-to-Pos) and
338
- converting them into positive cells. Some samples of the synthesized IHC images along with the original IHC image are
339
- shown below.
340
-
341
- ![IHC_Gen_image](docs/training/images/IHC_Gen.jpg)*Overview of synthetic IHC image generation. (a) A training sample
342
- of the IHC-generator model. (b) Some samples of synthesized IHC images using the trained IHC-Generator model. The
343
- Neg-to-Pos shows the percentage of the negative cells in the segmentation mask converted to positive cells.*
344
-
345
- We created a new dataset using the original IHC images and synthetic IHC images. We synthesize each image in the dataset
346
- two times by setting the Neg-to-Pos parameter to %50 and %70. We re-trained our network with the new dataset. You can
347
- find the new trained model [here](https://zenodo.org/record/4751737/files/DeepLIIF_Latest_Model.zip?download=1).
348
-
349
- ## Registration
350
- To register the de novo stained mpIF and IHC images, you can use the registration framework in the 'Registration'
351
- directory. Please refer to the README file provided in the same directory for more details.
352
-
353
- ## Contributing Training Data
354
- To train DeepLIIF, we used a dataset of lung and bladder tissues containing IHC, hematoxylin, mpIF DAPI, mpIF Lap2, and
355
- mpIF Ki67 of the same tissue scanned using ZEISS Axioscan. These images were scaled and co-registered with the fixed IHC
356
- images using affine transformations, resulting in 1264 co-registered sets of IHC and corresponding multiplex images of
357
- size 512x512. We randomly selected 575 sets for training, 91 sets for validation, and 598 sets for testing the model.
358
- We also randomly selected and manually segmented 41 images of size 640x640 from recently released [BCDataset](https://sites.google.com/view/bcdataset)
359
- which contains Ki67 stained sections of breast carcinoma with Ki67+ and Ki67- cell centroid annotations (for cell
360
- detection rather than cell instance segmentation task). We split these tiles into 164 images of size 512x512; the test
361
- set varies widely in the density of tumor cells and the Ki67 index. You can find this dataset [here](https://zenodo.org/record/4751737#.YKRTS0NKhH4).
362
-
363
- We are also creating a self-configurable version of DeepLIIF which will take as input any co-registered H&E/IHC and
364
- multiplex images and produce the optimal output. If you are generating or have generated H&E/IHC and multiplex staining
365
- for the same slide (de novo staining) and would like to contribute that data for DeepLIIF, we can perform
366
- co-registration, whole-cell multiplex segmentation via [ImPartial](https://github.com/nadeemlab/ImPartial), train the
367
- DeepLIIF model and release back to the community with full credit to the contributors.
368
-
369
- ## Support
370
- Please use the [Image.sc Forum](https://forum.image.sc/tag/deepliif) for discussion and questions related to DeepLIIF.
371
-
372
- Bugs can be reported in the [GitHub Issues](https://github.com/nadeemlab/DeepLIIF/issues) tab.
373
-
374
- ## License
375
- © [Nadeem Lab](https://nadeemlab.org/) - DeepLIIF code is distributed under **Apache 2.0 with Commons Clause** license,
376
- and is available for non-commercial academic purposes.
377
-
378
- ## Acknowledgments
379
- * This code is inspired by [CycleGAN and pix2pix in PyTorch](https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix).
380
-
381
- ## Reference
382
- If you find our work useful in your research or if you use parts of this code, please cite our paper:
383
- ```
384
- @article{ghahremani2022deep,
385
- title={Deep learning-inferred multiplex immunofluorescence for immunohistochemical image quantification},
386
- author={Ghahremani, Parmida and Li, Yanyun and Kaufman, Arie and Vanguri, Rami and Greenwald, Noah and Angelo, Michael and Hollmann, Travis J and Nadeem, Saad},
387
- journal={Nature Machine Intelligence},
388
- volume={4},
389
- number={4},
390
- pages={401--412},
391
- year={2022},
392
- publisher={Nature Publishing Group}
393
- }
394
-
395
- @article{ghahremani2022deepliifui,
396
- title={DeepLIIF: An Online Platform for Quantification of Clinical Pathology Slides},
397
- author={Ghahremani, Parmida and Marino, Joseph and Dodds, Ricardo and Nadeem, Saad},
398
- journal={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
399
- pages={21399--21405},
400
- year={2022}
401
- }
402
-
403
- ```
1
+ Metadata-Version: 2.1
2
+ Name: deepliif
3
+ Version: 1.1.7
4
+ Summary: DeepLIIF: Deep-Learning Inferred Multiplex Immunofluorescence for Immunohistochemical Image Quantification
5
+ Home-page: https://github.com/nadeemlab/DeepLIIF
6
+ Author: Parmida93
7
+ Author-email: ghahremani.parmida@gmail.com
8
+ Keywords: DeepLIIF,IHC,Segmentation,Classification
9
+ Description-Content-Type: text/markdown
10
+ License-File: LICENSE.md
11
+ Requires-Dist: opencv-python (==4.5.3.56)
12
+ Requires-Dist: torchvision (==0.10.0)
13
+ Requires-Dist: scikit-image (==0.18.3)
14
+ Requires-Dist: dominate (==2.6.0)
15
+ Requires-Dist: numba (==0.53.1)
16
+ Requires-Dist: Click (==8.0.3)
17
+ Requires-Dist: requests (==2.26.0)
18
+ Requires-Dist: dask (==2021.11.2)
19
+ Requires-Dist: visdom (>=0.1.8.3)
20
+ Requires-Dist: python-bioformats (>=4.0.6)
21
+
22
+
23
+ <!-- PROJECT LOGO -->
24
+ <br />
25
+ <p align="center">
26
+ <img src="./images/DeepLIIF_logo.png" width="50%">
27
+ <h3 align="center"><strong>Deep-Learning Inferred Multiplex Immunofluorescence for Immunohistochemical Image Quantification</strong></h3>
28
+ <p align="center">
29
+ <a href="https://rdcu.be/cKSBz">Nature MI'22 Link</a>
30
+ |
31
+ <a href="https://openaccess.thecvf.com/content/CVPR2022/html/Ghahremani_DeepLIIF_An_Online_Platform_for_Quantification_of_Clinical_Pathology_Slides_CVPR_2022_paper.html">CVPR'22 Link</a>
32
+ |
33
+ <a href="https://arxiv.org/abs/2305.16465">MICCAI'23 link</a>
34
+ |
35
+ <a href="https://deepliif.org/">Cloud Deployment</a>
36
+ |
37
+ <a href="https://nadeemlab.github.io/DeepLIIF/">Documentation</a>
38
+ |
39
+ <a href="#support">Support</a>
40
+ </p>
41
+ </p>
42
+
43
+ *Reporting biomarkers assessed by routine immunohistochemical (IHC) staining of tissue is broadly used in diagnostic
44
+ pathology laboratories for patient care. To date, clinical reporting is predominantly qualitative or semi-quantitative.
45
+ By creating a multitask deep learning framework referred to as DeepLIIF, we present a single-step solution to stain
46
+ deconvolution/separation, cell segmentation, and quantitative single-cell IHC scoring. Leveraging a unique de novo
47
+ dataset of co-registered IHC and multiplex immunofluorescence (mpIF) staining of the same slides, we segment and
48
+ translate low-cost and prevalent IHC slides to more expensive-yet-informative mpIF images, while simultaneously
49
+ providing the essential ground truth for the superimposed brightfield IHC channels. Moreover, a new nuclear-envelop
50
+ stain, LAP2beta, with high (>95%) cell coverage is introduced to improve cell delineation/segmentation and protein
51
+ expression quantification on IHC slides. By simultaneously translating input IHC images to clean/separated mpIF channels
52
+ and performing cell segmentation/classification, we show that our model trained on clean IHC Ki67 data can generalize to
53
+ more noisy and artifact-ridden images as well as other nuclear and non-nuclear markers such as CD3, CD8, BCL2, BCL6,
54
+ MYC, MUM1, CD10, and TP53. We thoroughly evaluate our method on publicly available benchmark datasets as well as against
55
+ pathologists' semi-quantitative scoring. Trained on IHC, DeepLIIF generalizes well to H&E images for out-of-the-box nuclear
56
+ segmentation.*
57
+
58
+ **DeepLIIF** is deployed as a free publicly available cloud-native platform (https://deepliif.org) with Bioformats (more than 150 input formats supported) and MLOps pipeline. We also release **DeepLIIF** implementations for single/multi-GPU training, Torchserve/Dask+Torchscript deployment, and auto-scaling via Pulumi (1000s of concurrent connections supported); details can be found in our [documentation](https://nadeemlab.github.io/DeepLIIF/). **DeepLIIF** can be run locally (GPU required) by [pip installing the package](https://github.com/nadeemlab/DeepLIIF/edit/main/README.md#installing-deepliif) and using the deepliif CLI command. **DeepLIIF** can be used remotely (no GPU required) through the https://deepliif.org website, calling the [cloud API via Python](https://github.com/nadeemlab/DeepLIIF/edit/main/README.md#cloud-deployment), or via the [ImageJ/Fiji plugin](https://github.com/nadeemlab/DeepLIIF/edit/main/README.md#imagej-plugin); details for the free cloud-native platform can be found in our [CVPR'22 paper](https://arxiv.org/pdf/2204.04494.pdf).
59
+
60
+ © This code is made available for non-commercial academic purposes.
61
+
62
+ ![overview_image](./images/overview.png)*Overview of DeepLIIF pipeline and sample input IHCs (different
63
+ brown/DAB markers -- BCL2, BCL6, CD10, CD3/CD8, Ki67) with corresponding DeepLIIF-generated hematoxylin/mpIF modalities
64
+ and classified (positive (red) and negative (blue) cell) segmentation masks. (a) Overview of DeepLIIF. Given an IHC
65
+ input, our multitask deep learning framework simultaneously infers corresponding Hematoxylin channel, mpIF DAPI, mpIF
66
+ protein expression (Ki67, CD3, CD8, etc.), and the positive/negative protein cell segmentation, baking explainability
67
+ and interpretability into the model itself rather than relying on coarse activation/attention maps. In the segmentation
68
+ mask, the red cells denote cells with positive protein expression (brown/DAB cells in the input IHC), whereas blue cells
69
+ represent negative cells (blue cells in the input IHC). (b) Example DeepLIIF-generated hematoxylin/mpIF modalities and
70
+ segmentation masks for different IHC markers. DeepLIIF, trained on clean IHC Ki67 nuclear marker images, can generalize
71
+ to noisier as well as other IHC nuclear/cytoplasmic marker images.*
72
+
73
+ ## Prerequisites
74
+ 1. Python 3.8
75
+ 2. Docker
76
+
77
+ ## Installing `deepliif`
78
+
79
+ DeepLIIF can be `pip` installed:
80
+ ```shell
81
+ $ conda create --name deepliif_env python=3.8
82
+ $ conda activate deepliif_env
83
+ (deepliif_env) $ conda install -c conda-forge openjdk
84
+ (deepliif_env) $ pip install deepliif
85
+ ```
86
+
87
+ The package is composed of two parts:
88
+ 1. A library that implements the core functions used to train and test DeepLIIF models.
89
+ 2. A CLI to run common batch operations including training, batch testing and Torchscipt models serialization.
90
+
91
+ You can list all available commands:
92
+
93
+ ```
94
+ (venv) $ deepliif --help
95
+ Usage: deepliif [OPTIONS] COMMAND [ARGS]...
96
+
97
+ Options:
98
+ --help Show this message and exit.
99
+
100
+ Commands:
101
+ prepare-testing-data Preparing data for testing
102
+ serialize Serialize DeepLIIF models using Torchscript
103
+ test Test trained models
104
+ train General-purpose training script for multi-task...
105
+ ```
106
+
107
+ ## Training Dataset
108
+ For training, all image sets must be 512x512 and combined together in 3072x512 images (six images of size 512x512 stitched
109
+ together horizontally).
110
+ The data need to be arranged in the following order:
111
+ ```
112
+ XXX_Dataset
113
+ ├── train
114
+ └── val
115
+ ```
116
+ We have provided a simple function in the CLI for preparing data for training.
117
+
118
+ * **To prepare data for training**, you need to have the image dataset for each image (including IHC, Hematoxylin Channel, mpIF DAPI, mpIF Lap2, mpIF marker, and segmentation mask) in the input directory.
119
+ Each of the six images for a single image set must have the same naming format, with only the name of the label for the type of image differing between them. The label names must be, respectively: IHC, Hematoxylin, DAPI, Lap2, Marker, Seg.
120
+ The command takes the address of the directory containing image set data and the address of the output dataset directory.
121
+ It first creates the train and validation directories inside the given output dataset directory.
122
+ It then reads all of the images in the input directory and saves the combined image in the train or validation directory, based on the given `validation_ratio`.
123
+ ```
124
+ deepliif prepare-training-data --input-dir /path/to/input/images
125
+ --output-dir /path/to/output/images
126
+ --validation-ratio 0.2
127
+ ```
128
+
129
+ ## Training
130
+ To train a model:
131
+ ```
132
+ deepliif train --dataroot /path/to/input/images
133
+ --name Model_Name
134
+ ```
135
+ or
136
+ ```
137
+ python train.py --dataroot /path/to/input/images
138
+ --name Model_Name
139
+ ```
140
+
141
+ * To view training losses and results, open the URL http://localhost:8097. For cloud servers replace localhost with your IP.
142
+ * Epoch-wise intermediate training results are in `DeepLIIF/checkpoints/Model_Name/web/index.html`.
143
+ * Trained models will be by default be saved in `DeepLIIF/checkpoints/Model_Name`.
144
+ * Training datasets can be downloaded [here](https://zenodo.org/record/4751737#.YKRTS0NKhH4).
145
+
146
+ **DP**: To train a model you can use DP. DP is single-process. It means that **all the GPUs you want to use must be on the same machine** so that they can be included in the same process - you cannot distribute the training across multiple GPU machines, unless you write your own code to handle inter-node (node = machine) communication.
147
+ To split and manage the workload for multiple GPUs within the same process, DP uses multi-threading.
148
+ You can find more information on DP [here](https://github.com/nadeemlab/DeepLIIF/blob/main/Multi-GPU%20Training.md).
149
+
150
+ To train a model with DP (Example with 2 GPUs (on 1 machine)):
151
+ ```
152
+ deepliif train --dataroot <data_dir> --batch-size 6 --gpu-ids 0 --gpu-ids 1
153
+ ```
154
+ Note that `batch-size` is defined per process. Since DP is a single-process method, the `batch-size` you set is the **effective** batch size.
155
+
156
+ **DDP**: To train a model you can use DDP. DDP usually spawns multiple processes.
157
+ **DeepLIIF's code follows the PyTorch recommendation to spawn 1 process per GPU** ([doc](https://github.com/pytorch/examples/blob/master/distributed/ddp/README.md#application-process-topologies)). If you want to assign multiple GPUs to each process, you will need to make modifications to DeepLIIF's code (see [doc](https://pytorch.org/tutorials/intermediate/ddp_tutorial.html#combine-ddp-with-model-parallelism)).
158
+ Despite all the benefits of DDP, one drawback is the extra GPU memory needed for dedicated CUDA buffer for communication. See a short discussion [here](https://discuss.pytorch.org/t/do-dataparallel-and-distributeddataparallel-affect-the-batch-size-and-gpu-memory-consumption/97194/2). In the context of DeepLIIF, this means that there might be situations where you could use a *bigger batch size with DP* as compared to DDP, which may actually train faster than using DDP with a smaller batch size.
159
+ You can find more information on DDP [here](https://github.com/nadeemlab/DeepLIIF/blob/main/Multi-GPU%20Training.md).
160
+
161
+ To launch training using DDP on a local machine, use `deepliif trainlaunch`. Example with 2 GPUs (on 1 machine):
162
+ ```
163
+ deepliif trainlaunch --dataroot <data_dir> --batch-size 3 --gpu-ids 0 --gpu-ids 1 --use-torchrun "--nproc_per_node 2"
164
+ ```
165
+ Note that
166
+ 1. `batch-size` is defined per process. Since DDP is a single-process method, the `batch-size` you set is the batch size for each process, and the **effective** batch size will be `batch-size` multiplied by the number of processes you started. In the above example, it will be 3 * 2 = 6.
167
+ 2. You still need to provide **all GPU ids to use** to the training command. Internally, in each process DeepLIIF picks the device using `gpu_ids[local_rank]`. If you provide `--gpu-ids 2 --gpu-ids 3`, the process with local rank 0 will use gpu id 2 and that with local rank 1 will use gpu id 3.
168
+ 3. `-t 3 --log_dir <log_dir>` is not required, but is a useful setting in `torchrun` that saves the log from each process to your target log directory. For example:
169
+ ```
170
+ deepliif trainlaunch --dataroot <data_dir> --batch-size 3 --gpu-ids 0 --gpu-ids 1 --use-torchrun "-t 3 --log_dir <log_dir> --nproc_per_node 2"
171
+ ```
172
+ 4. If your PyTorch is older than 1.10, DeepLIIF calls `torch.distributed.launch` in the backend. Otherwise, DeepLIIF calls `torchrun`.
173
+
174
+ ## Serialize Model
175
+ The installed `deepliif` uses Dask to perform inference on the input IHC images.
176
+ Before running the `test` command, the model files must be serialized using Torchscript.
177
+ To serialize the model files:
178
+ ```
179
+ deepliif serialize --models-dir /path/to/input/model/files
180
+ --output-dir /path/to/output/model/files
181
+ ```
182
+ * By default, the model files are expected to be located in `DeepLIIF/model-server/DeepLIIF_Latest_Model`.
183
+ * By default, the serialized files will be saved to the same directory as the input model files.
184
+
185
+ ## Testing
186
+ To test the model:
187
+ ```
188
+ deepliif test --input-dir /path/to/input/images
189
+ --output-dir /path/to/output/images
190
+ --model-dir path/to/the/serialized/model
191
+ --tile-size 512
192
+ ```
193
+ or
194
+ ```
195
+ python test.py --dataroot /path/to/input/images
196
+ --name Model_Name
197
+ ```
198
+ * The latest version of the pretrained models can be downloaded [here](https://zenodo.org/record/4751737#.YKRTS0NKhH4).
199
+ * Before running test on images, the model files must be serialized as described above.
200
+ * The serialized model files are expected to be located in `DeepLIIF/model-server/DeepLIIF_Latest_Model`.
201
+ * The test results will be saved to the specified output directory, which defaults to the input directory.
202
+ * The default tile size is 512.
203
+ * Testing datasets can be downloaded [here](https://zenodo.org/record/4751737#.YKRTS0NKhH4).
204
+
205
+ **Whole Slide Image (WSI) Inference:**
206
+ For translation and segmentation of whole slide images,
207
+ you can simply use the same test command
208
+ giving path to the directory containing your whole slide images as the input-dir.
209
+ DeepLIIF automatically reads the WSI region by region,
210
+ and translate and segment each region separately and stitches the regions
211
+ to create the translation and segmentation for whole slide image,
212
+ then saves all masks in the format of ome.tiff in the given output-dir.
213
+ Based on the available GPU resources, the region-size can be changed.
214
+ ```
215
+ deepliif test --input-dir /path/to/input/images
216
+ --output-dir /path/to/output/images
217
+ --model-dir path/to/the/serialized/model
218
+ --tile-size 512
219
+ --region-size 20000
220
+ ```
221
+
222
+ If you prefer, it is possible to run the models using Torchserve.
223
+ Please see [the documentation](https://nadeemlab.github.io/DeepLIIF/deployment/#deploying-deepliif-with-torchserve)
224
+ on how to deploy the model with Torchserve and for an example of how to run the inference.
225
+
226
+ ## Docker
227
+ We provide a Dockerfile that can be used to run the DeepLIIF models inside a container.
228
+ First, you need to install the [Docker Engine](https://docs.docker.com/engine/install/ubuntu/).
229
+ After installing the Docker, you need to follow these steps:
230
+ * Download the pretrained model and place them in DeepLIIF/checkpoints/DeepLIIF_Latest_Model.
231
+ * Change XXX of the **WORKDIR** line in the **DockerFile** to the directory containing the DeepLIIF project.
232
+ * To create a docker image from the docker file:
233
+ ```
234
+ docker build -t cuda/deepliif .
235
+ ```
236
+ The image is then used as a base. You can copy and use it to run an application. The application needs an isolated
237
+ environment in which to run, referred to as a container.
238
+ * To create and run a container:
239
+ ```
240
+ docker run -it -v `pwd`:`pwd` -w `pwd` cuda/deepliif deepliif test --input-dir Sample_Large_Tissues
241
+ ```
242
+ When you run a container from the image, the `deepliif` CLI will be available.
243
+ You can easily run any CLI command in the activated environment and copy the results from the docker container to the host.
244
+
245
+ ## ImageJ Plugin
246
+ If you don't have access to GPU or appropriate hardware and just want to use ImageJ to run inference, we have also created an [ImageJ plugin](https://github.com/nadeemlab/DeepLIIF/tree/main/ImageJ_Plugin) for your convenience.
247
+
248
+ ![DeepLIIF ImageJ Demo](images/deepliif-imagej-demo.gif)
249
+
250
+ The plugin also supports submitting multiple ROIs at once:
251
+
252
+ ![DeepLIIF ImageJ ROI Demo](images/deepliif-imagej-roi-demo.gif)
253
+
254
+ ## Cloud Deployment
255
+ If you don't have access to GPU or appropriate hardware and don't want to install ImageJ, we have also created a [cloud-native DeepLIIF deployment](https://deepliif.org) with a user-friendly interface to upload images, visualize, interact, and download the final results.
256
+
257
+ ![DeepLIIF Website Demo](images/deepliif-website-demo-03.gif)
258
+
259
+ DeepLIIF can also be accessed programmatically through an endpoint by posting a multipart-encoded request
260
+ containing the original image file:
261
+
262
+ ```
263
+ POST /api/infer
264
+
265
+ Parameters
266
+
267
+ img (required)
268
+ file: image to run the models on
269
+
270
+ resolution
271
+ string: resolution used to scan the slide (10x, 20x, 40x), defaults to 20x
272
+
273
+ pil
274
+ boolean: if true, use PIL.Image.open() to load the image, instead of python-bioformats
275
+
276
+ slim
277
+ boolean: if true, return only the segmentation result image
278
+ ```
279
+
280
+ For example, in Python:
281
+
282
+ ```python
283
+ import os
284
+ import json
285
+ import base64
286
+ from io import BytesIO
287
+
288
+ import requests
289
+ from PIL import Image
290
+
291
+ # Use the sample images from the main DeepLIIF repo
292
+ images_dir = './Sample_Large_Tissues'
293
+ filename = 'ROI_1.png'
294
+
295
+ res = requests.post(
296
+ url='https://deepliif.org/api/infer',
297
+ files={
298
+ 'img': open(f'{images_dir}/{filename}', 'rb')
299
+ },
300
+ # optional param that can be 10x, 20x (default) or 40x
301
+ params={
302
+ 'resolution': '20x'
303
+ }
304
+ )
305
+
306
+ data = res.json()
307
+
308
+ def b64_to_pil(b):
309
+ return Image.open(BytesIO(base64.b64decode(b.encode())))
310
+
311
+ for name, img in data['images'].items():
312
+ output_filepath = f'{images_dir}/{os.path.splitext(filename)[0]}_{name}.png'
313
+ with open(output_filepath, 'wb') as f:
314
+ b64_to_pil(img).save(f, format='PNG')
315
+
316
+ print(json.dumps(data['scoring'], indent=2))
317
+ ```
318
+
319
+ ## Synthetic Data Generation
320
+ The first version of DeepLIIF model suffered from its inability to separate IHC positive cells in some large clusters,
321
+ resulting from the absence of clustered positive cells in our training data. To infuse more information about the
322
+ clustered positive cells into our model, we present a novel approach for the synthetic generation of IHC images using
323
+ co-registered data.
324
+ We design a GAN-based model that receives the Hematoxylin channel, the mpIF DAPI image, and the segmentation mask and
325
+ generates the corresponding IHC image. The model converts the Hematoxylin channel to gray-scale to infer more helpful
326
+ information such as the texture and discard unnecessary information such as color. The Hematoxylin image guides the
327
+ network to synthesize the background of the IHC image by preserving the shape and texture of the cells and artifacts in
328
+ the background. The DAPI image assists the network in identifying the location, shape, and texture of the cells to
329
+ better isolate the cells from the background. The segmentation mask helps the network specify the color of cells based
330
+ on the type of the cell (positive cell: a brown hue, negative: a blue hue).
331
+
332
+ In the next step, we generate synthetic IHC images with more clustered positive cells. To do so, we change the
333
+ segmentation mask by choosing a percentage of random negative cells in the segmentation mask (called as Neg-to-Pos) and
334
+ converting them into positive cells. Some samples of the synthesized IHC images along with the original IHC image are
335
+ shown below.
336
+
337
+ ![IHC_Gen_image](docs/training/images/IHC_Gen.jpg)*Overview of synthetic IHC image generation. (a) A training sample
338
+ of the IHC-generator model. (b) Some samples of synthesized IHC images using the trained IHC-Generator model. The
339
+ Neg-to-Pos shows the percentage of the negative cells in the segmentation mask converted to positive cells.*
340
+
341
+ We created a new dataset using the original IHC images and synthetic IHC images. We synthesize each image in the dataset
342
+ two times by setting the Neg-to-Pos parameter to %50 and %70. We re-trained our network with the new dataset. You can
343
+ find the new trained model [here](https://zenodo.org/record/4751737/files/DeepLIIF_Latest_Model.zip?download=1).
344
+
345
+ ## Registration
346
+ To register the de novo stained mpIF and IHC images, you can use the registration framework in the 'Registration'
347
+ directory. Please refer to the README file provided in the same directory for more details.
348
+
349
+ ## Contributing Training Data
350
+ To train DeepLIIF, we used a dataset of lung and bladder tissues containing IHC, hematoxylin, mpIF DAPI, mpIF Lap2, and
351
+ mpIF Ki67 of the same tissue scanned using ZEISS Axioscan. These images were scaled and co-registered with the fixed IHC
352
+ images using affine transformations, resulting in 1264 co-registered sets of IHC and corresponding multiplex images of
353
+ size 512x512. We randomly selected 575 sets for training, 91 sets for validation, and 598 sets for testing the model.
354
+ We also randomly selected and manually segmented 41 images of size 640x640 from recently released [BCDataset](https://sites.google.com/view/bcdataset)
355
+ which contains Ki67 stained sections of breast carcinoma with Ki67+ and Ki67- cell centroid annotations (for cell
356
+ detection rather than cell instance segmentation task). We split these tiles into 164 images of size 512x512; the test
357
+ set varies widely in the density of tumor cells and the Ki67 index. You can find this dataset [here](https://zenodo.org/record/4751737#.YKRTS0NKhH4).
358
+
359
+ We are also creating a self-configurable version of DeepLIIF which will take as input any co-registered H&E/IHC and
360
+ multiplex images and produce the optimal output. If you are generating or have generated H&E/IHC and multiplex staining
361
+ for the same slide (de novo staining) and would like to contribute that data for DeepLIIF, we can perform
362
+ co-registration, whole-cell multiplex segmentation via [ImPartial](https://github.com/nadeemlab/ImPartial), train the
363
+ DeepLIIF model and release back to the community with full credit to the contributors.
364
+
365
+ - [x] **Memorial Sloan Kettering Cancer Center** [AI-ready immunohistochemistry and multiplex immunofluorescence dataset](https://zenodo.org/record/4751737#.YKRTS0NKhH4) for breast, lung, and bladder cancers (**Nature Machine Intelligence'22**)
366
+ - [x] **Moffitt Cancer Center** AI-ready multiplex immunofluorescence and multiplex immunohistochemistry dataset for head-and-neck squamous cell carcinoma (**MICCAI'23**)
367
+
368
+ ## Support
369
+ Please use the [Image.sc Forum](https://forum.image.sc/tag/deepliif) for discussion and questions related to DeepLIIF.
370
+
371
+ Bugs can be reported in the [GitHub Issues](https://github.com/nadeemlab/DeepLIIF/issues) tab.
372
+
373
+ ## License
374
+ © [Nadeem Lab](https://nadeemlab.org/) - DeepLIIF code is distributed under **Apache 2.0 with Commons Clause** license,
375
+ and is available for non-commercial academic purposes.
376
+
377
+ ## Acknowledgments
378
+ * This code is inspired by [CycleGAN and pix2pix in PyTorch](https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix).
379
+
380
+ ## Reference
381
+ If you find our work useful in your research or if you use parts of this code or our released dataset, please cite the following papers:
382
+ ```
383
+ @article{ghahremani2022deep,
384
+ title={Deep learning-inferred multiplex immunofluorescence for immunohistochemical image quantification},
385
+ author={Ghahremani, Parmida and Li, Yanyun and Kaufman, Arie and Vanguri, Rami and Greenwald, Noah and Angelo, Michael and Hollmann, Travis J and Nadeem, Saad},
386
+ journal={Nature Machine Intelligence},
387
+ volume={4},
388
+ number={4},
389
+ pages={401--412},
390
+ year={2022},
391
+ publisher={Nature Publishing Group}
392
+ }
393
+
394
+ @article{ghahremani2022deepliifui,
395
+ title={DeepLIIF: An Online Platform for Quantification of Clinical Pathology Slides},
396
+ author={Ghahremani, Parmida and Marino, Joseph and Dodds, Ricardo and Nadeem, Saad},
397
+ journal={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
398
+ pages={21399--21405},
399
+ year={2022}
400
+ }
401
+
402
+ @article{ghahremani2023deepliifdataset,
403
+ title={An AI-Ready Multiplex Staining Dataset for Reproducible and Accurate Characterization of Tumor Immune Microenvironment},
404
+ author={Ghahremani, Parmida and Marino, Joseph and Hernandez-Prera, Juan and V. de la Iglesia, Janis and JC Slebos, Robbert and H. Chung, Christine and Nadeem, Saad},
405
+ journal={International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI)},
406
+ year={2023}
407
+ }
408
+ ```