deepliif 1.1.10__py3-none-any.whl → 1.1.12__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- cli.py +354 -67
- deepliif/data/__init__.py +7 -7
- deepliif/data/aligned_dataset.py +2 -3
- deepliif/data/unaligned_dataset.py +38 -19
- deepliif/models/CycleGAN_model.py +282 -0
- deepliif/models/DeepLIIFExt_model.py +47 -25
- deepliif/models/DeepLIIF_model.py +69 -19
- deepliif/models/SDG_model.py +57 -26
- deepliif/models/__init__ - run_dask_multi dev.py +943 -0
- deepliif/models/__init__ - timings.py +764 -0
- deepliif/models/__init__.py +354 -232
- deepliif/models/att_unet.py +199 -0
- deepliif/models/base_model.py +32 -8
- deepliif/models/networks.py +108 -34
- deepliif/options/__init__.py +49 -5
- deepliif/postprocessing.py +1034 -227
- deepliif/postprocessing__OLD__DELETE.py +440 -0
- deepliif/util/__init__.py +290 -64
- deepliif/util/visualizer.py +106 -19
- {deepliif-1.1.10.dist-info → deepliif-1.1.12.dist-info}/METADATA +81 -20
- deepliif-1.1.12.dist-info/RECORD +40 -0
- deepliif-1.1.10.dist-info/RECORD +0 -35
- {deepliif-1.1.10.dist-info → deepliif-1.1.12.dist-info}/LICENSE.md +0 -0
- {deepliif-1.1.10.dist-info → deepliif-1.1.12.dist-info}/WHEEL +0 -0
- {deepliif-1.1.10.dist-info → deepliif-1.1.12.dist-info}/entry_points.txt +0 -0
- {deepliif-1.1.10.dist-info → deepliif-1.1.12.dist-info}/top_level.txt +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: deepliif
|
|
3
|
-
Version: 1.1.
|
|
3
|
+
Version: 1.1.12
|
|
4
4
|
Summary: DeepLIIF: Deep-Learning Inferred Multiplex Immunofluorescence for Immunohistochemical Image Quantification
|
|
5
5
|
Home-page: https://github.com/nadeemlab/DeepLIIF
|
|
6
6
|
Author: Parmida93
|
|
@@ -8,16 +8,18 @@ Author-email: ghahremani.parmida@gmail.com
|
|
|
8
8
|
Keywords: DeepLIIF,IHC,Segmentation,Classification
|
|
9
9
|
Description-Content-Type: text/markdown
|
|
10
10
|
License-File: LICENSE.md
|
|
11
|
-
Requires-Dist: opencv-python (==4.
|
|
11
|
+
Requires-Dist: opencv-python (==4.8.1.78)
|
|
12
12
|
Requires-Dist: torchvision (==0.10.0)
|
|
13
13
|
Requires-Dist: scikit-image (==0.18.3)
|
|
14
14
|
Requires-Dist: dominate (==2.6.0)
|
|
15
|
-
Requires-Dist: numba (==0.
|
|
15
|
+
Requires-Dist: numba (==0.57.1)
|
|
16
16
|
Requires-Dist: Click (==8.0.3)
|
|
17
|
-
Requires-Dist: requests (==2.
|
|
17
|
+
Requires-Dist: requests (==2.32.2)
|
|
18
18
|
Requires-Dist: dask (==2021.11.2)
|
|
19
19
|
Requires-Dist: visdom (>=0.1.8.3)
|
|
20
20
|
Requires-Dist: python-bioformats (>=4.0.6)
|
|
21
|
+
Requires-Dist: openslide-bin (==4.0.0.6)
|
|
22
|
+
Requires-Dist: openslide-python (==1.4.1)
|
|
21
23
|
|
|
22
24
|
|
|
23
25
|
<!-- PROJECT LOGO -->
|
|
@@ -34,6 +36,8 @@ Requires-Dist: python-bioformats (>=4.0.6)
|
|
|
34
36
|
|
|
|
35
37
|
<a href="https://onlinelibrary.wiley.com/share/author/4AEBAGEHSZE9GDP3H8MN?target=10.1111/his.15048">Histopathology'23</a>
|
|
36
38
|
|
|
|
39
|
+
<a href="https://arxiv.org/abs/2405.08169">MICCAI'24</a>
|
|
40
|
+
|
|
|
37
41
|
<a href="https://deepliif.org/">Cloud Deployment</a>
|
|
38
42
|
|
|
|
39
43
|
<a href="https://nadeemlab.github.io/DeepLIIF/">Documentation</a>
|
|
@@ -61,7 +65,7 @@ segmentation.*
|
|
|
61
65
|
|
|
62
66
|
© This code is made available for non-commercial academic purposes.
|
|
63
67
|
|
|
64
|
-

|
|
65
69
|
[](https://pepy.tech/project/deepliif?&left_text=totalusers)
|
|
66
70
|
|
|
67
71
|
*Overview of DeepLIIF pipeline and sample input IHCs (different
|
|
@@ -109,6 +113,16 @@ Commands:
|
|
|
109
113
|
train General-purpose training script for multi-task...
|
|
110
114
|
```
|
|
111
115
|
|
|
116
|
+
**Note:** You might need to install a version of PyTorch that is compatible with your CUDA version.
|
|
117
|
+
Otherwise, only the CPU will be used.
|
|
118
|
+
Visit the [PyTorch website](https://pytorch.org/) for details.
|
|
119
|
+
You can confirm if your installation will run on the GPU by checking if the following returns `True`:
|
|
120
|
+
|
|
121
|
+
```
|
|
122
|
+
import torch
|
|
123
|
+
torch.cuda.is_available()
|
|
124
|
+
```
|
|
125
|
+
|
|
112
126
|
## Training Dataset
|
|
113
127
|
For training, all image sets must be 512x512 and combined together in 3072x512 images (six images of size 512x512 stitched
|
|
114
128
|
together horizontally).
|
|
@@ -206,26 +220,49 @@ python test.py --dataroot /path/to/input/images
|
|
|
206
220
|
* Before running test on images, the model files must be serialized as described above.
|
|
207
221
|
* The serialized model files are expected to be located in `DeepLIIF/model-server/DeepLIIF_Latest_Model`.
|
|
208
222
|
* The test results will be saved to the specified output directory, which defaults to the input directory.
|
|
209
|
-
* The
|
|
223
|
+
* The tile size must be specified and is used to split the image into tiles for processing. The tile size is based on the resolution (scan magnification) of the input image, and the recommended values are a tile size of 512 for 40x images, 256 for 20x, and 128 for 10x. Note that the smaller the tile size, the longer inference will take.
|
|
210
224
|
* Testing datasets can be downloaded [here](https://zenodo.org/record/4751737#.YKRTS0NKhH4).
|
|
211
225
|
|
|
226
|
+
**Test Command Options:**
|
|
227
|
+
In addition to the required parameters given above, the following optional parameters are available for `deepliif test`:
|
|
228
|
+
* `--eager-mode` Run the original model files (instead of serialized model files).
|
|
229
|
+
* `--seg-intermediate` Save the intermediate segmentation maps created for each modality.
|
|
230
|
+
* `--seg-only` Save only the segmentation files, and do not infer images that are not needed.
|
|
231
|
+
* `--color-dapi` Color the inferred DAPI image.
|
|
232
|
+
* `--color-marker` Color the inferred marker image.
|
|
233
|
+
|
|
212
234
|
**Whole Slide Image (WSI) Inference:**
|
|
213
235
|
For translation and segmentation of whole slide images,
|
|
214
|
-
you can simply use the
|
|
215
|
-
giving path to the directory containing your
|
|
236
|
+
you can simply use the `test-wsi` command
|
|
237
|
+
giving path to the directory containing your WSI as the input-dir
|
|
238
|
+
and specifying the filename of the WSI.
|
|
216
239
|
DeepLIIF automatically reads the WSI region by region,
|
|
217
240
|
and translate and segment each region separately and stitches the regions
|
|
218
241
|
to create the translation and segmentation for whole slide image,
|
|
219
242
|
then saves all masks in the format of ome.tiff in the given output-dir.
|
|
220
|
-
Based on the available
|
|
243
|
+
Based on the available resources, the region-size can be changed.
|
|
221
244
|
```
|
|
222
|
-
deepliif test --input-dir /path/to/input/
|
|
223
|
-
|
|
224
|
-
|
|
225
|
-
|
|
226
|
-
|
|
245
|
+
deepliif test-wsi --input-dir /path/to/input/image
|
|
246
|
+
--filename wsiFile.svs
|
|
247
|
+
--output-dir /path/to/output/images
|
|
248
|
+
--model-dir /path/to/the/serialized/model
|
|
249
|
+
--tile-size 512
|
|
227
250
|
```
|
|
228
251
|
|
|
252
|
+
**WSI Inference Options:**
|
|
253
|
+
In addition to the required parameters given above, the following optional parameters are available for `deepliif test-wsi`:
|
|
254
|
+
* `--region-size` Set the size of each region to read from the WSI (default is 20000).
|
|
255
|
+
* `--seg-intermediate` Save the intermediate segmentation maps created for each modality.
|
|
256
|
+
* `--seg-only` Save only the segmentation files, and do not infer images that are not needed.
|
|
257
|
+
* `--color-dapi` Color the inferred DAPI image.
|
|
258
|
+
* `--color-marker` Color the inferred marker image.
|
|
259
|
+
|
|
260
|
+
**Reducing Run Time**
|
|
261
|
+
If you need only the final segmentation and not the inferred multiplex images,
|
|
262
|
+
it is recommended to run `deepliif test` or `deepliif test-wsi` with the `--seg-only`
|
|
263
|
+
option. This will generate only the necessary images, thus reducing the overall run time.
|
|
264
|
+
|
|
265
|
+
**Torchserve**
|
|
229
266
|
If you prefer, it is possible to run the models using Torchserve.
|
|
230
267
|
Please see [the documentation](https://nadeemlab.github.io/DeepLIIF/deployment/#deploying-deepliif-with-torchserve)
|
|
231
268
|
on how to deploy the model with Torchserve and for an example of how to run the inference.
|
|
@@ -260,11 +297,18 @@ The plugin also supports submitting multiple ROIs at once:
|
|
|
260
297
|
## Cloud Deployment
|
|
261
298
|
If you don't have access to GPU or appropriate hardware and don't want to install ImageJ, we have also created a [cloud-native DeepLIIF deployment](https://deepliif.org) with a user-friendly interface to upload images, visualize, interact, and download the final results.
|
|
262
299
|
|
|
263
|
-

|
|
301
|
+
|
|
302
|
+
Our deployment at [deepliif.org](https://deepliif.org) also provides virtual slide digitization to generate a single stitched image from a 10x video acquired with a microscope and camera. The video should be captured with the following guidelines to achieve the best results:
|
|
303
|
+
* Brief but complete pauses at every section of the sample to avoid motion artifacts.
|
|
304
|
+
* Significant overlap between pauses so that there is sufficient context for stitching frames together.
|
|
305
|
+
* Methodical and consistent movement over the sample. For example, start at the top left corner, then go all the way to the right, then down one step, then all the way to the left, down one step, etc., until the end of the sample is reached. Again, brief overlapping pauses throughout will allow the best quality images to be generated.
|
|
306
|
+
|
|
307
|
+

|
|
264
308
|
|
|
265
309
|
## Cloud API Endpoints
|
|
266
310
|
|
|
267
|
-
DeepLIIF can also be accessed programmatically through an endpoint by posting a multipart-encoded request containing the original image file, along with optional parameters including postprocessing thresholds:
|
|
311
|
+
For small images, DeepLIIF can also be accessed programmatically through an endpoint by posting a multipart-encoded request containing the original image file, along with optional parameters including postprocessing thresholds:
|
|
268
312
|
|
|
269
313
|
```
|
|
270
314
|
POST /api/infer
|
|
@@ -360,6 +404,8 @@ with open(f'{images_dir}/{root}_scoring.json', 'w') as f:
|
|
|
360
404
|
print(json.dumps(data['scoring'], indent=2))
|
|
361
405
|
```
|
|
362
406
|
|
|
407
|
+
Note that since this is a single request to send the image and receive the results, processing must complete within the timeout period (typically about one minute). If your request is receiving a 504 status code, please try a smaller image or install the `deepliif` package as detailed above to run the process locally.
|
|
408
|
+
|
|
363
409
|
If you have previously run DeepLIIF on an image and want to postprocess it with different thresholds, the postprocessing routine can be called directly using the previously inferred results:
|
|
364
410
|
|
|
365
411
|
```
|
|
@@ -512,16 +558,17 @@ DeepLIIF model and release back to the community with full credit to the contrib
|
|
|
512
558
|
- [x] **Moffitt Cancer Center** [AI-ready multiplex immunofluorescence and multiplex immunohistochemistry dataset](https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=70226184) for head-and-neck squamous cell carcinoma (**MICCAI'23**)
|
|
513
559
|
|
|
514
560
|
## Support
|
|
515
|
-
Please use the [
|
|
516
|
-
|
|
517
|
-
Bugs can be reported in the [GitHub Issues](https://github.com/nadeemlab/DeepLIIF/issues) tab.
|
|
561
|
+
Please use the [GitHub Issues](https://github.com/nadeemlab/DeepLIIF/issues) tab for discussion, questions, or to report bugs related to DeepLIIF.
|
|
518
562
|
|
|
519
563
|
## License
|
|
520
564
|
© [Nadeem Lab](https://nadeemlab.org/) - DeepLIIF code is distributed under **Apache 2.0 with Commons Clause** license,
|
|
521
565
|
and is available for non-commercial academic purposes.
|
|
522
566
|
|
|
523
567
|
## Acknowledgments
|
|
524
|
-
|
|
568
|
+
This code is inspired by [CycleGAN and pix2pix in PyTorch](https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix).
|
|
569
|
+
|
|
570
|
+
## Funding
|
|
571
|
+
This work is funded by the 7-year NIH/NCI R37 MERIT Award ([R37CA295658](https://reporter.nih.gov/search/5dgSOlHosEKepkZEAS5_kQ/project-details/11018883#description)).
|
|
525
572
|
|
|
526
573
|
## Reference
|
|
527
574
|
If you find our work useful in your research or if you use parts of this code or our released dataset, please cite the following papers:
|
|
@@ -549,6 +596,8 @@ If you find our work useful in your research or if you use parts of this code or
|
|
|
549
596
|
title={An AI-Ready Multiplex Staining Dataset for Reproducible and Accurate Characterization of Tumor Immune Microenvironment},
|
|
550
597
|
author={Ghahremani, Parmida and Marino, Joseph and Hernandez-Prera, Juan and V. de la Iglesia, Janis and JC Slebos, Robbert and H. Chung, Christine and Nadeem, Saad},
|
|
551
598
|
journal={International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI)},
|
|
599
|
+
volume={14225},
|
|
600
|
+
pages={704--713},
|
|
552
601
|
year={2023}
|
|
553
602
|
}
|
|
554
603
|
|
|
@@ -556,7 +605,19 @@ If you find our work useful in your research or if you use parts of this code or
|
|
|
556
605
|
author = {Nadeem, Saad and Hanna, Matthew G and Viswanathan, Kartik and Marino, Joseph and Ahadi, Mahsa and Alzumaili, Bayan and Bani, Mohamed-Amine and Chiarucci, Federico and Chou, Angela and De Leo, Antonio and Fuchs, Talia L and Lubin, Daniel J and Luxford, Catherine and Magliocca, Kelly and Martinez, Germán and Shi, Qiuying and Sidhu, Stan and Al Ghuzlan, Abir and Gill, Anthony J and Tallini, Giovanni and Ghossein, Ronald and Xu, Bin},
|
|
557
606
|
title = {Ki67 proliferation index in medullary thyroid carcinoma: a comparative study of multiple counting methods and validation of image analysis and deep learning platforms},
|
|
558
607
|
journal = {Histopathology},
|
|
608
|
+
volume = {83},
|
|
609
|
+
number = {6},
|
|
610
|
+
pages = {981--988},
|
|
559
611
|
year = {2023},
|
|
560
612
|
doi = {https://doi.org/10.1111/his.15048}
|
|
561
613
|
}
|
|
614
|
+
|
|
615
|
+
@article{zehra2024deepliifstitch,
|
|
616
|
+
author = {Zehra, Talat and Marino, Joseph and Wang, Wendy and Frantsuzov, Grigoriy and Nadeem, Saad},
|
|
617
|
+
title = {Rethinking Histology Slide Digitization Workflows for Low-Resource Settings},
|
|
618
|
+
journal = {International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI)},
|
|
619
|
+
volume = {15004},
|
|
620
|
+
pages = {427--436},
|
|
621
|
+
year = {2024}
|
|
622
|
+
}
|
|
562
623
|
```
|
|
@@ -0,0 +1,40 @@
|
|
|
1
|
+
cli.py,sha256=IQIO_V9ubmeCOAniW9A5c8r9ETs7ehz4eJp_hrpuKo8,59625
|
|
2
|
+
deepliif/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
3
|
+
deepliif/postprocessing.py,sha256=naq4Lt7WHg6wfOhksTASiCmZAx2P_wZSqozCkKvXNV0,40686
|
|
4
|
+
deepliif/postprocessing__OLD__DELETE.py,sha256=cM-cYVidY691Sjb1-B8a1jkLq5UR_hTCbuKzuF4765o,17589
|
|
5
|
+
deepliif/train.py,sha256=-ZORL5vQrD0_Jq2Adgr3w8vJ7L1QcAgNTqMnBgtixgk,15757
|
|
6
|
+
deepliif/data/__init__.py,sha256=IfqVFnFSPQJZnORdRq4sNkJiylr1TaKNmhvWP_aLHdg,5492
|
|
7
|
+
deepliif/data/aligned_dataset.py,sha256=Tuvll1dpnNAgwReeZ6NleKLQP__yhKxZRWcvb3IOSGY,5145
|
|
8
|
+
deepliif/data/base_dataset.py,sha256=bQlxfY7bGSE9WPj31ZHkCxv5CAEJovjakGDCcK-aYdc,5564
|
|
9
|
+
deepliif/data/colorization_dataset.py,sha256=uDYWciSxwqZkStQ_Vte27D9x5FNhv6eR9wSPn39K3RY,2808
|
|
10
|
+
deepliif/data/image_folder.py,sha256=eesP9vn__YQ-dw1KJG9J-yVUHMmJjLcIEQI552Iv2vE,2006
|
|
11
|
+
deepliif/data/single_dataset.py,sha256=hWjqTkRESEMppZj_r8bi3G0hAZ5EfvXYgE_qRbpiEz4,1553
|
|
12
|
+
deepliif/data/template_dataset.py,sha256=PCDBnFRzRKReaeWgKUZmW0LrzRByI9adrKDJ6SN2KMs,3592
|
|
13
|
+
deepliif/data/unaligned_dataset.py,sha256=D69SxV087jKTd990UQIR4F3TahJHiSiw8i9Uz_xybt0,4697
|
|
14
|
+
deepliif/models/CycleGAN_model.py,sha256=WDEa-Zgz57mVc9HbcVDXL5vfHvUDWdWXNLyz8ReH3rg,15196
|
|
15
|
+
deepliif/models/DeepLIIFExt_model.py,sha256=HZaX9Z2ue0HQCFFN3guLkBcByCP70i8JvmPY02oOMyU,15022
|
|
16
|
+
deepliif/models/DeepLIIF_model.py,sha256=6vmsXcBcoALrhJLa7XGhDmLamO_WCzTDYEyVUBE482o,23857
|
|
17
|
+
deepliif/models/SDG_model.py,sha256=3opz7uEyhvVJ8fF4_Jw4ho1MBcc9OVye-ByZD_KF2j0,10142
|
|
18
|
+
deepliif/models/__init__ - run_dask_multi dev.py,sha256=vt8X8qeiJr2aPhFi6muZEJLUSsr8XChfI45NSwL8Rfg,39449
|
|
19
|
+
deepliif/models/__init__ - timings.py,sha256=S_wFImwxzGKx8STqbpcYCPOlbb_84WLMRDSnaWC8qFg,31750
|
|
20
|
+
deepliif/models/__init__.py,sha256=-R9Em7TVGl36nKzlEI894T0WEONGVMV60aTucqLab5k,30846
|
|
21
|
+
deepliif/models/att_unet.py,sha256=tqaFMNbGQUjXObOG309P76c7sIPxEvFR38EyuyHY40o,7116
|
|
22
|
+
deepliif/models/base_model.py,sha256=ezWkmbuuNLGDMjyXe3VzJroj7QR1h0M9ByouzpfCrQg,16843
|
|
23
|
+
deepliif/models/networks.py,sha256=Ijeb7nGf-YFgc_sBR-sIsk--0rTeiUqKZd01k4DMsuM,36614
|
|
24
|
+
deepliif/options/__init__.py,sha256=p2IWckf3-K-wclDWfSq5ZmynKk2lNov2Tn7WPYIO11A,8329
|
|
25
|
+
deepliif/options/base_options.py,sha256=m5UXY8MvjNcDisUWuiP228yoT27SsCh1bXS_Td6SwTc,9852
|
|
26
|
+
deepliif/options/processing_options.py,sha256=OnNT-ytoTQzetFiMEKrWvrsrhZlupRK4smcnIk0MbqY,2947
|
|
27
|
+
deepliif/options/test_options.py,sha256=4ZbQC5U-nTbUz8jvdDIbse5TK_mjw4D5yNjpVevWD5M,1114
|
|
28
|
+
deepliif/options/train_options.py,sha256=5eA_oxpRj2-HiuMMvC5-HLapxNFG_JXOQ3K132JjpR8,3580
|
|
29
|
+
deepliif/util/__init__.py,sha256=-3t8kNolblI33XwpMaRbOPwVkKg1jjtVE8s0DvA2DNs,29145
|
|
30
|
+
deepliif/util/get_data.py,sha256=HaRoQYb2u0LUgLT7ES-w35AmJ4BrlBEJWU4Cok29pxI,3749
|
|
31
|
+
deepliif/util/html.py,sha256=RNAONZ4opP-bViahgmpSbHwOc6jXKQRnWRAVIaeIvac,3309
|
|
32
|
+
deepliif/util/image_pool.py,sha256=M89Hc7DblRWroNP71S9mAdRn7h3DrhPFPjqFxxZYSgw,2280
|
|
33
|
+
deepliif/util/util.py,sha256=9MNgqthJZYjl5-TJm5-sjWvMfPBz8F4P5K0RHXRQhfY,5241
|
|
34
|
+
deepliif/util/visualizer.py,sha256=6E1sPbXdgLFB9mnPwtfEjm9O40viG4dfv5MyTpOQQpo,20210
|
|
35
|
+
deepliif-1.1.12.dist-info/LICENSE.md,sha256=HlZw_UPS6EtJimJ_Ci7xKh-S5Iubs0Z8y8E6EZ3ZNyE,956
|
|
36
|
+
deepliif-1.1.12.dist-info/METADATA,sha256=VX20mfKaSJkgH_OdGJOCbKSp3iahnE3_dnn_MUAMR5Y,35247
|
|
37
|
+
deepliif-1.1.12.dist-info/WHEEL,sha256=pkctZYzUS4AYVn6dJ-7367OJZivF2e8RA9b_ZBjif18,92
|
|
38
|
+
deepliif-1.1.12.dist-info/entry_points.txt,sha256=f70-10j2q68o_rDlsE3hspnv4ejlDnXwwGZ9JJ-3yF4,37
|
|
39
|
+
deepliif-1.1.12.dist-info/top_level.txt,sha256=vLDK5YKmDz08E7PywuvEjAo7dM5rnIpsjR4c0ubQCnc,13
|
|
40
|
+
deepliif-1.1.12.dist-info/RECORD,,
|
deepliif-1.1.10.dist-info/RECORD
DELETED
|
@@ -1,35 +0,0 @@
|
|
|
1
|
-
cli.py,sha256=iU9YxO65T1rxX2Mx9f9LsEPC4o_ZXO-wH_-FUjIA1so,40088
|
|
2
|
-
deepliif/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
3
|
-
deepliif/postprocessing.py,sha256=cM-cYVidY691Sjb1-B8a1jkLq5UR_hTCbuKzuF4765o,17589
|
|
4
|
-
deepliif/train.py,sha256=-ZORL5vQrD0_Jq2Adgr3w8vJ7L1QcAgNTqMnBgtixgk,15757
|
|
5
|
-
deepliif/data/__init__.py,sha256=euf9eUboK4RYR0jvdiyZDgPGozC1Nv7WRqRbTxSZD6A,5281
|
|
6
|
-
deepliif/data/aligned_dataset.py,sha256=6qNFLXXW1phuIfNhCJSaLfOc-KN2kl7EuUdmyAPPU4I,5148
|
|
7
|
-
deepliif/data/base_dataset.py,sha256=bQlxfY7bGSE9WPj31ZHkCxv5CAEJovjakGDCcK-aYdc,5564
|
|
8
|
-
deepliif/data/colorization_dataset.py,sha256=uDYWciSxwqZkStQ_Vte27D9x5FNhv6eR9wSPn39K3RY,2808
|
|
9
|
-
deepliif/data/image_folder.py,sha256=eesP9vn__YQ-dw1KJG9J-yVUHMmJjLcIEQI552Iv2vE,2006
|
|
10
|
-
deepliif/data/single_dataset.py,sha256=hWjqTkRESEMppZj_r8bi3G0hAZ5EfvXYgE_qRbpiEz4,1553
|
|
11
|
-
deepliif/data/template_dataset.py,sha256=PCDBnFRzRKReaeWgKUZmW0LrzRByI9adrKDJ6SN2KMs,3592
|
|
12
|
-
deepliif/data/unaligned_dataset.py,sha256=m7j-CX-hkXbhg96NSEcaCagNVhTuXKkMsBADdMEJDBA,3393
|
|
13
|
-
deepliif/models/DeepLIIFExt_model.py,sha256=Sc60rOfDJuoGrJ1CYe4beAg6as6F0o864AO6ZB7paBY,14527
|
|
14
|
-
deepliif/models/DeepLIIF_model.py,sha256=ECZyM9jzoJAWSgB1ProBoarVuGcbScQMaSkRjSMgt0k,20872
|
|
15
|
-
deepliif/models/SDG_model.py,sha256=xcZCTMNyJbcB78I1c8KtYVIB6OWL7WSMKdCxNemIzxs,9074
|
|
16
|
-
deepliif/models/__init__.py,sha256=Bjya0xOHjoJa0Wnfiwby-gzJaUzfVsVDS4S_37Uid-g,25597
|
|
17
|
-
deepliif/models/base_model.py,sha256=HKcUOBHtL-zLs5ZcmeXT-ZV_ubqsSUo4wMCQ0W27YHU,15583
|
|
18
|
-
deepliif/models/networks.py,sha256=bN4yjRdE413efUESq8pvhzPDgFCTwFKXyQOrRqHckWY,32177
|
|
19
|
-
deepliif/options/__init__.py,sha256=-syiyTK_oAeTLCBDm0bz1f_1jI3VK3LCwo2UNwOz6eM,5949
|
|
20
|
-
deepliif/options/base_options.py,sha256=m5UXY8MvjNcDisUWuiP228yoT27SsCh1bXS_Td6SwTc,9852
|
|
21
|
-
deepliif/options/processing_options.py,sha256=OnNT-ytoTQzetFiMEKrWvrsrhZlupRK4smcnIk0MbqY,2947
|
|
22
|
-
deepliif/options/test_options.py,sha256=4ZbQC5U-nTbUz8jvdDIbse5TK_mjw4D5yNjpVevWD5M,1114
|
|
23
|
-
deepliif/options/train_options.py,sha256=5eA_oxpRj2-HiuMMvC5-HLapxNFG_JXOQ3K132JjpR8,3580
|
|
24
|
-
deepliif/util/__init__.py,sha256=5lkf-6R03VPnLXABKec_nx3BmXM-ZGQd3SZ1ft-koHA,17573
|
|
25
|
-
deepliif/util/get_data.py,sha256=HaRoQYb2u0LUgLT7ES-w35AmJ4BrlBEJWU4Cok29pxI,3749
|
|
26
|
-
deepliif/util/html.py,sha256=RNAONZ4opP-bViahgmpSbHwOc6jXKQRnWRAVIaeIvac,3309
|
|
27
|
-
deepliif/util/image_pool.py,sha256=M89Hc7DblRWroNP71S9mAdRn7h3DrhPFPjqFxxZYSgw,2280
|
|
28
|
-
deepliif/util/util.py,sha256=9MNgqthJZYjl5-TJm5-sjWvMfPBz8F4P5K0RHXRQhfY,5241
|
|
29
|
-
deepliif/util/visualizer.py,sha256=5V1lWidHqssJX21jn1P5-bOVgtrEXKVaQgnMWAsMfqg,15636
|
|
30
|
-
deepliif-1.1.10.dist-info/LICENSE.md,sha256=HlZw_UPS6EtJimJ_Ci7xKh-S5Iubs0Z8y8E6EZ3ZNyE,956
|
|
31
|
-
deepliif-1.1.10.dist-info/METADATA,sha256=iApT5xf7jFaGZoqda3fQ68c3WCnE6e_nUxjFcxVInHk,31173
|
|
32
|
-
deepliif-1.1.10.dist-info/WHEEL,sha256=pkctZYzUS4AYVn6dJ-7367OJZivF2e8RA9b_ZBjif18,92
|
|
33
|
-
deepliif-1.1.10.dist-info/entry_points.txt,sha256=f70-10j2q68o_rDlsE3hspnv4ejlDnXwwGZ9JJ-3yF4,37
|
|
34
|
-
deepliif-1.1.10.dist-info/top_level.txt,sha256=vLDK5YKmDz08E7PywuvEjAo7dM5rnIpsjR4c0ubQCnc,13
|
|
35
|
-
deepliif-1.1.10.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|