deepliif 1.1.10__py3-none-any.whl → 1.1.12__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: deepliif
3
- Version: 1.1.10
3
+ Version: 1.1.12
4
4
  Summary: DeepLIIF: Deep-Learning Inferred Multiplex Immunofluorescence for Immunohistochemical Image Quantification
5
5
  Home-page: https://github.com/nadeemlab/DeepLIIF
6
6
  Author: Parmida93
@@ -8,16 +8,18 @@ Author-email: ghahremani.parmida@gmail.com
8
8
  Keywords: DeepLIIF,IHC,Segmentation,Classification
9
9
  Description-Content-Type: text/markdown
10
10
  License-File: LICENSE.md
11
- Requires-Dist: opencv-python (==4.5.3.56)
11
+ Requires-Dist: opencv-python (==4.8.1.78)
12
12
  Requires-Dist: torchvision (==0.10.0)
13
13
  Requires-Dist: scikit-image (==0.18.3)
14
14
  Requires-Dist: dominate (==2.6.0)
15
- Requires-Dist: numba (==0.53.1)
15
+ Requires-Dist: numba (==0.57.1)
16
16
  Requires-Dist: Click (==8.0.3)
17
- Requires-Dist: requests (==2.26.0)
17
+ Requires-Dist: requests (==2.32.2)
18
18
  Requires-Dist: dask (==2021.11.2)
19
19
  Requires-Dist: visdom (>=0.1.8.3)
20
20
  Requires-Dist: python-bioformats (>=4.0.6)
21
+ Requires-Dist: openslide-bin (==4.0.0.6)
22
+ Requires-Dist: openslide-python (==1.4.1)
21
23
 
22
24
 
23
25
  <!-- PROJECT LOGO -->
@@ -34,6 +36,8 @@ Requires-Dist: python-bioformats (>=4.0.6)
34
36
  |
35
37
  <a href="https://onlinelibrary.wiley.com/share/author/4AEBAGEHSZE9GDP3H8MN?target=10.1111/his.15048">Histopathology'23</a>
36
38
  |
39
+ <a href="https://arxiv.org/abs/2405.08169">MICCAI'24</a>
40
+ |
37
41
  <a href="https://deepliif.org/">Cloud Deployment</a>
38
42
  |
39
43
  <a href="https://nadeemlab.github.io/DeepLIIF/">Documentation</a>
@@ -61,7 +65,7 @@ segmentation.*
61
65
 
62
66
  © This code is made available for non-commercial academic purposes.
63
67
 
64
- ![Version](https://img.shields.io/static/v1?label=latest&message=v1.1.9&color=darkgreen)
68
+ ![Version](https://img.shields.io/static/v1?label=latest&message=v1.1.12&color=darkgreen)
65
69
  [![Total Downloads](https://static.pepy.tech/personalized-badge/deepliif?period=total&units=international_system&left_color=grey&right_color=blue&left_text=total%20downloads)](https://pepy.tech/project/deepliif?&left_text=totalusers)
66
70
 
67
71
  ![overview_image](./images/overview.png)*Overview of DeepLIIF pipeline and sample input IHCs (different
@@ -109,6 +113,16 @@ Commands:
109
113
  train General-purpose training script for multi-task...
110
114
  ```
111
115
 
116
+ **Note:** You might need to install a version of PyTorch that is compatible with your CUDA version.
117
+ Otherwise, only the CPU will be used.
118
+ Visit the [PyTorch website](https://pytorch.org/) for details.
119
+ You can confirm if your installation will run on the GPU by checking if the following returns `True`:
120
+
121
+ ```
122
+ import torch
123
+ torch.cuda.is_available()
124
+ ```
125
+
112
126
  ## Training Dataset
113
127
  For training, all image sets must be 512x512 and combined together in 3072x512 images (six images of size 512x512 stitched
114
128
  together horizontally).
@@ -206,26 +220,49 @@ python test.py --dataroot /path/to/input/images
206
220
  * Before running test on images, the model files must be serialized as described above.
207
221
  * The serialized model files are expected to be located in `DeepLIIF/model-server/DeepLIIF_Latest_Model`.
208
222
  * The test results will be saved to the specified output directory, which defaults to the input directory.
209
- * The default tile size is 512.
223
+ * The tile size must be specified and is used to split the image into tiles for processing. The tile size is based on the resolution (scan magnification) of the input image, and the recommended values are a tile size of 512 for 40x images, 256 for 20x, and 128 for 10x. Note that the smaller the tile size, the longer inference will take.
210
224
  * Testing datasets can be downloaded [here](https://zenodo.org/record/4751737#.YKRTS0NKhH4).
211
225
 
226
+ **Test Command Options:**
227
+ In addition to the required parameters given above, the following optional parameters are available for `deepliif test`:
228
+ * `--eager-mode` Run the original model files (instead of serialized model files).
229
+ * `--seg-intermediate` Save the intermediate segmentation maps created for each modality.
230
+ * `--seg-only` Save only the segmentation files, and do not infer images that are not needed.
231
+ * `--color-dapi` Color the inferred DAPI image.
232
+ * `--color-marker` Color the inferred marker image.
233
+
212
234
  **Whole Slide Image (WSI) Inference:**
213
235
  For translation and segmentation of whole slide images,
214
- you can simply use the same test command
215
- giving path to the directory containing your whole slide images as the input-dir.
236
+ you can simply use the `test-wsi` command
237
+ giving path to the directory containing your WSI as the input-dir
238
+ and specifying the filename of the WSI.
216
239
  DeepLIIF automatically reads the WSI region by region,
217
240
  and translate and segment each region separately and stitches the regions
218
241
  to create the translation and segmentation for whole slide image,
219
242
  then saves all masks in the format of ome.tiff in the given output-dir.
220
- Based on the available GPU resources, the region-size can be changed.
243
+ Based on the available resources, the region-size can be changed.
221
244
  ```
222
- deepliif test --input-dir /path/to/input/images
223
- --output-dir /path/to/output/images
224
- --model-dir /path/to/the/serialized/model
225
- --tile-size 512
226
- --region-size 20000
245
+ deepliif test-wsi --input-dir /path/to/input/image
246
+ --filename wsiFile.svs
247
+ --output-dir /path/to/output/images
248
+ --model-dir /path/to/the/serialized/model
249
+ --tile-size 512
227
250
  ```
228
251
 
252
+ **WSI Inference Options:**
253
+ In addition to the required parameters given above, the following optional parameters are available for `deepliif test-wsi`:
254
+ * `--region-size` Set the size of each region to read from the WSI (default is 20000).
255
+ * `--seg-intermediate` Save the intermediate segmentation maps created for each modality.
256
+ * `--seg-only` Save only the segmentation files, and do not infer images that are not needed.
257
+ * `--color-dapi` Color the inferred DAPI image.
258
+ * `--color-marker` Color the inferred marker image.
259
+
260
+ **Reducing Run Time**
261
+ If you need only the final segmentation and not the inferred multiplex images,
262
+ it is recommended to run `deepliif test` or `deepliif test-wsi` with the `--seg-only`
263
+ option. This will generate only the necessary images, thus reducing the overall run time.
264
+
265
+ **Torchserve**
229
266
  If you prefer, it is possible to run the models using Torchserve.
230
267
  Please see [the documentation](https://nadeemlab.github.io/DeepLIIF/deployment/#deploying-deepliif-with-torchserve)
231
268
  on how to deploy the model with Torchserve and for an example of how to run the inference.
@@ -260,11 +297,18 @@ The plugin also supports submitting multiple ROIs at once:
260
297
  ## Cloud Deployment
261
298
  If you don't have access to GPU or appropriate hardware and don't want to install ImageJ, we have also created a [cloud-native DeepLIIF deployment](https://deepliif.org) with a user-friendly interface to upload images, visualize, interact, and download the final results.
262
299
 
263
- ![DeepLIIF Website Demo](images/deepliif-website-demo-03.gif)
300
+ ![DeepLIIF Website Demo](images/deepliif-website-demo-04.gif)
301
+
302
+ Our deployment at [deepliif.org](https://deepliif.org) also provides virtual slide digitization to generate a single stitched image from a 10x video acquired with a microscope and camera. The video should be captured with the following guidelines to achieve the best results:
303
+ * Brief but complete pauses at every section of the sample to avoid motion artifacts.
304
+ * Significant overlap between pauses so that there is sufficient context for stitching frames together.
305
+ * Methodical and consistent movement over the sample. For example, start at the top left corner, then go all the way to the right, then down one step, then all the way to the left, down one step, etc., until the end of the sample is reached. Again, brief overlapping pauses throughout will allow the best quality images to be generated.
306
+
307
+ ![DeepLIIF Website Demo](images/deepliif-stitch-demo-01.gif)
264
308
 
265
309
  ## Cloud API Endpoints
266
310
 
267
- DeepLIIF can also be accessed programmatically through an endpoint by posting a multipart-encoded request containing the original image file, along with optional parameters including postprocessing thresholds:
311
+ For small images, DeepLIIF can also be accessed programmatically through an endpoint by posting a multipart-encoded request containing the original image file, along with optional parameters including postprocessing thresholds:
268
312
 
269
313
  ```
270
314
  POST /api/infer
@@ -360,6 +404,8 @@ with open(f'{images_dir}/{root}_scoring.json', 'w') as f:
360
404
  print(json.dumps(data['scoring'], indent=2))
361
405
  ```
362
406
 
407
+ Note that since this is a single request to send the image and receive the results, processing must complete within the timeout period (typically about one minute). If your request is receiving a 504 status code, please try a smaller image or install the `deepliif` package as detailed above to run the process locally.
408
+
363
409
  If you have previously run DeepLIIF on an image and want to postprocess it with different thresholds, the postprocessing routine can be called directly using the previously inferred results:
364
410
 
365
411
  ```
@@ -512,16 +558,17 @@ DeepLIIF model and release back to the community with full credit to the contrib
512
558
  - [x] **Moffitt Cancer Center** [AI-ready multiplex immunofluorescence and multiplex immunohistochemistry dataset](https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=70226184) for head-and-neck squamous cell carcinoma (**MICCAI'23**)
513
559
 
514
560
  ## Support
515
- Please use the [Image.sc Forum](https://forum.image.sc/tag/deepliif) for discussion and questions related to DeepLIIF.
516
-
517
- Bugs can be reported in the [GitHub Issues](https://github.com/nadeemlab/DeepLIIF/issues) tab.
561
+ Please use the [GitHub Issues](https://github.com/nadeemlab/DeepLIIF/issues) tab for discussion, questions, or to report bugs related to DeepLIIF.
518
562
 
519
563
  ## License
520
564
  © [Nadeem Lab](https://nadeemlab.org/) - DeepLIIF code is distributed under **Apache 2.0 with Commons Clause** license,
521
565
  and is available for non-commercial academic purposes.
522
566
 
523
567
  ## Acknowledgments
524
- * This code is inspired by [CycleGAN and pix2pix in PyTorch](https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix).
568
+ This code is inspired by [CycleGAN and pix2pix in PyTorch](https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix).
569
+
570
+ ## Funding
571
+ This work is funded by the 7-year NIH/NCI R37 MERIT Award ([R37CA295658](https://reporter.nih.gov/search/5dgSOlHosEKepkZEAS5_kQ/project-details/11018883#description)).
525
572
 
526
573
  ## Reference
527
574
  If you find our work useful in your research or if you use parts of this code or our released dataset, please cite the following papers:
@@ -549,6 +596,8 @@ If you find our work useful in your research or if you use parts of this code or
549
596
  title={An AI-Ready Multiplex Staining Dataset for Reproducible and Accurate Characterization of Tumor Immune Microenvironment},
550
597
  author={Ghahremani, Parmida and Marino, Joseph and Hernandez-Prera, Juan and V. de la Iglesia, Janis and JC Slebos, Robbert and H. Chung, Christine and Nadeem, Saad},
551
598
  journal={International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI)},
599
+ volume={14225},
600
+ pages={704--713},
552
601
  year={2023}
553
602
  }
554
603
 
@@ -556,7 +605,19 @@ If you find our work useful in your research or if you use parts of this code or
556
605
  author = {Nadeem, Saad and Hanna, Matthew G and Viswanathan, Kartik and Marino, Joseph and Ahadi, Mahsa and Alzumaili, Bayan and Bani, Mohamed-Amine and Chiarucci, Federico and Chou, Angela and De Leo, Antonio and Fuchs, Talia L and Lubin, Daniel J and Luxford, Catherine and Magliocca, Kelly and Martinez, Germán and Shi, Qiuying and Sidhu, Stan and Al Ghuzlan, Abir and Gill, Anthony J and Tallini, Giovanni and Ghossein, Ronald and Xu, Bin},
557
606
  title = {Ki67 proliferation index in medullary thyroid carcinoma: a comparative study of multiple counting methods and validation of image analysis and deep learning platforms},
558
607
  journal = {Histopathology},
608
+ volume = {83},
609
+ number = {6},
610
+ pages = {981--988},
559
611
  year = {2023},
560
612
  doi = {https://doi.org/10.1111/his.15048}
561
613
  }
614
+
615
+ @article{zehra2024deepliifstitch,
616
+ author = {Zehra, Talat and Marino, Joseph and Wang, Wendy and Frantsuzov, Grigoriy and Nadeem, Saad},
617
+ title = {Rethinking Histology Slide Digitization Workflows for Low-Resource Settings},
618
+ journal = {International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI)},
619
+ volume = {15004},
620
+ pages = {427--436},
621
+ year = {2024}
622
+ }
562
623
  ```
@@ -0,0 +1,40 @@
1
+ cli.py,sha256=IQIO_V9ubmeCOAniW9A5c8r9ETs7ehz4eJp_hrpuKo8,59625
2
+ deepliif/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
3
+ deepliif/postprocessing.py,sha256=naq4Lt7WHg6wfOhksTASiCmZAx2P_wZSqozCkKvXNV0,40686
4
+ deepliif/postprocessing__OLD__DELETE.py,sha256=cM-cYVidY691Sjb1-B8a1jkLq5UR_hTCbuKzuF4765o,17589
5
+ deepliif/train.py,sha256=-ZORL5vQrD0_Jq2Adgr3w8vJ7L1QcAgNTqMnBgtixgk,15757
6
+ deepliif/data/__init__.py,sha256=IfqVFnFSPQJZnORdRq4sNkJiylr1TaKNmhvWP_aLHdg,5492
7
+ deepliif/data/aligned_dataset.py,sha256=Tuvll1dpnNAgwReeZ6NleKLQP__yhKxZRWcvb3IOSGY,5145
8
+ deepliif/data/base_dataset.py,sha256=bQlxfY7bGSE9WPj31ZHkCxv5CAEJovjakGDCcK-aYdc,5564
9
+ deepliif/data/colorization_dataset.py,sha256=uDYWciSxwqZkStQ_Vte27D9x5FNhv6eR9wSPn39K3RY,2808
10
+ deepliif/data/image_folder.py,sha256=eesP9vn__YQ-dw1KJG9J-yVUHMmJjLcIEQI552Iv2vE,2006
11
+ deepliif/data/single_dataset.py,sha256=hWjqTkRESEMppZj_r8bi3G0hAZ5EfvXYgE_qRbpiEz4,1553
12
+ deepliif/data/template_dataset.py,sha256=PCDBnFRzRKReaeWgKUZmW0LrzRByI9adrKDJ6SN2KMs,3592
13
+ deepliif/data/unaligned_dataset.py,sha256=D69SxV087jKTd990UQIR4F3TahJHiSiw8i9Uz_xybt0,4697
14
+ deepliif/models/CycleGAN_model.py,sha256=WDEa-Zgz57mVc9HbcVDXL5vfHvUDWdWXNLyz8ReH3rg,15196
15
+ deepliif/models/DeepLIIFExt_model.py,sha256=HZaX9Z2ue0HQCFFN3guLkBcByCP70i8JvmPY02oOMyU,15022
16
+ deepliif/models/DeepLIIF_model.py,sha256=6vmsXcBcoALrhJLa7XGhDmLamO_WCzTDYEyVUBE482o,23857
17
+ deepliif/models/SDG_model.py,sha256=3opz7uEyhvVJ8fF4_Jw4ho1MBcc9OVye-ByZD_KF2j0,10142
18
+ deepliif/models/__init__ - run_dask_multi dev.py,sha256=vt8X8qeiJr2aPhFi6muZEJLUSsr8XChfI45NSwL8Rfg,39449
19
+ deepliif/models/__init__ - timings.py,sha256=S_wFImwxzGKx8STqbpcYCPOlbb_84WLMRDSnaWC8qFg,31750
20
+ deepliif/models/__init__.py,sha256=-R9Em7TVGl36nKzlEI894T0WEONGVMV60aTucqLab5k,30846
21
+ deepliif/models/att_unet.py,sha256=tqaFMNbGQUjXObOG309P76c7sIPxEvFR38EyuyHY40o,7116
22
+ deepliif/models/base_model.py,sha256=ezWkmbuuNLGDMjyXe3VzJroj7QR1h0M9ByouzpfCrQg,16843
23
+ deepliif/models/networks.py,sha256=Ijeb7nGf-YFgc_sBR-sIsk--0rTeiUqKZd01k4DMsuM,36614
24
+ deepliif/options/__init__.py,sha256=p2IWckf3-K-wclDWfSq5ZmynKk2lNov2Tn7WPYIO11A,8329
25
+ deepliif/options/base_options.py,sha256=m5UXY8MvjNcDisUWuiP228yoT27SsCh1bXS_Td6SwTc,9852
26
+ deepliif/options/processing_options.py,sha256=OnNT-ytoTQzetFiMEKrWvrsrhZlupRK4smcnIk0MbqY,2947
27
+ deepliif/options/test_options.py,sha256=4ZbQC5U-nTbUz8jvdDIbse5TK_mjw4D5yNjpVevWD5M,1114
28
+ deepliif/options/train_options.py,sha256=5eA_oxpRj2-HiuMMvC5-HLapxNFG_JXOQ3K132JjpR8,3580
29
+ deepliif/util/__init__.py,sha256=-3t8kNolblI33XwpMaRbOPwVkKg1jjtVE8s0DvA2DNs,29145
30
+ deepliif/util/get_data.py,sha256=HaRoQYb2u0LUgLT7ES-w35AmJ4BrlBEJWU4Cok29pxI,3749
31
+ deepliif/util/html.py,sha256=RNAONZ4opP-bViahgmpSbHwOc6jXKQRnWRAVIaeIvac,3309
32
+ deepliif/util/image_pool.py,sha256=M89Hc7DblRWroNP71S9mAdRn7h3DrhPFPjqFxxZYSgw,2280
33
+ deepliif/util/util.py,sha256=9MNgqthJZYjl5-TJm5-sjWvMfPBz8F4P5K0RHXRQhfY,5241
34
+ deepliif/util/visualizer.py,sha256=6E1sPbXdgLFB9mnPwtfEjm9O40viG4dfv5MyTpOQQpo,20210
35
+ deepliif-1.1.12.dist-info/LICENSE.md,sha256=HlZw_UPS6EtJimJ_Ci7xKh-S5Iubs0Z8y8E6EZ3ZNyE,956
36
+ deepliif-1.1.12.dist-info/METADATA,sha256=VX20mfKaSJkgH_OdGJOCbKSp3iahnE3_dnn_MUAMR5Y,35247
37
+ deepliif-1.1.12.dist-info/WHEEL,sha256=pkctZYzUS4AYVn6dJ-7367OJZivF2e8RA9b_ZBjif18,92
38
+ deepliif-1.1.12.dist-info/entry_points.txt,sha256=f70-10j2q68o_rDlsE3hspnv4ejlDnXwwGZ9JJ-3yF4,37
39
+ deepliif-1.1.12.dist-info/top_level.txt,sha256=vLDK5YKmDz08E7PywuvEjAo7dM5rnIpsjR4c0ubQCnc,13
40
+ deepliif-1.1.12.dist-info/RECORD,,
@@ -1,35 +0,0 @@
1
- cli.py,sha256=iU9YxO65T1rxX2Mx9f9LsEPC4o_ZXO-wH_-FUjIA1so,40088
2
- deepliif/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
3
- deepliif/postprocessing.py,sha256=cM-cYVidY691Sjb1-B8a1jkLq5UR_hTCbuKzuF4765o,17589
4
- deepliif/train.py,sha256=-ZORL5vQrD0_Jq2Adgr3w8vJ7L1QcAgNTqMnBgtixgk,15757
5
- deepliif/data/__init__.py,sha256=euf9eUboK4RYR0jvdiyZDgPGozC1Nv7WRqRbTxSZD6A,5281
6
- deepliif/data/aligned_dataset.py,sha256=6qNFLXXW1phuIfNhCJSaLfOc-KN2kl7EuUdmyAPPU4I,5148
7
- deepliif/data/base_dataset.py,sha256=bQlxfY7bGSE9WPj31ZHkCxv5CAEJovjakGDCcK-aYdc,5564
8
- deepliif/data/colorization_dataset.py,sha256=uDYWciSxwqZkStQ_Vte27D9x5FNhv6eR9wSPn39K3RY,2808
9
- deepliif/data/image_folder.py,sha256=eesP9vn__YQ-dw1KJG9J-yVUHMmJjLcIEQI552Iv2vE,2006
10
- deepliif/data/single_dataset.py,sha256=hWjqTkRESEMppZj_r8bi3G0hAZ5EfvXYgE_qRbpiEz4,1553
11
- deepliif/data/template_dataset.py,sha256=PCDBnFRzRKReaeWgKUZmW0LrzRByI9adrKDJ6SN2KMs,3592
12
- deepliif/data/unaligned_dataset.py,sha256=m7j-CX-hkXbhg96NSEcaCagNVhTuXKkMsBADdMEJDBA,3393
13
- deepliif/models/DeepLIIFExt_model.py,sha256=Sc60rOfDJuoGrJ1CYe4beAg6as6F0o864AO6ZB7paBY,14527
14
- deepliif/models/DeepLIIF_model.py,sha256=ECZyM9jzoJAWSgB1ProBoarVuGcbScQMaSkRjSMgt0k,20872
15
- deepliif/models/SDG_model.py,sha256=xcZCTMNyJbcB78I1c8KtYVIB6OWL7WSMKdCxNemIzxs,9074
16
- deepliif/models/__init__.py,sha256=Bjya0xOHjoJa0Wnfiwby-gzJaUzfVsVDS4S_37Uid-g,25597
17
- deepliif/models/base_model.py,sha256=HKcUOBHtL-zLs5ZcmeXT-ZV_ubqsSUo4wMCQ0W27YHU,15583
18
- deepliif/models/networks.py,sha256=bN4yjRdE413efUESq8pvhzPDgFCTwFKXyQOrRqHckWY,32177
19
- deepliif/options/__init__.py,sha256=-syiyTK_oAeTLCBDm0bz1f_1jI3VK3LCwo2UNwOz6eM,5949
20
- deepliif/options/base_options.py,sha256=m5UXY8MvjNcDisUWuiP228yoT27SsCh1bXS_Td6SwTc,9852
21
- deepliif/options/processing_options.py,sha256=OnNT-ytoTQzetFiMEKrWvrsrhZlupRK4smcnIk0MbqY,2947
22
- deepliif/options/test_options.py,sha256=4ZbQC5U-nTbUz8jvdDIbse5TK_mjw4D5yNjpVevWD5M,1114
23
- deepliif/options/train_options.py,sha256=5eA_oxpRj2-HiuMMvC5-HLapxNFG_JXOQ3K132JjpR8,3580
24
- deepliif/util/__init__.py,sha256=5lkf-6R03VPnLXABKec_nx3BmXM-ZGQd3SZ1ft-koHA,17573
25
- deepliif/util/get_data.py,sha256=HaRoQYb2u0LUgLT7ES-w35AmJ4BrlBEJWU4Cok29pxI,3749
26
- deepliif/util/html.py,sha256=RNAONZ4opP-bViahgmpSbHwOc6jXKQRnWRAVIaeIvac,3309
27
- deepliif/util/image_pool.py,sha256=M89Hc7DblRWroNP71S9mAdRn7h3DrhPFPjqFxxZYSgw,2280
28
- deepliif/util/util.py,sha256=9MNgqthJZYjl5-TJm5-sjWvMfPBz8F4P5K0RHXRQhfY,5241
29
- deepliif/util/visualizer.py,sha256=5V1lWidHqssJX21jn1P5-bOVgtrEXKVaQgnMWAsMfqg,15636
30
- deepliif-1.1.10.dist-info/LICENSE.md,sha256=HlZw_UPS6EtJimJ_Ci7xKh-S5Iubs0Z8y8E6EZ3ZNyE,956
31
- deepliif-1.1.10.dist-info/METADATA,sha256=iApT5xf7jFaGZoqda3fQ68c3WCnE6e_nUxjFcxVInHk,31173
32
- deepliif-1.1.10.dist-info/WHEEL,sha256=pkctZYzUS4AYVn6dJ-7367OJZivF2e8RA9b_ZBjif18,92
33
- deepliif-1.1.10.dist-info/entry_points.txt,sha256=f70-10j2q68o_rDlsE3hspnv4ejlDnXwwGZ9JJ-3yF4,37
34
- deepliif-1.1.10.dist-info/top_level.txt,sha256=vLDK5YKmDz08E7PywuvEjAo7dM5rnIpsjR4c0ubQCnc,13
35
- deepliif-1.1.10.dist-info/RECORD,,