deepeval 3.7.5__py3-none-any.whl → 3.7.7__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- deepeval/_version.py +1 -1
- deepeval/cli/main.py +2022 -759
- deepeval/cli/utils.py +208 -36
- deepeval/config/dotenv_handler.py +19 -0
- deepeval/config/settings.py +675 -245
- deepeval/config/utils.py +9 -1
- deepeval/dataset/api.py +23 -1
- deepeval/dataset/golden.py +106 -21
- deepeval/evaluate/evaluate.py +0 -3
- deepeval/evaluate/execute.py +162 -315
- deepeval/evaluate/utils.py +6 -30
- deepeval/key_handler.py +124 -51
- deepeval/metrics/__init__.py +0 -4
- deepeval/metrics/answer_relevancy/answer_relevancy.py +89 -132
- deepeval/metrics/answer_relevancy/template.py +102 -179
- deepeval/metrics/arena_g_eval/arena_g_eval.py +98 -96
- deepeval/metrics/arena_g_eval/template.py +17 -1
- deepeval/metrics/argument_correctness/argument_correctness.py +81 -87
- deepeval/metrics/argument_correctness/template.py +19 -2
- deepeval/metrics/base_metric.py +19 -41
- deepeval/metrics/bias/bias.py +102 -108
- deepeval/metrics/bias/template.py +14 -2
- deepeval/metrics/contextual_precision/contextual_precision.py +56 -92
- deepeval/metrics/contextual_recall/contextual_recall.py +58 -85
- deepeval/metrics/contextual_relevancy/contextual_relevancy.py +53 -83
- deepeval/metrics/conversation_completeness/conversation_completeness.py +101 -119
- deepeval/metrics/conversation_completeness/template.py +23 -3
- deepeval/metrics/conversational_dag/conversational_dag.py +12 -8
- deepeval/metrics/conversational_dag/nodes.py +66 -123
- deepeval/metrics/conversational_dag/templates.py +16 -0
- deepeval/metrics/conversational_g_eval/conversational_g_eval.py +47 -66
- deepeval/metrics/dag/dag.py +10 -0
- deepeval/metrics/dag/nodes.py +63 -126
- deepeval/metrics/dag/templates.py +14 -0
- deepeval/metrics/exact_match/exact_match.py +9 -1
- deepeval/metrics/faithfulness/faithfulness.py +82 -136
- deepeval/metrics/g_eval/g_eval.py +93 -79
- deepeval/metrics/g_eval/template.py +18 -1
- deepeval/metrics/g_eval/utils.py +7 -6
- deepeval/metrics/goal_accuracy/goal_accuracy.py +91 -76
- deepeval/metrics/goal_accuracy/template.py +21 -3
- deepeval/metrics/hallucination/hallucination.py +60 -75
- deepeval/metrics/hallucination/template.py +13 -0
- deepeval/metrics/indicator.py +11 -10
- deepeval/metrics/json_correctness/json_correctness.py +40 -38
- deepeval/metrics/json_correctness/template.py +10 -0
- deepeval/metrics/knowledge_retention/knowledge_retention.py +60 -97
- deepeval/metrics/knowledge_retention/schema.py +9 -3
- deepeval/metrics/knowledge_retention/template.py +12 -0
- deepeval/metrics/mcp/mcp_task_completion.py +72 -43
- deepeval/metrics/mcp/multi_turn_mcp_use_metric.py +93 -75
- deepeval/metrics/mcp/schema.py +4 -0
- deepeval/metrics/mcp/template.py +59 -0
- deepeval/metrics/mcp_use_metric/mcp_use_metric.py +58 -64
- deepeval/metrics/mcp_use_metric/template.py +12 -0
- deepeval/metrics/misuse/misuse.py +77 -97
- deepeval/metrics/misuse/template.py +15 -0
- deepeval/metrics/multimodal_metrics/__init__.py +0 -1
- deepeval/metrics/multimodal_metrics/image_coherence/image_coherence.py +37 -38
- deepeval/metrics/multimodal_metrics/image_editing/image_editing.py +55 -76
- deepeval/metrics/multimodal_metrics/image_helpfulness/image_helpfulness.py +37 -38
- deepeval/metrics/multimodal_metrics/image_reference/image_reference.py +37 -38
- deepeval/metrics/multimodal_metrics/text_to_image/text_to_image.py +57 -76
- deepeval/metrics/non_advice/non_advice.py +79 -105
- deepeval/metrics/non_advice/template.py +12 -0
- deepeval/metrics/pattern_match/pattern_match.py +12 -4
- deepeval/metrics/pii_leakage/pii_leakage.py +75 -106
- deepeval/metrics/pii_leakage/template.py +14 -0
- deepeval/metrics/plan_adherence/plan_adherence.py +63 -89
- deepeval/metrics/plan_adherence/template.py +11 -0
- deepeval/metrics/plan_quality/plan_quality.py +63 -87
- deepeval/metrics/plan_quality/template.py +9 -0
- deepeval/metrics/prompt_alignment/prompt_alignment.py +78 -86
- deepeval/metrics/prompt_alignment/template.py +12 -0
- deepeval/metrics/role_adherence/role_adherence.py +48 -71
- deepeval/metrics/role_adherence/template.py +14 -0
- deepeval/metrics/role_violation/role_violation.py +75 -108
- deepeval/metrics/role_violation/template.py +12 -0
- deepeval/metrics/step_efficiency/step_efficiency.py +55 -65
- deepeval/metrics/step_efficiency/template.py +11 -0
- deepeval/metrics/summarization/summarization.py +115 -183
- deepeval/metrics/summarization/template.py +19 -0
- deepeval/metrics/task_completion/task_completion.py +67 -73
- deepeval/metrics/tool_correctness/tool_correctness.py +43 -42
- deepeval/metrics/tool_use/schema.py +4 -0
- deepeval/metrics/tool_use/template.py +16 -2
- deepeval/metrics/tool_use/tool_use.py +72 -94
- deepeval/metrics/topic_adherence/schema.py +4 -0
- deepeval/metrics/topic_adherence/template.py +21 -1
- deepeval/metrics/topic_adherence/topic_adherence.py +68 -81
- deepeval/metrics/toxicity/template.py +13 -0
- deepeval/metrics/toxicity/toxicity.py +80 -99
- deepeval/metrics/turn_contextual_precision/schema.py +3 -3
- deepeval/metrics/turn_contextual_precision/template.py +9 -2
- deepeval/metrics/turn_contextual_precision/turn_contextual_precision.py +154 -154
- deepeval/metrics/turn_contextual_recall/schema.py +3 -3
- deepeval/metrics/turn_contextual_recall/template.py +8 -1
- deepeval/metrics/turn_contextual_recall/turn_contextual_recall.py +148 -143
- deepeval/metrics/turn_contextual_relevancy/schema.py +2 -2
- deepeval/metrics/turn_contextual_relevancy/template.py +8 -1
- deepeval/metrics/turn_contextual_relevancy/turn_contextual_relevancy.py +154 -157
- deepeval/metrics/turn_faithfulness/schema.py +1 -1
- deepeval/metrics/turn_faithfulness/template.py +8 -1
- deepeval/metrics/turn_faithfulness/turn_faithfulness.py +180 -203
- deepeval/metrics/turn_relevancy/template.py +14 -0
- deepeval/metrics/turn_relevancy/turn_relevancy.py +56 -69
- deepeval/metrics/utils.py +161 -91
- deepeval/models/__init__.py +2 -0
- deepeval/models/base_model.py +44 -6
- deepeval/models/embedding_models/azure_embedding_model.py +34 -12
- deepeval/models/embedding_models/local_embedding_model.py +22 -7
- deepeval/models/embedding_models/ollama_embedding_model.py +17 -6
- deepeval/models/embedding_models/openai_embedding_model.py +3 -2
- deepeval/models/llms/__init__.py +2 -0
- deepeval/models/llms/amazon_bedrock_model.py +229 -73
- deepeval/models/llms/anthropic_model.py +143 -48
- deepeval/models/llms/azure_model.py +169 -95
- deepeval/models/llms/constants.py +2032 -0
- deepeval/models/llms/deepseek_model.py +82 -35
- deepeval/models/llms/gemini_model.py +126 -67
- deepeval/models/llms/grok_model.py +128 -65
- deepeval/models/llms/kimi_model.py +129 -87
- deepeval/models/llms/litellm_model.py +94 -18
- deepeval/models/llms/local_model.py +115 -16
- deepeval/models/llms/ollama_model.py +97 -76
- deepeval/models/llms/openai_model.py +169 -311
- deepeval/models/llms/portkey_model.py +58 -16
- deepeval/models/llms/utils.py +5 -2
- deepeval/models/retry_policy.py +10 -5
- deepeval/models/utils.py +56 -4
- deepeval/simulator/conversation_simulator.py +49 -2
- deepeval/simulator/template.py +16 -1
- deepeval/synthesizer/synthesizer.py +19 -17
- deepeval/test_case/api.py +24 -45
- deepeval/test_case/arena_test_case.py +7 -2
- deepeval/test_case/conversational_test_case.py +55 -6
- deepeval/test_case/llm_test_case.py +60 -6
- deepeval/test_run/api.py +3 -0
- deepeval/test_run/test_run.py +6 -1
- deepeval/utils.py +26 -0
- {deepeval-3.7.5.dist-info → deepeval-3.7.7.dist-info}/METADATA +3 -3
- {deepeval-3.7.5.dist-info → deepeval-3.7.7.dist-info}/RECORD +145 -148
- deepeval/metrics/multimodal_metrics/multimodal_g_eval/__init__.py +0 -0
- deepeval/metrics/multimodal_metrics/multimodal_g_eval/multimodal_g_eval.py +0 -386
- deepeval/metrics/multimodal_metrics/multimodal_g_eval/schema.py +0 -11
- deepeval/metrics/multimodal_metrics/multimodal_g_eval/template.py +0 -133
- deepeval/metrics/multimodal_metrics/multimodal_g_eval/utils.py +0 -68
- {deepeval-3.7.5.dist-info → deepeval-3.7.7.dist-info}/LICENSE.md +0 -0
- {deepeval-3.7.5.dist-info → deepeval-3.7.7.dist-info}/WHEEL +0 -0
- {deepeval-3.7.5.dist-info → deepeval-3.7.7.dist-info}/entry_points.txt +0 -0
|
@@ -3,170 +3,93 @@ import textwrap
|
|
|
3
3
|
|
|
4
4
|
|
|
5
5
|
class AnswerRelevancyTemplate:
|
|
6
|
+
multimodal_rules = """
|
|
7
|
+
--- MULTIMODAL INPUT RULES ---
|
|
8
|
+
- Treat image content as factual evidence.
|
|
9
|
+
- Only reference visual details that are explicitly and clearly visible.
|
|
10
|
+
- Do not infer or guess objects, text, or details not visibly present.
|
|
11
|
+
- If an image is unclear or ambiguous, mark uncertainty explicitly.
|
|
12
|
+
"""
|
|
13
|
+
|
|
6
14
|
@staticmethod
|
|
7
15
|
def generate_statements(actual_output: str, multimodal: bool = False):
|
|
8
|
-
|
|
9
|
-
|
|
10
|
-
|
|
11
|
-
|
|
12
|
-
|
|
13
|
-
|
|
14
|
-
|
|
15
|
-
|
|
16
|
-
|
|
17
|
-
|
|
18
|
-
|
|
19
|
-
|
|
20
|
-
|
|
21
|
-
|
|
22
|
-
|
|
23
|
-
|
|
24
|
-
|
|
25
|
-
|
|
26
|
-
|
|
27
|
-
|
|
28
|
-
|
|
29
|
-
|
|
30
|
-
|
|
31
|
-
|
|
32
|
-
|
|
33
|
-
|
|
34
|
-
|
|
35
|
-
|
|
36
|
-
)
|
|
37
|
-
|
|
38
|
-
coherence_note = (
|
|
39
|
-
""
|
|
40
|
-
if multimodal
|
|
41
|
-
else " Ambiguous statements and single words can be considered as statements, but only if outside of a coherent statement."
|
|
42
|
-
)
|
|
43
|
-
|
|
44
|
-
return textwrap.dedent(
|
|
45
|
-
f"""Given the text, breakdown and generate a list of statements presented.{coherence_note}{multimodal_instruction}
|
|
46
|
-
|
|
47
|
-
Example:
|
|
48
|
-
Example text:
|
|
49
|
-
{example_text}
|
|
50
|
-
|
|
51
|
-
{example_json}
|
|
52
|
-
===== END OF EXAMPLE ======
|
|
53
|
-
|
|
54
|
-
**
|
|
55
|
-
IMPORTANT: Please make sure to only return in valid and parseable JSON format, with the "statements" key mapping to a list of strings. No words or explanation are needed. Ensure all strings are closed appropriately. Repair any invalid JSON before you output it.
|
|
56
|
-
**
|
|
57
|
-
|
|
58
|
-
Text:
|
|
59
|
-
{actual_output}
|
|
60
|
-
|
|
61
|
-
JSON:
|
|
62
|
-
"""
|
|
63
|
-
)
|
|
16
|
+
return f"""Given the text, breakdown and generate a list of statements presented. Ambiguous statements and single words can be considered as statements, but only if outside of a coherent statement.
|
|
17
|
+
|
|
18
|
+
Example:
|
|
19
|
+
Example text:
|
|
20
|
+
Our new laptop model features a high-resolution Retina display for crystal-clear visuals. It also includes a fast-charging battery, giving you up to 12 hours of usage on a single charge. For security, we’ve added fingerprint authentication and an encrypted SSD. Plus, every purchase comes with a one-year warranty and 24/7 customer support.
|
|
21
|
+
|
|
22
|
+
{AnswerRelevancyTemplate.multimodal_rules if multimodal else ""}
|
|
23
|
+
|
|
24
|
+
{{
|
|
25
|
+
"statements": [
|
|
26
|
+
"The new laptop model has a high-resolution Retina display.",
|
|
27
|
+
"It includes a fast-charging battery with up to 12 hours of usage.",
|
|
28
|
+
"Security features include fingerprint authentication and an encrypted SSD.",
|
|
29
|
+
"Every purchase comes with a one-year warranty.",
|
|
30
|
+
"24/7 customer support is included."
|
|
31
|
+
]
|
|
32
|
+
}}
|
|
33
|
+
===== END OF EXAMPLE ======
|
|
34
|
+
|
|
35
|
+
**
|
|
36
|
+
IMPORTANT: Please make sure to only return in valid and parseable JSON format, with the "statements" key mapping to a list of strings. No words or explanation are needed. Ensure all strings are closed appropriately. Repair any invalid JSON before you output it.
|
|
37
|
+
**
|
|
38
|
+
|
|
39
|
+
Text:
|
|
40
|
+
{actual_output}
|
|
41
|
+
|
|
42
|
+
JSON:
|
|
43
|
+
"""
|
|
64
44
|
|
|
65
45
|
@staticmethod
|
|
66
46
|
def generate_verdicts(
|
|
67
47
|
input: str, statements: str, multimodal: bool = False
|
|
68
48
|
):
|
|
69
|
-
|
|
70
|
-
|
|
71
|
-
|
|
72
|
-
|
|
73
|
-
|
|
74
|
-
|
|
75
|
-
|
|
76
|
-
|
|
77
|
-
|
|
78
|
-
|
|
79
|
-
|
|
80
|
-
|
|
81
|
-
|
|
82
|
-
|
|
83
|
-
|
|
84
|
-
|
|
85
|
-
|
|
86
|
-
|
|
87
|
-
|
|
88
|
-
|
|
89
|
-
|
|
90
|
-
|
|
91
|
-
|
|
92
|
-
|
|
93
|
-
|
|
94
|
-
|
|
95
|
-
|
|
96
|
-
|
|
97
|
-
|
|
98
|
-
|
|
99
|
-
|
|
100
|
-
|
|
101
|
-
|
|
102
|
-
|
|
103
|
-
|
|
104
|
-
|
|
105
|
-
|
|
106
|
-
|
|
107
|
-
|
|
108
|
-
|
|
109
|
-
|
|
110
|
-
|
|
111
|
-
|
|
112
|
-
|
|
113
|
-
}},
|
|
114
|
-
{{
|
|
115
|
-
"reason": "The question about whether there is anything else the user can help with is not directly relevant to the input, but is not entirely irrelevant.",
|
|
116
|
-
"verdict": "idk"
|
|
117
|
-
}},
|
|
118
|
-
{{
|
|
119
|
-
"verdict": "yes"
|
|
120
|
-
}}
|
|
121
|
-
]
|
|
122
|
-
}}
|
|
123
|
-
"""
|
|
124
|
-
)
|
|
125
|
-
|
|
126
|
-
guidelines = ""
|
|
127
|
-
if multimodal:
|
|
128
|
-
guidelines = textwrap.dedent(
|
|
129
|
-
f"""
|
|
130
|
-
Since you are going to generate a verdict for each statement and image, the number of 'verdicts' SHOULD BE STRICTLY EQUAL to the number of `statements`.
|
|
131
|
-
"""
|
|
132
|
-
)
|
|
133
|
-
else:
|
|
134
|
-
guidelines = textwrap.dedent(
|
|
135
|
-
f"""
|
|
136
|
-
Generate ONE verdict per statement - number of 'verdicts' MUST equal number of statements.
|
|
137
|
-
'verdict' must be STRICTLY 'yes', 'no', or 'idk':
|
|
138
|
-
- 'yes': statement is relevant to addressing the input
|
|
139
|
-
- 'no': statement is irrelevant to the input
|
|
140
|
-
- 'idk': statement is ambiguous (not directly relevant but could be supporting information)
|
|
141
|
-
Provide 'reason' ONLY for 'no' or 'idk' verdicts.
|
|
142
|
-
"""
|
|
143
|
-
)
|
|
144
|
-
|
|
145
|
-
return textwrap.dedent(
|
|
146
|
-
f"""For the provided {content_type}, determine whether each {statement_or_image} is relevant to address the input.
|
|
147
|
-
{"Please generate a list of JSON with two keys: `verdict` and `reason`." if multimodal else "Generate JSON objects with 'verdict' and 'reason' fields."}
|
|
148
|
-
The 'verdict' {"key " if multimodal else ''}should {"STRICTLY be either a 'yes', 'idk' or 'no'" if multimodal else "be 'yes' (relevant), 'no' (irrelevant), or 'idk' (ambiguous/supporting information)"}. {"Answer 'yes' if the " + statement_or_image + ' is relevant to addressing the original input, no if the ' + statement_or_image + ' is irrelevant, and "idk" if it is ambiguous (eg., not directly relevant but could be used as a supporting point to address the input).' if multimodal else ""}
|
|
149
|
-
{"The 'reason' is the reason for the verdict.' if multimodal else '"}
|
|
150
|
-
Provide 'reason' ONLY for 'no' or 'idk' verdicts.
|
|
151
|
-
The {"provided statements are statements and images' if multimodal else 'statements are from an AI's actual output"} generated in the actual output.
|
|
152
|
-
|
|
153
|
-
**
|
|
154
|
-
IMPORTANT: Please make sure to only return in valid and parseable JSON format, with the 'verdicts' key mapping to a list of JSON objects. Ensure all strings are closed appropriately. Repair any invalid JSON before you output it.
|
|
155
|
-
|
|
156
|
-
{format_instruction if not multimodal else ''}
|
|
157
|
-
{example_section}
|
|
158
|
-
{guidelines}
|
|
159
|
-
**
|
|
160
|
-
|
|
161
|
-
Input:
|
|
162
|
-
{input}
|
|
163
|
-
|
|
164
|
-
Statements:
|
|
165
|
-
{statements}
|
|
166
|
-
|
|
167
|
-
JSON:
|
|
168
|
-
"""
|
|
169
|
-
)
|
|
49
|
+
return f"""For the provided list of statements, determine whether each statement is relevant to address the input.
|
|
50
|
+
Generate JSON objects with 'verdict' and 'reason' fields.
|
|
51
|
+
The 'verdict' should be 'yes' (relevant), 'no' (irrelevant), or 'idk' (ambiguous/supporting information).
|
|
52
|
+
Provide 'reason' ONLY for 'no' or 'idk' verdicts.
|
|
53
|
+
The statements are from an AI's actual output.
|
|
54
|
+
|
|
55
|
+
{AnswerRelevancyTemplate.multimodal_rules if multimodal else ""}
|
|
56
|
+
|
|
57
|
+
**
|
|
58
|
+
IMPORTANT: Please make sure to only return in valid and parseable JSON format, with the 'verdicts' key mapping to a list of JSON objects. Ensure all strings are closed appropriately. Repair any invalid JSON before you output it.
|
|
59
|
+
|
|
60
|
+
Expected JSON format:
|
|
61
|
+
{{
|
|
62
|
+
"verdicts": [
|
|
63
|
+
{{
|
|
64
|
+
"verdict": "yes"
|
|
65
|
+
}},
|
|
66
|
+
{{
|
|
67
|
+
"reason": <explanation_for_irrelevance>,
|
|
68
|
+
"verdict": "no"
|
|
69
|
+
}},
|
|
70
|
+
{{
|
|
71
|
+
"reason": <explanation_for_ambiguity>,
|
|
72
|
+
"verdict": "idk"
|
|
73
|
+
}}
|
|
74
|
+
]
|
|
75
|
+
}}
|
|
76
|
+
|
|
77
|
+
Generate ONE verdict per statement - number of 'verdicts' MUST equal number of statements.
|
|
78
|
+
'verdict' must be STRICTLY 'yes', 'no', or 'idk':
|
|
79
|
+
- 'yes': statement is relevant to addressing the input
|
|
80
|
+
- 'no': statement is irrelevant to the input
|
|
81
|
+
- 'idk': statement is ambiguous (not directly relevant but could be supporting information)
|
|
82
|
+
Provide 'reason' ONLY for 'no' or 'idk' verdicts.
|
|
83
|
+
**
|
|
84
|
+
|
|
85
|
+
Input:
|
|
86
|
+
{input}
|
|
87
|
+
|
|
88
|
+
Statements:
|
|
89
|
+
{statements}
|
|
90
|
+
|
|
91
|
+
JSON:
|
|
92
|
+
"""
|
|
170
93
|
|
|
171
94
|
@staticmethod
|
|
172
95
|
def generate_reason(
|
|
@@ -175,32 +98,32 @@ class AnswerRelevancyTemplate:
|
|
|
175
98
|
score: float,
|
|
176
99
|
multimodal: bool = False,
|
|
177
100
|
):
|
|
178
|
-
return
|
|
179
|
-
|
|
180
|
-
|
|
181
|
-
|
|
101
|
+
return f"""Given the answer relevancy score, the list of reasons of irrelevant statements made in the actual output, and the input, provide a CONCISE reason for the score. Explain why it is not higher, but also why it is at its current score.
|
|
102
|
+
The irrelevant statements represent things in the actual output that is irrelevant to addressing whatever is asked/talked about in the input.
|
|
103
|
+
If there is nothing irrelevant, just say something positive with an upbeat encouraging tone (but don't overdo it otherwise it gets annoying).
|
|
104
|
+
|
|
105
|
+
{AnswerRelevancyTemplate.multimodal_rules if multimodal else ""}
|
|
182
106
|
|
|
107
|
+
**
|
|
108
|
+
IMPORTANT: Please make sure to only return in JSON format, with the 'reason' key providing the reason. Ensure all strings are closed appropriately. Repair any invalid JSON before you output it.
|
|
183
109
|
|
|
184
|
-
|
|
185
|
-
|
|
110
|
+
Example:
|
|
111
|
+
Example JSON:
|
|
112
|
+
{{
|
|
113
|
+
"reason": "The score is <answer_relevancy_score> because <your_reason>."
|
|
114
|
+
}}
|
|
115
|
+
===== END OF EXAMPLE ======
|
|
116
|
+
**
|
|
186
117
|
|
|
187
|
-
{"Example:' if not multimodal else '"}
|
|
188
|
-
Example JSON:
|
|
189
|
-
{{
|
|
190
|
-
"reason": "The score is <answer_relevancy_score> because <your_reason>."
|
|
191
|
-
}}
|
|
192
|
-
{"===== END OF EXAMPLE ======' if not multimodal else '"}
|
|
193
|
-
**
|
|
194
118
|
|
|
195
|
-
|
|
196
|
-
|
|
119
|
+
Answer Relevancy Score:
|
|
120
|
+
{score}
|
|
197
121
|
|
|
198
|
-
|
|
199
|
-
|
|
122
|
+
Reasons why the score can't be higher based on irrelevant statements in the actual output:
|
|
123
|
+
{irrelevant_statements}
|
|
200
124
|
|
|
201
|
-
|
|
202
|
-
|
|
125
|
+
Input:
|
|
126
|
+
{input}
|
|
203
127
|
|
|
204
|
-
|
|
205
|
-
|
|
206
|
-
)
|
|
128
|
+
JSON:
|
|
129
|
+
"""
|
|
@@ -14,12 +14,17 @@ from deepeval.utils import get_or_create_event_loop, prettify_list
|
|
|
14
14
|
from deepeval.metrics.utils import (
|
|
15
15
|
check_arena_test_case_params,
|
|
16
16
|
construct_verbose_logs,
|
|
17
|
-
trimAndLoadJson,
|
|
18
17
|
initialize_model,
|
|
18
|
+
a_generate_with_schema_and_extract,
|
|
19
|
+
generate_with_schema_and_extract,
|
|
19
20
|
)
|
|
20
21
|
from deepeval.models import DeepEvalBaseLLM
|
|
21
22
|
from deepeval.metrics.indicator import metric_progress_indicator
|
|
22
|
-
from deepeval.metrics.arena_g_eval.schema import
|
|
23
|
+
from deepeval.metrics.arena_g_eval.schema import (
|
|
24
|
+
RewrittenReason,
|
|
25
|
+
Winner,
|
|
26
|
+
Steps,
|
|
27
|
+
)
|
|
23
28
|
from deepeval.metrics.g_eval.utils import (
|
|
24
29
|
construct_g_eval_params_string,
|
|
25
30
|
validate_criteria_and_evaluation_steps,
|
|
@@ -62,7 +67,13 @@ class ArenaGEval(BaseArenaMetric):
|
|
|
62
67
|
_progress: Optional[Progress] = None,
|
|
63
68
|
_pbar_id: Optional[int] = None,
|
|
64
69
|
) -> str:
|
|
65
|
-
check_arena_test_case_params(
|
|
70
|
+
check_arena_test_case_params(
|
|
71
|
+
test_case,
|
|
72
|
+
self.evaluation_params,
|
|
73
|
+
self,
|
|
74
|
+
self.model,
|
|
75
|
+
test_case.multimodal,
|
|
76
|
+
)
|
|
66
77
|
self.evaluation_cost = 0 if self.using_native_model else None
|
|
67
78
|
|
|
68
79
|
with metric_progress_indicator(self, _show_indicator=_show_indicator):
|
|
@@ -76,12 +87,12 @@ class ArenaGEval(BaseArenaMetric):
|
|
|
76
87
|
)
|
|
77
88
|
else:
|
|
78
89
|
self.evaluation_steps: List[str] = (
|
|
79
|
-
self._generate_evaluation_steps()
|
|
90
|
+
self._generate_evaluation_steps(test_case.multimodal)
|
|
80
91
|
)
|
|
81
92
|
if _progress:
|
|
82
93
|
update_pbar(_progress, _pbar_id)
|
|
83
94
|
masked_winner, masked_reason, dummy_to_real_names = (
|
|
84
|
-
self._compare(test_case)
|
|
95
|
+
self._compare(test_case, test_case.multimodal)
|
|
85
96
|
)
|
|
86
97
|
if _progress:
|
|
87
98
|
update_pbar(_progress, _pbar_id)
|
|
@@ -111,7 +122,13 @@ class ArenaGEval(BaseArenaMetric):
|
|
|
111
122
|
_progress: Optional[Progress] = None,
|
|
112
123
|
_pbar_id: Optional[int] = None,
|
|
113
124
|
) -> str:
|
|
114
|
-
check_arena_test_case_params(
|
|
125
|
+
check_arena_test_case_params(
|
|
126
|
+
test_case,
|
|
127
|
+
self.evaluation_params,
|
|
128
|
+
self,
|
|
129
|
+
self.model,
|
|
130
|
+
test_case.multimodal,
|
|
131
|
+
)
|
|
115
132
|
self.evaluation_cost = 0 if self.using_native_model else None
|
|
116
133
|
|
|
117
134
|
with metric_progress_indicator(
|
|
@@ -120,12 +137,12 @@ class ArenaGEval(BaseArenaMetric):
|
|
|
120
137
|
_show_indicator=_show_indicator,
|
|
121
138
|
):
|
|
122
139
|
self.evaluation_steps: List[str] = (
|
|
123
|
-
await self._a_generate_evaluation_steps()
|
|
140
|
+
await self._a_generate_evaluation_steps(test_case.multimodal)
|
|
124
141
|
)
|
|
125
142
|
if _progress:
|
|
126
143
|
update_pbar(_progress, _pbar_id)
|
|
127
144
|
masked_winner, masked_reason, dummy_to_real_names = (
|
|
128
|
-
await self._a_compare(test_case)
|
|
145
|
+
await self._a_compare(test_case, test_case.multimodal)
|
|
129
146
|
)
|
|
130
147
|
if _progress:
|
|
131
148
|
update_pbar(_progress, _pbar_id)
|
|
@@ -147,7 +164,7 @@ class ArenaGEval(BaseArenaMetric):
|
|
|
147
164
|
)
|
|
148
165
|
return self.winner
|
|
149
166
|
|
|
150
|
-
async def _a_generate_evaluation_steps(self) -> List[str]:
|
|
167
|
+
async def _a_generate_evaluation_steps(self, multimodal: bool) -> List[str]:
|
|
151
168
|
if self.evaluation_steps:
|
|
152
169
|
return self.evaluation_steps
|
|
153
170
|
|
|
@@ -155,23 +172,20 @@ class ArenaGEval(BaseArenaMetric):
|
|
|
155
172
|
self.evaluation_params
|
|
156
173
|
)
|
|
157
174
|
prompt = ArenaGEvalTemplate.generate_evaluation_steps(
|
|
158
|
-
criteria=self.criteria,
|
|
175
|
+
criteria=self.criteria,
|
|
176
|
+
parameters=g_eval_params_str,
|
|
177
|
+
multimodal=multimodal,
|
|
178
|
+
)
|
|
179
|
+
|
|
180
|
+
return await a_generate_with_schema_and_extract(
|
|
181
|
+
self,
|
|
182
|
+
prompt,
|
|
183
|
+
Steps,
|
|
184
|
+
extract_schema=lambda s: s.steps,
|
|
185
|
+
extract_json=lambda data: data["steps"],
|
|
159
186
|
)
|
|
160
|
-
if self.using_native_model:
|
|
161
|
-
res, cost = await self.model.a_generate(prompt)
|
|
162
|
-
self.evaluation_cost += cost
|
|
163
|
-
data = trimAndLoadJson(res, self)
|
|
164
|
-
return data["steps"]
|
|
165
|
-
else:
|
|
166
|
-
try:
|
|
167
|
-
res: Steps = await self.model.a_generate(prompt, schema=Steps)
|
|
168
|
-
return res.steps
|
|
169
|
-
except TypeError:
|
|
170
|
-
res = await self.model.a_generate(prompt)
|
|
171
|
-
data = trimAndLoadJson(res, self)
|
|
172
|
-
return data["steps"]
|
|
173
187
|
|
|
174
|
-
def _generate_evaluation_steps(self) -> List[str]:
|
|
188
|
+
def _generate_evaluation_steps(self, multimodal: bool) -> List[str]:
|
|
175
189
|
if self.evaluation_steps:
|
|
176
190
|
return self.evaluation_steps
|
|
177
191
|
|
|
@@ -179,25 +193,20 @@ class ArenaGEval(BaseArenaMetric):
|
|
|
179
193
|
self.evaluation_params
|
|
180
194
|
)
|
|
181
195
|
prompt = ArenaGEvalTemplate.generate_evaluation_steps(
|
|
182
|
-
criteria=self.criteria,
|
|
196
|
+
criteria=self.criteria,
|
|
197
|
+
parameters=g_eval_params_str,
|
|
198
|
+
multimodal=multimodal,
|
|
199
|
+
)
|
|
200
|
+
return generate_with_schema_and_extract(
|
|
201
|
+
self,
|
|
202
|
+
prompt,
|
|
203
|
+
Steps,
|
|
204
|
+
extract_schema=lambda s: s.steps,
|
|
205
|
+
extract_json=lambda data: data["steps"],
|
|
183
206
|
)
|
|
184
|
-
if self.using_native_model:
|
|
185
|
-
res, cost = self.model.generate(prompt)
|
|
186
|
-
self.evaluation_cost += cost
|
|
187
|
-
data = trimAndLoadJson(res, self)
|
|
188
|
-
return data["steps"]
|
|
189
|
-
else:
|
|
190
|
-
try:
|
|
191
|
-
res: Steps = self.model.generate(prompt, schema=Steps)
|
|
192
|
-
return res.steps
|
|
193
|
-
except TypeError:
|
|
194
|
-
res = self.model.generate(prompt)
|
|
195
|
-
data = trimAndLoadJson(res, self)
|
|
196
|
-
return data["steps"]
|
|
197
207
|
|
|
198
208
|
async def _a_compare(
|
|
199
|
-
self,
|
|
200
|
-
test_case: ArenaTestCase,
|
|
209
|
+
self, test_case: ArenaTestCase, multimodal: bool
|
|
201
210
|
) -> Tuple[str, str, Dict[str, str]]:
|
|
202
211
|
formatted_test_case, dummy_to_real_names = format_arena_test_case(
|
|
203
212
|
self.evaluation_params, test_case
|
|
@@ -209,23 +218,27 @@ class ArenaGEval(BaseArenaMetric):
|
|
|
209
218
|
evaluation_steps=number_evaluation_steps(self.evaluation_steps),
|
|
210
219
|
test_case_contents=formatted_test_case,
|
|
211
220
|
parameters=g_eval_params_str,
|
|
221
|
+
multimodal=multimodal,
|
|
222
|
+
)
|
|
223
|
+
|
|
224
|
+
return await a_generate_with_schema_and_extract(
|
|
225
|
+
self,
|
|
226
|
+
prompt,
|
|
227
|
+
Winner,
|
|
228
|
+
extract_schema=lambda s: (
|
|
229
|
+
s.winner,
|
|
230
|
+
s.reason,
|
|
231
|
+
dummy_to_real_names,
|
|
232
|
+
),
|
|
233
|
+
extract_json=lambda data: (
|
|
234
|
+
data["winner"],
|
|
235
|
+
data["reason"],
|
|
236
|
+
dummy_to_real_names,
|
|
237
|
+
),
|
|
212
238
|
)
|
|
213
|
-
if self.using_native_model:
|
|
214
|
-
res, cost = await self.model.a_generate(prompt, schema=Winner)
|
|
215
|
-
self.evaluation_cost += cost
|
|
216
|
-
return res.winner, res.reason, dummy_to_real_names
|
|
217
|
-
else:
|
|
218
|
-
try:
|
|
219
|
-
res: Winner = await self.model.a_generate(prompt, schema=Winner)
|
|
220
|
-
return res.winner, res.reason, dummy_to_real_names
|
|
221
|
-
except TypeError:
|
|
222
|
-
res = await self.model.a_generate(prompt)
|
|
223
|
-
data = trimAndLoadJson(res, self)
|
|
224
|
-
return data["winner"], data["reason"], dummy_to_real_names
|
|
225
239
|
|
|
226
240
|
def _compare(
|
|
227
|
-
self,
|
|
228
|
-
test_case: ArenaTestCase,
|
|
241
|
+
self, test_case: ArenaTestCase, multimodal: bool
|
|
229
242
|
) -> Tuple[str, str, Dict[str, str]]:
|
|
230
243
|
formatted_test_case, dummy_to_real_names = format_arena_test_case(
|
|
231
244
|
self.evaluation_params, test_case
|
|
@@ -237,19 +250,23 @@ class ArenaGEval(BaseArenaMetric):
|
|
|
237
250
|
evaluation_steps=number_evaluation_steps(self.evaluation_steps),
|
|
238
251
|
test_case_contents=formatted_test_case,
|
|
239
252
|
parameters=g_eval_params_str,
|
|
253
|
+
multimodal=multimodal,
|
|
254
|
+
)
|
|
255
|
+
return generate_with_schema_and_extract(
|
|
256
|
+
self,
|
|
257
|
+
prompt,
|
|
258
|
+
Winner,
|
|
259
|
+
extract_schema=lambda s: (
|
|
260
|
+
s.winner,
|
|
261
|
+
s.reason,
|
|
262
|
+
dummy_to_real_names,
|
|
263
|
+
),
|
|
264
|
+
extract_json=lambda data: (
|
|
265
|
+
data["winner"],
|
|
266
|
+
data["reason"],
|
|
267
|
+
dummy_to_real_names,
|
|
268
|
+
),
|
|
240
269
|
)
|
|
241
|
-
if self.using_native_model:
|
|
242
|
-
res, cost = self.model.generate(prompt, schema=Winner)
|
|
243
|
-
self.evaluation_cost += cost
|
|
244
|
-
return res.winner, res.reason, dummy_to_real_names
|
|
245
|
-
else:
|
|
246
|
-
try:
|
|
247
|
-
res: Winner = self.model.generate(prompt, schema=Winner)
|
|
248
|
-
return res.winner, res.reason, dummy_to_real_names
|
|
249
|
-
except TypeError:
|
|
250
|
-
res = self.model.generate(prompt)
|
|
251
|
-
data = trimAndLoadJson(res, self)
|
|
252
|
-
return data["winner"], data["reason"], dummy_to_real_names
|
|
253
270
|
|
|
254
271
|
async def _a_generate_rewritten_reason(
|
|
255
272
|
self,
|
|
@@ -260,22 +277,14 @@ class ArenaGEval(BaseArenaMetric):
|
|
|
260
277
|
reason=reason,
|
|
261
278
|
dummy_to_real_names=dummy_to_real_names,
|
|
262
279
|
)
|
|
263
|
-
|
|
264
|
-
|
|
265
|
-
|
|
266
|
-
|
|
267
|
-
|
|
268
|
-
|
|
269
|
-
|
|
270
|
-
|
|
271
|
-
res: RewrittenReason = await self.model.a_generate(
|
|
272
|
-
prompt, schema=RewrittenReason
|
|
273
|
-
)
|
|
274
|
-
return res.rewritten_reason
|
|
275
|
-
except TypeError:
|
|
276
|
-
res = await self.model.a_generate(prompt)
|
|
277
|
-
data = trimAndLoadJson(res, self)
|
|
278
|
-
return data["rewritten_reason"]
|
|
280
|
+
|
|
281
|
+
return await a_generate_with_schema_and_extract(
|
|
282
|
+
self,
|
|
283
|
+
prompt,
|
|
284
|
+
RewrittenReason,
|
|
285
|
+
extract_schema=lambda s: s.rewritten_reason,
|
|
286
|
+
extract_json=lambda data: data["rewritten_reason"],
|
|
287
|
+
)
|
|
279
288
|
|
|
280
289
|
def _generate_rewritten_reason(
|
|
281
290
|
self,
|
|
@@ -286,20 +295,13 @@ class ArenaGEval(BaseArenaMetric):
|
|
|
286
295
|
reason=reason,
|
|
287
296
|
dummy_to_real_names=dummy_to_real_names,
|
|
288
297
|
)
|
|
289
|
-
|
|
290
|
-
|
|
291
|
-
|
|
292
|
-
|
|
293
|
-
|
|
294
|
-
|
|
295
|
-
|
|
296
|
-
prompt, schema=RewrittenReason
|
|
297
|
-
)
|
|
298
|
-
return res.rewritten_reason
|
|
299
|
-
except TypeError:
|
|
300
|
-
res = self.model.generate(prompt)
|
|
301
|
-
data = trimAndLoadJson(res, self)
|
|
302
|
-
return data["rewritten_reason"]
|
|
298
|
+
return generate_with_schema_and_extract(
|
|
299
|
+
self,
|
|
300
|
+
prompt,
|
|
301
|
+
RewrittenReason,
|
|
302
|
+
extract_schema=lambda s: s.rewritten_reason,
|
|
303
|
+
extract_json=lambda data: data["rewritten_reason"],
|
|
304
|
+
)
|
|
303
305
|
|
|
304
306
|
def is_successful(self) -> bool:
|
|
305
307
|
if self.error is not None:
|
|
@@ -3,11 +3,23 @@ import textwrap
|
|
|
3
3
|
|
|
4
4
|
|
|
5
5
|
class ArenaGEvalTemplate:
|
|
6
|
+
multimodal_rules = """
|
|
7
|
+
--- MULTIMODAL INPUT RULES ---
|
|
8
|
+
- Treat image content as factual evidence.
|
|
9
|
+
- Only reference visual details that are explicitly and clearly visible.
|
|
10
|
+
- Do not infer or guess objects, text, or details not visibly present.
|
|
11
|
+
- If an image is unclear or ambiguous, mark uncertainty explicitly.
|
|
12
|
+
"""
|
|
13
|
+
|
|
6
14
|
@staticmethod
|
|
7
|
-
def generate_evaluation_steps(
|
|
15
|
+
def generate_evaluation_steps(
|
|
16
|
+
parameters: str, criteria: str, multimodal: Optional[bool]
|
|
17
|
+
):
|
|
8
18
|
return textwrap.dedent(
|
|
9
19
|
f"""Given an evaluation criteria which outlines how you should choose the winner out of all contestants based on the {parameters}, generate 3-4 concise evaluation steps based on the criteria below. You MUST make it clear how to evaluate {parameters} in relation to one another.
|
|
10
20
|
|
|
21
|
+
{ArenaGEvalTemplate.multimodal_rules if multimodal else ""}
|
|
22
|
+
|
|
11
23
|
Evaluation Criteria:
|
|
12
24
|
{criteria}
|
|
13
25
|
|
|
@@ -28,6 +40,7 @@ class ArenaGEvalTemplate:
|
|
|
28
40
|
evaluation_steps: str,
|
|
29
41
|
test_case_contents: List[str],
|
|
30
42
|
parameters: str,
|
|
43
|
+
multimodal: Optional[bool],
|
|
31
44
|
):
|
|
32
45
|
reasoning_expectation = (
|
|
33
46
|
"Be specific and grounded in the evaluation steps."
|
|
@@ -36,6 +49,9 @@ class ArenaGEvalTemplate:
|
|
|
36
49
|
return textwrap.dedent(
|
|
37
50
|
f"""
|
|
38
51
|
You are a judge. Given the following evaluation steps, select the single contestant that best aligns with the evaluation steps.
|
|
52
|
+
|
|
53
|
+
{ArenaGEvalTemplate.multimodal_rules if multimodal else ""}
|
|
54
|
+
|
|
39
55
|
Return a JSON object with three fields:
|
|
40
56
|
|
|
41
57
|
- `"winner"`: the contestant that is best aligned with the evaluation steps.
|