deepeval 3.7.4__py3-none-any.whl → 3.7.6__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- deepeval/_version.py +1 -1
- deepeval/config/settings.py +35 -1
- deepeval/dataset/api.py +23 -1
- deepeval/dataset/golden.py +139 -2
- deepeval/evaluate/evaluate.py +16 -11
- deepeval/evaluate/execute.py +13 -181
- deepeval/evaluate/utils.py +6 -26
- deepeval/integrations/pydantic_ai/agent.py +19 -2
- deepeval/integrations/pydantic_ai/instrumentator.py +62 -23
- deepeval/key_handler.py +3 -0
- deepeval/metrics/__init__.py +14 -16
- deepeval/metrics/answer_relevancy/answer_relevancy.py +118 -116
- deepeval/metrics/answer_relevancy/template.py +22 -3
- deepeval/metrics/arena_g_eval/arena_g_eval.py +98 -96
- deepeval/metrics/arena_g_eval/template.py +17 -1
- deepeval/metrics/argument_correctness/argument_correctness.py +81 -87
- deepeval/metrics/argument_correctness/template.py +19 -2
- deepeval/metrics/base_metric.py +13 -44
- deepeval/metrics/bias/bias.py +102 -108
- deepeval/metrics/bias/template.py +14 -2
- deepeval/metrics/contextual_precision/contextual_precision.py +96 -94
- deepeval/metrics/contextual_precision/template.py +115 -66
- deepeval/metrics/contextual_recall/contextual_recall.py +94 -84
- deepeval/metrics/contextual_recall/template.py +106 -55
- deepeval/metrics/contextual_relevancy/contextual_relevancy.py +86 -84
- deepeval/metrics/contextual_relevancy/template.py +87 -58
- deepeval/metrics/conversation_completeness/conversation_completeness.py +101 -119
- deepeval/metrics/conversation_completeness/template.py +23 -3
- deepeval/metrics/conversational_dag/conversational_dag.py +12 -8
- deepeval/metrics/conversational_dag/nodes.py +66 -123
- deepeval/metrics/conversational_dag/templates.py +16 -0
- deepeval/metrics/conversational_g_eval/conversational_g_eval.py +47 -66
- deepeval/metrics/dag/dag.py +10 -0
- deepeval/metrics/dag/nodes.py +63 -126
- deepeval/metrics/dag/templates.py +16 -2
- deepeval/metrics/exact_match/exact_match.py +9 -1
- deepeval/metrics/faithfulness/faithfulness.py +138 -149
- deepeval/metrics/faithfulness/schema.py +1 -1
- deepeval/metrics/faithfulness/template.py +200 -115
- deepeval/metrics/g_eval/g_eval.py +87 -78
- deepeval/metrics/g_eval/template.py +18 -1
- deepeval/metrics/g_eval/utils.py +7 -6
- deepeval/metrics/goal_accuracy/goal_accuracy.py +91 -76
- deepeval/metrics/goal_accuracy/template.py +21 -3
- deepeval/metrics/hallucination/hallucination.py +60 -75
- deepeval/metrics/hallucination/template.py +13 -0
- deepeval/metrics/indicator.py +7 -10
- deepeval/metrics/json_correctness/json_correctness.py +40 -38
- deepeval/metrics/json_correctness/template.py +10 -0
- deepeval/metrics/knowledge_retention/knowledge_retention.py +60 -97
- deepeval/metrics/knowledge_retention/schema.py +9 -3
- deepeval/metrics/knowledge_retention/template.py +12 -0
- deepeval/metrics/mcp/mcp_task_completion.py +68 -38
- deepeval/metrics/mcp/multi_turn_mcp_use_metric.py +92 -74
- deepeval/metrics/mcp/template.py +52 -0
- deepeval/metrics/mcp_use_metric/mcp_use_metric.py +58 -64
- deepeval/metrics/mcp_use_metric/template.py +12 -0
- deepeval/metrics/misuse/misuse.py +77 -97
- deepeval/metrics/misuse/template.py +15 -0
- deepeval/metrics/multimodal_metrics/__init__.py +0 -19
- deepeval/metrics/multimodal_metrics/image_coherence/image_coherence.py +59 -53
- deepeval/metrics/multimodal_metrics/image_editing/image_editing.py +79 -95
- deepeval/metrics/multimodal_metrics/image_helpfulness/image_helpfulness.py +59 -53
- deepeval/metrics/multimodal_metrics/image_reference/image_reference.py +59 -53
- deepeval/metrics/multimodal_metrics/text_to_image/text_to_image.py +111 -109
- deepeval/metrics/non_advice/non_advice.py +79 -105
- deepeval/metrics/non_advice/template.py +12 -0
- deepeval/metrics/pattern_match/pattern_match.py +12 -4
- deepeval/metrics/pii_leakage/pii_leakage.py +75 -106
- deepeval/metrics/pii_leakage/template.py +14 -0
- deepeval/metrics/plan_adherence/plan_adherence.py +63 -89
- deepeval/metrics/plan_adherence/template.py +11 -0
- deepeval/metrics/plan_quality/plan_quality.py +63 -87
- deepeval/metrics/plan_quality/template.py +9 -0
- deepeval/metrics/prompt_alignment/prompt_alignment.py +72 -83
- deepeval/metrics/prompt_alignment/template.py +12 -0
- deepeval/metrics/ragas.py +3 -3
- deepeval/metrics/role_adherence/role_adherence.py +48 -71
- deepeval/metrics/role_adherence/template.py +14 -0
- deepeval/metrics/role_violation/role_violation.py +75 -108
- deepeval/metrics/role_violation/template.py +12 -0
- deepeval/metrics/step_efficiency/step_efficiency.py +55 -65
- deepeval/metrics/step_efficiency/template.py +11 -0
- deepeval/metrics/summarization/summarization.py +115 -183
- deepeval/metrics/summarization/template.py +19 -0
- deepeval/metrics/task_completion/task_completion.py +67 -73
- deepeval/metrics/tool_correctness/tool_correctness.py +45 -44
- deepeval/metrics/tool_use/tool_use.py +42 -66
- deepeval/metrics/topic_adherence/template.py +13 -0
- deepeval/metrics/topic_adherence/topic_adherence.py +53 -67
- deepeval/metrics/toxicity/template.py +13 -0
- deepeval/metrics/toxicity/toxicity.py +80 -99
- deepeval/metrics/turn_contextual_precision/schema.py +21 -0
- deepeval/metrics/turn_contextual_precision/template.py +187 -0
- deepeval/metrics/turn_contextual_precision/turn_contextual_precision.py +592 -0
- deepeval/metrics/turn_contextual_recall/schema.py +21 -0
- deepeval/metrics/turn_contextual_recall/template.py +178 -0
- deepeval/metrics/turn_contextual_recall/turn_contextual_recall.py +563 -0
- deepeval/metrics/{multimodal_metrics/multimodal_contextual_relevancy → turn_contextual_relevancy}/schema.py +7 -1
- deepeval/metrics/turn_contextual_relevancy/template.py +161 -0
- deepeval/metrics/turn_contextual_relevancy/turn_contextual_relevancy.py +576 -0
- deepeval/metrics/{multimodal_metrics/multimodal_faithfulness → turn_faithfulness}/schema.py +11 -3
- deepeval/metrics/turn_faithfulness/template.py +218 -0
- deepeval/metrics/turn_faithfulness/turn_faithfulness.py +627 -0
- deepeval/metrics/turn_relevancy/template.py +14 -0
- deepeval/metrics/turn_relevancy/turn_relevancy.py +56 -69
- deepeval/metrics/utils.py +158 -122
- deepeval/models/__init__.py +0 -12
- deepeval/models/base_model.py +49 -33
- deepeval/models/embedding_models/__init__.py +7 -0
- deepeval/models/embedding_models/azure_embedding_model.py +79 -33
- deepeval/models/embedding_models/local_embedding_model.py +39 -20
- deepeval/models/embedding_models/ollama_embedding_model.py +52 -19
- deepeval/models/embedding_models/openai_embedding_model.py +42 -22
- deepeval/models/llms/amazon_bedrock_model.py +226 -72
- deepeval/models/llms/anthropic_model.py +178 -63
- deepeval/models/llms/azure_model.py +218 -60
- deepeval/models/llms/constants.py +2032 -0
- deepeval/models/llms/deepseek_model.py +95 -40
- deepeval/models/llms/gemini_model.py +209 -64
- deepeval/models/llms/grok_model.py +139 -68
- deepeval/models/llms/kimi_model.py +140 -90
- deepeval/models/llms/litellm_model.py +131 -37
- deepeval/models/llms/local_model.py +125 -21
- deepeval/models/llms/ollama_model.py +147 -24
- deepeval/models/llms/openai_model.py +222 -269
- deepeval/models/llms/portkey_model.py +81 -22
- deepeval/models/llms/utils.py +8 -3
- deepeval/models/retry_policy.py +17 -14
- deepeval/models/utils.py +106 -5
- deepeval/optimizer/__init__.py +5 -0
- deepeval/optimizer/algorithms/__init__.py +6 -0
- deepeval/optimizer/algorithms/base.py +29 -0
- deepeval/optimizer/algorithms/configs.py +18 -0
- deepeval/optimizer/algorithms/copro/__init__.py +5 -0
- deepeval/{optimization/copro/loop.py → optimizer/algorithms/copro/copro.py} +112 -113
- deepeval/optimizer/algorithms/gepa/__init__.py +5 -0
- deepeval/{optimization/gepa/loop.py → optimizer/algorithms/gepa/gepa.py} +175 -115
- deepeval/optimizer/algorithms/miprov2/__init__.py +17 -0
- deepeval/optimizer/algorithms/miprov2/bootstrapper.py +435 -0
- deepeval/optimizer/algorithms/miprov2/miprov2.py +752 -0
- deepeval/optimizer/algorithms/miprov2/proposer.py +301 -0
- deepeval/optimizer/algorithms/simba/__init__.py +5 -0
- deepeval/{optimization/simba/loop.py → optimizer/algorithms/simba/simba.py} +128 -112
- deepeval/{optimization → optimizer}/configs.py +5 -8
- deepeval/{optimization/policies/selection.py → optimizer/policies.py} +63 -2
- deepeval/optimizer/prompt_optimizer.py +263 -0
- deepeval/optimizer/rewriter/__init__.py +5 -0
- deepeval/optimizer/rewriter/rewriter.py +124 -0
- deepeval/optimizer/rewriter/utils.py +214 -0
- deepeval/optimizer/scorer/__init__.py +5 -0
- deepeval/optimizer/scorer/base.py +86 -0
- deepeval/optimizer/scorer/scorer.py +316 -0
- deepeval/optimizer/scorer/utils.py +30 -0
- deepeval/optimizer/types.py +148 -0
- deepeval/{optimization → optimizer}/utils.py +47 -165
- deepeval/prompt/prompt.py +5 -9
- deepeval/simulator/conversation_simulator.py +43 -0
- deepeval/simulator/template.py +13 -0
- deepeval/test_case/__init__.py +1 -3
- deepeval/test_case/api.py +26 -45
- deepeval/test_case/arena_test_case.py +7 -2
- deepeval/test_case/conversational_test_case.py +68 -1
- deepeval/test_case/llm_test_case.py +206 -1
- deepeval/test_case/utils.py +4 -8
- deepeval/test_run/api.py +18 -14
- deepeval/test_run/test_run.py +3 -3
- deepeval/tracing/patchers.py +9 -4
- deepeval/tracing/tracing.py +2 -2
- deepeval/utils.py +65 -0
- {deepeval-3.7.4.dist-info → deepeval-3.7.6.dist-info}/METADATA +1 -4
- {deepeval-3.7.4.dist-info → deepeval-3.7.6.dist-info}/RECORD +180 -193
- deepeval/metrics/multimodal_metrics/multimodal_answer_relevancy/multimodal_answer_relevancy.py +0 -343
- deepeval/metrics/multimodal_metrics/multimodal_answer_relevancy/schema.py +0 -19
- deepeval/metrics/multimodal_metrics/multimodal_answer_relevancy/template.py +0 -122
- deepeval/metrics/multimodal_metrics/multimodal_contextual_precision/multimodal_contextual_precision.py +0 -301
- deepeval/metrics/multimodal_metrics/multimodal_contextual_precision/schema.py +0 -15
- deepeval/metrics/multimodal_metrics/multimodal_contextual_precision/template.py +0 -132
- deepeval/metrics/multimodal_metrics/multimodal_contextual_recall/multimodal_contextual_recall.py +0 -285
- deepeval/metrics/multimodal_metrics/multimodal_contextual_recall/schema.py +0 -15
- deepeval/metrics/multimodal_metrics/multimodal_contextual_recall/template.py +0 -112
- deepeval/metrics/multimodal_metrics/multimodal_contextual_relevancy/multimodal_contextual_relevancy.py +0 -282
- deepeval/metrics/multimodal_metrics/multimodal_contextual_relevancy/template.py +0 -102
- deepeval/metrics/multimodal_metrics/multimodal_faithfulness/__init__.py +0 -0
- deepeval/metrics/multimodal_metrics/multimodal_faithfulness/multimodal_faithfulness.py +0 -356
- deepeval/metrics/multimodal_metrics/multimodal_faithfulness/template.py +0 -175
- deepeval/metrics/multimodal_metrics/multimodal_g_eval/__init__.py +0 -0
- deepeval/metrics/multimodal_metrics/multimodal_g_eval/multimodal_g_eval.py +0 -386
- deepeval/metrics/multimodal_metrics/multimodal_g_eval/schema.py +0 -11
- deepeval/metrics/multimodal_metrics/multimodal_g_eval/template.py +0 -148
- deepeval/metrics/multimodal_metrics/multimodal_g_eval/utils.py +0 -68
- deepeval/metrics/multimodal_metrics/multimodal_tool_correctness/__init__.py +0 -0
- deepeval/metrics/multimodal_metrics/multimodal_tool_correctness/multimodal_tool_correctness.py +0 -290
- deepeval/models/mlllms/__init__.py +0 -4
- deepeval/models/mlllms/azure_model.py +0 -343
- deepeval/models/mlllms/gemini_model.py +0 -313
- deepeval/models/mlllms/ollama_model.py +0 -175
- deepeval/models/mlllms/openai_model.py +0 -309
- deepeval/optimization/__init__.py +0 -13
- deepeval/optimization/adapters/__init__.py +0 -2
- deepeval/optimization/adapters/deepeval_scoring_adapter.py +0 -588
- deepeval/optimization/aggregates.py +0 -14
- deepeval/optimization/copro/configs.py +0 -31
- deepeval/optimization/gepa/__init__.py +0 -7
- deepeval/optimization/gepa/configs.py +0 -115
- deepeval/optimization/miprov2/configs.py +0 -134
- deepeval/optimization/miprov2/loop.py +0 -785
- deepeval/optimization/mutations/__init__.py +0 -0
- deepeval/optimization/mutations/prompt_rewriter.py +0 -458
- deepeval/optimization/policies/__init__.py +0 -16
- deepeval/optimization/policies/tie_breaker.py +0 -67
- deepeval/optimization/prompt_optimizer.py +0 -462
- deepeval/optimization/simba/__init__.py +0 -0
- deepeval/optimization/simba/configs.py +0 -33
- deepeval/optimization/types.py +0 -361
- deepeval/test_case/mllm_test_case.py +0 -170
- /deepeval/metrics/{multimodal_metrics/multimodal_answer_relevancy → turn_contextual_precision}/__init__.py +0 -0
- /deepeval/metrics/{multimodal_metrics/multimodal_contextual_precision → turn_contextual_recall}/__init__.py +0 -0
- /deepeval/metrics/{multimodal_metrics/multimodal_contextual_recall → turn_contextual_relevancy}/__init__.py +0 -0
- /deepeval/metrics/{multimodal_metrics/multimodal_contextual_relevancy → turn_faithfulness}/__init__.py +0 -0
- /deepeval/{optimization → optimizer/algorithms}/simba/types.py +0 -0
- {deepeval-3.7.4.dist-info → deepeval-3.7.6.dist-info}/LICENSE.md +0 -0
- {deepeval-3.7.4.dist-info → deepeval-3.7.6.dist-info}/WHEEL +0 -0
- {deepeval-3.7.4.dist-info → deepeval-3.7.6.dist-info}/entry_points.txt +0 -0
|
@@ -1,84 +1,133 @@
|
|
|
1
|
-
from typing import List, Dict
|
|
1
|
+
from typing import List, Dict, Union
|
|
2
|
+
import textwrap
|
|
3
|
+
from deepeval.test_case import MLLMImage
|
|
4
|
+
from deepeval.utils import convert_to_multi_modal_array
|
|
2
5
|
|
|
3
6
|
|
|
4
7
|
class ContextualPrecisionTemplate:
|
|
5
8
|
@staticmethod
|
|
6
9
|
def generate_verdicts(
|
|
7
|
-
input: str,
|
|
10
|
+
input: str,
|
|
11
|
+
expected_output: str,
|
|
12
|
+
retrieval_context: List[str],
|
|
13
|
+
multimodal: bool = False,
|
|
8
14
|
):
|
|
9
15
|
document_count_str = f" ({len(retrieval_context)} document{'s' if len(retrieval_context) > 1 else ''})"
|
|
10
|
-
|
|
11
|
-
|
|
12
|
-
|
|
13
|
-
|
|
14
|
-
|
|
15
|
-
|
|
16
|
-
|
|
17
|
-
|
|
18
|
-
|
|
19
|
-
|
|
20
|
-
|
|
21
|
-
|
|
22
|
-
|
|
23
|
-
"
|
|
24
|
-
|
|
25
|
-
|
|
26
|
-
|
|
27
|
-
"
|
|
28
|
-
|
|
29
|
-
|
|
30
|
-
|
|
31
|
-
|
|
32
|
-
|
|
33
|
-
|
|
34
|
-
|
|
35
|
-
|
|
36
|
-
|
|
37
|
-
|
|
38
|
-
|
|
39
|
-
|
|
40
|
-
|
|
41
|
-
|
|
42
|
-
{
|
|
43
|
-
|
|
44
|
-
|
|
45
|
-
|
|
46
|
-
|
|
47
|
-
|
|
48
|
-
|
|
16
|
+
|
|
17
|
+
# For multimodal, we need to annotate the retrieval context with node IDs
|
|
18
|
+
context_to_display = (
|
|
19
|
+
ContextualPrecisionTemplate.id_retrieval_context(retrieval_context)
|
|
20
|
+
if multimodal
|
|
21
|
+
else retrieval_context
|
|
22
|
+
)
|
|
23
|
+
|
|
24
|
+
multimodal_note = (
|
|
25
|
+
" (which can be text or an image)" if multimodal else ""
|
|
26
|
+
)
|
|
27
|
+
|
|
28
|
+
prompt_template = textwrap.dedent(
|
|
29
|
+
f"""Given the input, expected output, and retrieval context, please generate a list of JSON objects to determine whether each node in the retrieval context was remotely useful in arriving at the expected output.
|
|
30
|
+
|
|
31
|
+
**
|
|
32
|
+
IMPORTANT: Please make sure to only return in JSON format, with the 'verdicts' key as a list of JSON. These JSON only contain the `verdict` key that outputs only 'yes' or 'no', and a `reason` key to justify the verdict. In your reason, you should aim to quote parts of the context {multimodal_note}.
|
|
33
|
+
Example Retrieval Context: ["Einstein won the Nobel Prize for his discovery of the photoelectric effect", "He won the Nobel Prize in 1968.", "There was a cat."]
|
|
34
|
+
Example Input: "Who won the Nobel Prize in 1968 and for what?"
|
|
35
|
+
Example Expected Output: "Einstein won the Nobel Prize in 1968 for his discovery of the photoelectric effect."
|
|
36
|
+
|
|
37
|
+
Example:
|
|
38
|
+
{{
|
|
39
|
+
"verdicts": [
|
|
40
|
+
{{
|
|
41
|
+
"reason": "It clearly addresses the question by stating that 'Einstein won the Nobel Prize for his discovery of the photoelectric effect.'",
|
|
42
|
+
"verdict": "yes"
|
|
43
|
+
}},
|
|
44
|
+
{{
|
|
45
|
+
"reason": "The text verifies that the prize was indeed won in 1968.",
|
|
46
|
+
"verdict": "yes"
|
|
47
|
+
}},
|
|
48
|
+
{{
|
|
49
|
+
"reason": "'There was a cat' is not at all relevant to the topic of winning a Nobel Prize.",
|
|
50
|
+
"verdict": "no"
|
|
51
|
+
}}
|
|
52
|
+
]
|
|
53
|
+
}}
|
|
54
|
+
Since you are going to generate a verdict for each context, the number of 'verdicts' SHOULD BE STRICTLY EQUAL to that of the contexts.
|
|
55
|
+
**
|
|
56
|
+
|
|
57
|
+
Input:
|
|
58
|
+
{input}
|
|
59
|
+
|
|
60
|
+
Expected output:
|
|
61
|
+
{expected_output}
|
|
62
|
+
|
|
63
|
+
Retrieval Context {document_count_str}:
|
|
64
|
+
{context_to_display}
|
|
65
|
+
|
|
66
|
+
JSON:
|
|
67
|
+
"""
|
|
68
|
+
)
|
|
69
|
+
|
|
70
|
+
return prompt_template
|
|
49
71
|
|
|
50
72
|
@staticmethod
|
|
51
73
|
def generate_reason(
|
|
52
|
-
input: str,
|
|
74
|
+
input: str,
|
|
75
|
+
score: float,
|
|
76
|
+
verdicts: List[Dict[str, str]],
|
|
77
|
+
multimodal: bool = False,
|
|
53
78
|
):
|
|
54
|
-
|
|
55
|
-
|
|
56
|
-
The retrieval contexts is a list of JSON with three keys: `verdict`, `reason` (reason for the verdict) and `node`. `verdict` will be either 'yes' or 'no', which represents whether the corresponding 'node' in the retrieval context is relevant to the input.
|
|
57
|
-
Contextual precision represents if the relevant nodes are ranked higher than irrelevant nodes. Also note that retrieval contexts is given IN THE ORDER OF THEIR RANKINGS.
|
|
79
|
+
return textwrap.dedent(
|
|
80
|
+
f"""Given the input, retrieval contexts, and contextual precision score, provide a CONCISE {'summarize' if multimodal else 'summary'} for the score. Explain why it is not higher, but also why it is at its current score.
|
|
81
|
+
The retrieval contexts is a list of JSON with three keys: `verdict`, `reason` (reason for the verdict) and `node`. `verdict` will be either 'yes' or 'no', which represents whether the corresponding 'node' in the retrieval context is relevant to the input.
|
|
82
|
+
Contextual precision represents if the relevant nodes are ranked higher than irrelevant nodes. Also note that retrieval contexts is given IN THE ORDER OF THEIR RANKINGS.
|
|
83
|
+
|
|
84
|
+
**
|
|
85
|
+
IMPORTANT: Please make sure to only return in JSON format, with the 'reason' key providing the reason.
|
|
86
|
+
Example JSON:
|
|
87
|
+
{{
|
|
88
|
+
"reason": "The score is <contextual_precision_score> because <your_reason>."
|
|
89
|
+
}}
|
|
58
90
|
|
|
59
|
-
**
|
|
60
|
-
IMPORTANT: Please make sure to only return in JSON format, with the 'reason' key providing the reason.
|
|
61
|
-
Example JSON:
|
|
62
|
-
{{
|
|
63
|
-
"reason": "The score is <contextual_precision_score> because <your_reason>."
|
|
64
|
-
}}
|
|
65
91
|
|
|
92
|
+
DO NOT mention 'verdict' in your reason, but instead phrase it as irrelevant nodes. The term 'verdict' {'are' if multimodal else 'is'} just here for you to understand the broader scope of things.
|
|
93
|
+
Also DO NOT mention there are `reason` fields in the retrieval contexts you are presented with, instead just use the information in the `reason` field.
|
|
94
|
+
In your reason, you MUST USE the `reason`, QUOTES in the 'reason', and the node RANK (starting from 1, eg. first node) to explain why the 'no' verdicts should be ranked lower than the 'yes' verdicts.
|
|
95
|
+
When addressing nodes, make it explicit that {'it is' if multimodal else 'they are'} nodes in {'retrieval context' if multimodal else 'retrieval contexts'}.
|
|
96
|
+
If the score is 1, keep it short and say something positive with an upbeat tone (but don't overdo it{',' if multimodal else ''} otherwise it gets annoying).
|
|
97
|
+
**
|
|
66
98
|
|
|
67
|
-
|
|
68
|
-
|
|
69
|
-
In your reason, you MUST USE the `reason`, QUOTES in the 'reason', and the node RANK (starting from 1, eg. first node) to explain why the 'no' verdicts should be ranked lower than the 'yes' verdicts.
|
|
70
|
-
When addressing nodes, make it explicit that they are nodes in retrieval contexts.
|
|
71
|
-
If the score is 1, keep it short and say something positive with an upbeat tone (but don't overdo it, otherwise it gets annoying).
|
|
72
|
-
**
|
|
99
|
+
Contextual Precision Score:
|
|
100
|
+
{score}
|
|
73
101
|
|
|
74
|
-
|
|
75
|
-
{
|
|
102
|
+
Input:
|
|
103
|
+
{input}
|
|
76
104
|
|
|
77
|
-
|
|
78
|
-
{
|
|
105
|
+
Retrieval Contexts:
|
|
106
|
+
{verdicts}
|
|
107
|
+
|
|
108
|
+
JSON:
|
|
109
|
+
"""
|
|
110
|
+
)
|
|
111
|
+
|
|
112
|
+
@staticmethod
|
|
113
|
+
def id_retrieval_context(
|
|
114
|
+
retrieval_context: List[str],
|
|
115
|
+
) -> List[str]:
|
|
116
|
+
"""
|
|
117
|
+
Annotates retrieval context with node IDs for multimodal processing.
|
|
79
118
|
|
|
80
|
-
|
|
81
|
-
|
|
119
|
+
Args:
|
|
120
|
+
retrieval_context: List of contexts (can be strings or MLLMImages)
|
|
82
121
|
|
|
83
|
-
|
|
84
|
-
""
|
|
122
|
+
Returns:
|
|
123
|
+
Annotated list with "Node X:" prefixes
|
|
124
|
+
"""
|
|
125
|
+
annotated_retrieval_context = []
|
|
126
|
+
retrieval_context = convert_to_multi_modal_array(retrieval_context)
|
|
127
|
+
for i, context in enumerate(retrieval_context):
|
|
128
|
+
if isinstance(context, str):
|
|
129
|
+
annotated_retrieval_context.append(f"Node {i + 1}: {context}")
|
|
130
|
+
elif isinstance(context, MLLMImage):
|
|
131
|
+
annotated_retrieval_context.append(f"Node {i + 1}:")
|
|
132
|
+
annotated_retrieval_context.append(context)
|
|
133
|
+
return annotated_retrieval_context
|
|
@@ -1,11 +1,15 @@
|
|
|
1
1
|
from typing import Optional, List, Type, Union
|
|
2
2
|
|
|
3
|
-
from deepeval.utils import
|
|
3
|
+
from deepeval.utils import (
|
|
4
|
+
get_or_create_event_loop,
|
|
5
|
+
prettify_list,
|
|
6
|
+
)
|
|
4
7
|
from deepeval.metrics.utils import (
|
|
5
8
|
construct_verbose_logs,
|
|
6
|
-
trimAndLoadJson,
|
|
7
9
|
check_llm_test_case_params,
|
|
8
10
|
initialize_model,
|
|
11
|
+
a_generate_with_schema_and_extract,
|
|
12
|
+
generate_with_schema_and_extract,
|
|
9
13
|
)
|
|
10
14
|
from deepeval.test_case import (
|
|
11
15
|
LLMTestCase,
|
|
@@ -15,7 +19,11 @@ from deepeval.metrics import BaseMetric
|
|
|
15
19
|
from deepeval.models import DeepEvalBaseLLM
|
|
16
20
|
from deepeval.metrics.contextual_recall.template import ContextualRecallTemplate
|
|
17
21
|
from deepeval.metrics.indicator import metric_progress_indicator
|
|
18
|
-
from deepeval.metrics.contextual_recall.schema import
|
|
22
|
+
from deepeval.metrics.contextual_recall.schema import (
|
|
23
|
+
ContextualRecallVerdict,
|
|
24
|
+
Verdicts,
|
|
25
|
+
ContextualRecallScoreReason,
|
|
26
|
+
)
|
|
19
27
|
from deepeval.metrics.api import metric_data_manager
|
|
20
28
|
|
|
21
29
|
|
|
@@ -55,7 +63,17 @@ class ContextualRecallMetric(BaseMetric):
|
|
|
55
63
|
_in_component: bool = False,
|
|
56
64
|
_log_metric_to_confident: bool = True,
|
|
57
65
|
) -> float:
|
|
58
|
-
|
|
66
|
+
multimodal = test_case.multimodal
|
|
67
|
+
|
|
68
|
+
check_llm_test_case_params(
|
|
69
|
+
test_case,
|
|
70
|
+
self._required_params,
|
|
71
|
+
None,
|
|
72
|
+
None,
|
|
73
|
+
self,
|
|
74
|
+
self.model,
|
|
75
|
+
test_case.multimodal,
|
|
76
|
+
)
|
|
59
77
|
|
|
60
78
|
self.evaluation_cost = 0 if self.using_native_model else None
|
|
61
79
|
with metric_progress_indicator(
|
|
@@ -72,13 +90,16 @@ class ContextualRecallMetric(BaseMetric):
|
|
|
72
90
|
)
|
|
73
91
|
)
|
|
74
92
|
else:
|
|
93
|
+
expected_output = test_case.expected_output
|
|
94
|
+
retrieval_context = test_case.retrieval_context
|
|
95
|
+
|
|
75
96
|
self.verdicts: List[ContextualRecallVerdict] = (
|
|
76
97
|
self._generate_verdicts(
|
|
77
|
-
|
|
98
|
+
expected_output, retrieval_context, multimodal
|
|
78
99
|
)
|
|
79
100
|
)
|
|
80
101
|
self.score = self._calculate_score()
|
|
81
|
-
self.reason = self._generate_reason(
|
|
102
|
+
self.reason = self._generate_reason(expected_output, multimodal)
|
|
82
103
|
self.success = self.score >= self.threshold
|
|
83
104
|
self.verbose_logs = construct_verbose_logs(
|
|
84
105
|
self,
|
|
@@ -101,7 +122,17 @@ class ContextualRecallMetric(BaseMetric):
|
|
|
101
122
|
_log_metric_to_confident: bool = True,
|
|
102
123
|
) -> float:
|
|
103
124
|
|
|
104
|
-
|
|
125
|
+
multimodal = test_case.multimodal
|
|
126
|
+
|
|
127
|
+
check_llm_test_case_params(
|
|
128
|
+
test_case,
|
|
129
|
+
self._required_params,
|
|
130
|
+
None,
|
|
131
|
+
None,
|
|
132
|
+
self,
|
|
133
|
+
self.model,
|
|
134
|
+
test_case.multimodal,
|
|
135
|
+
)
|
|
105
136
|
|
|
106
137
|
self.evaluation_cost = 0 if self.using_native_model else None
|
|
107
138
|
with metric_progress_indicator(
|
|
@@ -110,14 +141,17 @@ class ContextualRecallMetric(BaseMetric):
|
|
|
110
141
|
_show_indicator=_show_indicator,
|
|
111
142
|
_in_component=_in_component,
|
|
112
143
|
):
|
|
144
|
+
expected_output = test_case.expected_output
|
|
145
|
+
retrieval_context = test_case.retrieval_context
|
|
146
|
+
|
|
113
147
|
self.verdicts: List[ContextualRecallVerdict] = (
|
|
114
148
|
await self._a_generate_verdicts(
|
|
115
|
-
|
|
149
|
+
expected_output, retrieval_context, multimodal
|
|
116
150
|
)
|
|
117
151
|
)
|
|
118
152
|
self.score = self._calculate_score()
|
|
119
153
|
self.reason = await self._a_generate_reason(
|
|
120
|
-
|
|
154
|
+
expected_output, multimodal
|
|
121
155
|
)
|
|
122
156
|
self.success = self.score >= self.threshold
|
|
123
157
|
self.verbose_logs = construct_verbose_logs(
|
|
@@ -133,7 +167,7 @@ class ContextualRecallMetric(BaseMetric):
|
|
|
133
167
|
)
|
|
134
168
|
return self.score
|
|
135
169
|
|
|
136
|
-
async def _a_generate_reason(self, expected_output: str):
|
|
170
|
+
async def _a_generate_reason(self, expected_output: str, multimodal: bool):
|
|
137
171
|
if self.include_reason is False:
|
|
138
172
|
return None
|
|
139
173
|
|
|
@@ -150,26 +184,18 @@ class ContextualRecallMetric(BaseMetric):
|
|
|
150
184
|
supportive_reasons=supportive_reasons,
|
|
151
185
|
unsupportive_reasons=unsupportive_reasons,
|
|
152
186
|
score=format(self.score, ".2f"),
|
|
187
|
+
multimodal=multimodal,
|
|
153
188
|
)
|
|
154
189
|
|
|
155
|
-
|
|
156
|
-
|
|
157
|
-
|
|
158
|
-
|
|
159
|
-
|
|
160
|
-
|
|
161
|
-
|
|
162
|
-
try:
|
|
163
|
-
res: ContextualRecallScoreReason = await self.model.a_generate(
|
|
164
|
-
prompt, schema=ContextualRecallScoreReason
|
|
165
|
-
)
|
|
166
|
-
return res.reason
|
|
167
|
-
except TypeError:
|
|
168
|
-
res = await self.model.a_generate(prompt)
|
|
169
|
-
data = trimAndLoadJson(res, self)
|
|
170
|
-
return data["reason"]
|
|
190
|
+
return await a_generate_with_schema_and_extract(
|
|
191
|
+
metric=self,
|
|
192
|
+
prompt=prompt,
|
|
193
|
+
schema_cls=ContextualRecallScoreReason,
|
|
194
|
+
extract_schema=lambda score_reason: score_reason.reason,
|
|
195
|
+
extract_json=lambda data: data["reason"],
|
|
196
|
+
)
|
|
171
197
|
|
|
172
|
-
def _generate_reason(self, expected_output: str):
|
|
198
|
+
def _generate_reason(self, expected_output: str, multimodal: bool):
|
|
173
199
|
if self.include_reason is False:
|
|
174
200
|
return None
|
|
175
201
|
|
|
@@ -186,24 +212,16 @@ class ContextualRecallMetric(BaseMetric):
|
|
|
186
212
|
supportive_reasons=supportive_reasons,
|
|
187
213
|
unsupportive_reasons=unsupportive_reasons,
|
|
188
214
|
score=format(self.score, ".2f"),
|
|
215
|
+
multimodal=multimodal,
|
|
189
216
|
)
|
|
190
217
|
|
|
191
|
-
|
|
192
|
-
|
|
193
|
-
|
|
194
|
-
|
|
195
|
-
|
|
196
|
-
|
|
197
|
-
|
|
198
|
-
try:
|
|
199
|
-
res: ContextualRecallScoreReason = self.model.generate(
|
|
200
|
-
prompt, schema=ContextualRecallScoreReason
|
|
201
|
-
)
|
|
202
|
-
return res.reason
|
|
203
|
-
except TypeError:
|
|
204
|
-
res = self.model.generate(prompt)
|
|
205
|
-
data = trimAndLoadJson(res, self)
|
|
206
|
-
return data["reason"]
|
|
218
|
+
return generate_with_schema_and_extract(
|
|
219
|
+
metric=self,
|
|
220
|
+
prompt=prompt,
|
|
221
|
+
schema_cls=ContextualRecallScoreReason,
|
|
222
|
+
extract_schema=lambda score_reason: score_reason.reason,
|
|
223
|
+
extract_json=lambda data: data["reason"],
|
|
224
|
+
)
|
|
207
225
|
|
|
208
226
|
def _calculate_score(self):
|
|
209
227
|
number_of_verdicts = len(self.verdicts)
|
|
@@ -219,54 +237,46 @@ class ContextualRecallMetric(BaseMetric):
|
|
|
219
237
|
return 0 if self.strict_mode and score < self.threshold else score
|
|
220
238
|
|
|
221
239
|
async def _a_generate_verdicts(
|
|
222
|
-
self,
|
|
240
|
+
self,
|
|
241
|
+
expected_output: str,
|
|
242
|
+
retrieval_context: List[str],
|
|
243
|
+
multimodal: bool,
|
|
223
244
|
) -> List[ContextualRecallVerdict]:
|
|
224
245
|
prompt = self.evaluation_template.generate_verdicts(
|
|
225
|
-
expected_output=expected_output,
|
|
246
|
+
expected_output=expected_output,
|
|
247
|
+
retrieval_context=retrieval_context,
|
|
248
|
+
multimodal=multimodal,
|
|
249
|
+
)
|
|
250
|
+
return await a_generate_with_schema_and_extract(
|
|
251
|
+
metric=self,
|
|
252
|
+
prompt=prompt,
|
|
253
|
+
schema_cls=Verdicts,
|
|
254
|
+
extract_schema=lambda r: list(r.verdicts),
|
|
255
|
+
extract_json=lambda data: [
|
|
256
|
+
ContextualRecallVerdict(**item) for item in data["verdicts"]
|
|
257
|
+
],
|
|
226
258
|
)
|
|
227
|
-
if self.using_native_model:
|
|
228
|
-
res, cost = await self.model.a_generate(prompt, schema=Verdicts)
|
|
229
|
-
self.evaluation_cost += cost
|
|
230
|
-
verdicts = [item for item in res.verdicts]
|
|
231
|
-
return verdicts
|
|
232
|
-
else:
|
|
233
|
-
try:
|
|
234
|
-
res: Verdicts = await self.model.a_generate(
|
|
235
|
-
prompt, schema=Verdicts
|
|
236
|
-
)
|
|
237
|
-
verdicts: Verdicts = [item for item in res.verdicts]
|
|
238
|
-
return verdicts
|
|
239
|
-
except TypeError:
|
|
240
|
-
res = await self.model.a_generate(prompt)
|
|
241
|
-
data = trimAndLoadJson(res, self)
|
|
242
|
-
verdicts = [
|
|
243
|
-
ContextualRecallVerdict(**item) for item in data["verdicts"]
|
|
244
|
-
]
|
|
245
|
-
return verdicts
|
|
246
259
|
|
|
247
260
|
def _generate_verdicts(
|
|
248
|
-
self,
|
|
261
|
+
self,
|
|
262
|
+
expected_output: str,
|
|
263
|
+
retrieval_context: List[str],
|
|
264
|
+
multimodal: bool,
|
|
249
265
|
) -> List[ContextualRecallVerdict]:
|
|
250
266
|
prompt = self.evaluation_template.generate_verdicts(
|
|
251
|
-
expected_output=expected_output,
|
|
267
|
+
expected_output=expected_output,
|
|
268
|
+
retrieval_context=retrieval_context,
|
|
269
|
+
multimodal=multimodal,
|
|
270
|
+
)
|
|
271
|
+
return generate_with_schema_and_extract(
|
|
272
|
+
metric=self,
|
|
273
|
+
prompt=prompt,
|
|
274
|
+
schema_cls=Verdicts,
|
|
275
|
+
extract_schema=lambda r: list(r.verdicts),
|
|
276
|
+
extract_json=lambda data: [
|
|
277
|
+
ContextualRecallVerdict(**item) for item in data["verdicts"]
|
|
278
|
+
],
|
|
252
279
|
)
|
|
253
|
-
if self.using_native_model:
|
|
254
|
-
res, cost = self.model.generate(prompt, schema=Verdicts)
|
|
255
|
-
self.evaluation_cost += cost
|
|
256
|
-
verdicts = [item for item in res.verdicts]
|
|
257
|
-
return verdicts
|
|
258
|
-
else:
|
|
259
|
-
try:
|
|
260
|
-
res: Verdicts = self.model.generate(prompt, schema=Verdicts)
|
|
261
|
-
verdicts: Verdicts = [item for item in res.verdicts]
|
|
262
|
-
return verdicts
|
|
263
|
-
except TypeError:
|
|
264
|
-
res = self.model.generate(prompt)
|
|
265
|
-
data = trimAndLoadJson(res, self)
|
|
266
|
-
verdicts = [
|
|
267
|
-
ContextualRecallVerdict(**item) for item in data["verdicts"]
|
|
268
|
-
]
|
|
269
|
-
return verdicts
|
|
270
280
|
|
|
271
281
|
def is_successful(self) -> bool:
|
|
272
282
|
if self.error is not None:
|
|
@@ -274,7 +284,7 @@ class ContextualRecallMetric(BaseMetric):
|
|
|
274
284
|
else:
|
|
275
285
|
try:
|
|
276
286
|
self.success = self.score >= self.threshold
|
|
277
|
-
except:
|
|
287
|
+
except TypeError:
|
|
278
288
|
self.success = False
|
|
279
289
|
return self.success
|
|
280
290
|
|
|
@@ -1,4 +1,7 @@
|
|
|
1
|
-
from typing import List
|
|
1
|
+
from typing import List, Union
|
|
2
|
+
import textwrap
|
|
3
|
+
from deepeval.test_case import MLLMImage
|
|
4
|
+
from deepeval.utils import convert_to_multi_modal_array
|
|
2
5
|
|
|
3
6
|
|
|
4
7
|
class ContextualRecallTemplate:
|
|
@@ -8,68 +11,116 @@ class ContextualRecallTemplate:
|
|
|
8
11
|
supportive_reasons: str,
|
|
9
12
|
unsupportive_reasons: str,
|
|
10
13
|
score: float,
|
|
14
|
+
multimodal: bool = False,
|
|
11
15
|
):
|
|
12
|
-
|
|
13
|
-
Given the original expected output, a list of supportive reasons, and a list of unsupportive reasons (which are deduced directly from the 'expected output'), and a contextual recall score (closer to 1 the better), summarize a CONCISE reason for the score.
|
|
14
|
-
A supportive reason is the reason why a certain sentence in the original expected output can be attributed to the node in the retrieval context.
|
|
15
|
-
An unsupportive reason is the reason why a certain sentence in the original expected output cannot be attributed to anything in the retrieval context.
|
|
16
|
-
In your reason, you should relate supportive/unsupportive reasons to the sentence number in expected output, and include info regarding the node number in retrieval context to support your final reason. The first mention of "node(s)" should specify "node(s) in retrieval context".
|
|
16
|
+
content_type = "sentence or image" if multimodal else "sentence"
|
|
17
17
|
|
|
18
|
-
|
|
19
|
-
|
|
20
|
-
|
|
21
|
-
{
|
|
22
|
-
|
|
23
|
-
}}
|
|
18
|
+
return textwrap.dedent(
|
|
19
|
+
f"""Given the original expected output, a list of supportive reasons, and a list of unsupportive reasons ({'which is' if multimodal else 'which are'} deduced directly from the {'"expected output"' if multimodal else 'original expected output'}), and a contextual recall score (closer to 1 the better), summarize a CONCISE reason for the score.
|
|
20
|
+
A supportive reason is the reason why a certain {content_type} in the original expected output can be attributed to the node in the retrieval context.
|
|
21
|
+
An unsupportive reason is the reason why a certain {content_type} in the original expected output cannot be attributed to anything in the retrieval context.
|
|
22
|
+
In your reason, you should {'related' if multimodal else 'relate'} supportive/unsupportive reasons to the {content_type} number in expected output, and {'info' if multimodal else 'include info'} regarding the node number in retrieval context to support your final reason. The first mention of "node(s)" should specify "node(s) in retrieval context{')' if multimodal else ''}.
|
|
24
23
|
|
|
25
|
-
|
|
26
|
-
|
|
27
|
-
|
|
24
|
+
**
|
|
25
|
+
IMPORTANT: Please make sure to only return in JSON format, with the 'reason' key providing the reason.
|
|
26
|
+
Example JSON:
|
|
27
|
+
{{
|
|
28
|
+
"reason": "The score is <contextual_recall_score> because <your_reason>."
|
|
29
|
+
}}
|
|
28
30
|
|
|
29
|
-
|
|
30
|
-
{
|
|
31
|
+
DO NOT mention 'supportive reasons' and 'unsupportive reasons' in your reason, these terms are just here for you to understand the broader scope of things.
|
|
32
|
+
If the score is 1, keep it short and say something positive with an upbeat encouraging tone (but don't overdo it{',' if multimodal else ''} otherwise it gets annoying).
|
|
33
|
+
**
|
|
31
34
|
|
|
32
|
-
|
|
33
|
-
{
|
|
35
|
+
Contextual Recall Score:
|
|
36
|
+
{score}
|
|
34
37
|
|
|
35
|
-
|
|
36
|
-
{
|
|
38
|
+
Expected Output:
|
|
39
|
+
{expected_output}
|
|
37
40
|
|
|
38
|
-
|
|
39
|
-
{
|
|
41
|
+
Supportive Reasons:
|
|
42
|
+
{supportive_reasons}
|
|
40
43
|
|
|
41
|
-
|
|
42
|
-
|
|
44
|
+
Unsupportive Reasons:
|
|
45
|
+
{unsupportive_reasons}
|
|
43
46
|
|
|
44
|
-
|
|
45
|
-
|
|
46
|
-
|
|
47
|
-
For EACH sentence in the given expected output below, determine whether the sentence can be attributed to the nodes of retrieval contexts. Please generate a list of JSON with two keys: `verdict` and `reason`.
|
|
48
|
-
The `verdict` key should STRICTLY be either a 'yes' or 'no'. Answer 'yes' if the sentence can be attributed to any parts of the retrieval context, else answer 'no'.
|
|
49
|
-
The `reason` key should provide a reason why to the verdict. In the reason, you should aim to include the node(s) count in the retrieval context (eg., 1st node, and 2nd node in the retrieval context) that is attributed to said sentence. You should also aim to quote the specific part of the retrieval context to justify your verdict, but keep it extremely concise and cut short the quote with an ellipsis if possible.
|
|
50
|
-
|
|
51
|
-
|
|
52
|
-
**
|
|
53
|
-
IMPORTANT: Please make sure to only return in JSON format, with the 'verdicts' key as a list of JSON objects, each with two keys: `verdict` and `reason`.
|
|
54
|
-
|
|
55
|
-
{{
|
|
56
|
-
"verdicts": [
|
|
57
|
-
{{
|
|
58
|
-
"reason": "...",
|
|
59
|
-
"verdict": "yes"
|
|
60
|
-
}},
|
|
61
|
-
...
|
|
62
|
-
]
|
|
63
|
-
}}
|
|
64
|
-
|
|
65
|
-
Since you are going to generate a verdict for each sentence, the number of 'verdicts' SHOULD BE STRICTLY EQUAL to the number of sentences in `expected output`.
|
|
66
|
-
**
|
|
47
|
+
JSON:
|
|
48
|
+
"""
|
|
49
|
+
)
|
|
67
50
|
|
|
68
|
-
|
|
69
|
-
|
|
70
|
-
|
|
71
|
-
|
|
72
|
-
|
|
51
|
+
@staticmethod
|
|
52
|
+
def generate_verdicts(
|
|
53
|
+
expected_output: str,
|
|
54
|
+
retrieval_context: List[str],
|
|
55
|
+
multimodal: bool = False,
|
|
56
|
+
):
|
|
57
|
+
content_type = "sentence and image" if multimodal else "sentence"
|
|
58
|
+
content_type_plural = (
|
|
59
|
+
"sentences and images" if multimodal else "sentences"
|
|
60
|
+
)
|
|
61
|
+
content_or = "sentence or image" if multimodal else "sentence"
|
|
62
|
+
|
|
63
|
+
# For multimodal, we need to annotate the retrieval context with node IDs
|
|
64
|
+
context_to_display = (
|
|
65
|
+
ContextualRecallTemplate.id_retrieval_context(retrieval_context)
|
|
66
|
+
if multimodal
|
|
67
|
+
else retrieval_context
|
|
68
|
+
)
|
|
69
|
+
|
|
70
|
+
node_instruction = ""
|
|
71
|
+
if multimodal:
|
|
72
|
+
node_instruction = " A node is either a string or image, but not both (so do not group images and texts in the same nodes)."
|
|
73
|
+
|
|
74
|
+
return textwrap.dedent(
|
|
75
|
+
f"""For EACH {content_type} in the given expected output below, determine whether the {content_or} can be attributed to the nodes of retrieval contexts. Please generate a list of JSON with two keys: `verdict` and `reason`.
|
|
76
|
+
The `verdict` key should STRICTLY be either a 'yes' or 'no'. Answer 'yes' if the {content_or} can be attributed to any parts of the retrieval context, else answer 'no'.
|
|
77
|
+
The `reason` key should provide a reason why to the verdict. In the reason, you should aim to include the node(s) count in the retrieval context (eg., 1st node, and 2nd node in the retrieval context) that is attributed to said {content_or}.{node_instruction} You should also aim to quote the specific part of the retrieval context to justify your verdict, but keep it extremely concise and cut short the quote with an ellipsis if possible.
|
|
78
|
+
|
|
79
|
+
**
|
|
80
|
+
IMPORTANT: Please make sure to only return in JSON format, with the 'verdicts' key as a list of JSON objects, each with two keys: `verdict` and `reason`.
|
|
81
|
+
|
|
82
|
+
{{
|
|
83
|
+
"verdicts": [
|
|
84
|
+
{{
|
|
85
|
+
"reason": "...",
|
|
86
|
+
"verdict": "yes"
|
|
87
|
+
}},
|
|
88
|
+
...
|
|
89
|
+
]
|
|
90
|
+
}}
|
|
91
|
+
|
|
92
|
+
Since you are going to generate a verdict for each sentence, the number of 'verdicts' SHOULD BE STRICTLY EQUAL to the number of {content_type_plural} in {'the' if multimodal else '`expected output`'}{' `expected output`' if multimodal else ''}.
|
|
93
|
+
**
|
|
94
|
+
|
|
95
|
+
Expected Output:
|
|
96
|
+
{expected_output}
|
|
97
|
+
|
|
98
|
+
Retrieval Context:
|
|
99
|
+
{context_to_display}
|
|
100
|
+
|
|
101
|
+
JSON:
|
|
102
|
+
"""
|
|
103
|
+
)
|
|
73
104
|
|
|
74
|
-
|
|
75
|
-
|
|
105
|
+
@staticmethod
|
|
106
|
+
def id_retrieval_context(
|
|
107
|
+
retrieval_context: List[str],
|
|
108
|
+
) -> List[str]:
|
|
109
|
+
"""
|
|
110
|
+
Annotates retrieval context with node IDs for multimodal processing.
|
|
111
|
+
|
|
112
|
+
Args:
|
|
113
|
+
retrieval_context: List of contexts (can be strings or MLLMImages)
|
|
114
|
+
|
|
115
|
+
Returns:
|
|
116
|
+
Annotated list with "Node X:" prefixes
|
|
117
|
+
"""
|
|
118
|
+
annotated_retrieval_context = []
|
|
119
|
+
retrieval_context = convert_to_multi_modal_array(retrieval_context)
|
|
120
|
+
for i, context in enumerate(retrieval_context):
|
|
121
|
+
if isinstance(context, str):
|
|
122
|
+
annotated_retrieval_context.append(f"Node {i + 1}: {context}")
|
|
123
|
+
elif isinstance(context, MLLMImage):
|
|
124
|
+
annotated_retrieval_context.append(f"Node {i + 1}:")
|
|
125
|
+
annotated_retrieval_context.append(context)
|
|
126
|
+
return annotated_retrieval_context
|