deepeval 3.7.3__py3-none-any.whl → 3.7.4__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (84) hide show
  1. deepeval/_version.py +1 -1
  2. deepeval/cli/test.py +1 -1
  3. deepeval/config/settings.py +102 -13
  4. deepeval/evaluate/configs.py +1 -1
  5. deepeval/evaluate/execute.py +4 -1
  6. deepeval/metrics/answer_relevancy/template.py +4 -4
  7. deepeval/metrics/argument_correctness/template.py +2 -2
  8. deepeval/metrics/bias/template.py +3 -3
  9. deepeval/metrics/contextual_precision/template.py +6 -6
  10. deepeval/metrics/contextual_recall/template.py +2 -2
  11. deepeval/metrics/contextual_relevancy/template.py +3 -3
  12. deepeval/metrics/conversation_completeness/template.py +2 -2
  13. deepeval/metrics/conversational_dag/templates.py +4 -4
  14. deepeval/metrics/conversational_g_eval/template.py +4 -3
  15. deepeval/metrics/dag/templates.py +4 -4
  16. deepeval/metrics/faithfulness/template.py +4 -4
  17. deepeval/metrics/hallucination/template.py +4 -4
  18. deepeval/metrics/misuse/template.py +2 -2
  19. deepeval/metrics/multimodal_metrics/multimodal_answer_relevancy/template.py +7 -7
  20. deepeval/metrics/multimodal_metrics/multimodal_contextual_precision/template.py +6 -6
  21. deepeval/metrics/multimodal_metrics/multimodal_contextual_recall/template.py +2 -2
  22. deepeval/metrics/multimodal_metrics/multimodal_contextual_relevancy/template.py +3 -3
  23. deepeval/metrics/multimodal_metrics/multimodal_faithfulness/template.py +9 -9
  24. deepeval/metrics/multimodal_metrics/multimodal_g_eval/template.py +4 -4
  25. deepeval/metrics/non_advice/template.py +2 -2
  26. deepeval/metrics/pii_leakage/template.py +2 -2
  27. deepeval/metrics/prompt_alignment/template.py +4 -4
  28. deepeval/metrics/role_violation/template.py +2 -2
  29. deepeval/metrics/step_efficiency/step_efficiency.py +1 -1
  30. deepeval/metrics/toxicity/template.py +4 -4
  31. deepeval/metrics/turn_relevancy/template.py +2 -2
  32. deepeval/models/embedding_models/azure_embedding_model.py +28 -15
  33. deepeval/models/embedding_models/local_embedding_model.py +23 -10
  34. deepeval/models/embedding_models/ollama_embedding_model.py +8 -6
  35. deepeval/models/embedding_models/openai_embedding_model.py +18 -2
  36. deepeval/models/llms/anthropic_model.py +17 -5
  37. deepeval/models/llms/azure_model.py +30 -18
  38. deepeval/models/llms/deepseek_model.py +22 -12
  39. deepeval/models/llms/gemini_model.py +120 -87
  40. deepeval/models/llms/grok_model.py +23 -16
  41. deepeval/models/llms/kimi_model.py +23 -12
  42. deepeval/models/llms/litellm_model.py +63 -25
  43. deepeval/models/llms/local_model.py +26 -18
  44. deepeval/models/llms/ollama_model.py +17 -7
  45. deepeval/models/llms/openai_model.py +22 -17
  46. deepeval/models/llms/portkey_model.py +132 -0
  47. deepeval/models/mlllms/azure_model.py +28 -19
  48. deepeval/models/mlllms/gemini_model.py +102 -73
  49. deepeval/models/mlllms/ollama_model.py +40 -9
  50. deepeval/models/mlllms/openai_model.py +65 -14
  51. deepeval/models/utils.py +48 -3
  52. deepeval/optimization/__init__.py +13 -0
  53. deepeval/optimization/adapters/__init__.py +2 -0
  54. deepeval/optimization/adapters/deepeval_scoring_adapter.py +588 -0
  55. deepeval/optimization/aggregates.py +14 -0
  56. deepeval/optimization/configs.py +34 -0
  57. deepeval/optimization/copro/configs.py +31 -0
  58. deepeval/optimization/copro/loop.py +837 -0
  59. deepeval/optimization/gepa/__init__.py +7 -0
  60. deepeval/optimization/gepa/configs.py +115 -0
  61. deepeval/optimization/gepa/loop.py +677 -0
  62. deepeval/optimization/miprov2/configs.py +134 -0
  63. deepeval/optimization/miprov2/loop.py +785 -0
  64. deepeval/optimization/mutations/__init__.py +0 -0
  65. deepeval/optimization/mutations/prompt_rewriter.py +458 -0
  66. deepeval/optimization/policies/__init__.py +16 -0
  67. deepeval/optimization/policies/selection.py +166 -0
  68. deepeval/optimization/policies/tie_breaker.py +67 -0
  69. deepeval/optimization/prompt_optimizer.py +462 -0
  70. deepeval/optimization/simba/__init__.py +0 -0
  71. deepeval/optimization/simba/configs.py +33 -0
  72. deepeval/optimization/simba/loop.py +983 -0
  73. deepeval/optimization/simba/types.py +15 -0
  74. deepeval/optimization/types.py +361 -0
  75. deepeval/optimization/utils.py +598 -0
  76. deepeval/prompt/prompt.py +10 -5
  77. deepeval/test_run/cache.py +2 -0
  78. deepeval/test_run/test_run.py +6 -1
  79. deepeval/utils.py +24 -0
  80. {deepeval-3.7.3.dist-info → deepeval-3.7.4.dist-info}/METADATA +1 -1
  81. {deepeval-3.7.3.dist-info → deepeval-3.7.4.dist-info}/RECORD +84 -59
  82. {deepeval-3.7.3.dist-info → deepeval-3.7.4.dist-info}/LICENSE.md +0 -0
  83. {deepeval-3.7.3.dist-info → deepeval-3.7.4.dist-info}/WHEEL +0 -0
  84. {deepeval-3.7.3.dist-info → deepeval-3.7.4.dist-info}/entry_points.txt +0 -0
@@ -0,0 +1,837 @@
1
+ # - COPRO cooperative 0-shot variant:
2
+ # - Works on a single set of goldens (no D_pareto split).
3
+ # - Maintains a bounded population of candidate prompts
4
+ # (size controlled by `population_size`).
5
+ # - At each iteration:
6
+ # - Select a parent via epsilon-greedy on mean minibatch score.
7
+ # - Sample a minibatch of goldens for scoring.
8
+ # - Compute feedback once for the parent + minibatch.
9
+ # - Propose multiple child prompts cooperatively from the same parent
10
+ # (up to `proposals_per_step` children).
11
+ # - For each child, accept it if its minibatch score improves on the
12
+ # parent by at least `min_delta`, add it to the pool, and prune
13
+ # low-scoring candidates if the population exceeds `population_size`.
14
+ # - Uses `full_eval_every` (if set) to periodically re-score the current
15
+ # best candidate on the full golden set.
16
+
17
+ from __future__ import annotations
18
+
19
+ import random
20
+ import time
21
+ import uuid
22
+ from typing import (
23
+ TYPE_CHECKING,
24
+ Awaitable,
25
+ Callable,
26
+ Dict,
27
+ List,
28
+ Optional,
29
+ Tuple,
30
+ Union,
31
+ )
32
+
33
+ from deepeval.errors import DeepEvalError
34
+ from deepeval.optimization.aggregates import Aggregator, mean_of_all
35
+ from deepeval.optimization.types import (
36
+ AcceptedIterationDict,
37
+ ModuleId,
38
+ OptimizationResult,
39
+ PromptConfiguration,
40
+ PromptConfigurationId,
41
+ RunnerStatusCallbackProtocol,
42
+ RunnerStatusType,
43
+ ScoreTable,
44
+ ScoringAdapter,
45
+ )
46
+ from deepeval.optimization.utils import (
47
+ build_prompt_config_snapshots,
48
+ )
49
+ from deepeval.prompt.api import PromptType
50
+ from deepeval.prompt.prompt import Prompt
51
+ from deepeval.optimization.mutations.prompt_rewriter import PromptRewriter
52
+
53
+ from .configs import COPROConfig
54
+
55
+ if TYPE_CHECKING: # pragma: no cover - type-checking only
56
+ from deepeval.dataset.golden import ConversationalGolden, Golden
57
+
58
+
59
+ class COPRORunner:
60
+ """
61
+ COPRO style cooperative prompt optimization loop with sync/async execution.
62
+
63
+ This runner is intentionally low level and does not know about metrics,
64
+ models, or async configs. It relies on a preconfigured ScoringAdapter and
65
+ PromptRewriter, which are typically constructed by PromptOptimizer.
66
+
67
+ - Optimizes a single Prompt (instruction) against a list of Goldens.
68
+ - Uses mini-batches of goldens for trial scoring and epsilon-greedy
69
+ selection over prompt candidates based on mean minibatch scores,
70
+ extended with cooperative proposals:
71
+ - At each iteration, a parent candidate is selected.
72
+ - A shared feedback string is computed on a minibatch.
73
+ - Multiple child prompts are proposed from that parent using the
74
+ same feedback but different LLM samples.
75
+ - Any child whose minibatch score improves over the parent by at
76
+ least ``min_delta`` is added to the candidate pool.
77
+ """
78
+
79
+ SINGLE_MODULE_ID: ModuleId = "__module__"
80
+
81
+ def __init__(
82
+ self,
83
+ *,
84
+ config: COPROConfig,
85
+ aggregate_instances: Aggregator = mean_of_all,
86
+ scoring_adapter: Optional[ScoringAdapter] = None,
87
+ ) -> None:
88
+ self.config = config
89
+ self.aggregate_instances = aggregate_instances
90
+ self.scoring_adapter = scoring_adapter
91
+
92
+ # Random seeded from config is used for minibatch sampling and
93
+ # epsilon-greedy candidate selection.
94
+ self.random_state = random.Random(config.random_seed)
95
+
96
+ self.random_state = random.Random(config.random_seed)
97
+
98
+ # Runtime state to be reset between runs
99
+ self.reset_state()
100
+
101
+ # Status callback set by PromptOptimizer:
102
+ # (kind, step_index, total_steps, detail) -> None
103
+ self.status_callback: Optional[RunnerStatusCallbackProtocol] = None
104
+
105
+ # Model callback used by the rewriter set by PromptOptimizer.
106
+ self.model_callback: Optional[
107
+ Callable[
108
+ ...,
109
+ Union[
110
+ str,
111
+ Dict,
112
+ Tuple[Union[str, Dict], float],
113
+ ],
114
+ ]
115
+ ] = None
116
+
117
+ # Lazy-loaded PromptRewriter set by PromptOptimizer
118
+ self._rewriter: Optional[PromptRewriter] = None
119
+
120
+ ##############
121
+ # Public API #
122
+ ##############
123
+
124
+ def execute(
125
+ self,
126
+ *,
127
+ prompt: Prompt,
128
+ goldens: Union[List["Golden"], List["ConversationalGolden"]],
129
+ ) -> Tuple[Prompt, Dict]:
130
+ """
131
+ Synchronous COPRO run from a full list of goldens.
132
+
133
+ The full goldens set is used both for mini-batched scoring during
134
+ optimization and for a final full evaluation of the best candidate.
135
+ """
136
+ total_goldens = len(goldens)
137
+ if total_goldens < 1:
138
+ raise DeepEvalError(
139
+ "COPRO prompt optimization requires at least 1 golden, but "
140
+ f"received {total_goldens}. Provide at least one golden to run "
141
+ "the optimizer."
142
+ )
143
+
144
+ self._ensure_scoring_adapter()
145
+ self._ensure_rewriter()
146
+ self.reset_state()
147
+
148
+ # Seed candidate pool with the root prompt configuration.
149
+ seed_prompts_by_module = {self.SINGLE_MODULE_ID: prompt}
150
+ root_prompt_configuration = PromptConfiguration.new(
151
+ prompts=dict(seed_prompts_by_module)
152
+ )
153
+ # Add root candidate to the pool, but defer its first minibatch
154
+ # evaluation until the first iteration so that any long running
155
+ # model calls happen under the main loop (with progress updates).
156
+ self._add_prompt_configuration(root_prompt_configuration)
157
+
158
+ accepted_iterations: List[Dict] = []
159
+ self.trial_index = 0
160
+
161
+ def _one_iteration() -> bool:
162
+ nonlocal accepted_iterations
163
+
164
+ if not goldens:
165
+ return False
166
+
167
+ # Lazily seed with a minibatch score for the root
168
+ # candidate on the first iteration.
169
+ if not self._minibatch_score_counts:
170
+ seed_minibatch = self._draw_minibatch(goldens)
171
+ root_score = self.scoring_adapter.minibatch_score(
172
+ root_prompt_configuration, seed_minibatch
173
+ )
174
+ self._record_minibatch_score(
175
+ root_prompt_configuration.id, root_score
176
+ )
177
+
178
+ # 1. Choose which candidate prompt to mutate.
179
+ parent_prompt_configuration = self._select_candidate()
180
+ selected_module_id: ModuleId = self.SINGLE_MODULE_ID
181
+
182
+ minibatch = self._draw_minibatch(goldens)
183
+
184
+ # Compute shared feedback for this parent/minibatch that will be
185
+ # used by all cooperative child proposals.
186
+ feedback_text = self.scoring_adapter.minibatch_feedback(
187
+ parent_prompt_configuration, selected_module_id, minibatch
188
+ )
189
+
190
+ before_mean = self._mean_minibatch_score(
191
+ parent_prompt_configuration.id
192
+ )
193
+ jitter = 1e-6
194
+ min_delta = max(self.config.min_delta, jitter)
195
+
196
+ # 2. Generate multiple cooperative child prompts and evaluate them.
197
+ num_proposals = int(self.config.proposals_per_step)
198
+ for _ in range(num_proposals):
199
+ child_prompt = self._generate_child_prompt(
200
+ selected_module_id,
201
+ parent_prompt_configuration,
202
+ feedback_text,
203
+ )
204
+ if child_prompt is None:
205
+ # No child, nothing more to do this iteration
206
+ continue
207
+
208
+ child_prompt_configuration = self._make_child(
209
+ selected_module_id,
210
+ parent_prompt_configuration,
211
+ child_prompt,
212
+ )
213
+
214
+ child_score = self.scoring_adapter.minibatch_score(
215
+ child_prompt_configuration, minibatch
216
+ )
217
+
218
+ # 3. Evaluate & decide whether to accept the child.
219
+ if child_score >= before_mean + min_delta:
220
+ # Accept: add to pool, update surrogate stats, and record iteration.
221
+ self._add_prompt_configuration(child_prompt_configuration)
222
+ self._record_minibatch_score(
223
+ child_prompt_configuration.id, child_score
224
+ )
225
+
226
+ accepted_iterations.append(
227
+ AcceptedIterationDict(
228
+ parent=parent_prompt_configuration.id,
229
+ child=child_prompt_configuration.id,
230
+ module=selected_module_id,
231
+ before=before_mean,
232
+ after=child_score,
233
+ )
234
+ )
235
+ # else: reject; do not add child to the candidate pool.
236
+
237
+ self.trial_index += 1
238
+ if (
239
+ self.config.full_eval_every is not None
240
+ and self.trial_index % self.config.full_eval_every == 0
241
+ ):
242
+ self._full_evaluate_best(goldens)
243
+
244
+ return True
245
+
246
+ self._run_loop_iteration(_one_iteration)
247
+
248
+ # Ensure at least one candidate has been fully evaluated.
249
+ if not self.pareto_score_table:
250
+ self._full_evaluate_best(goldens)
251
+
252
+ best = self._best_by_aggregate()
253
+ prompt_config_snapshots = build_prompt_config_snapshots(
254
+ self.prompt_configurations_by_id
255
+ )
256
+ report = OptimizationResult(
257
+ optimization_id=self.optimization_id,
258
+ best_id=best.id,
259
+ accepted_iterations=accepted_iterations,
260
+ pareto_scores=self.pareto_score_table,
261
+ parents=self.parents_by_id,
262
+ prompt_configurations=prompt_config_snapshots,
263
+ )
264
+ return best.prompts[self.SINGLE_MODULE_ID], report.as_dict()
265
+
266
+ async def a_execute(
267
+ self,
268
+ *,
269
+ prompt: Prompt,
270
+ goldens: Union[List["Golden"], List["ConversationalGolden"]],
271
+ ) -> Tuple[Prompt, Dict]:
272
+ """
273
+ Asynchronous twin of execute().
274
+ """
275
+ total_goldens = len(goldens)
276
+ if total_goldens < 1:
277
+ raise DeepEvalError(
278
+ "COPRO prompt optimization requires at least 1 golden, but "
279
+ f"received {total_goldens}. Provide at least one golden to run "
280
+ "the optimizer."
281
+ )
282
+
283
+ self._ensure_scoring_adapter()
284
+ self._ensure_rewriter()
285
+ self.reset_state()
286
+
287
+ seed_prompts_by_module = {self.SINGLE_MODULE_ID: prompt}
288
+ root_prompt_configuration = PromptConfiguration.new(
289
+ prompts=dict(seed_prompts_by_module)
290
+ )
291
+ # Add root candidate to the pool, but defer its first minibatch
292
+ # evaluation until the first iteration so that any long running
293
+ # model calls happen under the main loop (with progress updates).
294
+ self._add_prompt_configuration(root_prompt_configuration)
295
+
296
+ accepted_iterations: List[Dict] = []
297
+ self.trial_index = 0
298
+
299
+ async def _one_iteration() -> bool:
300
+ nonlocal accepted_iterations
301
+
302
+ if not goldens:
303
+ return False
304
+
305
+ # Lazily seed with a minibatch score for the root
306
+ # candidate on the first iteration.
307
+ if not self._minibatch_score_counts:
308
+ seed_minibatch = self._draw_minibatch(goldens)
309
+ root_score = await self.scoring_adapter.a_minibatch_score(
310
+ root_prompt_configuration, seed_minibatch
311
+ )
312
+ self._record_minibatch_score(
313
+ root_prompt_configuration.id, root_score
314
+ )
315
+
316
+ parent_prompt_configuration = self._select_candidate()
317
+ selected_module_id: ModuleId = self.SINGLE_MODULE_ID
318
+
319
+ minibatch = self._draw_minibatch(goldens)
320
+
321
+ feedback_text = await self.scoring_adapter.a_minibatch_feedback(
322
+ parent_prompt_configuration, selected_module_id, minibatch
323
+ )
324
+
325
+ before_mean = self._mean_minibatch_score(
326
+ parent_prompt_configuration.id
327
+ )
328
+ jitter = 1e-6
329
+ min_delta = max(self.config.min_delta, jitter)
330
+
331
+ num_proposals = int(self.config.proposals_per_step)
332
+ for _ in range(num_proposals):
333
+ child_prompt = await self._a_generate_child_prompt(
334
+ selected_module_id,
335
+ parent_prompt_configuration,
336
+ feedback_text,
337
+ )
338
+ if child_prompt is None:
339
+ continue
340
+
341
+ child_prompt_configuration = self._make_child(
342
+ selected_module_id,
343
+ parent_prompt_configuration,
344
+ child_prompt,
345
+ )
346
+
347
+ child_score = await self.scoring_adapter.a_minibatch_score(
348
+ child_prompt_configuration, minibatch
349
+ )
350
+
351
+ if child_score >= before_mean + min_delta:
352
+ self._add_prompt_configuration(child_prompt_configuration)
353
+ self._record_minibatch_score(
354
+ child_prompt_configuration.id, child_score
355
+ )
356
+
357
+ accepted_iterations.append(
358
+ AcceptedIterationDict(
359
+ parent=parent_prompt_configuration.id,
360
+ child=child_prompt_configuration.id,
361
+ module=selected_module_id,
362
+ before=before_mean,
363
+ after=child_score,
364
+ )
365
+ )
366
+
367
+ self.trial_index += 1
368
+ if (
369
+ self.config.full_eval_every is not None
370
+ and self.trial_index % self.config.full_eval_every == 0
371
+ ):
372
+ await self._a_full_evaluate_best(goldens)
373
+
374
+ return True
375
+
376
+ await self._a_run_loop_iteration(_one_iteration)
377
+
378
+ if not self.pareto_score_table:
379
+ await self._a_full_evaluate_best(goldens)
380
+
381
+ best = self._best_by_aggregate()
382
+ prompt_config_snapshots = build_prompt_config_snapshots(
383
+ self.prompt_configurations_by_id
384
+ )
385
+ report = OptimizationResult(
386
+ optimization_id=self.optimization_id,
387
+ best_id=best.id,
388
+ accepted_iterations=accepted_iterations,
389
+ pareto_scores=self.pareto_score_table,
390
+ parents=self.parents_by_id,
391
+ prompt_configurations=prompt_config_snapshots,
392
+ )
393
+ return best.prompts[self.SINGLE_MODULE_ID], report.as_dict()
394
+
395
+ ###################
396
+ # State & helpers #
397
+ ###################
398
+
399
+ def reset_state(self) -> None:
400
+ self.optimization_id = str(uuid.uuid4())
401
+ self.prompt_configurations_by_id: Dict[
402
+ PromptConfigurationId, PromptConfiguration
403
+ ] = {}
404
+ self.parents_by_id: Dict[
405
+ PromptConfigurationId, Optional[PromptConfigurationId]
406
+ ] = {}
407
+ # For COPRO we reuse the same field name as GEPA for full evaluation scores.
408
+ self.pareto_score_table: ScoreTable = {}
409
+
410
+ # Surrogate stats: running mean minibatch scores per candidate.
411
+ self._minibatch_score_sums: Dict[PromptConfigurationId, float] = {}
412
+ self._minibatch_score_counts: Dict[PromptConfigurationId, int] = {}
413
+
414
+ # Trial counter (used for full_eval_every).
415
+ self.trial_index: int = 0
416
+
417
+ def _ensure_scoring_adapter(self) -> None:
418
+ if self.scoring_adapter is None:
419
+ raise DeepEvalError(
420
+ "COPRORunner requires a `scoring_adapter`. "
421
+ "Construct one (for example, DeepEvalScoringAdapter) in "
422
+ "PromptOptimizer and assign it to `runner.scoring_adapter`."
423
+ )
424
+
425
+ def _ensure_rewriter(self) -> None:
426
+ if self._rewriter is not None:
427
+ return
428
+
429
+ # Default basic PromptRewriter; PromptOptimizer can override this and
430
+ # pass a configured instance (e.g. with list-mutation config).
431
+ self._rewriter = PromptRewriter(
432
+ max_chars=self.config.rewrite_instruction_max_chars,
433
+ random_state=self.random_state,
434
+ )
435
+
436
+ def _prompts_equivalent(
437
+ self,
438
+ old_prompt: Prompt,
439
+ new_prompt: Prompt,
440
+ ) -> bool:
441
+ """
442
+ Compare two Prompts for optimization purposes.
443
+
444
+ We treat a child as "no change" if:
445
+ - The types differ, or
446
+ - For TEXT: trimmed text_template matches.
447
+ - For LIST: messages_template length, roles, and trimmed content match.
448
+ """
449
+
450
+ if new_prompt.type == PromptType.LIST:
451
+ old_msgs = old_prompt.messages_template
452
+ new_msgs = new_prompt.messages_template
453
+ if len(old_msgs) != len(new_msgs):
454
+ return False
455
+
456
+ for old_msg, new_msg in zip(old_msgs, new_msgs):
457
+ if old_msg.role != new_msg.role:
458
+ return False
459
+ if (old_msg.content or "").strip() != (
460
+ new_msg.content or ""
461
+ ).strip():
462
+ return False
463
+
464
+ return True
465
+
466
+ old_txt = (old_prompt.text_template or "").strip()
467
+ new_txt = (new_prompt.text_template or "").strip()
468
+ return new_txt == old_txt
469
+
470
+ def _add_prompt_configuration(
471
+ self,
472
+ prompt_configuration: PromptConfiguration,
473
+ ) -> None:
474
+ """
475
+ Add a candidate to the active pool and, if a population limit is set,
476
+ prune the worst-scoring candidates to enforce it.
477
+ """
478
+ self.prompt_configurations_by_id[prompt_configuration.id] = (
479
+ prompt_configuration
480
+ )
481
+ self.parents_by_id[prompt_configuration.id] = (
482
+ prompt_configuration.parent
483
+ )
484
+
485
+ # If we exceed the population size, iteratively prune the worst
486
+ # (by mean minibatch score), never removing the current best.
487
+ while (
488
+ len(self.prompt_configurations_by_id) > self.config.population_size
489
+ ):
490
+ best_id: Optional[PromptConfigurationId] = None
491
+ best_score = float("-inf")
492
+ for cand_id in self.prompt_configurations_by_id.keys():
493
+ mean_score = self._mean_minibatch_score(cand_id)
494
+ if mean_score > best_score:
495
+ best_score = mean_score
496
+ best_id = cand_id
497
+
498
+ worst_id: Optional[PromptConfigurationId] = None
499
+ worst_score = float("inf")
500
+ for cand_id in self.prompt_configurations_by_id.keys():
501
+ if cand_id == best_id:
502
+ continue
503
+ mean_score = self._mean_minibatch_score(cand_id)
504
+ if mean_score < worst_score:
505
+ worst_score = mean_score
506
+ worst_id = cand_id
507
+
508
+ if worst_id is None or worst_id == best_id:
509
+ break
510
+
511
+ # Prune the chosen worst candidate from all bookkeeping tables.
512
+ self.prompt_configurations_by_id.pop(worst_id, None)
513
+ self.parents_by_id.pop(worst_id, None)
514
+ self._minibatch_score_sums.pop(worst_id, None)
515
+ self._minibatch_score_counts.pop(worst_id, None)
516
+ self.pareto_score_table.pop(worst_id, None)
517
+
518
+ def _record_minibatch_score(
519
+ self,
520
+ prompt_configuration_id: PromptConfigurationId,
521
+ score: float,
522
+ ) -> None:
523
+ self._minibatch_score_sums[prompt_configuration_id] = (
524
+ self._minibatch_score_sums.get(prompt_configuration_id, 0.0)
525
+ + float(score)
526
+ )
527
+ self._minibatch_score_counts[prompt_configuration_id] = (
528
+ self._minibatch_score_counts.get(prompt_configuration_id, 0) + 1
529
+ )
530
+
531
+ def _mean_minibatch_score(
532
+ self,
533
+ prompt_configuration_id: PromptConfigurationId,
534
+ ) -> float:
535
+ total = self._minibatch_score_sums.get(prompt_configuration_id, 0.0)
536
+ count = self._minibatch_score_counts.get(prompt_configuration_id, 0)
537
+ if count <= 0:
538
+ # Use a sentinel that will not dominate selection if a scored
539
+ # candidate exists. Root is seeded explicitly in the first iteration.
540
+ return float("-inf")
541
+ return total / count
542
+
543
+ def _best_by_minibatch(self) -> PromptConfiguration:
544
+ """
545
+ Return the candidate with the highest mean minibatch score.
546
+ """
547
+ if not self.prompt_configurations_by_id:
548
+ raise DeepEvalError(
549
+ "COPRORunner has no prompt configurations; this should not happen."
550
+ )
551
+
552
+ best_id: Optional[PromptConfigurationId] = None
553
+ best_score = float("-inf")
554
+
555
+ for cand_id in self.prompt_configurations_by_id.keys():
556
+ mean_score = self._mean_minibatch_score(cand_id)
557
+ if mean_score > best_score:
558
+ best_score = mean_score
559
+ best_id = cand_id
560
+
561
+ if best_id is None:
562
+ # Fallback to the first candidate if all means are -inf.
563
+ best_id = next(iter(self.prompt_configurations_by_id.keys()))
564
+
565
+ return self.prompt_configurations_by_id[best_id]
566
+
567
+ def _best_by_aggregate(self) -> PromptConfiguration:
568
+ """
569
+ Return the best candidate based on full-eval scores.
570
+
571
+ If no full evaluation scores are available (should be rare, but possible if
572
+ full_eval_every is very large and the loop exits early), fall back to
573
+ best-by-minibatch.
574
+ """
575
+ if not self.pareto_score_table:
576
+ return self._best_by_minibatch()
577
+
578
+ totals = {
579
+ prompt_configuration_id: self.aggregate_instances(vector)
580
+ for prompt_configuration_id, vector in self.pareto_score_table.items()
581
+ }
582
+
583
+ best_ids: List[PromptConfigurationId] = []
584
+ best_val = float("-inf")
585
+
586
+ for cand_id, aggregate in totals.items():
587
+ if aggregate > best_val + 1e-12:
588
+ best_val = aggregate
589
+ best_ids = [cand_id]
590
+ elif abs(aggregate - best_val) <= 1e-12:
591
+ best_ids.append(cand_id)
592
+
593
+ chosen_id = self.random_state.choice(best_ids)
594
+ return self.prompt_configurations_by_id[chosen_id]
595
+
596
+ def _select_candidate(self) -> PromptConfiguration:
597
+ """
598
+ Epsilon-greedy candidate selection:
599
+
600
+ - With probability ``exploration_probability``, pick a random candidate.
601
+ - Otherwise, pick the candidate with the highest mean minibatch score.
602
+ """
603
+ if not self.prompt_configurations_by_id:
604
+ raise DeepEvalError(
605
+ "COPRORunner has no prompt configurations to select from."
606
+ )
607
+
608
+ candidate_ids = list(self.prompt_configurations_by_id.keys())
609
+ if not candidate_ids:
610
+ raise DeepEvalError(
611
+ "COPRORunner has an empty candidate pool; this should not happen."
612
+ )
613
+
614
+ eps = float(self.config.exploration_probability)
615
+ if eps > 0.0 and self.random_state.random() < eps:
616
+ chosen_id = self.random_state.choice(candidate_ids)
617
+ else:
618
+ chosen_id = self._best_by_minibatch().id
619
+
620
+ return self.prompt_configurations_by_id[chosen_id]
621
+
622
+ def _draw_minibatch(
623
+ self,
624
+ goldens: Union[List["Golden"], List["ConversationalGolden"]],
625
+ ) -> Union[List["Golden"], List["ConversationalGolden"]]:
626
+ """
627
+ Determine effective minibatch size from COPROConfig, bounded by the
628
+ available goldens, and sample with replacement.
629
+ """
630
+ n = len(goldens)
631
+ if n <= 0:
632
+ return []
633
+
634
+ if self.config.minibatch_size is not None:
635
+ size = self.config.minibatch_size
636
+ else:
637
+ dynamic = max(1, int(round(n * self.config.minibatch_ratio)))
638
+ size = max(
639
+ self.config.minibatch_min_size,
640
+ min(dynamic, self.config.minibatch_max_size),
641
+ )
642
+
643
+ size = max(1, min(size, n))
644
+
645
+ return [goldens[self.random_state.randrange(0, n)] for _ in range(size)]
646
+
647
+ async def _a_full_evaluate_best(
648
+ self,
649
+ goldens: Union[List["Golden"], List["ConversationalGolden"]],
650
+ ) -> None:
651
+ if not self.prompt_configurations_by_id:
652
+ return
653
+
654
+ best = self._best_by_minibatch()
655
+ if best.id in self.pareto_score_table:
656
+ return
657
+
658
+ scores = await self.scoring_adapter.a_score_on_pareto(best, goldens)
659
+ self.pareto_score_table[best.id] = scores
660
+
661
+ def _full_evaluate_best(
662
+ self,
663
+ goldens: Union[List["Golden"], List["ConversationalGolden"]],
664
+ ) -> None:
665
+ if not self.prompt_configurations_by_id:
666
+ return
667
+
668
+ best = self._best_by_minibatch()
669
+ if best.id in self.pareto_score_table:
670
+ return
671
+
672
+ scores = self.scoring_adapter.score_on_pareto(best, goldens)
673
+ self.pareto_score_table[best.id] = scores
674
+
675
+ async def _a_generate_child_prompt(
676
+ self,
677
+ selected_module_id: ModuleId,
678
+ parent_prompt_configuration: PromptConfiguration,
679
+ feedback_text: str,
680
+ ) -> Optional[Prompt]:
681
+ try:
682
+ old_prompt = parent_prompt_configuration.prompts[selected_module_id]
683
+ except KeyError as exc:
684
+ raise DeepEvalError(
685
+ "COPRORunner expected a prompt for module_id "
686
+ f"{selected_module_id!r} but none was found in the "
687
+ "current prompt configuration."
688
+ ) from exc
689
+
690
+ new_prompt = await self._rewriter.a_rewrite(
691
+ model_callback=self.model_callback,
692
+ module_id=selected_module_id,
693
+ old_prompt=old_prompt,
694
+ feedback_text=feedback_text,
695
+ )
696
+
697
+ if old_prompt.type != new_prompt.type or self._prompts_equivalent(
698
+ old_prompt, new_prompt
699
+ ):
700
+ # Don't accept if new prompt is the same as parent, or if type changed.
701
+ return None
702
+ return new_prompt
703
+
704
+ def _generate_child_prompt(
705
+ self,
706
+ selected_module_id: ModuleId,
707
+ parent_prompt_configuration: PromptConfiguration,
708
+ feedback_text: str,
709
+ ) -> Optional[Prompt]:
710
+ try:
711
+ old_prompt = parent_prompt_configuration.prompts[selected_module_id]
712
+ except KeyError as exc:
713
+ # This should never happen in normal operation.
714
+ raise DeepEvalError(
715
+ "COPRORunner expected a prompt for module_id "
716
+ f"{selected_module_id!r} but none was found in the "
717
+ "current prompt configuration."
718
+ ) from exc
719
+
720
+ new_prompt = self._rewriter.rewrite(
721
+ model_callback=self.model_callback,
722
+ module_id=selected_module_id,
723
+ old_prompt=old_prompt,
724
+ feedback_text=feedback_text,
725
+ )
726
+
727
+ if old_prompt.type != new_prompt.type or self._prompts_equivalent(
728
+ old_prompt, new_prompt
729
+ ):
730
+ # Don't accept if new prompt is the same as parent, or if type changed.
731
+ return None
732
+ return new_prompt
733
+
734
+ def _make_child(
735
+ self,
736
+ selected_module_id: ModuleId,
737
+ parent_prompt_configuration: PromptConfiguration,
738
+ child_prompt: Prompt,
739
+ ) -> PromptConfiguration:
740
+ child_prompt_configuration = PromptConfiguration.new(
741
+ prompts=dict(parent_prompt_configuration.prompts),
742
+ parent=parent_prompt_configuration.id,
743
+ )
744
+ child_prompt_configuration.prompts[selected_module_id] = child_prompt
745
+ return child_prompt_configuration
746
+
747
+ def _update_progress(
748
+ self,
749
+ total_iterations: int,
750
+ iteration: int,
751
+ remaining_iterations: int,
752
+ elapsed: float,
753
+ ) -> None:
754
+ if self.status_callback is not None:
755
+ detail = (
756
+ f"(iterations={total_iterations}) "
757
+ f"• iteration {iteration}/{total_iterations} "
758
+ f"• {elapsed:.2f}s • remaining={remaining_iterations}"
759
+ )
760
+ self.status_callback(
761
+ RunnerStatusType.PROGRESS,
762
+ step_index=iteration,
763
+ total_steps=total_iterations,
764
+ detail=detail,
765
+ )
766
+
767
+ def _update_error(
768
+ self,
769
+ total_iterations: int,
770
+ iteration: int,
771
+ exc: Exception,
772
+ ) -> None:
773
+ # Report a user-facing error event.
774
+ if self.status_callback is not None:
775
+ detail = (
776
+ f"(iterations={total_iterations}) "
777
+ f"• error {exc.__class__.__name__}: {exc} "
778
+ f"• halted at iteration {iteration}"
779
+ )
780
+ self.status_callback(
781
+ RunnerStatusType.ERROR,
782
+ step_index=iteration,
783
+ total_steps=total_iterations,
784
+ detail=detail,
785
+ )
786
+
787
+ def _run_loop_iteration(
788
+ self,
789
+ copro_iteration: Callable[[], bool],
790
+ ) -> None:
791
+ total_iterations = self.config.iterations
792
+ remaining_iterations = total_iterations
793
+ iteration = 0
794
+ self._update_progress(
795
+ total_iterations, iteration, remaining_iterations, 0.0
796
+ )
797
+ while remaining_iterations > 0:
798
+ iteration += 1
799
+ start_time = time.perf_counter()
800
+ try:
801
+ ok = copro_iteration()
802
+ except Exception as exc:
803
+ self._update_error(total_iterations, iteration, exc)
804
+ break
805
+ elapsed = time.perf_counter() - start_time
806
+ if not ok:
807
+ break
808
+ remaining_iterations -= 1
809
+ self._update_progress(
810
+ total_iterations, iteration, remaining_iterations, elapsed
811
+ )
812
+
813
+ async def _a_run_loop_iteration(
814
+ self,
815
+ a_copro_iteration: Callable[[], Awaitable[bool]],
816
+ ) -> None:
817
+ total_iterations = self.config.iterations
818
+ remaining_iterations = total_iterations
819
+ iteration = 0
820
+ self._update_progress(
821
+ total_iterations, iteration, remaining_iterations, 0.0
822
+ )
823
+ while remaining_iterations > 0:
824
+ iteration += 1
825
+ start_time = time.perf_counter()
826
+ try:
827
+ ok = await a_copro_iteration()
828
+ except Exception as exc:
829
+ self._update_error(total_iterations, iteration, exc)
830
+ break
831
+ elapsed = time.perf_counter() - start_time
832
+ if not ok:
833
+ break
834
+ remaining_iterations -= 1
835
+ self._update_progress(
836
+ total_iterations, iteration, remaining_iterations, elapsed
837
+ )