deepdoctection 0.39.4__py3-none-any.whl → 0.39.5__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of deepdoctection might be problematic. Click here for more details.

@@ -25,7 +25,7 @@ from .utils.logger import LoggingRecord, logger
25
25
 
26
26
  # pylint: enable=wrong-import-position
27
27
 
28
- __version__ = "0.39.4"
28
+ __version__ = "0.39.5"
29
29
 
30
30
  _IMPORT_STRUCTURE = {
31
31
  "analyzer": ["config_sanity_checks", "get_dd_analyzer", "ServiceFactory"],
@@ -702,11 +702,11 @@ class Image:
702
702
  return get_uuid(self.image_id, *container_ids)
703
703
 
704
704
  def save(
705
- self,
706
- image_to_json: bool = True,
707
- highest_hierarchy_only: bool = False,
708
- path: Optional[PathLikeOrStr] = None,
709
- dry: bool = False,
705
+ self,
706
+ image_to_json: bool = True,
707
+ highest_hierarchy_only: bool = False,
708
+ path: Optional[PathLikeOrStr] = None,
709
+ dry: bool = False,
710
710
  ) -> Optional[Union[ImageDict, str]]:
711
711
  """
712
712
  Export image as dictionary. As numpy array cannot be serialized `image` values will be converted into
@@ -723,7 +723,7 @@ class Image:
723
723
  def set_image_keys_to_none(d): # type: ignore
724
724
  if isinstance(d, dict):
725
725
  for key, value in d.items():
726
- if key == '_image':
726
+ if key == "_image":
727
727
  d[key] = None
728
728
  else:
729
729
  set_image_keys_to_none(value)
@@ -430,8 +430,10 @@ class Table(Layout):
430
430
  category_names=[LayoutType.CELL, CellType.SPANNING], annotation_ids=all_relation_ids
431
431
  )
432
432
  column_cells = list(
433
- filter(lambda c: column_number in # type: ignore
434
- (c.column_number, c.column_number + c.column_span - 1), all_cells) # type: ignore
433
+ filter(
434
+ lambda c: column_number in (c.column_number, c.column_number + c.column_span - 1), # type: ignore
435
+ all_cells,
436
+ ) # type: ignore
435
437
  )
436
438
  column_cells.sort(key=lambda c: c.row_number) # type: ignore
437
439
  return column_cells # type: ignore
@@ -394,6 +394,7 @@ class CustomDataset(DatasetBase):
394
394
  dataflow_builder: Type[DataFlowBaseBuilder],
395
395
  init_sub_categories: Optional[Mapping[ObjectTypes, Mapping[ObjectTypes, Sequence[ObjectTypes]]]] = None,
396
396
  annotation_files: Optional[Mapping[str, Union[str, Sequence[str]]]] = None,
397
+ description: Optional[str] = None,
397
398
  ):
398
399
  """
399
400
  :param name: Name of the dataset. It will not be used in the code, however it might be helpful, if several
@@ -422,6 +423,7 @@ class CustomDataset(DatasetBase):
422
423
  :param annotation_files: A mapping to one or more annotation files, e.g.
423
424
 
424
425
  annotation_file = {"train": "train_file.json", "test": "test_file.json"}
426
+ :param description: A description of the dataset.
425
427
  """
426
428
 
427
429
  self.name = name
@@ -439,10 +441,18 @@ class CustomDataset(DatasetBase):
439
441
  "annotation_files: Optional[Mapping[str, Union[str, Sequence[str]]]] = None):`"
440
442
  )
441
443
  self.dataflow_builder = dataflow_builder(self.location, self.annotation_files)
444
+ self.description = description
442
445
  super().__init__()
443
446
 
444
447
  def _info(self) -> DatasetInfo: # type: ignore # pylint: disable=W0221
445
- return DatasetInfo(name=self.name, type=self.type, description="", license="", url="", splits={})
448
+ return DatasetInfo(
449
+ name=self.name,
450
+ type=self.type,
451
+ description=self.description if self.description is not None else "",
452
+ license="",
453
+ url="",
454
+ splits={},
455
+ )
446
456
 
447
457
  def _categories(self) -> DatasetCategories:
448
458
  return DatasetCategories(init_categories=self.init_categories, init_sub_categories=self.init_sub_categories)
@@ -85,6 +85,7 @@ class DatasetInfo:
85
85
  """
86
86
 
87
87
  name: str
88
+ short_description: str = field(default="")
88
89
  description: str = field(default="")
89
90
  license: str = field(default="")
90
91
  url: Union[str, Sequence[str]] = field(default="")
@@ -45,6 +45,7 @@ from ..info import DatasetCategories, DatasetInfo
45
45
  from ..registry import dataset_registry
46
46
 
47
47
  _NAME = "doclaynet"
48
+ _SHORT_DESCRIPTION = "DocLayNet is a human-annotated document layout segmentation dataset containing 80863 pages."
48
49
  _DESCRIPTION = (
49
50
  "DocLayNet is a human-annotated document layout segmentation dataset containing 80863 pages from a broad "
50
51
  "variety of document sources. \n"
@@ -105,7 +106,15 @@ class DocLayNet(DatasetBase):
105
106
 
106
107
  @classmethod
107
108
  def _info(cls) -> DatasetInfo:
108
- return DatasetInfo(name=_NAME, description=_DESCRIPTION, license=_LICENSE, splits=_SPLITS, type=_TYPE, url=_URL)
109
+ return DatasetInfo(
110
+ name=_NAME,
111
+ short_description=_SHORT_DESCRIPTION,
112
+ description=_DESCRIPTION,
113
+ license=_LICENSE,
114
+ splits=_SPLITS,
115
+ type=_TYPE,
116
+ url=_URL,
117
+ )
109
118
 
110
119
  def _categories(self) -> DatasetCategories:
111
120
  return DatasetCategories(init_categories=_INIT_CATEGORIES, init_sub_categories=_SUB_CATEGORIES)
@@ -54,6 +54,7 @@ from ..info import DatasetCategories, DatasetInfo
54
54
  from ..registry import dataset_registry
55
55
 
56
56
  _NAME = "fintabnet"
57
+ _SHORT_DESCRIPTION = "FinTabNet dataset contains complex tables from the annual reports of S&P 500 companies."
57
58
  _DESCRIPTION = (
58
59
  "FinTabNet dataset contains complex tables from the annual reports of S&P 500 companies with detailed \n"
59
60
  " table structure annotations to help train and test structure recognition. \n"
@@ -129,7 +130,15 @@ class Fintabnet(_BuiltInDataset):
129
130
 
130
131
  @classmethod
131
132
  def _info(cls) -> DatasetInfo:
132
- return DatasetInfo(name=_NAME, description=_DESCRIPTION, license=_LICENSE, url=_URL, splits=_SPLITS, type=_TYPE)
133
+ return DatasetInfo(
134
+ name=_NAME,
135
+ short_description=_SHORT_DESCRIPTION,
136
+ description=_DESCRIPTION,
137
+ license=_LICENSE,
138
+ url=_URL,
139
+ splits=_SPLITS,
140
+ type=_TYPE,
141
+ )
133
142
 
134
143
  def _categories(self) -> DatasetCategories:
135
144
  return DatasetCategories(init_categories=_INIT_CATEGORIES, init_sub_categories=_SUB_CATEGORIES)
@@ -66,6 +66,7 @@ def load_file(path_ann: PathLikeOrStr) -> FunsdDict:
66
66
 
67
67
 
68
68
  _NAME = "funsd"
69
+ _SHORT_DESCRIPTION = "FUNSD: Form Understanding in Noisy Scanned Documents."
69
70
  _DESCRIPTION = (
70
71
  "FUNSD: Form Understanding in Noisy Scanned Documents. A dataset for Text Detection, Optical Character \n"
71
72
  " Recognition, Spatial Layout Analysis and Form Understanding."
@@ -116,7 +117,15 @@ class Funsd(_BuiltInDataset):
116
117
 
117
118
  @classmethod
118
119
  def _info(cls) -> DatasetInfo:
119
- return DatasetInfo(name=_NAME, description=_DESCRIPTION, license=_LICENSE, url=_URL, splits=_SPLITS, type=_TYPE)
120
+ return DatasetInfo(
121
+ name=_NAME,
122
+ short_description=_SHORT_DESCRIPTION,
123
+ description=_DESCRIPTION,
124
+ license=_LICENSE,
125
+ url=_URL,
126
+ splits=_SPLITS,
127
+ type=_TYPE,
128
+ )
120
129
 
121
130
  def _categories(self) -> DatasetCategories:
122
131
  return DatasetCategories(init_categories=_INIT_CATEGORIES, init_sub_categories=_SUB_CATEGORIES)
@@ -60,7 +60,7 @@ with try_import() as import_guard:
60
60
  from lxml import etree
61
61
 
62
62
  _NAME = "iiitar13k"
63
-
63
+ _SHORT_DESCRIPTION = "IIIT-AR-13K: A New Dataset for Graphical Object Detection in Documents"
64
64
  _DESCRIPTION = (
65
65
  "[excerpt from Ajoy Mondal et. all. IIIT-AR-13K: A New Dataset for Graphical Object Detection in \n"
66
66
  "Documents] ...This dataset, IIIT-AR-13K, is created by manually annotating the bounding boxes of \n"
@@ -97,7 +97,15 @@ class IIITar13K(_BuiltInDataset):
97
97
 
98
98
  @classmethod
99
99
  def _info(cls) -> DatasetInfo:
100
- return DatasetInfo(name=_NAME, description=_DESCRIPTION, license=_LICENSE, url=_URL, splits=_SPLITS, type=_TYPE)
100
+ return DatasetInfo(
101
+ name=_NAME,
102
+ short_description=_SHORT_DESCRIPTION,
103
+ description=_DESCRIPTION,
104
+ license=_LICENSE,
105
+ url=_URL,
106
+ splits=_SPLITS,
107
+ type=_TYPE,
108
+ )
101
109
 
102
110
  def _categories(self) -> DatasetCategories:
103
111
  return DatasetCategories(init_categories=_INIT_CATEGORIES)
@@ -73,7 +73,14 @@ class LayoutTest(_BuiltInDataset):
73
73
 
74
74
  @classmethod
75
75
  def _info(cls) -> DatasetInfo:
76
- return DatasetInfo(name=_NAME, description=_DESCRIPTION, license=_LICENSE, splits=_SPLITS, type=_TYPE)
76
+ return DatasetInfo(
77
+ name=_NAME,
78
+ short_description=_DESCRIPTION,
79
+ description=_DESCRIPTION,
80
+ license=_LICENSE,
81
+ splits=_SPLITS,
82
+ type=_TYPE,
83
+ )
77
84
 
78
85
  def _categories(self) -> DatasetCategories:
79
86
  return DatasetCategories(init_categories=_INIT_CATEGORIES)
@@ -43,6 +43,7 @@ from ..info import DatasetCategories, DatasetInfo
43
43
  from ..registry import dataset_registry
44
44
 
45
45
  _NAME = "publaynet"
46
+ _SHORT_DESCRIPTION = "PubLayNet is a dataset for document layout analysis."
46
47
  _DESCRIPTION = (
47
48
  "PubLayNet is a dataset for document layout analysis. It contains images of research papers and "
48
49
  "articles \n"
@@ -79,7 +80,15 @@ class Publaynet(_BuiltInDataset):
79
80
 
80
81
  @classmethod
81
82
  def _info(cls) -> DatasetInfo:
82
- return DatasetInfo(name=_NAME, description=_DESCRIPTION, license=_LICENSE, url=_URL, splits=_SPLITS, type=_TYPE)
83
+ return DatasetInfo(
84
+ name=_NAME,
85
+ short_description=_SHORT_DESCRIPTION,
86
+ description=_DESCRIPTION,
87
+ license=_LICENSE,
88
+ url=_URL,
89
+ splits=_SPLITS,
90
+ type=_TYPE,
91
+ )
83
92
 
84
93
  def _categories(self) -> DatasetCategories:
85
94
  return DatasetCategories(init_categories=_INIT_CATEGORIES)
@@ -63,7 +63,7 @@ with try_import() as import_guard:
63
63
  from lxml import etree
64
64
 
65
65
  _NAME = "pubtables1m_det"
66
-
66
+ _SHORT_DESCRIPTION = "PubTables1M is a dataset for table detection and structure recognition."
67
67
  _DESCRIPTION = (
68
68
  "[excerpt from Brandon Smock et. all. PubTables-1M: Towards Comprehensive Table Extraction From Unstructured \n"
69
69
  "Documents] '...we release PubTables1M, a dataset of nearly one million tables from PubMed Central Open Access \n"
@@ -100,7 +100,15 @@ class Pubtables1MDet(_BuiltInDataset):
100
100
 
101
101
  @classmethod
102
102
  def _info(cls) -> DatasetInfo:
103
- return DatasetInfo(name=_NAME, description=_DESCRIPTION, license=_LICENSE, url=_URL, splits=_SPLITS, type=_TYPE)
103
+ return DatasetInfo(
104
+ name=_NAME,
105
+ short_description=_SHORT_DESCRIPTION,
106
+ description=_DESCRIPTION,
107
+ license=_LICENSE,
108
+ url=_URL,
109
+ splits=_SPLITS,
110
+ type=_TYPE,
111
+ )
104
112
 
105
113
  def _categories(self) -> DatasetCategories:
106
114
  return DatasetCategories(init_categories=_INIT_CATEGORIES_DET)
@@ -45,6 +45,7 @@ from ..info import DatasetCategories
45
45
  from ..registry import dataset_registry
46
46
 
47
47
  _NAME = "pubtabnet"
48
+ _SHORT_DESCRIPTION = "PubTabNet is a dataset for image-based table recognition."
48
49
  _DESCRIPTION = (
49
50
  "PubTabNet is a large dataset for image-based table recognition, containing 568k+ images of \n"
50
51
  "tabular data annotated with the corresponding HTML representation of the tables. The table images \n"
@@ -115,7 +116,15 @@ class Pubtabnet(_BuiltInDataset):
115
116
 
116
117
  @classmethod
117
118
  def _info(cls) -> DatasetInfo:
118
- return DatasetInfo(name=_NAME, description=_DESCRIPTION, license=_LICENSE, url=_URL, splits=_SPLITS, type=_TYPE)
119
+ return DatasetInfo(
120
+ name=_NAME,
121
+ short_description=_SHORT_DESCRIPTION,
122
+ description=_DESCRIPTION,
123
+ license=_LICENSE,
124
+ url=_URL,
125
+ splits=_SPLITS,
126
+ type=_TYPE,
127
+ )
119
128
 
120
129
  def _categories(self) -> DatasetCategories:
121
130
  return DatasetCategories(init_categories=_INIT_CATEGORIES, init_sub_categories=_SUB_CATEGORIES)
@@ -48,6 +48,7 @@ from ..info import DatasetCategories, DatasetInfo
48
48
  from ..registry import dataset_registry
49
49
 
50
50
  _NAME = "rvl-cdip"
51
+ _SHORT_DESCRIPTION = "RVL-CDIP is a dataset for document classification."
51
52
  _DESCRIPTION = (
52
53
  "The RVL-CDIP (Ryerson Vision Lab Complex Document Information Processing) dataset consists of 400, 000 gray- \n"
53
54
  "scale images in 16 classes, with 25, 000 images per class . There are 320, 000 training images, 40, 000 \n"
@@ -98,7 +99,15 @@ class Rvlcdip(_BuiltInDataset):
98
99
 
99
100
  @classmethod
100
101
  def _info(cls) -> DatasetInfo:
101
- return DatasetInfo(name=_NAME, description=_DESCRIPTION, license=_LICENSE, url=_URL, splits=_SPLITS, type=_TYPE)
102
+ return DatasetInfo(
103
+ name=_NAME,
104
+ short_description=_SHORT_DESCRIPTION,
105
+ description=_DESCRIPTION,
106
+ license=_LICENSE,
107
+ url=_URL,
108
+ splits=_SPLITS,
109
+ type=_TYPE,
110
+ )
102
111
 
103
112
  def _categories(self) -> DatasetCategories:
104
113
  return DatasetCategories(init_categories=_INIT_CATEGORIES)
@@ -45,6 +45,7 @@ from ..info import DatasetCategories
45
45
  from ..registry import dataset_registry
46
46
 
47
47
  _NAME = "xfund"
48
+ _SHORT_DESCRIPTION = "XFUND is a multilingual form understanding benchmark dataset."
48
49
  _DESCRIPTION = (
49
50
  "XFUND is a multilingual form understanding benchmark dataset that includes human-labeled forms with \n"
50
51
  "key-value pairs in 7 languages (Chinese, Japanese, Spanish, French, Italian, German, Portuguese)."
@@ -103,7 +104,15 @@ class Xfund(_BuiltInDataset):
103
104
 
104
105
  @classmethod
105
106
  def _info(cls) -> DatasetInfo:
106
- return DatasetInfo(name=_NAME, description=_DESCRIPTION, license=_LICENSE, url=_URL, splits=_SPLITS, type=_TYPE)
107
+ return DatasetInfo(
108
+ name=_NAME,
109
+ short_description=_SHORT_DESCRIPTION,
110
+ description=_DESCRIPTION,
111
+ license=_LICENSE,
112
+ url=_URL,
113
+ splits=_SPLITS,
114
+ type=_TYPE,
115
+ )
107
116
 
108
117
  def _categories(self) -> DatasetCategories:
109
118
  return DatasetCategories(init_categories=_INIT_CATEGORIES, init_sub_categories=_SUB_CATEGORIES)
@@ -65,18 +65,33 @@ def print_dataset_infos(add_license: bool = True, add_info: bool = True) -> None
65
65
  data = dataset_registry.get_all()
66
66
  num_columns = min(6, len(data))
67
67
  infos = []
68
+
68
69
  for dataset in data.items():
69
70
  info = [dataset[0]]
71
+ ds = dataset[1]()
72
+ info.append(ds.dataset_info.type)
70
73
  if add_license:
71
- info.append(dataset[1]._info().license) # pylint: disable=W0212
74
+ info.append(ds.dataset_info.license) # pylint: disable=W0212
72
75
  if add_info:
73
- info.append(dataset[1]._info().description) # pylint: disable=W0212
76
+ info.append(ds.dataset_info.short_description) # pylint: disable=W0212
77
+ if ds.dataflow.categories is not None: # pylint: disable=W0212
78
+ categories = "\n".join(ds.dataflow.categories.init_categories) # Format categories as multi-line string
79
+ sub_categories = "\n".join(
80
+ f"{key}: {', '.join(values)}" for key, values in ds.dataflow.categories.init_sub_categories.items()
81
+ ) # Format sub-categories as multi-line string
82
+ info.append(categories)
83
+ info.append(sub_categories)
84
+ else:
85
+ info.append("")
86
+ info.append("")
74
87
  infos.append(info)
75
- header = ["dataset"]
88
+
89
+ header = ["dataset", "type"]
76
90
  if add_license:
77
91
  header.append("license")
78
92
  if add_info:
79
93
  header.append("description")
94
+ header.append("categories")
80
95
  table = tabulate(
81
96
  infos, headers=header * (num_columns // 2), tablefmt="fancy_grid", stralign="left", numalign="left"
82
97
  )
@@ -527,8 +527,9 @@ class DocTrRotationTransformer(ImageTransformer):
527
527
  return viz_handler.rotate_image(np_img, specification.angle) # type: ignore
528
528
 
529
529
  def predict(self, np_img: PixelValues) -> DetectionResult:
530
- angle = estimate_orientation(np_img, n_ct=self.number_contours,
531
- ratio_threshold_for_lines=self.ratio_threshold_for_lines)
530
+ angle = estimate_orientation(
531
+ np_img, n_ct=self.number_contours, ratio_threshold_for_lines=self.ratio_threshold_for_lines
532
+ )
532
533
  if angle < 0:
533
534
  angle += 360
534
535
  return DetectionResult(angle=round(angle, 2))
@@ -55,7 +55,7 @@ def cat_to_sub_cat(
55
55
  sub_cat = ann.get_sub_category(sub_cat_type)
56
56
  if sub_cat:
57
57
  ann.category_name = sub_cat.category_name
58
- ann.category_id = categories_dict_names_as_key.get(ann.category_name,DEFAULT_CATEGORY_ID)
58
+ ann.category_id = categories_dict_names_as_key.get(ann.category_name, DEFAULT_CATEGORY_ID)
59
59
 
60
60
  return dp
61
61
 
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.2
2
2
  Name: deepdoctection
3
- Version: 0.39.4
3
+ Version: 0.39.5
4
4
  Summary: Repository for Document AI
5
5
  Home-page: https://github.com/deepdoctection/deepdoctection
6
6
  Author: Dr. Janis Meyer
@@ -1,4 +1,4 @@
1
- deepdoctection/__init__.py,sha256=4u3rGxdbvfFr1l6xzH6qO5MapLGspBv5XPhBGMeji_4,12754
1
+ deepdoctection/__init__.py,sha256=MbRCNpP9rjZdSs27aZt1LScR-Z_MW-I3kKgnfa8WjlY,12754
2
2
  deepdoctection/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
3
3
  deepdoctection/analyzer/__init__.py,sha256=icClxrd20XutD6LxLgEPIWceSs4j_QfI3szCE-9BL2w,729
4
4
  deepdoctection/analyzer/_config.py,sha256=1rfvVrp7cI2YLzpahD77aa1tZ_KFAIQ21DM1NWhxYiI,5058
@@ -19,26 +19,26 @@ deepdoctection/datapoint/__init__.py,sha256=3K406GbOPhoEp8koVaSbMocmSsmWifnSZ1SP
19
19
  deepdoctection/datapoint/annotation.py,sha256=FEgz4COxVDfjic0gG7kS6iHnWLBIgFnquQ63Cbj2a4Y,22531
20
20
  deepdoctection/datapoint/box.py,sha256=UAdSnLexvFyg4KK1u9kXdJxhaWTwRxTU-cnQcvl37Q8,23410
21
21
  deepdoctection/datapoint/convert.py,sha256=gJbHY2V8nlMht1N5VdxTmWSsOeydpFPTJsaJHp6XGgE,7516
22
- deepdoctection/datapoint/image.py,sha256=dImZfJr72jS8yanZx1n70p4lIv0Qa21-qlUcj0DZcls,34060
23
- deepdoctection/datapoint/view.py,sha256=XPyhbBr2cGIKdAiISBVZWxNxlSvN8kmGsD9P0mfpEEE,50772
22
+ deepdoctection/datapoint/image.py,sha256=uGmlgF6zGptvNowZTqf-io4hbd8aFFngAvQqgdEQ5Kw,34040
23
+ deepdoctection/datapoint/view.py,sha256=mReVQHX1PFGEma5n1-yOrNhp0E6aHaDMOpgtdt7wsm8,50790
24
24
  deepdoctection/datasets/__init__.py,sha256=-A3aR90aDsHPmVM35JavfnQ2itYSCn3ujl4krRni1QU,1076
25
25
  deepdoctection/datasets/adapter.py,sha256=Ly_vbOAgVI73V41FUccnSX1ECTOyesW_qsuvQuvOZbw,7796
26
- deepdoctection/datasets/base.py,sha256=DT4i-d74sIEiUNC6UspIHNJuHSK0t1dBv7qwadg4rLw,22341
26
+ deepdoctection/datasets/base.py,sha256=AZx-hw8Mchzb7FiOASt7zCbiybFNsM_diBzKXyC-auU,22618
27
27
  deepdoctection/datasets/dataflow_builder.py,sha256=cYU2zV3gZW2bFvMHimlO9VIl3BAUaCwML08cCIQ8Em4,4107
28
- deepdoctection/datasets/info.py,sha256=6y5TfiUhQppynbMFP5JmUPk95ggsVCtGIw4dYh2lVus,20501
29
- deepdoctection/datasets/registry.py,sha256=tvzMUk34ZD3AsedS1DFfYATYLxm-7bn2-8J1AJiXGKM,2616
28
+ deepdoctection/datasets/info.py,sha256=sC1QCOdLWFMooVmiShZ43sLUpAi3FK4d0fsLyl_9-gA,20548
29
+ deepdoctection/datasets/registry.py,sha256=j0dqdemhbQNccjZEI33uqeJH5mkHn6psKgKGX71IwVc,3277
30
30
  deepdoctection/datasets/save.py,sha256=Y9508Qqp8gIGN7pbGgVBBnkiC6NdCb9L2YR4wVvEUxM,3350
31
31
  deepdoctection/datasets/instances/__init__.py,sha256=XEc_4vT5lDn6bbZID9ujDEumWu8Ec2W-QS4pI_bfWWE,1388
32
- deepdoctection/datasets/instances/doclaynet.py,sha256=wRZT7wMTilZBLZ1gKY2cWReD1EGT735vOOTy0pD0N6M,12038
33
- deepdoctection/datasets/instances/fintabnet.py,sha256=qYzFK1dWF6MEPkHamP255DvAzlQT_GnkvDe1aM7CgjA,12006
34
- deepdoctection/datasets/instances/funsd.py,sha256=jxxpOq14-S0tX_IpUzKyKc6hWnKL4UUB-Bp7do3MPNY,6973
35
- deepdoctection/datasets/instances/iiitar13k.py,sha256=CKB9ZduKGBdHK3hiCKfAV7_s6PjEufHJUdj6H6JqED0,6697
36
- deepdoctection/datasets/instances/layouttest.py,sha256=CbaPKTA2103kMfOAsxGQkJT5xwlUJ104O4HA7Reo_MY,4400
37
- deepdoctection/datasets/instances/publaynet.py,sha256=aotY3O_W4fx_OVpkeKVukfeBTjiQm92gIaPW6FeGYHw,5238
38
- deepdoctection/datasets/instances/pubtables1m.py,sha256=UMomvs9X2d2aZhof9Rt42ud_PZyIfC-4j7oR39mTw1I,12297
39
- deepdoctection/datasets/instances/pubtabnet.py,sha256=l8qxbfKbXp7czJBHrUafK2hXz2qLpzL5Cbu_LsuvZQk,8592
40
- deepdoctection/datasets/instances/rvlcdip.py,sha256=bRcpE5XcNV0-7C8DHl0WNdzJzLFr6nOMaUU6xXSjeVs,6624
41
- deepdoctection/datasets/instances/xfund.py,sha256=AhAdaGhGQVL32WBbvThhXSwSy_WoP_Mv80azXU5oqLI,8784
32
+ deepdoctection/datasets/instances/doclaynet.py,sha256=Az7USCqF0lMk1n1Dk59uUrBgBNAbKEjtUvZnCgdUH70,12286
33
+ deepdoctection/datasets/instances/fintabnet.py,sha256=rOaKD5bruokkbZwjRhEz-5uAKZiMAXzmre_Ecc0YMTk,12250
34
+ deepdoctection/datasets/instances/funsd.py,sha256=K6WQQOaEJrw1TcevScHET-AY9l9aj64dhLRyZ1J86p0,7183
35
+ deepdoctection/datasets/instances/iiitar13k.py,sha256=HGBqR_PeTqpzLV9npWh5VdlHUg0t8vUTcrm3Z2kL6Qk,6923
36
+ deepdoctection/datasets/instances/layouttest.py,sha256=nNYDUNcgWA0PilN0w0vAourwXvpcRupVStvlESTc1e0,4515
37
+ deepdoctection/datasets/instances/publaynet.py,sha256=jUKq9iYW0qD5qXMe2xFz8xNxsL0KBTufuwSMkfzwaxA,5447
38
+ deepdoctection/datasets/instances/pubtables1m.py,sha256=KtEHh8G98e-RjIqRbe5fbLNrD52oWA9kKDb3sUPqAk0,12524
39
+ deepdoctection/datasets/instances/pubtabnet.py,sha256=TidllHJdxM8Ii0_gjliLWOWTtTaKjl89Khe1o0jLW4M,8806
40
+ deepdoctection/datasets/instances/rvlcdip.py,sha256=8Vb_iCuR85N8Mx7d5KJ-lXe6PiZPjG0Jfq6EwY1qtkw,6831
41
+ deepdoctection/datasets/instances/xfund.py,sha256=effTZfWI8MvGXCyRhdtwphHCr7WNF8sQOOjUCcKaTVE,9002
42
42
  deepdoctection/datasets/instances/xsl/__init__.py,sha256=TX_P6tqDOF1LK1mi9ruAl7x0mtv1Asm8cYWCz3Pe2dk,646
43
43
  deepdoctection/datasets/instances/xsl/pascal_voc.xsl,sha256=DlzFV2P8NtQKXVe96i-mIcPWmL6tsW7NQjgCuz2pCL4,1952
44
44
  deepdoctection/eval/__init__.py,sha256=rbns4tSEQ30QLj8h0mm3A0dCaKuN9LDxxpVypKKSXSE,932
@@ -53,7 +53,7 @@ deepdoctection/extern/__init__.py,sha256=9Iks9b4Q_LynjcV167TVCoK8YsQRUcA2jjmAmDN
53
53
  deepdoctection/extern/base.py,sha256=ONPgappl_P5HSwQr42FatuRnwMTvUPecPsCztDTN0Hw,24108
54
54
  deepdoctection/extern/d2detect.py,sha256=zrKv1yurApnjD7QZIZk_8LYCahjmN82MQUjHjv8zvkQ,22127
55
55
  deepdoctection/extern/deskew.py,sha256=sPoixu8S9he-0wbs-jgxtPE2V9BiP4-3uZlb6F5Y1SA,3077
56
- deepdoctection/extern/doctrocr.py,sha256=WrFA0N54fr9C_ahGzZJb4H-fNzz5wXQFveFiERYAm74,24637
56
+ deepdoctection/extern/doctrocr.py,sha256=R1PgKBFxVr_1-frkGvGL2ZBS19jpiktPQ4sJz_nBiNs,24622
57
57
  deepdoctection/extern/fastlang.py,sha256=F4gK-SEwcCujjxH327ZDzMGWToJ49xS_dCKcePQ9IlY,4780
58
58
  deepdoctection/extern/hfdetr.py,sha256=JzHrrTyzS9qh6T2TsvKboAGZkIhno2txmSoLQ5Vd-lo,12077
59
59
  deepdoctection/extern/hflayoutlm.py,sha256=tFaf90FRbZzhSycdp8rGkeiPywQa6UcTEEwbayIXkr0,57023
@@ -88,7 +88,7 @@ deepdoctection/extern/tp/tpfrcnn/utils/__init__.py,sha256=kiPlXxHlTGN9eI7YE9Bgwt
88
88
  deepdoctection/extern/tp/tpfrcnn/utils/box_ops.py,sha256=aBLqPg_ApaiimtBRaOsLKTZZFIBh87vVtqjLPMaX9fQ,2379
89
89
  deepdoctection/extern/tp/tpfrcnn/utils/np_box_ops.py,sha256=O-q1GQiOEd1lN1MQDsJvHwD2OmBO-qHNeqJ1Qnec93g,3539
90
90
  deepdoctection/mapper/__init__.py,sha256=Xqb34aCjslZDQnqQgCSvnloL5DbdT9eHhn-StpVPbzE,1130
91
- deepdoctection/mapper/cats.py,sha256=Go9k9wiSid1aSPSteTCE0AgQ1tZmOA8pfOPkhKSQhhg,16601
91
+ deepdoctection/mapper/cats.py,sha256=O06WGkpOIlSNMCy5VESl2HYOFDTuT9ls4aZIaWUv9VU,16602
92
92
  deepdoctection/mapper/cocostruct.py,sha256=GcbUpPFUg67pcOHQluWBFOFcGaYnlZcTmwBDERBVgCA,5978
93
93
  deepdoctection/mapper/d2struct.py,sha256=Dx-YnycsIQH4a5-9Gn_yMhiQ-gOFgMueNeH3rhXjuCU,8555
94
94
  deepdoctection/mapper/hfstruct.py,sha256=2PjGKsYturVJBimLT1CahYh09KSRAFEHz_QNtC162kQ,5551
@@ -141,8 +141,8 @@ deepdoctection/utils/transform.py,sha256=3kCgsEeRkG1efCdkfvj7tUFMs-e2jbjbflq826F
141
141
  deepdoctection/utils/types.py,sha256=_3dmPdCIZNLbgU5QP5k_c5phDf18xLe1kYL6t2nM45s,2953
142
142
  deepdoctection/utils/utils.py,sha256=csVs_VvCq4QBETPoE2JdTTL4MFYnD4xh-Js5vRb612g,6492
143
143
  deepdoctection/utils/viz.py,sha256=Jf8ePNYWlpuyaS6SeTYQ4OyA3eNhtgjvAQZnGNdgHC0,27051
144
- deepdoctection-0.39.4.dist-info/LICENSE,sha256=GQ0rUvuGdrMNEI3iHK5UQx6dIMU1QwAuyXsxUHn5MEQ,11351
145
- deepdoctection-0.39.4.dist-info/METADATA,sha256=9DvyyvO9Ofd9YFuqQ2SVO2Bi69WayBC2VZyrpMCimZQ,19741
146
- deepdoctection-0.39.4.dist-info/WHEEL,sha256=52BFRY2Up02UkjOa29eZOS2VxUrpPORXg1pkohGGUS8,91
147
- deepdoctection-0.39.4.dist-info/top_level.txt,sha256=hs2DdoOL9h4mnHhmO82BT4pz4QATIoOZ20PZmlnxFI8,15
148
- deepdoctection-0.39.4.dist-info/RECORD,,
144
+ deepdoctection-0.39.5.dist-info/LICENSE,sha256=GQ0rUvuGdrMNEI3iHK5UQx6dIMU1QwAuyXsxUHn5MEQ,11351
145
+ deepdoctection-0.39.5.dist-info/METADATA,sha256=O4KmPHyqhJ44FTeO5OLq1M-5dgBjAQM38ts55lemEiA,19741
146
+ deepdoctection-0.39.5.dist-info/WHEEL,sha256=52BFRY2Up02UkjOa29eZOS2VxUrpPORXg1pkohGGUS8,91
147
+ deepdoctection-0.39.5.dist-info/top_level.txt,sha256=hs2DdoOL9h4mnHhmO82BT4pz4QATIoOZ20PZmlnxFI8,15
148
+ deepdoctection-0.39.5.dist-info/RECORD,,