deepagents 0.0.6rc2__py3-none-any.whl → 0.0.7__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,14 +1,15 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: deepagents
3
- Version: 0.0.6rc2
3
+ Version: 0.0.7
4
4
  Summary: General purpose 'deep agent' with sub-agent spawning, todo list capabilities, and mock file system. Built on LangGraph.
5
5
  License: MIT
6
6
  Requires-Python: <4.0,>=3.11
7
7
  Description-Content-Type: text/markdown
8
8
  License-File: LICENSE
9
- Requires-Dist: langgraph>=0.2.6
9
+ Requires-Dist: langgraph>=1.0.0a3
10
10
  Requires-Dist: langchain-anthropic>=0.1.23
11
- Requires-Dist: langchain>=0.2.14
11
+ Requires-Dist: langchain>=1.0.0a8
12
+ Requires-Dist: langgraph-prebuilt>=0.7.0a2
12
13
  Dynamic: license-file
13
14
 
14
15
  # 🧠🤖Deep Agents
@@ -37,7 +38,6 @@ pip install deepagents
37
38
  ```python
38
39
  import os
39
40
  from typing import Literal
40
-
41
41
  from tavily import TavilyClient
42
42
  from deepagents import create_deep_agent
43
43
 
@@ -86,7 +86,7 @@ in the same way you would any LangGraph agent.
86
86
 
87
87
  ## Creating a custom deep agent
88
88
 
89
- There are three parameters you can pass to `create_deep_agent` to create your own custom deep agent.
89
+ There are several parameters you can pass to `create_deep_agent` to create your own custom deep agent.
90
90
 
91
91
  ### `tools` (Required)
92
92
 
@@ -98,7 +98,7 @@ The agent (and any subagents) will have access to these tools.
98
98
 
99
99
  The second argument to `create_deep_agent` is `instructions`.
100
100
  This will serve as part of the prompt of the deep agent.
101
- Note that there is a [built in system prompt](src/deepagents/prompts.py) as well, so this is not the *entire* prompt the agent will see.
101
+ Note that our deep agent middleware appends further instructions to the deep agent regarding to-do list, filesystem, and subagent usage, so this is not the *entire* prompt the agent will see.
102
102
 
103
103
  ### `subagents` (Optional)
104
104
 
@@ -114,7 +114,8 @@ class SubAgent(TypedDict):
114
114
  description: str
115
115
  prompt: str
116
116
  tools: NotRequired[list[str]]
117
- model_settings: NotRequired[dict[str, Any]]
117
+ model: NotRequired[Union[LanguageModelLike, dict[str, Any]]]
118
+ middleware: NotRequired[list[AgentMiddleware]]
118
119
 
119
120
  class CustomSubAgent(TypedDict):
120
121
  name: str
@@ -127,7 +128,8 @@ class CustomSubAgent(TypedDict):
127
128
  - **description**: This is the description of the subagent that is shown to the main agent
128
129
  - **prompt**: This is the prompt used for the subagent
129
130
  - **tools**: This is the list of tools that the subagent has access to. By default will have access to all tools passed in, as well as all built-in tools.
130
- - **model_settings**: Optional dictionary for per-subagent model configuration (inherits the main model when omitted).
131
+ - **model**: Optional model instance OR dictionary for per-subagent model configuration (inherits the main model when omitted).
132
+ - **middleware** Additional middleware to attach to the subagent. See [here](https://docs.langchain.com/oss/python/langchain/middleware) for an introduction into middleware and how it works with create_agent.
131
133
 
132
134
  **CustomSubAgent fields:**
133
135
  - **name**: This is the name of the subagent, and how the main agent will call the subagent
@@ -141,6 +143,7 @@ research_subagent = {
141
143
  "name": "research-agent",
142
144
  "description": "Used to research more in depth questions",
143
145
  "prompt": sub_research_prompt,
146
+ "tools": [internet_search]
144
147
  }
145
148
  subagents = [research_subagent]
146
149
  agent = create_deep_agent(
@@ -183,18 +186,6 @@ agent = create_deep_agent(
183
186
 
184
187
  By default, `deepagents` uses `"claude-sonnet-4-20250514"`. You can customize this by passing any [LangChain model object](https://python.langchain.com/docs/integrations/chat/).
185
188
 
186
- ### `builtin_tools` (Optional)
187
-
188
- By default, a deep agent will have access to a number of [built-in tools](#builtintools--optional-).
189
- You can change this by specifying the tools (by name) that the agent should have access to with this parameter.
190
-
191
- Example:
192
- ```python
193
- # Only give agent access to todo tool, none of the filesystem tools
194
- builtin_tools = ["write_todos"]
195
- agent = create_deep_agent(..., builtin_tools=builtin_tools, ...)
196
- ```
197
-
198
189
  #### Example: Using a Custom Model
199
190
 
200
191
  Here's how to use a custom model (like OpenAI's `gpt-oss` model via Ollama):
@@ -243,6 +234,15 @@ agent = create_deep_agent(
243
234
  )
244
235
  ```
245
236
 
237
+
238
+ ### `middleware` (Optional)
239
+ Both the main agent and sub-agents can take additional custom AgentMiddleware. Middleware is the best supported approach for extending the state_schema, adding additional tools, and adding pre / post model hooks. See this [doc](https://docs.langchain.com/oss/python/langchain/middleware) to learn more about Middleware and how you can use it!
240
+
241
+ ### `tool_configs` (Optional)
242
+ Tool configs are used to specify how to handle Human In The Loop interactions on certain tools that require additional human oversight.
243
+
244
+ These tool_configs are passed to our prebuilt [HITL middleware](https://docs.langchain.com/oss/python/langchain/middleware#human-in-the-loop) so that the agent pauses execution and waits for feedback from the user before executing configured tools.
245
+
246
246
  ## Deep Agent Details
247
247
 
248
248
  The below components are built into `deepagents` and helps make it work for deep tasks off-the-shelf.
@@ -304,25 +304,20 @@ By default, deep agents come with five built-in tools:
304
304
  - `ls`: Tool for listing files in the virtual filesystem
305
305
  - `edit_file`: Tool for editing a file in the virtual filesystem
306
306
 
307
- These can be disabled via the [`builtin_tools`](#builtintools--optional-) parameter.
307
+ If you want to omit some deepagents functionality, use specific middleware components directly!
308
308
 
309
309
  ### Human-in-the-Loop
310
310
 
311
- `deepagents` supports human-in-the-loop approval for tool execution. You can configure specific tools to require human approval before execution using the `interrupt_config` parameter, which maps tool names to `HumanInterruptConfig`.
311
+ `deepagents` supports human-in-the-loop approval for tool execution. You can configure specific tools to require human approval before execution using the `tool_configs` parameter, which maps tool names to a `HumanInTheLoopConfig`.
312
312
 
313
- `HumanInterruptConfig` is how you specify what type of human in the loop patterns are supported.
313
+ `HumanInTheLoopConfig` is how you specify what type of human in the loop patterns are supported.
314
314
  It is a dictionary with four specific keys:
315
315
 
316
- - `allow_ignore`: Whether the user can skip the tool call
317
- - `allow_respond`: Whether the user can add a text response
318
- - `allow_edit`: Whether the user can edit the tool arguments
319
- - `allow_accept`: Whether the user can accept the tool call
320
-
321
- Currently, `deepagents` does NOT support `allow_ignore`
316
+ - `allow_accept`: Whether the human can approve the current action without changes
317
+ - `allow_respond`: Whether the human can reject the current action with feedback
318
+ - `allow_edit`: Whether the human can approve the current action with edited content
322
319
 
323
- Currently, `deepagents` only support interrupting one tool at a time. If multiple tools are called in parallel, each requiring interrupts, then the agent will error.
324
-
325
- Instead of specifying a `HumanInterruptConfig` for a tool, you can also just set `True`. This will set `allow_ignore`, `allow_respond`, `allow_edit`, and `allow_accept` to be `True`.
320
+ Instead of specifying a `HumanInTheLoopConfig` for a tool, you can also just set `True`. This will set `allow_ignore`, `allow_respond`, `allow_edit`, and `allow_accept` to be `True`.
326
321
 
327
322
  In order to use human in the loop, you need to have a checkpointer attached.
328
323
  Note: if you are using LangGraph Platform, this is automatically attached.
@@ -337,10 +332,9 @@ from langgraph.checkpoint.memory import InMemorySaver
337
332
  agent = create_deep_agent(
338
333
  tools=[your_tools],
339
334
  instructions="Your instructions here",
340
- interrupt_config={
335
+ tool_configs={
341
336
  # You can specify a dictionary for fine grained control over what interrupt options exist
342
337
  "tool_1": {
343
- "allow_ignore": False,
344
338
  "allow_respond": True,
345
339
  "allow_edit": True,
346
340
  "allow_accept":True,
@@ -413,12 +407,12 @@ for s in agent.stream(Command(resume=[{"type": "response", "args": "..."}]), con
413
407
  ```
414
408
  ## Async
415
409
 
416
- If you are passing async tools to your agent, you will want to `from deepagents import async_create_deep_agent`
410
+ If you are passing async tools to your agent, you will want to use `from deepagents import async_create_deep_agent`
417
411
  ## MCP
418
412
 
419
413
  The `deepagents` library can be ran with MCP tools. This can be achieved by using the [Langchain MCP Adapter library](https://github.com/langchain-ai/langchain-mcp-adapters).
420
414
 
421
- **NOTE:** will want to use `from deepagents import async_create_deep_agent` to use the async version of `deepagents`, since MCP tools are async
415
+ **NOTE:** You will want to use `from deepagents import async_create_deep_agent` to use the async version of `deepagents`, since MCP tools are async
422
416
 
423
417
  (To run the example below, will need to `pip install langchain-mcp-adapters`)
424
418
 
@@ -446,27 +440,6 @@ async def main():
446
440
  asyncio.run(main())
447
441
  ```
448
442
 
449
- ## Configurable Agent
450
-
451
- Configurable agents allow you to control the agent via a config passed in.
452
-
453
- ```python
454
- from deepagents import create_configurable_agent
455
-
456
- agent_config = {"instructions": "foo", "subagents": []}
457
-
458
- build_agent = create_configurable_agent(
459
- agent_config['instructions'],
460
- agent_config['subagents'],
461
- [],
462
- agent_config={"recursion_limit": 1000}
463
- )
464
- ```
465
- You can now use `build_agent` in your `langgraph.json` and deploy it with `langgraph dev`
466
-
467
- For async tools, you can use `from deepagents import async_create_configurable_agent`
468
-
469
-
470
443
  ## Roadmap
471
444
  - [ ] Allow users to customize full system prompt
472
445
  - [ ] Code cleanliness (type hinting, docstrings, formating)
@@ -0,0 +1,17 @@
1
+ deepagents/__init__.py,sha256=fA_91ByxPb3e8aPfci43zOXrWz8ylh_CFQALo7EUKi8,312
2
+ deepagents/graph.py,sha256=LciBn8Q2wbi-vlEbqPS0udQvXDnMTP0WKQHNcOyrQsc,6419
3
+ deepagents/middleware.py,sha256=WyK1bf3u1QmMxVcM5KD2tsYMoIKBFQivi6bWYa_cFfA,7242
4
+ deepagents/model.py,sha256=VyRIkdeXJH8HqLrudTKucHpBTtrwMFTQGRlXBj0kUyo,155
5
+ deepagents/prompts.py,sha256=mCnNGTRljfDUMXEfVRiBNGvhoc_wQjt0epiGMJkktgo,25150
6
+ deepagents/state.py,sha256=8so3MgL-zRPYP8Ci_OuVg4wHrs5uAXCErKF1AjjCSt8,726
7
+ deepagents/tools.py,sha256=NpjO2ZEAnL8ZKsYBfxK36AYaayOxC7hWYOvEBCL_5tA,4777
8
+ deepagents/types.py,sha256=5KBSUPlWOnv9It3SnJCMHrOtp9Y4_NQGtGCp69JsEjE,694
9
+ deepagents-0.0.7.dist-info/licenses/LICENSE,sha256=c__BaxUCK69leo2yEKynf8lWndu8iwYwge1CbyqAe-E,1071
10
+ tests/test_deepagents.py,sha256=SwtOiJF4c1O3r_Q3AiM7XZu6tVq4uMIcZlnsfRjx8Ig,7648
11
+ tests/test_hitl.py,sha256=B16ZFiyaVSOcDLz7mh1RTaQZ93EMTKOPUY-IEslkcfM,2460
12
+ tests/test_middleware.py,sha256=3HYmTx0Jw4XTNJjqLYeyGS_QZzcqkFuKfShtajIDhF4,2146
13
+ tests/utils.py,sha256=Ln_DYaMkwAVBo4XQ-QKwlCWP8zZYMenWTcFhsneoL0g,2913
14
+ deepagents-0.0.7.dist-info/METADATA,sha256=0r2OP4f1o-M1Cu_BRRqmYDNCy8koVSnEwnDmWNqEmq0,17130
15
+ deepagents-0.0.7.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
16
+ deepagents-0.0.7.dist-info/top_level.txt,sha256=_w9VMQtG4YDNg5A5eAeUre7dF7x7hk9zRpT9zsFaukY,17
17
+ deepagents-0.0.7.dist-info/RECORD,,
@@ -0,0 +1,136 @@
1
+ from deepagents.graph import create_deep_agent
2
+ from langchain.agents import create_agent
3
+ from tests.utils import assert_all_deepagent_qualities, SAMPLE_MODEL, sample_tool, get_weather, get_soccer_scores, SampleMiddlewareWithTools, SampleMiddlewareWithToolsAndState, WeatherToolMiddleware, ResearchMiddleware, ResearchMiddlewareWithTools, TOY_BASKETBALL_RESEARCH
4
+
5
+ class TestDeepAgents:
6
+ def test_base_deep_agent(self):
7
+ agent = create_deep_agent()
8
+ assert_all_deepagent_qualities(agent)
9
+
10
+ def test_deep_agent_with_tool(self):
11
+ agent = create_deep_agent(tools=[sample_tool])
12
+ assert_all_deepagent_qualities(agent)
13
+ assert "sample_tool" in agent.nodes["tools"].bound._tools_by_name.keys()
14
+
15
+ def test_deep_agent_with_middleware_with_tool(self):
16
+ agent = create_deep_agent(middleware=[SampleMiddlewareWithTools()])
17
+ assert_all_deepagent_qualities(agent)
18
+ assert "sample_tool" in agent.nodes["tools"].bound._tools_by_name.keys()
19
+
20
+ def test_deep_agent_with_middleware_with_tool_and_state(self):
21
+ agent = create_deep_agent(middleware=[SampleMiddlewareWithToolsAndState()])
22
+ assert_all_deepagent_qualities(agent)
23
+ assert "sample_tool" in agent.nodes["tools"].bound._tools_by_name.keys()
24
+ assert "sample_input" in agent.stream_channels
25
+
26
+ def test_deep_agent_with_subagents(self):
27
+ subagents = [
28
+ {
29
+ "name": "weather_agent",
30
+ "description": "Use this agent to get the weather",
31
+ "prompt": "You are a weather agent.",
32
+ "tools": [get_weather],
33
+ "model": SAMPLE_MODEL,
34
+ }
35
+ ]
36
+ agent = create_deep_agent(tools=[sample_tool], subagents=subagents)
37
+ assert_all_deepagent_qualities(agent)
38
+ result = agent.invoke({"messages": [{"role": "user", "content": "What is the weather in Tokyo?"}]})
39
+ agent_messages = [msg for msg in result.get("messages", []) if msg.type == "ai"]
40
+ tool_calls = [tool_call for msg in agent_messages for tool_call in msg.tool_calls]
41
+ assert any([tool_call["name"] == "task" and tool_call["args"].get("subagent_type") == "weather_agent" for tool_call in tool_calls])
42
+
43
+ def test_deep_agent_with_subagents_gen_purpose(self):
44
+ subagents = [
45
+ {
46
+ "name": "weather_agent",
47
+ "description": "Use this agent to get the weather",
48
+ "prompt": "You are a weather agent.",
49
+ "tools": [get_weather],
50
+ "model": SAMPLE_MODEL,
51
+ }
52
+ ]
53
+ agent = create_deep_agent(tools=[sample_tool], subagents=subagents)
54
+ assert_all_deepagent_qualities(agent)
55
+ result = agent.invoke({"messages": [{"role": "user", "content": "Use the general purpose subagent to call the sample tool"}]})
56
+ agent_messages = [msg for msg in result.get("messages", []) if msg.type == "ai"]
57
+ tool_calls = [tool_call for msg in agent_messages for tool_call in msg.tool_calls]
58
+ assert any([tool_call["name"] == "task" and tool_call["args"].get("subagent_type") == "general-purpose" for tool_call in tool_calls])
59
+
60
+ def test_deep_agent_with_subagents_with_middleware(self):
61
+ subagents = [
62
+ {
63
+ "name": "weather_agent",
64
+ "description": "Use this agent to get the weather",
65
+ "prompt": "You are a weather agent.",
66
+ "tools": [],
67
+ "model": SAMPLE_MODEL,
68
+ "middleware": [WeatherToolMiddleware()],
69
+ }
70
+ ]
71
+ agent = create_deep_agent(tools=[sample_tool], subagents=subagents)
72
+ assert_all_deepagent_qualities(agent)
73
+ result = agent.invoke({"messages": [{"role": "user", "content": "What is the weather in Tokyo?"}]})
74
+ agent_messages = [msg for msg in result.get("messages", []) if msg.type == "ai"]
75
+ tool_calls = [tool_call for msg in agent_messages for tool_call in msg.tool_calls]
76
+ assert any([tool_call["name"] == "task" and tool_call["args"].get("subagent_type") == "weather_agent" for tool_call in tool_calls])
77
+
78
+ def test_deep_agent_with_custom_subagents(self):
79
+ subagents = [
80
+ {
81
+ "name": "weather_agent",
82
+ "description": "Use this agent to get the weather",
83
+ "prompt": "You are a weather agent.",
84
+ "tools": [get_weather],
85
+ "model": SAMPLE_MODEL,
86
+ },
87
+ {
88
+ "name": "soccer_agent",
89
+ "description": "Use this agent to get the latest soccer scores",
90
+ "graph": create_agent(
91
+ model=SAMPLE_MODEL,
92
+ tools=[get_soccer_scores],
93
+ prompt="You are a soccer agent.",
94
+ )
95
+ }
96
+ ]
97
+ agent = create_deep_agent(tools=[sample_tool], subagents=subagents)
98
+ assert_all_deepagent_qualities(agent)
99
+ result = agent.invoke({"messages": [{"role": "user", "content": "Look up the weather in Tokyo, and the latest scores for Manchester City!"}]})
100
+ agent_messages = [msg for msg in result.get("messages", []) if msg.type == "ai"]
101
+ tool_calls = [tool_call for msg in agent_messages for tool_call in msg.tool_calls]
102
+ assert any([tool_call["name"] == "task" and tool_call["args"].get("subagent_type") == "weather_agent" for tool_call in tool_calls])
103
+ assert any([tool_call["name"] == "task" and tool_call["args"].get("subagent_type") == "soccer_agent" for tool_call in tool_calls])
104
+
105
+ def test_deep_agent_with_extended_state_and_subagents(self):
106
+ subagents = [
107
+ {
108
+ "name": "basketball_info_agent",
109
+ "description": "Use this agent to get surface level info on any basketball topic",
110
+ "prompt": "You are a basketball info agent.",
111
+ "middleware": [ResearchMiddlewareWithTools()],
112
+ }
113
+ ]
114
+ agent = create_deep_agent(tools=[sample_tool], subagents=subagents, middleware=[ResearchMiddleware()])
115
+ assert_all_deepagent_qualities(agent)
116
+ assert "research" in agent.stream_channels
117
+ result = agent.invoke({"messages": [{"role": "user", "content": "Get surface level info on lebron james"}]}, config={"recursion_limit": 100})
118
+ agent_messages = [msg for msg in result.get("messages", []) if msg.type == "ai"]
119
+ tool_calls = [tool_call for msg in agent_messages for tool_call in msg.tool_calls]
120
+ assert any([tool_call["name"] == "task" and tool_call["args"].get("subagent_type") == "basketball_info_agent" for tool_call in tool_calls])
121
+ assert TOY_BASKETBALL_RESEARCH in result["research"]
122
+
123
+ def test_deep_agent_with_subagents_no_tools(self):
124
+ subagents = [
125
+ {
126
+ "name": "basketball_info_agent",
127
+ "description": "Use this agent to get surface level info on any basketball topic",
128
+ "prompt": "You are a basketball info agent.",
129
+ }
130
+ ]
131
+ agent = create_deep_agent(tools=[sample_tool], subagents=subagents)
132
+ assert_all_deepagent_qualities(agent)
133
+ result = agent.invoke({"messages": [{"role": "user", "content": "Use the basketball info subagent to call the sample tool"}]}, config={"recursion_limit": 100})
134
+ agent_messages = [msg for msg in result.get("messages", []) if msg.type == "ai"]
135
+ tool_calls = [tool_call for msg in agent_messages for tool_call in msg.tool_calls]
136
+ assert any([tool_call["name"] == "task" and tool_call["args"].get("subagent_type") == "basketball_info_agent" for tool_call in tool_calls])
tests/test_hitl.py ADDED
@@ -0,0 +1,51 @@
1
+ from deepagents.graph import create_deep_agent
2
+ from tests.utils import assert_all_deepagent_qualities, get_weather, sample_tool, get_soccer_scores
3
+ from langgraph.checkpoint.memory import MemorySaver
4
+ from langgraph.types import Command
5
+ import uuid
6
+
7
+ SAMPLE_TOOL_CONFIG = {
8
+ "sample_tool": True,
9
+ "get_weather": False,
10
+ "get_soccer_scores": {
11
+ "allow_accept": True,
12
+ "allow_reject": True,
13
+ "allow_respond": False,
14
+ "description": "Ohohohooooo"
15
+ },
16
+ }
17
+
18
+ class TestHITL:
19
+ def test_hitl_agent(self):
20
+ checkpointer = MemorySaver()
21
+ agent = create_deep_agent(tools=[sample_tool, get_weather, get_soccer_scores], tool_configs=SAMPLE_TOOL_CONFIG, checkpointer=checkpointer)
22
+ config = {
23
+ "configurable": {
24
+ "thread_id": uuid.uuid4()
25
+ }
26
+ }
27
+ assert_all_deepagent_qualities(agent)
28
+ result = agent.invoke({"messages": [{"role": "user", "content": "Call the sample tool, get the weather in New York and get scores for the latest soccer games in parallel"}]}, config=config)
29
+ agent_messages = [msg for msg in result.get("messages", []) if msg.type == "ai"]
30
+ tool_calls = [tool_call for msg in agent_messages for tool_call in msg.tool_calls]
31
+ assert any([tool_call["name"] == "sample_tool" for tool_call in tool_calls])
32
+ assert any([tool_call["name"] == "get_weather" for tool_call in tool_calls])
33
+ assert any([tool_call["name"] == "get_soccer_scores" for tool_call in tool_calls])
34
+
35
+ assert result["__interrupt__"] is not None
36
+ interrupts = result["__interrupt__"][0].value
37
+ assert len(interrupts) == 2
38
+ assert any([interrupt["action_request"]["action"] == "sample_tool" for interrupt in interrupts])
39
+ assert any([interrupt["action_request"]["action"] == "get_soccer_scores" for interrupt in interrupts])
40
+
41
+ result2 = agent.invoke(
42
+ Command(
43
+ resume=[{"type": "accept"}, {"type": "accept"}]
44
+ ),
45
+ config=config
46
+ )
47
+ tool_results = [msg for msg in result2.get("messages", []) if msg.type == "tool"]
48
+ assert any([tool_result.name == "sample_tool" for tool_result in tool_results])
49
+ assert any([tool_result.name == "get_weather" for tool_result in tool_results])
50
+ assert any([tool_result.name == "get_soccer_scores" for tool_result in tool_results])
51
+ assert "__interrupt__" not in result2
@@ -0,0 +1,57 @@
1
+ from langchain.agents import create_agent
2
+ from deepagents.middleware import (
3
+ PlanningMiddleware,
4
+ FilesystemMiddleware,
5
+ SubAgentMiddleware,
6
+ )
7
+
8
+ SAMPLE_MODEL = "claude-3-5-sonnet-20240620"
9
+
10
+ class TestAddMiddleware:
11
+ def test_planning_middleware(self):
12
+ middleware = [PlanningMiddleware()]
13
+ agent = create_agent(model=SAMPLE_MODEL, middleware=middleware, tools=[])
14
+ assert "todos" in agent.stream_channels
15
+ assert "write_todos" in agent.nodes["tools"].bound._tools_by_name.keys()
16
+
17
+ def test_filesystem_middleware(self):
18
+ middleware = [FilesystemMiddleware()]
19
+ agent = create_agent(model=SAMPLE_MODEL, middleware=middleware, tools=[])
20
+ assert "files" in agent.stream_channels
21
+ agent_tools = agent.nodes["tools"].bound._tools_by_name.keys()
22
+ assert "ls" in agent_tools
23
+ assert "read_file" in agent_tools
24
+ assert "write_file" in agent_tools
25
+ assert "edit_file" in agent_tools
26
+
27
+ def test_subagent_middleware(self):
28
+ middleware = [
29
+ SubAgentMiddleware(
30
+ default_subagent_tools=[],
31
+ subagents=[],
32
+ model=SAMPLE_MODEL
33
+ )
34
+ ]
35
+ agent = create_agent(model=SAMPLE_MODEL, middleware=middleware, tools=[])
36
+ assert "task" in agent.nodes["tools"].bound._tools_by_name.keys()
37
+
38
+ def test_multiple_middleware(self):
39
+ middleware = [
40
+ PlanningMiddleware(),
41
+ FilesystemMiddleware(),
42
+ SubAgentMiddleware(
43
+ default_subagent_tools=[],
44
+ subagents=[],
45
+ model=SAMPLE_MODEL
46
+ )
47
+ ]
48
+ agent = create_agent(model=SAMPLE_MODEL, middleware=middleware, tools=[])
49
+ assert "todos" in agent.stream_channels
50
+ assert "files" in agent.stream_channels
51
+ agent_tools = agent.nodes["tools"].bound._tools_by_name.keys()
52
+ assert "write_todos" in agent_tools
53
+ assert "ls" in agent_tools
54
+ assert "read_file" in agent_tools
55
+ assert "write_file" in agent_tools
56
+ assert "edit_file" in agent_tools
57
+ assert "task" in agent_tools
tests/utils.py ADDED
@@ -0,0 +1,81 @@
1
+ from langchain_core.tools import tool, InjectedToolCallId
2
+ from langchain.agents.middleware import AgentMiddleware
3
+ from typing import Annotated
4
+ from langchain.agents.tool_node import InjectedState
5
+ from langchain.agents.middleware import AgentMiddleware, AgentState
6
+ from langgraph.types import Command
7
+ from langchain_core.messages import ToolMessage
8
+
9
+ def assert_all_deepagent_qualities(agent):
10
+ assert "todos" in agent.stream_channels
11
+ assert "files" in agent.stream_channels
12
+ assert "write_todos" in agent.nodes["tools"].bound._tools_by_name.keys()
13
+ assert "ls" in agent.nodes["tools"].bound._tools_by_name.keys()
14
+ assert "read_file" in agent.nodes["tools"].bound._tools_by_name.keys()
15
+ assert "write_file" in agent.nodes["tools"].bound._tools_by_name.keys()
16
+ assert "edit_file" in agent.nodes["tools"].bound._tools_by_name.keys()
17
+ assert "task" in agent.nodes["tools"].bound._tools_by_name.keys()
18
+
19
+ ###########################
20
+ # Mock tools and middleware
21
+ ###########################
22
+
23
+ SAMPLE_MODEL = "claude-3-5-sonnet-20240620"
24
+
25
+ @tool(description="Use this tool to get the weather")
26
+ def get_weather(location: str):
27
+ return f"The weather in {location} is sunny."
28
+
29
+ @tool(description="Use this tool to get the latest soccer scores")
30
+ def get_soccer_scores(team: str):
31
+ return f"The latest soccer scores for {team} are 2-1."
32
+
33
+ @tool(description="Sample tool")
34
+ def sample_tool(sample_input: str):
35
+ return sample_input
36
+
37
+ @tool(description="Sample tool with injected state")
38
+ def sample_tool_with_injected_state(sample_input: str, state: Annotated[dict, InjectedState]):
39
+ return sample_input + state["sample_input"]
40
+
41
+ TOY_BASKETBALL_RESEARCH = "Lebron James is the best basketball player of all time with over 40k points and 21 seasons in the NBA."
42
+
43
+ @tool(description="Use this tool to conduct research into basketball and save it to state")
44
+ def research_basketball(
45
+ topic: str,
46
+ state: Annotated[dict, InjectedState],
47
+ tool_call_id: Annotated[str, InjectedToolCallId]
48
+ ):
49
+ current_research = state.get("research", "")
50
+ research = f"{current_research}\n\nResearching on {topic}... Done! {TOY_BASKETBALL_RESEARCH}"
51
+ return Command(
52
+ update={
53
+ "research": research,
54
+ "messages": [
55
+ ToolMessage(research, tool_call_id=tool_call_id)
56
+ ]
57
+ }
58
+ )
59
+
60
+ class ResearchState(AgentState):
61
+ research: str
62
+
63
+ class ResearchMiddlewareWithTools(AgentMiddleware):
64
+ state_schema = ResearchState
65
+ tools = [research_basketball]
66
+
67
+ class ResearchMiddleware(AgentMiddleware):
68
+ state_schema = ResearchState
69
+
70
+ class SampleMiddlewareWithTools(AgentMiddleware):
71
+ tools = [sample_tool]
72
+
73
+ class SampleState(AgentState):
74
+ sample_input: str
75
+
76
+ class SampleMiddlewareWithToolsAndState(AgentMiddleware):
77
+ state_schema = SampleState
78
+ tools = [sample_tool]
79
+
80
+ class WeatherToolMiddleware(AgentMiddleware):
81
+ tools = [get_weather]
deepagents/builder.py DELETED
@@ -1,84 +0,0 @@
1
- from deepagents import create_deep_agent, async_create_deep_agent, SubAgent
2
- from langchain_core.tools import BaseTool, tool
3
- from pydantic import BaseModel
4
- from typing import Any, Optional
5
- from typing_extensions import TypedDict, NotRequired
6
-
7
-
8
- class SerializableSubAgent(TypedDict):
9
- name: str
10
- description: str
11
- prompt: str
12
- tools: NotRequired[list[str]]
13
- # Optional per-subagent model: can be either a model instance OR dict settings
14
- model: NotRequired[dict[str, Any]]
15
-
16
-
17
- def create_configurable_agent(
18
- default_instructions: str,
19
- default_sub_agents: list[SerializableSubAgent],
20
- tools,
21
- agent_config: Optional[dict] = None,
22
- **kwargs,
23
- ):
24
- tools = [t if isinstance(t, BaseTool) else tool(t) for t in tools]
25
- tool_names = [t.name for t in tools]
26
-
27
- class AgentConfig(BaseModel):
28
- instructions: str = default_instructions
29
- subagents: list[SerializableSubAgent] = default_sub_agents
30
- tools: list[str] = tool_names
31
-
32
- def build_agent(config: Optional[dict] = None):
33
- if config is not None:
34
- config = config.get("configurable", {})
35
- else:
36
- config = {}
37
- config_fields = {
38
- k: v for k, v in config.items() if k in ["instructions", "subagents"]
39
- }
40
- config = AgentConfig(**config_fields)
41
- return create_deep_agent(
42
- instructions=config.instructions,
43
- tools=[t for t in tools if t.name in config.tools],
44
- subagents=config.subagents,
45
- config_schema=AgentConfig,
46
- **kwargs,
47
- ).with_config(agent_config or {})
48
-
49
- return build_agent
50
-
51
-
52
- def async_create_configurable_agent(
53
- default_instructions: str,
54
- default_sub_agents: list[SerializableSubAgent],
55
- tools,
56
- agent_config: Optional[dict] = None,
57
- **kwargs,
58
- ):
59
- tools = [t if isinstance(t, BaseTool) else tool(t) for t in tools]
60
- tool_names = [t.name for t in tools]
61
-
62
- class AgentConfig(BaseModel):
63
- instructions: str = default_instructions
64
- subagents: list[SerializableSubAgent] = default_sub_agents
65
- tools: list[str] = tool_names
66
-
67
- def build_agent(config: Optional[dict] = None):
68
- if config is not None:
69
- config = config.get("configurable", {})
70
- else:
71
- config = {}
72
- config_fields = {
73
- k: v for k, v in config.items() if k in ["instructions", "subagents"]
74
- }
75
- config = AgentConfig(**config_fields)
76
- return async_create_deep_agent(
77
- instructions=config.instructions,
78
- tools=[t for t in tools if t.name in config.tools],
79
- subagents=config.subagents,
80
- config_schema=AgentConfig,
81
- **kwargs,
82
- ).with_config(agent_config or {"recursion_limit": 1000})
83
-
84
- return build_agent